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We describe decompositions of the group of units of a ring and of its subgroups,
induced by idempotents with certain properties. The results apply to several classes
of rings, most notably to semi-perfect rings.

1. Introduction

The main aim of this paper is to explain how idempotent elements in a ring induce
decompositions of the group of invertible elements and of its subgroups. The role
of idempotents in the decomposition of individual invertible elements is well estab-
lished in the literature, whereas simultaneous decompositions of entire groups of
invertible elements are less frequent. We are going to extend the line of thought
developed by Putcha [8, 9] and by Cohen and Koh [2] and improve some of their
results.

Our approach is somewhat different from the works mentioned as we use the
adjoint group induced by the circle product in a ring. This method turns out to
be surprisingly effective as it allows short and elegant proofs of results which are
general enough to include the group of units of a semi-perfect ring, the congruence
groups and other important examples (see also [7] for an application to stable
homotopy theory).

Let R be a ring. If R is unital, we denote by r∗ the inverse, when it exists, of
an element r ∈ R, and by R∗ the group of all invertible elements of the monoid
(R, ·). It turns out that, for the purposes we have in mind, the study of R∗ and
its subgroups assumes a much simpler and more natural form when expressed in
terms of the circle product on R. This product is defined by x ◦ y := x + y + xy,
it is associative with 0 as its neutral element, and hence (R, ◦) is a monoid. If r is
invertible with respect to the circle product, then we denote its inverse by r◦: it
is uniquely determined by the equations r + r◦ + rr◦ = r + r◦ + r◦r = 0. A subset
M ⊆ R, which is a group with respect to the circle product, is denoted for emphasis
by M◦. A partial exception to this is R◦, which denotes the group of all invertible
elements of (R, ◦). When R is unital, the map r �→ r − 1 defines an isomorphism of
monoids (R, ·) and (R, ◦) and hence a bijective correspondence between subgroups
of R∗ and R◦.
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We will determine when a group of invertible elements in R can be written as a
product of its subgroups. This is to say, given a group G and subgroups A, B we
will write G = A · B if every g ∈ G can be uniquely factorized as g = ab, where
a ∈ A and b ∈ B. Equivalently, G = A · B if G = {ab | a ∈ A, b ∈ B} and the
intersection of A and B is trivial. If B is a normal subgroup of G, then A · B is
simply the semi-direct product A � B. Note that, in general, the product A · B
of two subgroups A, B of G is a subgroup of G if and only if A · B = B · A as
sets [1, theorem 3.1.1]. In particular, G = A · B is equivalent to G = B · A.

The paper is organized as follows. In § 2 we study subsets M ⊆ R, which are
groups with respect to the circle product. The main results are theorems 2.4 and 2.7.
The first of these says that if some complete set of orthogonal idempotents e1, . . . , en

(i.e. e1 + · · · + en = 1) preserves M (in the sense that eiM ⊆ M for all i), then M◦

is the product of its subgroups (eiM)◦. Moreover, if Mei ⊆ M for all i, then the
second theorem describes another decomposition of M◦, which recalls the factor-
ization of matrices into a product of lower- and upper-triangular matrices. In § 3
we present applications of these results to the group of all invertible elements, to
groups associated with quasi-invertible ideals, to congruence groups of matrices and
to semi-perfect rings.

One final remark: an important goal of the paper is to demonstrate that the
most natural approach to the decomposition problem is through the circle product
and the adjoint group. Indeed, in this context the computations are considerably
streamlined (so as to become almost trivial) and the results assume a very elegant
form. The price for such a simplification is also evident: the reader may find it
difficult to follow the guesswork hidden behind the proofs. We hope that the final
result is worth the trouble.

2. Decompositions of circle groups

Throughout this section, let M be a subset of a ring R such that M◦ is a group.
Given an idempotent e ∈ R we say that e preserves M if eM ⊆ M . See § 3.1 for
some typical examples of such M . We shall consider two types of decomposition:
the symmetric and the LDU .

2.1. Symmetric decomposition

Proposition 2.1. If an idempotent, e, preserves M , then eM is a group with
respect to the ◦-product.

Proof. It suffices to prove that eM is closed for ◦-products and ◦-inverses. Given
em, em′ ∈ eM , we have

(em) ◦ (em′) = em + em′ + emem′ = e(m ◦ (em′)) ∈ eM.

Moreover,

(e(em)◦) ◦ (em) = e(em)◦ + em + e(em)◦(em) = e((em)◦ ◦ (em)) = 0

implies that the inverse of em is of the form e(em)◦, which is in eM .
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Let u, v be orthogonal idempotents which preserve M . The formula

(u + v)m = (u(m ◦ (vm)◦)) ◦ (vm)

follows by direct computation. It shows that u + v also preserves M and that
((u+v)M)◦ is a group which is contained in the product (uM)◦ · (vM)◦. Moreover,
since the groups (uM)◦ and (vM)◦ have trivial intersection, we have the following
proposition.

Proposition 2.2. If u, v are orthogonal idempotents which preserve M , then

((u + v)M)◦ = (uM)◦ · (vM)◦.

Remark 2.3. If R is unital, and if u is an idempotent which preserves M , then its
complement v = 1 − u also preserves M , since

(um◦) ◦ m = um◦ + (u + v)m + um◦m = u(m◦ ◦ m) + vm = vm.

It follows that every m ∈ M admits a canonical decomposition m = (um◦)◦ ◦ (vm),
and that M◦ = (uM)◦ · (vM)◦.

The inductive application of proposition 2.2 yields the symmetric decomposition
of the group M◦.

Theorem 2.4. If e1, . . . , en is a set of orthogonal idempotents which preserve M ,
then

(e1 + · · · + en)M◦ = (e1M)◦ · · · · · (enM)◦.

In particular, if e1, . . . , en is a complete set of orthogonal idempotents, then we
obtain the product decomposition M◦ = (e1M)◦ · · · · · (enM)◦.

The factors of the symmetric decomposition can be further analysed by means
of the map

ϕ : (eM)◦ → (eMe)◦, x �→ xe.

First observe that

((em)◦e) ◦ (eme) = (em)◦e + (em)e + (em)◦eme = ((em)◦ ◦ (em))e = 0

and hence (eme)◦ = (em)◦e. It follows that (eMe)◦ is a group. Moreover, we prove
by routine computation that ϕ is an epimorphism. Its kernel is {em ∈ M | eme =
0}, which, in unital rings, equals (eM) ∩ (eM(1 − e)). This yields a description of
(eM)◦ as a group extension, which can be improved if we assume that eMe ⊆ M .

Proposition 2.5. In a unital ring, if e preserves M and if eMe ⊆ M , then (eM)◦

is isomorphic to (eMe) � (eM(1 − e)), the semi-direct product of (eMe)◦ and the
abelian group eM(1 − e), where the action of eme on eM(1 − e) is induced by the
multiplication by e + eme from the left.

Proof. Clearly (eMe)◦ is a group and the inclusion of eMe into eM determines the
splitting of ϕ. From em(1 − e) = (em) ◦ ((em)◦e) it follows that eM(1 − e) ⊆ eM
and hence kerϕ = eM(1 − e). Commutativity of eM(1 − e) follows from the fact
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that the circle product coincides with the ring addition. The conjugation action of
eme on ex(1 − e) is computed as

(eme) ◦ (ex(1 − e)) ◦ (eme)◦ = ex(1 − e) + emex(1 − e) = (e + eme)(ex(1 − e)).

Let us say that an idempotent e strongly preserves M if eM ⊆ M and Me ⊆ M .
Clearly, if e strongly preserves M , then the assumptions of the above proposition are
satisfied. However, the full strength of this condition will be used in the following
section.

2.2. LDU decomposition

As we have proved above, if e1, . . . , en is a set of orthogonal idempotents that
strongly preserve M , then their sum also strongly preserves M . Based on this
fact, we can further decompose the factors of the symmetric decomposition and
then rearrange the newly obtained factors to obtain another decomposition of the
group M◦. This new decomposition is related to the usual triangular (or flag)
decomposition of matrices, and it depends on the chosen ordering of the basic
idempotents.

For an ordered n-tuple of orthogonal idempotents (e1, . . . , en), let e = e1+· · ·+en

and let
ei := e1 + · · · + ei−1 and ēi := ei+1 + · · · + en

be the lower and the upper complement of ei (in particular e1 = ēn = 0).
As eMe ∈ eM , we can apply theorem 2.4 to decompose eme, so there are elements

m1, . . . , mn ∈ M such that eme = (e1m1e) ◦ · · · ◦(enmne). The factors can be
further decomposed as

eime = (eimēi) ◦ (eimei) ◦ (eimei)
= (eimēi) ◦ (eimei) ◦ ((eimei)◦ ◦ (eimei) ◦ (eimei)).

Since

(eimei)◦ ◦ (eimei) ◦ (eimei) = (eimei) + (eimei)◦(eimei)
= ei((eimei) + (eimei)◦(eimei))ei,

if we define m′ := (eimei)◦◦(eimei)◦(eimei), then the above factorization becomes

eime = (eimēi) ◦ (eimei) ◦ (eim
′ei).

By combining the above we obtain

eme = (e1m1ē1) ◦ (e1m1e1) ◦ (e1m
′
1e1) ◦ · · · ◦ (enmnēn) ◦ (enmnen) ◦ (enm′

nen).

For j > i, every factor of the form eimiei commutes with factors of the form
ejmjej and ejm

′
j ēj . Similarly, for j < i, every factor of the form eim

′
iēi commutes

with factors of the form ejmjej and ejmjej . Thus, we can rearrange the above
factorization to obtain

eme = ((e1m1ē1) ◦ · · · ◦ (enmnēn)) ◦ ((e1m1e1) ◦ · · ·
◦ (enmnen)) ◦ ((e1m

′
1e1) ◦ · · · ◦ (enm′

nen)).
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Thus, we have a factorization of eme into a product of three elements of the form
eme = l ◦ d ◦ u, where

l = (e1m1ē1) ◦ · · · ◦ (enmnēn),
d = (e1m1e1) ◦ · · · ◦ (enmnen),
u = (e1m

′
1e1) ◦ · · · ◦ (enm′

nen).

Being canonical, this factorization induces a decomposition of (eMe)◦. In order to
describe its factors we introduce the following subsets of M :

L := {m ∈ eMe | (∀i)eim = eimēi},

U := {m ∈ eMe | (∀i)eim = eimei},

D := {m ∈ eMe | (∀i)eim = eimei}.

Their main properties are collected in the following proposition.

Proposition 2.6. Let (e1, . . . , en) be any ordered n-tuple of orthogonal idempo-
tents in R. Then L◦ and U◦ are nilpotent subgroups of (eMe)◦, with order of nilpo-
tency less then n. D◦ is also a subgroup of (eMe)◦ and is isomorphic to the direct
product

∏
i(eiMei)◦. Moreover, D◦ normalizes L◦ and U◦.

Proof. Let m, m′ ∈ L. Since L is additively closed, m ◦ m′ is in L if and only if
eimm′ = eimm′ēi. Bearing in mind the relations eim = eimēi, eim

′ = eim
′ēi and

ēj ēi = ēj for j > i, we compute

eimm′ = eimēim
′ = eim

∑
j>i

ejm
′ēj =

(
eim

∑
j>i

ejm
′ēj

)
ēi = eimm′ēi.

We conclude that L is closed under circle multiplication. As for the inverses, given
m ∈ L, we have

m = em =
∑

i

eim =
∑

i

eimēi = (enmēn) ◦ · · · ◦ (e1mē1).

The inverse (eimēi)◦ is in L because (eimēi)(eimēi) = 0 implies (eimēi)◦ = −eimēi,
and −eimēi is clearly in L. Since L is ◦-multiplicatively closed, we conclude that
m◦ ∈ L.

To prove the nilpotency of L◦ let L(k) := {m ∈ L | for all i, eim = eimēi+k−1}.
Then

L = L(1) ⊃ L(2) ⊃ · · · ⊃ L(n) = {0}.

Given m ∈ L(k) and m′ ∈ L(k′), we have

eimm′ =
∑

j�i+k

eimejm =
∑

j�i+k,

j′�j+k′

eimejm
′ej′

and hence mm′ ∈ L(k+k′). This implies that the commutator

m ◦ m′ ◦ m◦ ◦ m′◦ = m′m◦ − mm′◦ + mm′m◦ + mm′m◦m′◦ + m′m◦m′◦

is also in L(k+k′). Therefore, all n-fold commutators in L are trivial.
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Given an m ∈ D, we have

m = em =
∑

i

eim =
∑

i

eimei.

It follows from

ei(m ◦ m′)ei = eimei + eim
′ei + eimm′ei

= eimei + eim
′ei + eimeim

′ei

= (eimei) ◦ (eim
′ei)

that the mapping m �→ (e1me1, . . . , enmen) defines a homomorphism, which is
clearly an isomorphism, between the groups D◦ and

∏
i(eiMei)◦.

Finally, to prove that D◦ normalizes L◦, it is sufficient to verify that, for all i, j,

(eimei)◦ ◦ (ejm
′ēj) = ei((eimei) + (eimei)◦(eimei))ei.

We can now return to the factorization eme = l ◦ d ◦ u. As elements of the form
eimēi are clearly in L, and since L is closed under circle multiplication, we conclude
that l ∈ L and, similarly, that d ∈ D and u ∈ U . Moreover, L, U and D have pairwise
trivial intersection so the factorization eme = l ◦ d ◦ u with l ∈ L, d ∈ D and u ∈ U
is unique. Thus, we obtain our main result, the LDU decomposition of the group
M◦.

Theorem 2.7. If (e1, . . . , en) is an ordered n-tuple of orthogonal idempotents in R
which strongly preserve M , then (eMe)◦ = L◦ · D◦ · U◦. In particular, if the ring
R is unital, and if the system of idempotents is complete, then M◦ = L◦ · D◦ · U◦.

3. Applications

In this section we first translate the above results into decomposition theorems for
groups of invertible elements in a ring, giving special attention to the group of all
units and its subgroups, obtained from quasi-invertible ideals. Then we consider
the so-called congruence subgroups of matrix groups. Lastly we tackle the issue of
the range of applicability. There are certainly many rings in which groups of units
are not preserved by idempotents. The main example is the full matrix ring over
some ring. Its group of units, the general linear group, is obviously not preserved by
matrix idempotents, which are often the only idempotents available. Nevertheless,
we show that, for a large class of rings (namely the semi-perfect ones), the general
linear group is essentially the only ‘bad’ case. Other applications can be found in [7],
of which this work is a continuation. Most notably, there is an application to the
stable homotopy theory, which was in fact the main motivation for this study.

3.1. Groups of units

In a unital ring R, the function r �→ r − 1 defines an isomorphism between the
multiplicative monoid (R, ·) and the monoid (R, ◦). Hence, r ∈ R is invertible with
respect to the usual multiplication if and only if r − 1 is ◦-invertible. It follows
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that, for every G � R∗, the set G − 1 is a group with respect to the circle product,
which yields a bijection between subgroups of R∗ and subgroups of R◦. Using these
facts, we can easily translate the results of the previous section into decomposition
theorems for subgroups of R∗.

Given an idempotent e ∈ R, let ē denote its complement ē := 1 − e. For every
G � R∗ the idempotent e preserves G − 1 if e(G − 1) ⊆ G − 1, which is equivalent
to ē + eG ⊆ G. Moreover, e strongly preserves G − 1 if both ē + eG ⊆ G and
ē + Ge ⊆ G. Then theorem 2.4 translates into the following theorem.

Theorem 3.1. Let e1, . . . , en be a complete set of idempotents in a ring R, and let
G be a subgroup of R∗. If ēi + eiG ⊆ G for all i, then ēi + eiG are subgroups of G,
and G admits the symmetric decomposition G = (ē1 + e1G) · · · · · (ēn + enG).

Note that if e1, . . . , en is a set of orthogonal idempotents that preserve G − 1,
then the same holds for their complement 1 − e1 − · · · − en, so we may assume,
without any loss in generality, that the set of idempotents is complete.

By proposition 2.5, a factor of the symmetric decomposition of the form ē + eG
can be further decomposed if e(G − 1)e ⊆ (G − 1) or, equivalently, if ē + eGe ⊆ G.

Proposition 3.2. If ē+eG and ē+eGe are subsets of G, then eGe is a group and

ē + eG ∼= (eGe) � (eGē),

where the semi-direct product is taken with respect to the action given by the left
multiplication.

Next we consider the LDU decomposition of a subgroup G � R∗. Let (e1, . . . , en)
be an ordered n-tuple of orthogonal idempotents in R that sum up to 1. Then we
define the following subsets of G:

L := {g ∈ G | eigei = ei for all i, and eigej = 0 for j < i},

U := {g ∈ G | eigei = ei for all i, and eigej = 0 for j > i}

and

D := {g ∈ G | eigej = 0 for j 
= i}.

Now we can combine proposition 2.6 and theorem 2.7 into the following result.

Theorem 3.3. Let G be a subgroup of R∗ and let (e1, . . . , en) be an ordered n-tuple
of orthogonal idempotents in R such that e1 + · · · + en = 1. Assume that ēi + eiG
and ēi + Gei are contained in G for all i. Then

(i) L and U are nilpotent subgroups of G with order of nilpotency less then n,

(ii) D is a subgroup of G whose elements normalize L and U , and which is iso-
morphic to the direct product of groups D ∼=

∏
i(eiGei),

(iii) G = L · D · U .

There are two special cases worth mentioning: the entire group R∗ and groups of
the form 1 + Q, where Q is a quasi-invertible ideal of R and the entire group R∗.
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Recall that an ideal Q � R is said to be quasi-invertible if 1 + Q is a group
or, equivalently, if Q◦ is a group. Quasi-invertible ideals (both left and right) are
precisely the subideals of the Jacobson radical Jac(R) � R. If Q is a left ideal, then
eQ ⊆ Q for every idempotent e. If Q is a two-sided ideal, then also Qe ⊆ Q. Thus,
we obtain the following.

Corollary 3.4. Let Q � R be a quasi-invertible left ideal of R. Then

(i) The group 1 + Q admits the symmetric decomposition with respect to every
complete set of orthogonal idempotents.

(ii) If Q is also a right ideal, then 1 + Q admits the LDU decomposition with
respect to every ordered complete set of orthogonal idempotents.

Part (ii) of the corollary is a generalization of [2, corollary 2.9].

Example 3.5. Let S be a radical ring (i.e. Jac(S) = S). Then the matrix ring
Mn(S) is also a radical ring, so we either directly apply the results of the previous
section or adjoin a unit to S and use the results from this section. If e1, . . . , en are
the standard matrix units, then the symmetric decomposition of Mn(S)◦ is

Mn(S)◦ = (e1Mn(S))◦ · (e1Mn(S))◦.

The structure of the factors is given by proposition 3.2:

(eiMn(S))◦ = (eiMn(S)ei)◦
�

( ⊕
i �=j

eiMn(S)ej

)
= S◦

� Sn−1

and hence Mn(S)◦ is the product of n subgroups, all of which are isomorphic to
S◦

� Sn−1.
Clearly, (Mn(S))◦ also admits the LDU decomposition with respect to the stan-

dard matrix idempotents. Factors L◦ and U◦ are isomorphic to the groups of unipo-
tent lower-triangular (and, respectively, upper-triangular) matrices with coefficients
in S, while D◦ is isomorphic to (S◦)n.

Corollary 3.6. If S is a radical ring, then every element m ∈ Mn(S) can be
uniquely factorized as m = l ◦ d ◦ u, where l ∈ L, d ∈ D and u ∈ U .

We can now apply the results on products of groups to describe the structure
of the group 1 + Q. Let us first recall the well-known fact that if the ideal Q is
nilpotent, then 1+Q is a nilpotent group. The following theorems can be considered
as extensions of this result.

Theorem 3.7. Let Q � R be a quasi-invertible ideal and let eQe + ēQē = 0 for
some idempotent e ∈ R. Then the group 1 + Q is metabelian (i.e. its commutator
subgroup is abelian). Moreover, if Q has finite (additive) exponent, then the group
1 + Q has finite exponent.

Proof. By corollary 3.4(ii) we have the decomposition 1 + Q = L · D · U , by the-
orem 3.3(ii) we obtain the group D ∼= (eQe) ⊕ (ēQē) = 0 and, by theorem 3.3(iii),
groups L and U are abelian. By the famous result of Itô [4] the group 1 + Q is
metabelian. Moreover, if Q has finite additive exponent, then both L and U have
finite exponent, and, by [3], their product 1 + Q also has a finite exponent.
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A partial generalization of the above result is shown in the following theorem.

Theorem 3.8. Let Q � R be a finite quasi-invertible ideal and let e1, . . . , en be a
complete set of orthogonal idempotents such that e1Qe1 + · · · + enQen = 0. Then
the group 1 + Q is solvable.

Proof. In a similar way to the proof of the previous theorem we show that D = 0
and that L and U are finite nilpotent groups. Then, by the theorem of [6], the
product 1 + Q = L · U is solvable.

Next we consider the group R∗ of all invertible elements of R. The assumptions
of theorems 3.1 and 3.3 can be reformulated and turn out to be equivalent.

Lemma 3.9. Let r ∈ R and let e ∈ R be an idempotent. The following statements
are equivalent:

(i) ē + er ∈ R∗;

(ii) ē + ere ∈ R∗;

(iii) ere ∈ (eRe)∗;

(iv) ē + re ∈ R∗.

Proof. Let m ∈ R. Since (em) = (emē)◦ (eme) and since (emē) is always invertible
(as (emē)◦ = −emē), we conclude that em is ◦-invertible if and only if eme is
◦-invertible.

Now ē+er ∈ R∗ if and only if ē+er−1 = e(r−1) ∈ R◦, which is in turn equivalent
to e(r−1)e ∈ R◦. The latter is equivalent to (ii), as 1+e(r−1)e = ē+ere. It is also
equivalent to (iii), since e is the unit of eRe and e + e(r − 1)e = ere. Statements
(ii) and (iii) are symmetric and hence are clearly equivalent to (iv).

We can now formulate several equivalent forms of our main assumption on R∗.

Proposition 3.10. Let e ∈ R be an idempotent. The following statements are
equivalent:

(i) ē + eR∗ ⊆ R∗;

(ii) ē + R∗e ⊆ R∗;

(iii) eR∗e ⊆ (eRe)∗;

(iv) eR∗e = (eRe)∗.

Proof. By the previous lemma, (iii) is equivalent to (i) and (ii). To prove that (iii)
implies (iv), observe that if ere ∈ (eRe)∗, then ē + ere ∈ R∗. Therefore, ere =
e(ē + ere)e ∈ eR∗e.

Condition (iii) is most easily checked in practice and, by lemma 3.9, it suffices
both for the symmetric and for the LDU decomposition.

https://doi.org/10.1017/S0308210508001017 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508001017


1284 P. Pavešić

Corollary 3.11. Let e1, . . . , en be a complete set of idempotents in a ring R such
that eiR

∗ei ⊆ (eiRei)∗ for all i. Then the following hold.

(i) R∗ admits the symmetric decomposition

R∗ = ((e1R
∗e1) � (e1R

∗ē1)) · · · · · ((enR∗en) � (enR∗ēn)).

(ii) If we choose an order for the idempotents e1, . . . , en and define L, D and U
accordingly, then R∗ admits the LDU decomposition as well: R∗ = L · D · U .

Part (ii) generalizes the result of Putcha and Marquardt as reported in [2, corol-
lary 2.8].

Example 3.12. Let Q be a quasi-invertible ideal in a unital ring S and let R be
the subring of all n×n matrices over S, whose off-diagonal elements are in Q. Then
R∗ admits both symmetric and LDU decomposition with respect to the standard
idempotent matrix units e1, . . . , en of R. As ei, i = 1, . . . , n, form a complete
orthogonal system of idempotents then, for x ∈ R∗ we have

ei = eixx∗ei =
∑

j

eixejx
∗ei = eixeix

∗ei +
∑
j �=i

eixejx
∗ei.

If we view the above as an equality in eiRei = S and use the assumption that
ejxei ∈ Q for j 
= i, we obtain that eixeix

∗ei ∈ S∗ and hence that eixei is right
invertible in S. By interchanging the factors we see that eixei is left invertible as
well. Hence, the assumptions of corollary 3.11 are satisfied.

The structure of the factors in the symmetric decomposition of R∗ can be des-
cribed in the following way. By proposition 3.10(iv), eiR

∗ei = (eiRei)∗ = S∗ for
all i. On the other hand, it is easily seen that eiR

∗ēi is isomorphic, as an abelian
group, to Qn−1, and that the action of S∗ on Qn−1 is by direct multiplication.
We conclude that R∗ is the product of n groups, each of them isomorphic to the
semi-direct product S∗

� Qn−1.
As for the LDU decomposition, we see that L consists of all unipotent lower-

triangular matrices in R (i.e. units on the diagonal and elements of Q under the
diagonal), while U consists of all unipotent upper-triangular matrices in R. There-
fore, L and U are anti-isomorphic, as the elements of U are precisely the transposes
of elements of L. Furthermore, D consists of all diagonal matrices and is isomorphic
to (S∗)n.

3.2. Congruence groups

There is another important class of matrix groups that often admit decomposi-
tions induced by idempotents. Let I be an ideal in a ring R. For a group G of n×n
matrices over R, let GI := (1 + Mn(I)) ∩ G. Clearly, GI is a normal subgroup of
G, as it is precisely the kernel of the componentwise reduction modulo I, and is
called the congruence subgroup of G modulo I. The most important examples arise
when R is the ring of rational, p-adic or p-localized integers. When I is an ideal of
finite index in R then GI is a subgroup of finite index in G. The famous congruence
subgroup problem asks if every subgroup of finite index of G contains GI for some
ideal I of finite index.
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Observe that GI is, in general, neither the group of units of some ring nor of the
form 1 + Q for some quasi-invertible ideal Q. Clearly, if G is preserved by some
idempotent e, then GI is also preserved by e, but the converse is not true. For
example, if G = Gln(R) = (Mn(R))∗ and Q is a quasi-invertible ideal of R, then
GQ is preserved by all idempotents of Mn(R) since GQ = 1 + Mn(Q), and Mn(Q)
is a quasi-invertible ideal of Mn(R). On the other hand, it is obvious that, in many
cases, Gln(R) is not preserved by any non-trivial idempotent of Mn(R).

Example 3.13. Consider the ring Mn(Z(p)) of matrices over Z(p), the integers local-
ized at the prime, p. All ideals of Z(p) are of the form pn

Z(p) and are therefore
quasi-invertible and of finite index. Moreover, it is known that, for matrices over
this ring, the congruence subgroup problem has a positive solution [5, pp. 163–
165]. Hence, we conclude that every subgroup of finite index in GLn(Z(p)) contains
a normal subgroup of finite index of the form 1 + Mn(pn

Z(p)) whose structure is
described in example 3.5 as a product of n subgroups, all of which are isomorphic
to the semi-direct product

(1 + pn
Z(p)) � Z

n−1
(p) .

3.3. Semi-perfect rings

As mentioned earlier, general linear groups over fields (or division rings) are not
decomposable with respect to matrix idempotents, so their structure has to be
analysed by different means. This is unsurprising. However, in this section we will
show that, for a large class of rings, this is essentially the only indecomposable case.

Recall that a ring, R, is semi-perfect if Jac(R) is idempotent-lifting, and if
R/ Jac(R) is semi-simple Artinian. The fundamental structure theorem [10, the-
orem 2.9.18] states that, in every semi-perfect ring R, there exists a complete
set e1, . . . , en of primitive orthogonal idempotents, such that there is a direct
sum decomposition R =

⊕
i Rei of left ideals, and all the endomorphism rings

EndR(Rei) are local rings. Moreover, this decomposition is essentially unique in
the sense that any two sets of idempotents with the same properties are conjugated
in R.

Lemma 3.14. Let u, v be primitive idempotents in R. If there are elements m ∈ uRv
and n ∈ vRu such that mn is invertible in uRu, then Ru and Rv are isomorphic
as left R-modules.

Proof. We may assume that mn = u. Otherwise we adjust n by multiplication with
the inverse of mn in uRu. Then nm is a non-trivial idempotent in vRv which, by
primitivity, implies that nm = v. Then, by [10, proposition 2.7.25], Ru ∼= Rv.

The idempotents ei and ej in R are of the same type if Rei
∼= Rej . Let e1, . . . , en

be a complete set of primitive, orthogonal idempotents in a semi-perfect ring R.
If all ei are of the same type, then R is isomorphic to the ring of n × n-matrices
over the local ring R′ := EndR(Re1), and R∗ ∼= Gln(R′), which is indecomposable.
Otherwise, we can partition e1, . . . , en into subsets by putting together idempo-
tents of the same type. Thus, we obtain a complete set of orthogonal idempotents

https://doi.org/10.1017/S0308210508001017 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508001017


1286 P. Pavešić

u1, . . . , um, where each ui is the sum of idempotents of the same type. The idem-
potents ui correspond precisely to the central idempotents, which split R/ Jac(R)
into a product of matrix rings.

Theorem 3.15. If R and u1, . . . , um are as above, then uiR
∗ui ⊆ (uiRui)∗ for all

i. Therefore, R∗ admits the symmetric and the LDU decomposition with respect to
u1, . . . , un.

Proof. For r ∈ R∗, we have

ui = uirr
∗ui =

∑
j

uirujr
∗ui = uiruir

∗ui +
∑
j �=i

uirujr
∗ui.

For j 
= i, each summand uirujr
∗ui is itself a sum of elements of the form ere′r∗e,

where e and e′ are primitive idempotents of different type. By the previous lemma,
ere′r∗e is not invertible eRe and, since eRe = EndR(Re) is local, we have ere′r∗e ∈
Jac(eRe). As uiRui can be identified with matrices over the local ring eRe, the
Jacobson radical of uiRui consists of matrices over Jac(eRe). It follows that

uirujr
∗ui ∈ Jac(uiRui) for all j 
= i.

Therefore, uir
∗ui ⊆ (uiRui)∗.

The second claim follows by corollary 3.11.

Remark 3.16. A more conceptual proof of the above result would be as follows.
Let r̄ denote the image of r ∈ R in R/ Jac(R). Given an r ∈ R∗, its image r̄ is
invertible in

R

Jac(R)
=

∏
i

ūi

(
R

Jac(R)

)
ūi,

which is only possible if ūir̄ūi ∈ (ūi(R/ Jac(R))ūi)∗. Therefore, uirui ∈ (uiRui)∗.

An important special case arises when all idempotents ei are of different type.
Semi-perfect rings with this property are called basic rings. Their importance stems
from the fact that every semi-perfect ring R has a maximal basic subring R′ and
R is Morita equivalent to R′ [10, theorem 2.7.30].

Corollary 3.17. Every basic semi-perfect ring admits symmetric and LDU de-
composition with respect to a complete set of primitive idempotents.

Remark 3.18. The methods used in this paper can be employed for yet another
description of the group of units of a semi-perfect ring (or, more generally, of a
semi-local ring). In fact, if R is semi-local, then R/ Jac(R) is semi-simple Artinian,
so there is a short exact sequence of groups 1 → Jac(R)◦ → R∗ → G → 1, where
G is a direct product of general linear groups over division rings and Jac(R)◦ is
a group that can be decomposed with respect to every complete set of orthogonal
idempotents in R.
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