
J. Fluid Mech. (2018), vol. 834, pp. 335–358. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.706

335

The nonlinear states of viscous capillary jets
confined in the axial direction

A. Martínez-Calvo1, M. Rubio-Rubio2 and A. Sevilla1,†
1Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos,

Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés (Madrid), Spain
2Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén,

Campus de las Lagunillas, 23071, Jaén, Spain

(Received 24 May 2017; revised 27 August 2017; accepted 26 September 2017;
first published online 17 November 2017)

We report an experimental and theoretical study of the global stability and nonlinear
dynamics of vertical jets of viscous liquid confined in the axial direction due to their
impact on a bath of the same liquid. Previous works demonstrated that in the absence
of axial confinement the steady liquid thread becomes unstable due to an axisymmetric
global mode for values of the flow rate, Q, below a certain critical value, Qc, giving
rise to oscillations of increasing amplitude that finally lead to a dripping regime
(Sauter & Buggisch, J. Fluid Mech., vol. 533, 2005, pp. 237–257; Rubio-Rubio
et al., J. Fluid Mech., vol. 729, 2013, pp. 471–483). Here we focus on the effect
of the jet length, L, on the transitions that take place for decreasing values of Q.
The linear stability analysis shows good agreement with our experiments, revealing
that Qc increases monotonically with L, reaching the semi-infinite jet asymptote for
sufficiently large values of L. Moreover, as L decreases a quasi-static limit is reached,
whereby Qc→ 0 and the neutral conditions are given by a critical length determined
by hydrostatics. Our experiments have also revealed the existence of a new regime
intermediate between steady jetting and dripping, in which the thread reaches a
limit-cycle state without breakup. We thus show that there exist three possible states
depending on the values of the control parameters, namely steady jetting, oscillatory
jetting and dripping. For two different combinations of liquid viscosity, ν, and injector
radius, R, the boundaries separating these regimes have been determined in the (Q, L)
parameter plane, showing that steady jetting exists for small enough values of L
or large enough values of Q, dripping prevails for small enough values of Q or
sufficiently large values of L, and oscillatory jetting takes place in an intermediate
region whose size increases with ν and decreases with R.

Key words: absolute/convective instability, capillary flows, nonlinear instability

1. Introduction

The great research effort devoted in the past to understanding and controlling
the dynamics of liquid jets is justified by their rich phenomenology and the large
number of technological applications where they play a central role, such as fuel
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atomisation, chemical reactors, ink-jet and 3D printing, additive manufacturing,
microfluidic platforms, drug encapsulation, mass spectrometry or cytometry, to name
a few (see e.g. the reviews by Bogy 1979; Eggers 1997; Lin & Reitz 1998; Basaran
2002; Barrero & Loscertales 2007; Christopher & Anna 2007; Eggers & Villermaux
2008; Derby 2010; Anna 2016). These applications often require the generation of
micrometre-sized jets and drops, in which case it proves convenient to downscale the
disperse phase from a typically millimetre-sized injector to the desired micrometre
scales to avoid clogging issues. This stretching effect can be achieved through different
techniques like fibre spinning (Matovich & Pearson 1969; Pearson & Matovich 1969),
electrospinning (Doshi & Reneker 1995), flow focusing (Gañán-Calvo 1998), viscous
co-flows (Suryo & Basaran 2006; Marín, Campo-Cortés & Gordillo 2009; Evangelio,
Campo-Cortés & Gordillo 2016) and gravitational stretching (Sauter & Buggisch 2005;
Rubio-Rubio, Sevilla & Gordillo 2013). The latter configuration is particularly simple
to implement, and the present work naturally extends the investigation of Rubio-Rubio
et al. (2013) to assess the influence of a finite jet length and nonlinearity on the
dynamics of the liquid thread.

In the absence of axial confinement, previous studies of the downwards injection of
a constant flow rate of liquid into a passive gaseous atmosphere have demonstrated
the existence of two different flow states, namely dripping and jetting, respectively
prevailing for small and large enough values of the flow rate (Clanet & Lasheras 1999;
Ambravaneswaran et al. 2004). The jetting regime is characterised by the formation of
a liquid column which breaks up into drops at a certain distance from the injector due
to the downstream growth of axisymmetric capillary instability waves (see e.g. Plateau
1873; Rayleigh 1878; Donnelly & Glaberson 1966; Kalaaji et al. 2003; González &
García 2009). In contrast, the dripping regime features the emission of comparatively
larger drops near the injector (Wilkes, Phillips & Basaran 1999; Coullet, Mahadevan
& Riera 2005; Subramani et al. 2006). From the point of view of local stability theory,
the jetting regime is a convectively unstable flow, in which the downstream advection
of growing disturbances by the underlying base flow allows the formation of a long
liquid column. Moreover, several works have successfully described the transition from
jetting to dripping as a global instability that, in the case of quasi-parallel jets, is
linked with the onset of local absolute instability (Leib & Goldstein 1986a,b; Le Dizès
1997; Vihinen, Honohan & Lin 1997; O’Donnell, Chen & Lin 2001; Söderberg 2003;
Sevilla 2011; Guerrero, González & García 2016).

The concepts of convective and absolute instability rely on the assumption of
quasi-parallel flow, and do not apply to cases where the wavelength of disturbances is
of the order of the development length of the base flow, as happens in highly stretched
jets like those studied in the present work. In these cases a global stability analysis
must be performed, in which the spatial structure of the eigenfunctions is obtained as
part of the solution (Theofilis 2011). The global stability analysis is greatly simplified
by the use of one-dimensional approximations to the full conservation equations, since
the eigenvalue problem involves only the axial coordinate as an eigendirection (see
e.g. Pearson & Matovich 1969; Sauter & Buggisch 2005; Rubio-Rubio et al. 2013;
Gordillo, Sevilla & Campo-Cortés 2014). In particular, a global stability analysis
of the leading-order one-dimensional model for viscous liquid columns (Eggers &
Dupont 1994; García & Castellanos 1994) was first applied to gravitationally stretched
viscous jets by Sauter & Buggisch (2005), and refined later on by Rubio-Rubio et al.
(2013). The latter works revealed that the axisymmetric self-excited oscillations
observed in long viscous jets below a certain critical flow rate are explained by the
destabilisation of a linear global mode.
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Despite the usefulness of linearised theory to predict many features of liquid jets,
there are relevant aspects of their dynamics that can only be described using a
nonlinear approach, prominent examples being the pinch-off singularity (Eggers 1993)
and the formation of satellite droplets (Yuen 1968; Nayfeh 1970; Rutland &
Jameson 1971; Ashgriz & Mashayek 1995). In the present work we introduce a
new configuration where nonlinearity provides the selection mechanism between two
different regimes after the jet becomes globally unstable: either a limit-cycle state
without breakup described here for the first time (see movie 2 of the supplementary
material available at https://doi.org/10.1017/jfm.2017.706), or a fully developed
dripping state (see movie 3 of the supplementary material).

Liquid threads of finite length, either by their impingement onto a bath of the
same liquid or by their impact on a solid plate, have also been considered in
previous works. Thus, the shape and stability of quasi-static axisymmetric liquid
bridges formed between a solid rod and an infinite bath were studied by Kovitz
(1975), and more recently by Benilov & Oron (2010) and Benilov & Cummins
(2013). Christodoulides & Dias (2010) studied the steady structure of planar vertical
inviscid jets impinging onto a horizontal solid plate. However, most of the literature
deals with the phenomenon of coiling, the fascinating buckling instability associated
with the impact of a jet or film of viscous liquid on a solid substrate (see Ribe,
Habibi & Bonn 2012, and references therein). Another beautiful and surprisingly rich
phenomenon that has been studied is the deposition of viscous threads on moving
solid substrates (Chiu-Webster & Lister 2006; Blount & Lister 2011). These coiling
states and deposition patterns break the axial symmetry, and their mathematical
description is complicated by the fact that the thread centreline must be obtained as
part of the solution (Entov & Yarin 1984). Although in the experiments reported
herein we have observed coiling under certain conditions, our focus is on the
global self-excited oscillations caused by the destabilisation of the axisymmetric
breathing mode studied by Sauter & Buggisch (2005) and Rubio-Rubio et al. (2013).
It should be pointed out that the breathing mode and coiling coexist in a wide
region of parameter space, as evidenced by movie 5 of the supplementary material.
Nevertheless, in all the cases considered herein the coupling between both modes
is weak enough for a purely axisymmetric model to provide a reasonably good
leading-order description, not only of the neutral conditions for the onset of the
breathing mode, but also of the long-time regime of the jet.

In the present work we report experiments performed to characterise the linear
and nonlinear stability properties of jets of Newtonian liquid, injected at a constant
flow rate through a circular tube, that impinge on the free surface of a reservoir of
the same liquid placed at a controlled distance from the injector. The experiments
are complemented with a global stability analysis and numerical simulations, both
based on the leading-order one-dimensional mass and momentum equations retaining
the full expression of the interfacial curvature (Eggers & Dupont 1994; Rubio-Rubio
et al. 2013). We also study the selection of nonlinear regimes under globally unstable
conditions. The experimental set-up and the mathematical model are described in § 2,
and the results are presented in § 3, finally leading to the conclusions drawn in § 4.

2. Experimental set-up and mathematical model
2.1. Flow configuration and experimental set-up

Figure 1(a) sketches the configuration under study, where a liquid of density ρ,
kinematic viscosity ν and surface tension coefficient σ is injected at a constant
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FIGURE 1. (a) Sketch of the flow configuration. (b) Photograph of a steady jet for ν =
500 cSt (Γ = 8.33), R= 1.75 mm (Bo= 1.38), Q= 3.5 ml min−1 (We= 3.05× 10−3) and
L= 16.6 mm (L/R= 9.47). The white line shows the steady solution of (2.1)–(2.3).

flow rate Q through a circular tube of radius R whose length is sufficiently large
to guarantee a fully developed velocity profile at its outlet. The resulting free liquid
jet is confined in the axial direction through its impact with the free surface of a
reservoir of the same liquid placed at a distance L from the injector outlet. To ensure
that the results are independent of the downstream boundary condition, we have
also performed several experiments where the jet impacts a solid horizontal plate,
obtaining nearly identical results. The surrounding gaseous atmosphere, at pressure
pa, has a negligible dynamic effect on the jet due to the smallness of the typical
liquid velocities.

The experiments were performed in the same set-up used by Rubio-Rubio et al.
(2013), with the only addition of a vertical positioning stage located below the
injection tube and mounting a platform onto which a reservoir filled with the working
liquid was placed. The free surface of the reservoir, located at a distance L from the
injector outlet, was impinged by the liquid jet as shown in figure 1. The liquid was
supplied with a Harvard Apparatus PhD Ultra syringe pump, and the free jet was
recorded using a Red Lake Motion Pro X high speed camera. To minimise the effect
of ambient noise, both the injector and the camera were installed inside a transparent
isolation chamber, and the entire system except the syringe pump was placed on an
optical table with a passive vibration damping system. Two stainless steel capillary
tubes acquired from Tubca were used as injectors, of inner radii R = 1.5 mm and
R = 1.75 mm, that were carefully machined at their tip to ensure that the contact
line remained pinned at their inner radii. Two different Newtonian liquids were used
in the experiments, both of them PDMS (Polydimethylsiloxane) silicon oils from
Sigma-Aldrich, whose properties at 25 ◦C are ρ = 970 kg m−3, σ = 21.1 mN m−1
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and kinematic viscosities ν = 500 and ν = 1000 mm2 s−1, with corresponding values
of the Kapitza number, Γ = 3ν[(ρ3g)/σ 3

]
1/4, of Γ = 8.33 and Γ = 16.67, respectively.

In each experimental run, first an injection tube and a silicone oil were selected, and
the vertical stage was positioned to provide the desired value of L. The syringe pump
was programmed to inject an initial liquid flow rate large enough to provide a jetting
regime, and to smoothly decrease until the desired target value of Q was achieved.

2.2. Basic experimental evidence
From the results of the experiments it is deduced that, leaving the presence of coiling
apart, there are three possible regimes whose occurrence depends on the values of
the control parameters. Let us begin by classifying these regimes following the order
in which they are observed when Q decreases smoothly and the rest of the control
parameters are fixed.

(i) Steady jetting: This regime is illustrated in movie 1 of the supplementary material
and in figure 1(b), which shows a photograph of a steady jet of silicone oil with
ν= 500 cSt injected through a tube of radius R= 1.75 mm at a constant flow rate
Q= 3.5 ml min−1 that impinges on the free surface of an oil reservoir placed at
a distance L= 16.6 mm of the injector. The steady jetting regime is stable if Q
is larger than a certain critical value, Qc.

When Q < Qc the jet is unstable due to an oscillatory axisymmetric global mode,
leading to self-sustained oscillations of shape and velocity whose amplitude increases
with time (Sauter & Buggisch 2005; Rubio-Rubio et al. 2013). This linear global
mode is also referred to as the breathing mode throughout the paper. Our experiments
reveal that two different nonlinear states may take place if Q<Qc:

(ii) Oscillatory jetting: When Qb < Q < Qc a limit-cycle state without breakup is
achieved, whereby the oscillation amplitude saturates to a certain function of the
downstream position (see figure 5). This regime can be observed in movies 2
and 5 of the supplementary material, as well as in figures 3–7. Note that the
oscillatory jetting regime is a nonlinear state of the liquid thread, and it should
not be confused with the linear breathing mode, which is globally unstable under
the conditions where both the oscillatory jetting and dripping regimes take place.

(iii) Dripping: When Q<Qb, the amplitude of the oscillations grows until the breakup
of the jet takes place, finally leading to a jetting–dripping transition, as illustrated
in movies 3 and 4 of the supplementary material, as well as in figure 8.

This evidence calls out for an experimental and numerical characterisation of the
functions Qc(ν, R, L) and Qb(ν, R, L), that were thus obtained in a wide region of
parameter space, as reported in § 3.

2.3. One-dimensional model
To model the liquid jet we use the dimensionless leading-order one-dimensional mass
and momentum equations (Eggers & Dupont 1994; García & Castellanos 1994),

∂r2
j

∂t
+
∂(ur2

j )

∂z
= 0, (2.1)

∂u
∂t
+ u

∂u
∂z
= 1−

∂C
∂z
+
Γ

r2
j

∂

∂z

(
r2

j
∂u
∂z

)
, (2.2)
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C = r−1
j

[
1+

(
∂rj

∂z

)2
]−1/2

−
∂2rj

∂z2

[
1+

(
∂rj

∂z

)2
]−3/2

, (2.3)

where the dependent variables u and rj are the liquid velocity and jet radius
respectively, z is the axial coordinate, t is the time and C is the interfacial curvature.
It is worth pointing out that the full expression for the curvature needs to be retained
for the model to provide good quantitative predictions of the stability in the case of
large injector diameters, for which the jet experiences a strong gravitational stretching
close to the neutral conditions and, correspondingly, the stabilising effect of the axial
curvature must be taken into account (Rubio-Rubio et al. 2013). The variables in
(2.1)–(2.3) have been made dimensionless using the liquid density ρ, the capillary
length lσ = (σ/ρg)1/2 and the associated characteristic velocity

√
glσ (Senchenko

& Bohr 2005). Thus, the system (2.1)–(2.3) only depends on Γ , which is constant
for a given liquid and a fixed value of g. The solution depends on the constant
flow rate, Q, and on the injector radius, R, through the dimensionless versions of
the boundary conditions at z = 0 : rj = R/lσ = Bo1/2 and u = U/

√
glσ = We1/2Bo−1/4,

where Bo = ρgR2/σ is the Bond number, We = ρU2R/σ is the Weber number and
U =Q/(πR2) the mean velocity at the nozzle exit. In addition, a Dirichlet boundary
condition is imposed for the velocity at the downstream end of the domain, z= L/lσ :
u = uout, as a crude but simple way to represent the impingement of the jet on the
reservoir. Specifically, the value of uout is small enough to properly describe the
impact region, since the liquid bath is at rest far from the jet. This simple method
provides fairly good results, as illustrated in figure 1(b) for the particular case of
a steady jet. In addition, we have carefully checked that the results barely depend
on the value chosen for the outflow velocity, provided that uout . 0.1. In the case
of relatively long jets with L/R & 20, the value of uout does not affect the results
at all. Indeed, in this limit the impact region is very small compared to the length
of the jet, and the outflow boundary condition affects neither the base flow nor its
linear and nonlinear stability. In particular, these cases can be easily modelled either
by imposing a Neumann outlet boundary condition, or even without imposing any
outlet boundary condition at all (Rubio-Rubio et al. 2013). The mathematical model
is governed by four control parameters, namely Γ , Bo and We and the dimensionless
length of the jet, L/R = L/lσBo−1/2, hereafter scaled with the injector radius for
convenience.

3. Experimental and theoretical results
In this section we present the results of the experiments, as well as the linear

stability analysis and the numerical simulations, based on the one-dimensional
model (2.1)–(2.3).

3.1. Linear stability analysis: the role of axial confinement
Let us begin by extending the linear stability results of Rubio-Rubio et al. (2013) to
account for the effect of L/R on the critical Weber number, Wec, below which
the jet becomes globally unstable. Since the methodology is identical to that
presented in Rubio-Rubio et al. (2013), except for the treatment of the downstream
boundary condition, the details of the formulation are provided in appendix A. The
procedure consists of linearising equations (2.1)–(2.3) around a given steady basic
state according to the following decomposition in temporal normal modes,

rj(z, t)= rj0(z)+ εrj1(z)eωt, (3.1)
u(z, t)= u0(z)+ εu1(z)eωt, (3.2)
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where ε � 1 accounts for the smallness of the perturbation around the base
flow [rj0(z), u0(z)], ω is the complex eigenfrequency and rj1(z) and u1(z) are the
corresponding eigenfunctions. The values of ωr =Re(ω) and ωi= Im(ω) represent the
growth rate and the angular frequency of a normal mode, respectively. Accordingly,
the jet will be stable if max(ωr) < 0, and unstable if max(ωr) > 0. In the latter
case, it is important to emphasise that the linearised description given by (3.1)–(3.2)
is only valid during the initial stages of growth of small disturbances, so that the
nonlinear terms are negligible in (2.1)–(2.3). It is also worth pointing out that the
decomposition (3.1)–(3.2) does not rely on a local stability analysis, which would
involve the usual expansion in normal modes of wavepacket form eωt+ikz. Thus, instead
of searching for a dispersion relation D(ω, k) = 0, here no a priori assumption is
made about the shape of the eigenfunctions, whose spatial structure is obtained as
part of the solution.

The basic flow, which satisfies the steady version of (2.1)–(2.3), was calculated
using the procedure detailed in § A.1. Once the base flow has been found, the
critical conditions for the transition from a globally stable to a globally unstable jet
are easily determined as a function of the governing parameters, (Γ , Bo, We, L/R),
by solving the linear stability problem as explained in § A.2. If the flow is stable,
max(ωr) < 0, small disturbances are damped and thus a steady flow is expected, like
that shown in figure 1(b) and in movie 1 of the supplementary material. In contrast,
if max(ωr) > 0 the jet is globally unstable and the development of spontaneous
oscillations of increasing amplitude is predicted. In the latter case, two different
scenarios emerge according to the experimental evidence described in § 2.2: either
the oscillations saturate to a limit cycle without breakup (see figures 3–7, and movies
2 and 5 of the supplementary material), or their growth leads to the pinch-off of
the liquid column, eventually leading to a dripping regime (see figure 8 and movies
3 and 4 of the supplementary material). Since the oscillation amplitude increases in
the downstream direction (see figure 5) it can be anticipated that the confinement
parameter, L/R, will have a strong influence not only on the neutral stability curves,
but also on the selection of the final nonlinear regime (see § 3.2).

Both the experiments and the stability analysis reveal that the eigenvalue spectrum
is strongly affected by the axial confinement for sufficiently small values of L/R.
Consequently, Wec and ωc,i are certain functions of L/R which can be easily computed
with the methodology described in §§ A.2 and B.1. The main result is summarised
in figure 2, which shows the good agreement of the experiments (symbols) with the
prediction of the linear stability analysis (lines), especially for values of L/R . 10.
Figure 2 reveals that both Wec and ωc,i decrease as L/R decreases, indicating that axial
confinement stabilises the jet and reduces the critical frequency of the self-sustained
oscillations. The symbols A, C in figure 2(a) define the experimentally determined
range of neutral stability, due to the fact that the flow rate decreased in smooth
ramps programmed with the syringe pump as described in § 2.1. For sufficiently long
jets, L/R� 1, the stability properties become independent of L/R, reaching the limit
already studied by Sauter & Buggisch (2005) and Rubio-Rubio et al. (2013). In the
opposite limit of strongly confined jets, figure 2(a) suggests the existence of a vertical
asymptote, Wec→ 0, and a corresponding critical value of the jet length, Lc/R. Indeed,
the vertical lines plotted in figure 2(a) are the maximum lengths for which a static
axisymmetric liquid bridge between a solid rod and an infinite pool is stable (Kovitz
1975; Benilov & Cummins 2013), namely (Bo, Lc/R) ' (1, 1.31) and (1.38, 1.19).
Note from figure 2 that these values of Lc/R are consistent with our results in the
hydrostatic limit, Wec→ 0. It is therefore concluded that axial confinement stabilises
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FIGURE 2. (a) Critical Weber number, Wec, and (b) corresponding angular frequency, ωc,i,
as functions of L/R, for (Γ , Bo) = (16.67, 1.00) (solid lines and filled symbols) and
(Γ , Bo)= (8.33, 1.38) (dashed lines and open symbols). The lines are the neutral curves
obtained with the linear stability analysis. The symbols represent the experimental results
for the maximum (C) and minimum (A) values of Wec, and for the critical frequency (E).
The vertical thin lines in panel (a) are the critical lengths given by the hydrostatic limit,
Wec→ 0 (Kovitz 1975; Benilov & Cummins 2013).

the liquid thread, and that the jet length below which such effect is noticeable
depends on Γ and Bo, having values L/R . 15 for (Γ , Bo) = (8.33, 1.38) and
L/R . 23 for (Γ , Bo) = (16.67, 1.00), as can be deduced from figure 2. In contrast,
the hydrostatic limit reached as L/R decreases is independent of the parameter Γ ,
which incorporates the liquid viscosity, and is only a function of Bo. Figure 2 also
reveals that the quantitative agreement between experiments and theory deteriorates for
L/R& 10, probably due to the limitations of the one-dimensional model. In particular,
as emphasised by Rubio-Rubio et al. (2013), the model does not contemplate the
viscous relaxation from the parabolic velocity profile at the injector outlet to the
uniform velocity profile achieved downstream. In contrast, the good quantitative
agreement found for L/R . 10 may well be due to the fact that the hydrostatic limit,
Wec→ 0, is described exactly by the theoretical model thanks to the use of the full
expression for the interfacial curvature in (2.3).

3.2. Nonlinear stability
The present section is devoted to address the influence of the control parameters on
the selection of the final jet state under globally unstable conditions, Q<Qc. Although
the linear stability analysis presented in § 3.1 provides values of Qc in fairly good
agreement with experiments, it cannot predict the final state of the jet at large times,
which is determined by nonlinear effects. Therefore, in addition to the experiments, we
have conducted numerical simulations of (2.1)–(2.3), which were integrated by means
of the simple and efficient method explained in §§ B.1 and B.2. In particular, the latter
approach allows us to numerically compute the nonlinear saturation process that takes
place in the oscillatory jetting regime, and to determine the breakup flow rate, Qb, as
a function of the governing parameters ν, R and L.
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FIGURE 3. Logarithm of the radius oscillation amplitude at z= z∗ = 0.73L as a function
of time extracted from a numerical simulation of (2.1)–(2.3) starting from a very small
disturbance superimposed on a slightly unstable steady solution, namely Γ =16.67, Bo=1,
L/R= 23.26 and Wenum

= 6.8× 10−3 <Wenum
c . After an initial stage of exponential growth

during the linear regime, t . 800, the amplitude saturates to a constant value for t & 2000
due to nonlinear effects. The inset shows the power spectral density of the saturated
oscillations, where the most energetic frequency and its two leading harmonics can be
appreciated.

Let us first describe the main characteristics of the oscillatory jetting regime, which
takes place for Qb < Q < Qc or, in dimensionless terms, for Web < We < Wec. For
clarity, hereinafter the values of the variables provided by experiments, linear stability
analysis and numerical simulations will be denoted using the superscripts ()exp, ()lsa

and ()num, respectively.
Figure 3 shows a numerical example of the oscillation amplitude growth induced

by a very small initial disturbance superimposed on the steady state solution
under globally unstable conditions, namely Γ = 16.67, Bo = 1, L/R = 23.26 and
Wenum

= 6.80 × 10−3 < Wenum
c = Welsa

c = 7.88 × 10−3. In figure 3 the logarithm of
the maxima of a pointwise measure of the radius oscillation, Arj = rj(z∗, t) − rj0(z∗),
where z∗= 0.73L, is plotted as a function of time. The choice of the value z∗= 0.73L
to measure the jet oscillations was motivated by the fact that their amplitude is
sufficiently large at this distance from the injector to allow a precise measurement.
In addition, in cases where coiling takes place, like that shown in figure 5(b), the
coiling amplitude at this point is small enough for its influence on the results to be
negligible. Three different stages can be clearly identified in figure 3. First, an initial
linear growth regime for t . 800, where the small disturbance increases exponentially
with time with a growth rate given by ωnum

r = 3.28 × 10−3 and ωlsa
r = 3.23 × 10−3

according to the numerical simulation and the linear stability analysis presented in
§ 3.1, respectively. During the second stage, 800 . t . 2000, a transition regime takes
place where nonlinear effects become important and moderate the exponential growth.
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(a)

(b)

FIGURE 4. (a) Photographs of the liquid jet during a period of self-sustained oscillations
for ν = 500 cSt (Γ = 8.33), R= 1.75 mm (Bo= 1.38), L= 28 mm (L/R= 16) and Qexp

=

3.5 ml min−1 (Weexp
= 2.96× 10−3), smaller than the experimental critical flow rate, Qexp

c =

3.8 ml min−1 (Weexp
c = 3.49× 10−3). The time interval between photographs is 38 ms, and

the oscillation frequency is 3.33 Hz (ωexp
i = 0.258). (b) Numerically computed period of

self-sustained oscillations for Γ = 8.33, Bo = 1.38, L/R = 16 and Wenum
= 4.43 × 10−3,

smaller than the critical flow rate provided by the one-dimensional model, Welsa
c =Wenum

c =

5.03× 10−3. The time interval is 37 ms and the oscillation frequency is 3.83 Hz (ωnum
i =

0.297). Note that similar distances to the critical point have been chosen in the experiment
and in the numerical simulation, namely Weexp

c −Weexp
' 5.3× 10−4 and Wenum

c −Wenum
'

6× 10−4 in (a,b), respectively.

Third, for t & 2000, the oscillation amplitude saturates to a certain constant. The inset
of figure 3 represents the power spectral density (PSD) of the saturated signal, clearly
showing the dominant angular frequency and its two leading harmonics. The value
of the dominant frequency extracted from the numerical PSD is ωnum

i = 0.259, to be
compared with the corresponding value of the leading eigenmode computed with the
linear stability analysis of § 3.1, ωlsa

i = 0.259.
The typical limit-cycle behaviour observed at large times in the oscillatory jetting

regime is illustrated in figure 4. Specifically, figure 4(a) shows a sequence of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

70
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.706


The nonlinear states of viscous capillary jets confined in the axial direction 345

photographs captured during one period of self-sustained oscillations, and figure 4(b)
displays the corresponding numerically computed interface profiles under similar
conditions. The values of all the dimensionless parameters except We are the same
in figure 4(a,b), namely Γ = 8.33, Bo = 1.38, L/R = 16, for which the critical
Weber numbers for the onset of global instability are Weexp

c = 3.49 × 10−3 and
Welsa

c = Wenum
c = 5.03 × 10−3 according to the experiments and to the prediction

given by the linear stability analysis and the numerical integration of (2.1)–(2.3),
respectively. Due to the difference in the experimental and numerical values of Wec,
which can also be observed in figure 2(a), we decided to choose values of Weexp and
Wenum in figure 4 such that the distance to the corresponding critical Weber numbers
was similar, namely Weexp

c −Weexp
' 5.3× 10−4 in the experiment of figure 4(a) and

Wenum
c −Wenum

' 6× 10−4 in the numerical simulation of figure 4(b). In view of the
results shown in figure 4 it is clear that the simple one-dimensional model used in
the present work is able to qualitatively reproduce the main features of the oscillatory
jetting regime including not only its frequency, but also the spatial structure of the
limit cycle.

A quantitative comparison between the typical experimental and numerical
behaviour in the oscillatory jetting regime is provided in figures 5–7. In particular,
figure 5 shows the numerically computed saturated oscillations of the jet radius around
the basic steady state, rj(z, t)− rj0(z) as t→∞ (thin solid lines). The thick solid and
dashed lines are, respectively, the upper and lower envelopes of the numerical and
experimental oscillations, obtained as the maximum and minimum values of rj − rj0
over time at each value of z. The insets display the amplitude of the oscillations as
the difference between the upper and the lower envelopes, max(rj) − min(rj). The
oscillation amplitude is seen to increase monotonically downstream until the impact
region is reached, explaining why the liquid jets studied herein always break up close
to the free surface of the reservoir, as observed in figure 8 and in movies 3 and 4 of
the supplementary material. A particularly interesting aspect of the flow is illustrated
in figure 5(b), which shows that the self-sustained oscillations may coexist with the
phenomenon of coiling (Ribe et al. 2012). Indeed, our experiments have revealed
new regimes of steady and oscillatory coiling as a function of the parameters of
the problem, respectively associated with the steady jetting and with the oscillatory
jetting regimes. In the latter case, the coiling is unsteady and its frequency varies
enslaved to that of the axisymmetric breathing mode. Another scenario that we
have observed is the disappearance of coiling due to the increase of the oscillation
amplitude as the value of We decreases or the value of L/R increases (see figure 9a,c).
Although these features cannot be predicted using an axisymmetric model, their effect
on the saturation amplitude upstream of the impact region is relatively small, as
deduced from the results of figure 5(b). In fact, it is deduced from figure 5 that the
quantitative agreement between the experiments and the numerical integration of the
one-dimensional model equations (2.1)–(2.3) is fairly good, provided that the values
of We are chosen such that Wec − We have similar values in the experiments and
numerical simulations.

Another interesting aspect of the oscillatory jetting regime is the periodic formation
of a liquid bulge which falls downstream during each oscillation period, as deduced
from figures 4 and 5, and from movies 2 and 5 of the supplementary material.
Figure 6 shows the axial position of the point of maximum radius inside the liquid
bulge, zmax, as a function of time, under the conditions of figure 5(b). The symbols
and the solid line represent the experimental and numerical results, respectively, while
the dashed line is a plot of the free-fall law which, in dimensionless terms, is the
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FIGURE 5. Upper and lower envelopes of the oscillations around the basic steady state,
rj − rj0, after the saturation to a limit cycle, obtained from experiments (dotted lines)
and numerical simulations of (2.1)–(2.3) (solid lines). Numerical jet shapes at several
instants during one oscillation period are also plotted as thin solid lines bounded by
their corresponding envelope. The inset plots show the difference between the maxima
and minima of rj as a function of z. (a) Configuration without coiling, illustrated by
the inset photograph: Γ = 8.33, Bo = 1.38, L/R = 9.36 and values of We < Wec close
to the experimental and numerical neutral conditions, namely Weexp

= 2.96 × 10−3, for
which ω

exp
i = 0.269, and Wenum

= 3.75× 10−3, for which ωnum
i = 0.296. (b) Configuration

with coiling, illustrated by the inset photograph: Γ = 16.67, Bo = 1, L/R = 23.26 and
values of Weexp

= 3.93× 10−3, for which ωexp
i = 0.215, and Wenum

= 6.42× 10−3, for which
ωnum

i = 0.256. The vertical dashed line marks the upper limit imposed on the value of z
in the post-processing of the experiment.
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FIGURE 6. Axial coordinate of the point of maximum radius of the liquid bulge, zmax,
as a function of time during one cycle of the self-sustained oscillatory jetting state of
figure 5(b), obtained from experiments (symbols) and numerical simulations (solid line).
The dashed line shows the free-fall law t2/2.

function t2/2. The results of figure 6 reveal that the vertical velocity of the bulge
is smaller than that associated with free fall during most of its time evolution. Only
during the last stages, when the volume accumulated inside the fluid bulge becomes
larger than the volume of the liquid filaments connecting the bulge with the injector
upstream and with the reservoir downstream, the free-fall law is approached. This
fact suggests that the liquid bulge behaves like a freely falling liquid drop when its
volume becomes large enough.

The bifurcation diagram represented in figure 7 shows the squared amplitude
of the saturated radius oscillations, A2

sat, as a function of We, obtained from the
experiments (A) and numerical simulations (E). Here the saturated amplitude is
defined as Asat = max(Arj) − min(Arj) with t > tsat, tsat being a value of time large
enough for the asymptotic limit-cycle behaviour illustrated by the inset of figure 7
to be reached. Moreover, the amplitude is defined by the same pointwise measure
used in figure 3, namely Arj = rj(z∗, t) − rj0(z∗) and, similarly, Au = u(z∗, t) − u0(z∗).
The results shown in figure 7 prove that the axially confined jets under study behave
as hydrodynamic oscillators governed by a supercritical Hopf bifurcation. Indeed,
in the case of the numerical simulations, as the value of Wenum decreases and the
critical value Welsa

c given by the linear analysis of figure 2 is crossed (u), a branch
of finite-amplitude, orbitally stable periodic solutions emerges for Wenum < Welsa

c (E).
A similar scenario holds also for the experiments, but at smaller values of Weexp,
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FIGURE 7. Bifurcation diagram for Γ = 16.67, Bo= 1 and L/R= 23.26, where the square
of the saturated amplitude of the radius oscillations, A2

sat (defined in the main text), is
represented as a function of We. Results from experiments (A) and numerical integrations
of (2.1)–(2.3) (E) are shown. The experimental critical Weber number lies in the range
5.62× 10−3 <Weexp

c < 5.83× 10−3, represented by the symbols t and r. The numerical
simulations provide the value Wenum

c = 7.88× 10−3 (u), in agreement with the result of the
linear stability analysis, Welsa

c . The solid lines are linear fits close to the experimental and
numerical neutral points, according to the supercritical Stuart–Landau model. The saturated
oscillation frequencies, ωi, are indicated close to several data points. The inset shows the
structure of the numerical limit cycle in the (Au,Arj) plane associated with the grey-filled
circle. The offset between the values of Weexp

c and Wenum
c can also be seen in figures 2

and 9(d).

since Weexp
c <Welsa

c as deduced from figure 2. In addition, figure 7 shows that close
to the critical point the amplitude grows as A2

sat ∝ (Wec −We), as expected from the
Stuart–Landau equation (Landau 1944; Stuart 1958). Note also that the frequency
decreases as the value of We decreases, whilst the growth rate increases leading to
shorter saturation times.

Since, as revealed by figure 5, the saturated oscillation amplitude increases with z, it
can be anticipated that the breakup of the liquid thread will occur as the value of L/R
increases, leading to a jetting–dripping transition. Moreover, since the minimum jet
radius is always located slightly upstream of the impact region, pinch-off should take
place near the reservoir. Indeed, this fact is shown experimentally in the photograph
of figure 8(a), extracted from movie 3 of the supplementary material, and numerically
in figure 8(b), extracted from movie 4 of the supplementary material. Note that the
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(a) (b)

FIGURE 8. (a) Photograph extracted from movie 3 of the supplementary material,
illustrating the incipient breakup of a jet with ν = 500 cSt, R= 1.75 mm, L= 16.6 mm,
injected at a flow rate, Q= 3.3 ml min−1. These conditions are represented in the phase
diagrams of figure 9(a,c) with the symbolq, which lies within the dripping region. Since
Q < Qb, the oscillation amplitude increases and finally leads to dripping through the
breakup of a thin thread that connects the meniscus attached to the injector with the liquid
reservoir, as clearly observed in movie 3. (b) Instantaneous jet shape at incipient breakup
obtained by numerically integrating equations (2.1)–(2.3) for the equivalent dimensionless
configuration, namely Γ = 8.33, Bo= 1.38, We= 2.63× 10−3, L/R= 9.49. An animated
numerical sequence under these conditions is displayed in movie 4 of the supplementary
material.

one-dimensional model correctly captures the shape of the interface close to breakup
except for the impact region downstream of the minimum radius, probably due to the
crude model adopted herein of the outlet boundary condition.

The preceding discussion naturally leads to the following question: for a constant
value of We, how much can L/R increase while avoiding the breakup of the liquid
filament? Or, alternatively, how much can We decrease for a constant value of L/R
to avoid pinch-off? To address these questions we will make use of the breakup flow
rate Qb or, in dimensionless terms, the breakup Weber number, Web. The experimental
and numerical phase diagrams represented in figure 9 show the long time regimes
reached by the liquid jet in the (Q, L) dimensional parameter plane in (a,b), and
in the equivalent dimensionless parameter plane (We, L/R) in (c,d). Two different
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FIGURE 9. Phase diagrams represented in the dimensional parameter plane (Q, L) (a,b),
and in the equivalent dimensionless parameter plane (We,L/R) (c,d), showing the different
regimes identified for an axially confined viscous liquid jet falling under gravity. The dark
grey, light grey and unshaded regions correspond with the steady jetting, oscillatory jetting
and dripping regimes, respectively. Results are shown for two different combinations of
liquid and injector radius, namely (a,c) ν = 500 cSt (Γ = 8.33) and R= 1.75 mm (Bo=
1.38) and (b,d) ν = 1000 cSt (Γ = 16.67), R= 1.5 mm (Bo= 1). The mean between the
upper and lower limits of the experimental critical flow rate, Qexp

c (Weexp
c ), and breakup

flow rate, Qexp
b (Weexp

b ), are plotted with the symbols E and @, respectively. The solid
line is the critical flow rate for the onset of the breathing mode given by the linear
stability analysis, Qlsa

c (Welsa
c ), and the dashed line represents the function Qnum

b (Wenum
b )

obtained from the numerical integration of (2.1)–(2.3). The grey-filled circles correspond
with direct transitions between steady jetting and dripping, while the symbolsq represents
the conditions of figure 8. The different coiling states identified in the experiments are
indicated.

combinations of liquid and injector radius are reported in figure 9, namely ν = 500
cSt (Γ = 8.33) and R= 1.75 mm (Bo= 1.38) in (a,c), while ν= 1000 cSt (Γ = 16.67)
and R = 1.5 mm (Bo = 1) in (b,d). The dark and light grey regions correspond to
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the steady jetting and oscillatory jetting states according to the experiments, while
the dripping regime falls within the unshaded regions. The solid curve is the critical
flow rate Qlsa

c (Welsa
c ) given by the linear stability analysis of § 3.1, and the dashed

line is the breakup flow rate Qnum
b (Wenum

b ) according to the numerical simulations
of (2.1)–(2.3), obtained by extrapolating the minimum saturated jet radius for several
values of We slightly larger than Wenum

b . The agreement between Weexp
b and Wenum

b is
fairly good for the case with Γ = 16.67 (ν = 1000 cSt), but quite poor for the case
with Γ = 8.33 (ν= 500 cSt) and values of L/R& 10. This discrepancy between theory
and experiment for values of L/R & 10 may be due to the limitations of the one-
dimensional model that have already been pointed out in the discussion of figure 2.
Indeed, the model does not account for the downstream viscous relaxation of the
parabolic velocity profile at the injector outlet. More importantly, our crude modelling
of the non-slender impact region where, as shown in figure 8, the breakup of the
thread takes place, may also contribute to the difference between the values of Weexp

b
and Wenum

b observed in figure 9.
A salient feature of the phase maps is the existence of a critical length, L∗(ν,R) for

which Qc=Qb=Q∗. For values of L<L∗ a direct transition between steady jetting and
dripping takes place, without the existence of an intermediate oscillating jet state. The
corresponding transition points are shown as grey-filled circles in figure 9, displaying
a very good agreement with the value of Qlsa

c . It is important to emphasise that this
phenomenon was observed both in the experiments and in the numerical simulations.
Let us also point out that, in the cases where a direct transition from steady jetting to
dripping takes place, there is no qualitative change in the linear stability mode, which
is still the same breathing mode that is destabilised for Q<Qc. Moreover, the nature
of the bifurcation that takes place in these cases is also the same Hopf bifurcation
shown in figure 7, the only difference being that the amplitude of the oscillations
grows with time without saturation, until breakup takes place, for very small values
of Qc − Q. Ideally there should always exist a value of Qc − Q small enough for
the oscillatory jetting regime to be achieved, since the amplitude of the oscillations
increases as (Qc −Q)1/2 for sufficiently small values of Qc −Q. In practice, however,
the value of Qc − Qb is so small in these cases that it cannot be measured in our
experiments or numerical simulations.

Figure 9 also reveals that the region of oscillatory jetting decreases as the value
of L/R increases, since the amplitude of the oscillations grows with z, and thus Qb

increases with L, while the value of Qc reaches an asymptote as L→∞ (see also
figure 2). Therefore, for values of L larger than those considered herein, it is expected
that the values of Qc and Qb will intersect, providing a bounded region of oscillatory
jetting. Finally, figure 9 shows the important influence of ν, which increases the
size of oscillatory jetting region due to its stabilising role. Similarly, the region of
oscillatory jetting becomes smaller as R increases due to the stabilising effect of axial
stretching.

4. Conclusions

The linear and nonlinear dynamics of jets of viscous liquid falling under gravity
and confined in the axial direction has been studied by means of experiments and a
simple one-dimensional model (Eggers & Dupont 1994; García & Castellanos 1994)
that is extremely efficient from a computational point of view.

The global linear stability analysis reported by Sauter & Buggisch (2005)
and Rubio-Rubio et al. (2013) has been extended in the present work to contemplate
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the effect of the axial confinement length, L. We have shown both experimentally
and theoretically that the critical flow rate Qc for the onset of the axisymmetric
breathing mode decreases as L decreases, thus stabilising the liquid thread. For small
enough values of L, a limit is reached whereby Wec→ 0 and the marginal stability
point is given by hydrostatics, in agreement with previous works on static liquid
bridges (Kovitz 1975; Benilov & Oron 2010; Benilov & Cummins 2013).

The nonlinear dynamics has been characterised both experimentally and with
numerical integrations of the one-dimensional model. Our results have revealed the
existence of a new regime featuring the appearance limit-cycle oscillations of the
thread without breakup. The latter oscillatory jetting regime has been thoroughly
studied for several combinations of the governing parameters, finally leading to the
phase maps presented in figure 9, that summarises the main conclusions of the
present work. In particular, the central role of L is clearly unveiled. In contrast with
the linear theory, which only distinguishes between stable and unstable configurations,
three distinct long-time nonlinear regimes can be observed in figure 9: steady jetting,
oscillatory jetting and dripping. Although different coiling regimes have also been
identified in the experiments, namely a standard and an oscillatory coiling, a detailed
study of these coiling regimes is out of the scope of the present work.

The experiments and numerical simulations have revealed that there is a critical
value of the confinement length, L, below which the oscillatory jetting is no longer
observed. This is due to the fact that, as L decreases, Qc decreases with a larger
slope than the critical flow rate associated with the breakup of the jet, Qb. Hence,
the size of the oscillatory jetting region decreases as the jet becomes shorter, due to
the stabilising effect of confinement. Consequently, there is a value of L= L∗ where
Qc =Qb =Q∗, and for values of L< L∗ the transition occurs directly between steady
jetting and dripping as Q decreases. The experiments and numerical simulations are
in very good agreement in their prediction of the value of L∗ and the corresponding
Q∗.

Future work should contemplate wider ranges of the control parameters, allowing
to obtain experimental and numerical phase maps for values of Γ and Bo different
from those reported herein. Additionally, in view of the new coiling regimes found in
our experiments, it could be worthwhile to describe them in detail. Another important
extension is the characterisation of the physical effects present in typical technological
applications, such as the use of liquids with complex rheology or the presence of
surfactants. Their inclusion in the analysis is crucial for applications such as 3D
printing or additive manufacturing, in which our findings may be of relevance.
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Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2017.706.

Appendix A. Linear stability analysis
The detailed mathematical formulation of the linear stability problem is provided in

the present appendix.
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A.1. Base flow
The base flow [rj0(z), u0(z)] satisfies the steady versions of the system of (2.1)–(2.3).
In particular, the continuity equation (2.1) allows us to substitute the steady state
velocity, u0(z), by the base flow jet radius, rj0(z),

u0 =
q
r2

j0
, (A 1)

where q = We1/2Bo3/4, is the dimensionless liquid flow rate. In addition, the steady
version of the momentum equation (2.2) reduces to

u0u0
′
= 1− C0

′
+ Γ rj0

−2(rj0
2u0
′)′, (A 2)

where primes indicate derivatives with respect to z and C0 is the interfacial curvature
associated with the steady jet shape, rj0(z), which satisfies equation (2.3). Substituting
(A 1) into (A 2), the function rj0(z) satisfies

− r2
j0C0

′
+ 2qΓ [r−2

j0 (r
′

j0)
2
− r−1

j0 r′′j0] + 2q2r−3
j0 r′j0 + r2

j0 = 0, (A 3)

where

− r2
j0C0

′
=

r′j0
[1+ (r′j0)2]1/2

+
rj0r′j0r′′j0 + r2

j0r′′′j0
[1+ (r′j0)2]3/2

−
3r2

j0r′j0(r
′′

j0)
2

[1+ (r′j0)2]5/2
, (A 4)

to be solved with the boundary conditions

z= 0 : rj0 = Bo1/2, (A 5)

z= 0 : u0 =We1/2Bo−1/4, (A 6)

z=
L
lσ
: u0 = uout, (A 7)

as discussed in § 2.3. Note that (A 3)–(A 4) are the same as those solved in Rubio-
Rubio et al. (2013) (hereinafter R13), the only difference being the outlet boundary
condition (A 7), which in the present work is imposed as a Dirichlet condition, while
a free boundary condition was considered in R13. The numerical method used herein
to solve equations (A 3)–(A 4) is also the same as that used by R13, and is explained
in § B.1.

A.2. Linear stability problem
Substituting (3.1)–(3.2) into (2.1)–(2.3), the O(ε) eigenvalue problem can be written
in the following compact form,[Mc

rj
Mc

u

Mm
rj

Mm
u

] [
rj1
u1

]
=ω

[
rj1
u1

]
, (A 8)

with Mj
i denoting the following differential operators,

Mc
rj
=−

q
r2

j0
D+

qr′j0
r3

j0
I, (A 9)

Mc
u =−

rj0

2
D− r′j0I, (A 10)
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Mm
rj
=−4Γ q

(
r′j0
r4

j0
D−

(r′j0)
2

r5
j0

I

)
+

4∑
k=1

S2k−1Hk, (A 11)

Mm
u = Γ

(
D2
+

2r′j0
rj0

D
)
−

q
r2

j0
D+

2qr′j0
r3

j0
I. (A 12)

In (A 9)–(A 12), I is the identity, Dn
≡ dn/dzn, S(z)= [1+ (r′j0)2]−1/2 and

H1 =
1
r2

j0
D−

2r′j0
r3

j0
I, (A 13)

H2 =D3
+

r′j0
rj0

D2
−

[
(r′j0)

2

r2
j0
−

r′′j0
rj0

]
D−

r′j0r′′j0
r2

j0
I, (A 14)

H3 =−6r′j0r′′j0D2
− 3

[
(r′j0)

2r′′j0
rj0

+ (r′′j0)
2
+ r′j0r′′′j0

]
D, (A 15)

H4 = 15(r′′j0)
2(r′j0)

2D. (A 16)

Note that (A 8) is a linear eigenvalue problem, complemented with the boundary
conditions

z= 0 : u1 = 0, (A 17)
z= 0 : rj1 = 0, (A 18)

z=
L
lσ
: u1 = 0. (A 19)

Equations (A 17) and (A 18) represent the pinned contact line and constant flow rate
conditions, respectively. However, equation (A 19) just represents in a crude way the
fact that the disturbed jet velocity is small in the impact region onto the bath at rest.
If a small enough value of uout is assumed for the base flow, the results of the stability
analysis do not vary significantly, thereby justifying the use of (A 19). Moreover, for
values of the jet length L/R& 20 the results are independent of the value of uout, and
in fact we have checked that both the base flow and its linear stability are virtually
the same whether imposing a Neumann condition at z= L/lσ , or even not imposing
any condition at all, in agreement with the results of R13.

Appendix B. Numerical methods
In the present appendix we describe the numerical methods used for the computation

of the steady jet and its linear stability, as well as the integration of (2.1)–(2.3).

B.1. Base flow and linear stability analysis
To solve both (A 3) for rj0, and the system (A 8) for the eigenvalues ω and the
corresponding eigenfunctions, we discretised the differential operators using a
Chebyshev collocation method (Canuto et al. 2006). To that end, the physical domain,
06 z6 L/lσ is mapped into the interval −16 y6 1 by means of the transformation

z=
bL/lσ (1+ y)

2b+ L/lσ (1− y)
, (B 1)
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where b is a parameter that controls the clustering of nodes at z = 0 and z =
L/lσ . Derivatives with respect to z are calculated using the standard Chebyshev
differentiation matrices and the chain rule. The nonlinear differential equation (A 3)
with boundary conditions (A 5)–(A 7) is solved first using an iterative Newton–
Raphson method. Once rj0 is known at the N Chebyshev collocation points, the
discretised version of (A 8), which results in a linear algebraic eigenvalue problem to
determine the 2N eigenvalues ωk, k= 1 · · · 2N, and their corresponding eigenfunctions
(rk

j1, uk
1) at the N collocation points, is solved using standard Matlab routines. Notice

that the eigenfunctions must satisfy the boundary conditions (A 17)–(A 19). Although
all the results reported in the present paper were computed with values of N and
b within the ranges 30 6 N 6 200 and 5 6 b 6 80, we have carefully checked that
the leading eigenvalues and eigenfunctions are insensitive to the values of these
parameters.

B.2. Direct numerical simulation
The system of (2.1)–(2.3), supplemented with the boundary conditions discussed above
were solved with a very simple and efficient method of lines in which the spatial
derivatives were approximated using the Chebyshev collocation method described
in § B.1. The resulting system of 2N nonlinear ordinary differential equations were
integrated in time with an initial condition taken as the base flow [rj0(z), u0(z)],
slightly perturbed by a Gaussian function of very small amplitude. The ODE23T
routine from the Matlab ODE suite was chosen, since Dirichlet or Neumann
boundary conditions can be easily imposed through a mass matrix, and also allows
us to implement the Jacobian matrix of the nonlinear system to improve the speed
and accuracy of the computations. The solver ODE23T uses the Bogacki–Shampine
algorithm, which is a method based on two single-step formulas, of second and third
order respectively, and computes three stages for each time step. Briefly stated, to
calculate the temporal evolution of the rj and u, the semi-discretised equations were
written in the matrix form

dy
dt
= B(y, t), (B 2)

where the column vector y=[rj(z, t),u(z, t)]T contains the values of the jet radius and
axial velocity computed at the N Chebyshev collocation points, z, and the matrix B
is

B(y, t)=
[

Bc
rj

Bc
u

Bm
rj

Bm
u

]
2N×2N

·



rj(z= 0, t)
...

rj(z= L/lσ , t)
u(z= 0, t)

...

u(z= L/lσ , t)


2N×1

+



0
...

0
1
...

1


2N×1

. (B 3)

The N ×N submatrices Bj
i appearing in (B 3) are

Bc
rj
=−diag(u) · D, (B 4)

Bc
u =−

1
2

diag(rj) · D, (B 5)
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Bm
rj
=

3∑
n=1

Cn · Dn, (B 6)

Bm
u =−diag(u) · D + Γ [D2

+ 2 diag(rj)
−1

· diag(D · rj) · D], (B 7)

where Dn is the N × N nth order Chebyshev differentiation matrix, diag(·) maps an
N-tuple to the corresponding diagonal matrix, and the curvature gradient diagonal
matrices, Cn, are

C1 = diag(rj)
−2

· [I + diag(D · rj)
2
]
−1/2
− 3 diag(D2

· rj)
2
· [I + diag(D · rj)

2
]
−5/2, (B 8)

C2 = diag(D · rj) · diag(rj)
−1

· [I + diag(D · rj)
2
]
−3/2, (B 9)

C3 = [I + diag(D · rj)
2
]
−3/2, (B 10)

where I is the N × N identity matrix. Note that, for clarity, in (B 4)–(B 10) the
functional dependence of rj and u on (z, t) has been omitted. The boundary conditions
(A 5)–(A 7) described in § 2.3 can be readily implemented by imposing

drj

dt
(z= 0, t)=

du
dt
(z= 0, t)=

du
dt
(z= L/lσ , t)= 0. (B 11)
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