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We examine the singularly perturbed variational problem
Ew)= [ 0= WP + v vpP

in the plane. As ¢ — 0, this functional favours |Vi| = 1 and penalizes singularities
where |VV4| concentrates. Our main result is a compactness theorem: if {Ec (1) }e 0
is uniformly bounded, then {Vie}¢ o is compact in L2. Thus, in the limit € — 0, 9
solves the eikonal equation |Vt | = 1 almost everywhere. Our analysis uses ‘entropy
relations’ and the ‘div-curl lemma,’ adopting Tartar’s approach to the interaction of
linear differential equations and nonlinear algebraic relations.

1. Motivation, statement of the result and idea of the proof

We consider the singularly perturbed functional
1
B)=e [ WP+ 2 [ 1 |vupy (1)
Q €Jo

as € | 0. It arises as a model problem in connection with several physical applica-
tions, including smectic liquid crystals [2], thin film blisters [8,17] and convective
pattern formation [7]. Physically, equation (1.1) can be viewed as a simple Landau
theory, in which the order parameter is a curl-free vector field Vi which prefers to
be of norm 1.

The functional analysis of (1.1) is still poorly understood, despite considerable
attention. A natural goal is to find the ‘asymptotic energy’ as € | 0, represented by
the I'-limit of {E.}¢jo (see, for instance, [6]). Aviles and Giga’s [2] conjecture for
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the I'-limit is

1 Vo|Pds i [V = 1 ace,,
sy 2 |3 s 190 =10

400 otherwise,

where D(1)) is a suitably defined ‘defect set’ of ¥ (at which V4 is discontinuous),
[V4)] is the jump in V), and ds is arclength. To confirm this conjecture, one would
have to show (roughly speaking) the following three assertions.

(a) The I'-limit is infinite unless |V1)| = 1 almost everywhere. Thus only solutions
of the eikonal equation are admissible for the asymptotic functional.

(b) The proposed integrand +|[V#][® is correct. Aviles and Giga derived this for-
mula by assuming that E. prefers ‘locally one-dimensional’ transition layers,
with Vi) varying rapidly only in the direction normal to the defect set.

(c) The asymptotic energy lives only on a suitably defined one-dimensional defect
set D(1). Thus, to leading order in €, lower-dimensional singularities carry
no energy.

All the analysis to date has been restricted to the case when space is two dimen-
sional. Point (a) is demonstrated in the present paper. Point (b) is substantially
confirmed by the work of Jin and Kohn [9,10] and Aviles and Giga [3]. Point (c)
is basically open. After this work was done, but before it was submitted for pub-
lication, we learned of related progress by Ambrosio et al. [1]. They also demon-
strate (a), using a method entirely different from ours, and they show by example
that 1 can be surprisingly complex and still have finite asymptotic energy (in par-
ticular, Vi need not have bounded variation).

Our functional (1.1) is an obvious generalization to gradient fields of the scalar
problem considered by Modica and Mortola [12-14],

E.(u) = e/n |Vul? + % /0(1 —u?)2. (1.2)

Let us briefly review the compactness result associated with (1.2). The precise
statement is: if, for a sequence {u.}¢ o, the energies {E.(uc)}c o are uniformly
bounded, then {u,} is relatively compact in L?(§2). The essence of the argument is

the inequality
1
se [ vuPro [a-w2 s [ vudn-w
Q 2¢Jg Q

= [ Ivewl (1.3)
N

where &(s) = s(1 — %52) The estimate implies the boundedness of {V®(ue)}ejo in
L1(£2), which provides sufficient compactness. It is obvious that the above argument
does not generalize to (1.1); there is no analogue of (1.3), since there is no trans-
formation @ such that D[®(V1.)] = (1 — |Vthe|?) D? 4. The difference may also be
seen as follows. For (1.2), the favoured values of u form a discrete set {—1, 1}, while
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for (1.1), the favoured values of f = V1) form a continuum {|f|? = 1}. As a result,
the fact that V x f = 0, which has no analogue for (1.2), is essential for proving
compactness in the context of (1.1). We will have to investigate the combined effect
of the linear differential equation V x f = 0 and the nonlinear relation |f|> = 1.

PROPOSITION 1.1. Let £2 C R? be open and bounded. Let the sequences {€,},100 C
(0,00) and {1y }v100 C H?(£2) be such that
€ Y10 and {Ee, (W) }v1oo  is bounded.
Then
{Vi,} e C L*(02) s relatively compact.

Actually, we prove a bit more than proposition 1.1. To state the stronger result,
we prefer to work with the divergence-free vector fields m, = R V1), where R
denotes rotation by %7‘(‘, that is,

2(2)- ()

22 21

This shift of perspective entails no loss of generality (our method seems intrinsically
limited to two space dimensions). Moreover, it highlights the analogy between (1.1)
and the micromagnetic energy of an isotropic thin film, where m is only approxi-
mately divergence free, but |m| = 1 exactly. In truth, we first found the arguments
behind proposition 1.2 while exploring the micromagnetics of thin films. This paper

focuses on (1.1) instead of micromagnetics, because that is the more familiar and
widely studied problem. Our stronger result is as follows.

PROPOSITION 1.2. Let £2 C R? be open and bounded. Let the sequence {my},100 C
HY(£2)? be such that

V-m,=0 a.e in (2, (1.4)
11 = Jmy 2l 2y < 0, (1.5)
{IVmull 22|11 = [mu*l 22(2) Yoo is bounded. (1.6)
Then
{mu}oioo C L2(2) s relatively compact. (1.7)

The fact that this is a non-trivial issue becomes apparent by the following argu-
ment. Assume that (1.7) is true. Then there exists an m € L?({2) such that, for a

subsequence,

my 1% in L*(0).

Property (1.4) is conserved in the limit in a weak sense,
V-m =0 1in a distributional sense on {2, (1.8)
whereas (1.5) sharpens into

Im|* =1 a.e.in 0. (1.9)
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On the level of L?(f2)-functions, the combination of the linear partial differential
equation (1.8) and the nonlinear relation (1.9) is not enough to ensure compactness
in L2(£2). On the level of differentiable functions, it is very rigid. (This can be easily
seen by going back to the original description m = R V4 in which (1.8) is auto-
matically fulfilled and (1.9) turns into the eikonal equation |V|? = 1.) Hence in
our compactness proof we will have to combine the linear partial differential equa-
tion (1.4), the increasing penalization of |m|? # 1 through (1.5), and the (fading)
control of D m through (1.6).

Let us sketch the basic idea of the proof of proposition 1.2. For this, we reconsider
an m which satisfies both the linear partial differential equation (1.8) and the
nonlinear relation (1.9). Because of (1.9), we can write

(cos 9)
m =

sinf
with a function 0 so that (1.8) turns into

01(cosB) 4 O2(sinf) = 0. (1.10)

It is enlightening to think of (1.10) as a scalar conservation law for the quantity
s ~ cos f which depends on time ¢t ~ x; and a single spatial variable y ~ x4,

Ors+ 0y f(s) = 0. (1.11)

As a scalar conservation law (1.11), equation (1.10) would be highly nonlinear.
As can be seen by the method of characteristics, equation (1.11) with a nonlinear
flux function f does not admit differentiable solutions to the Cauchy problem for
most smooth initial data. On the other hand, there generically are infinitely many
distributional solutions to the Cauchy problem. The notion of entropy solution
has been introduced; the Cauchy problem is well posed in this framework (see, for
instance, [11]).

What is the notion of an entropy solution? If the pair of nonlinear functions (7, q)
satisfies ¢/ = 0’ (a so-called entropy entropy-flux pair) and if s is a differentiable
solution of (1.11), then

O (s) + 0yq(s) = 0. (1.12)

But if f is nonlinear and s is only a distributional solution of (1.11), then (1.12)
is generically not satisfied—even in a distributional sense. An entropy solution s
of (1.11) is defined as a distributional solution of (1.11) with the property that

O (s) + 0yq(s) <0

in a distributional sense for all entropy entropy-flux pairs (1,¢q) such that 7 is
convex. Even if 7 is not convex, we have, for an entropy solution, that

On(s) + O0yq(s) is a measure.

By a lemma of Murat [16], this implies that if {s,},10 is a sequence of uniformly
bounded entropy solutions, then

{0m(sy) + 0yq(sy)} 1o 1s compact in HL.
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The latter allows for a judicious application of Murat and Tartar’s div-curl lemma
(a special case of compensated compactness, see [15,18]). Tartar used this method
in [18] to derive restrictions on the Young measure generated by {m, },1oc. In partic-
ular, he showed that if f is sufficiently nonlinear, then the set of uniformly bounded
entropy solutions is compact. The scope of Tartar’s analysis is much more general,
however, than this single application. What the paper [18] really explores is how
linear partial differential equations (like (1.8)) and nonlinear relations (like (1.9)),
taken together, restrict and sometimes rule out oscillations. Tartar’s method is
perfectly suited to our situation.

In the first part of §2 (lemmas 2.2 and 2.3), we will identify all (nonlinear) func-
tions @ of m with the property that ®(m) satisfies a certain linear partial differential
equation, provided m satisfies the linear partial differential equation (1.8) and the
nonlinear relation (1.9). More precisely, we will identify all ¢ such that

if m is differentiable with V- m = 0 and |m/|* = 1, then V - [@(m)] = 0.

This follows a concept of Tartar and mimics the tool of entropy and entropy-flux
pairs (1,q). In the second part of §2 (lemma 2.6), we will show that the class of
entropies is rich enough for our purposes. This doesn’t come as a surprise, since
the set of all entropy and entropy-flux pairs (7, ¢) is rich enough for a scalar con-
servation law in one space dimension (1.11). In the first part of §3, we will show
that the control expressed in (1.6) is strong enough to ensure that, for our sequence

{mu}uTooa
{V - [®(m,)]}v10 is compact in H~! for above ®s.

Then, in the second part of § 3, we will apply Tartar’s programme.

2. Entropies
DEFINITION 2.1. A @ € C§°(R?)? is called an entropy if, for all z,
z-DP(z)Rz =0, $(0) =0, D &(0) = 0, (2.1)

where D @, ; = 09, /0x; denotes the Jacobian of ¢ and R the rotation by %7‘(‘, that

is,
+(2)- ()
zZ9 z1
LEMMA 2.2. Let ® € C§°(R?)? be an entropy. Then there exists a ¥ € C§°(R?)?
such that, for all z € R?,
D®(z)+2¥(z) ® z=aid for some a, (2.2)
where id denotes the 2 x 2 identity matriz.

Proof of lemma 2.2. Componentwise, equation (2.2) is equivalent to the three equa-
tions
@1’1(2’) + 2“71(2’)2’1 = @2’2(2’) + 2“72(2’)2’2 (23)

and
D1 2(2) + 201 (2)22 = 0, Dy1(2) +2Ws(z)z1 = 0. (2.4)
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By continuity, equation (2.3) is equivalent to (2.3) multiplied with z; 2o, that is,
z120P1.1(2) + 22’%2’2%(2’) = z129P22(2) + Qlegy'/Q(z).
Hence the conjunction of (2.3) and (2.4) is equivalent to the conjunction of
z120P1,1(2) — zf@l,g(z) = z120P22(2) — 2'3452,1(2') (2.5)

and (2.4). But (2.5) is just (2.1) written in a componentwise fashion and (2.4) can
be satisfied by choosing

1 1
yvll(Z) = —2—22451’2(2’) and WQ(Z) = —Q—Zldsg’l(z).

We observe that, by definition, we have D ®(0) = 0, which ensures ¥ € C§°(R?)2.
O

LEMMA 2.3. Let ® € C§°(R?)? and ¥ € C§°(R?)? satisfy (2.2). Let m € H*(02)?
satisfy
V-m=0 ae in{2.

Then
V- [@(m)]=¥(m) -V(1—|m[*) ae in .

Proof of lemma 2.8. According to lemma 2.2, we have D ®(m) = —2¥(m)®@m-+aid
and therefore

V- [®(m)] = tr(DP(m)Vm)
=20 (m)- (Vm)™m +aV -m
= —W(m)-V|m|
=U(m)- V(1 —|m|?).

O

LEMMA 2.4. There is a one-to-one correspondence between entropies @ € C5°(R?)?
and functions ¢ € C5°(R?) with ¢(0) =0 via

D(z) = p(z)z+ (Ve(z) -R2z)R 2. (2.6)

Proof of lemma 2.4. Let ¢ € C§°(R?) with ¢(0) = 0 be given and @ defined
via (2.6). Obviously, ¢(0) = 0. We have

D&(z) =20 Vp(z) + ¢(2)id+Rz® (D*¢(2) Rz — RVp(2)) + (Ve(z) -R2) R
and therefore D &(0) = 0 and
2 D®(2)Rz = [2]*Vo(2) Rz + (Ve(z) - R2)(2-RR2z) = 0.
On the other hand, let & € C§°(R?)? be an entropy. Since #(0) = 0 and D ¢(0) = 0,

220 (2) = B(2) - 2 (2.7)
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defines a ¢ € C§°(R?) with »(0) = 0. Differentiating the identity (2.7) in the
direction R z yields

|2’Ve(2)Rz=2-D®(2)-Rz+P(2) Rz

=®(z)-Rz by (2.1). (2.8)
Hence
|2*®(2) = (8(2) - 2)z + (P(2) -R2) Rz
= 2]%0(2)z + |2]2(Ve(2) -R2z) Rz by (2.7), (2.8)
= 2 (p(2)2 + (Vo(2) - R2) R 2).
By continuity, this implies (2.6). O

LEMMA 2.5. Fiz an e € S', the set of unit vectors in R%2. Then

B(2) = |z[?e  forz-e >0, (2.9)

0 forz-e<0

is a generalized entropy in the sense that there exists a sequence {®,},100 of en-
tropies in C§°(R?)? such that

{D,(2)}v100 s bounded uniformly for bounded z, (2.10)

d,(z) ks D(z) for all z. (2.11)

Proof of lemma 2.5. Consider the function ¢,

z-e forz-e>0,
p(z) =

0 for z-e<0

and the map & given by

§(z):{e for z-e >0,

0 for z-e<0.

Observe that £ is the gradient of ¢ wherever the latter is differentiable. Obviously,
there exists a sequence {¢, },100 in C§°(R?) with ¢, (0) = 0 such that

{(¢u(2),Veu(2))} 100 is bounded uniformly for bounded z, (2.12)
(9u(2), Ve (2) 225 ((2),€(2))  for all . (2.13)

According to lemma 2.4,

D,(2) =pu(2)z+ (Vo (2) - R2z)Rz
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is an entropy. Equation (2.12) implies (2.10) and, according to (2.13),
d,(2) Voo, w(z)z+ (&(2) - Rz)Rz

_J(zre)z+(e-Rz)Rz forz-e>0,
o for z-e <0,

_JlzlPe forz-e>0,
o for z-e <0,

which turns into (2.11). |

LEMMA 2.6. Let p be a probability measure on R? supported on S'. Suppose it has
the property

/45 ‘ROdu = / ddu - / R&du  for all entropies ®, P.
Then p is a Dirac measure.

Proof of lemma 2.6. According to lemma 2.5, we are allowed to use the generalized
entropies of the form (2.9). As p is supported on S, this yields

e-Rép({z-e>0n{z-é >0})) =e-Réu({z-e>0N)u({z-é >0}) foralleéec st
or
p{z-e>0tNn{z-e>0}) = pu({z-e>0}u({z-€>0})
for all é € S* — {e, —e} and all e € S*.
Sending ¢ to e yields
p({z-e>0}) <p({z-e>0hu({z-e>0}) foralees!

or
p{z-e>0})=0 or p({z-e=0})=1 forallee St

As p is a probability measure, this implies
suppp C {z-e <0} or suppuC{z-e>0} forallec St
As the measure y is concentrated on S*, this forces it to be concentrated on a single

point on ST, O

3. Compensated compactness and Young measures

Proof of the propositions. We may focus on proposition 1.2, since, as explained
in §1, it implies proposition 1.1.
The first step is to show that, for any entropy ¢ € C§°(R?)?,

{V - [@(m,)]}v1ee is compact in H (). (3.1)
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According to (1.4) and lemmas 2.2, 2.3, there exists a ¥ € C§°(R?)? such that
V- [®(m,)] =¥ (m,) V(1 —|m,|?) a.e. in . (3.2)

Since ¥ is bounded and according to (1.5), {(1 — |m,|?)¥(my,)},100 converges to
zero in L%(£2). As a consequence, {V - [(1 — |m, |*)¥(m,)]} 100 converges to zero in
H~1(02). Therefore, equation (3.1) will follow from the assertion that

{V-[®(m,) — (1 — m,|>)T(m,)]} 100 is compact in H(£2), (3.3)
which we show now. Thanks to (3.2), we have
V- [@(my,) — (1= |m,|>)¥(m,)] = =V - [@(m,)](1 — |m,|*) ae in 2. (3.4)
We observe that, since @ and ¥ are bounded and according to (1.5),
{|&(m,) — (1 — |my|*)T(my,)|[*} 10 is uniformly integrable. (3.5)
Since D¥ is bounded, and according to (1.6),
{V-@(m,)](1—|my|*)}vteo is bounded in L(£2). (3.6)

A variation of a lemma by Murat [16] (see also [18, lemma 28]) now shows that in
the presence of (3.5) and (3.6), the identity (3.4) implies (3.3). (Recall that this in
turn implies (3.1).) For the convenience of the reader, we formulate and prove the
lemma.

LEMMA 3.1. Let 2 C RY be open and bounded. Let the sequence {f,}, 100 C
L2(2)N satisfy

{V - flvieo is bounded in L'(£2),
{Uf 2 vree  is uniformly integrable on 1.
N

Then
{V - f ot is compact in H'(£2).

Proof of lemma 3.1. We have to show that, for any sequence {¢,},100 C Hg(£2)
with
0, 20 in HY(R), (3.9)

we have

/ oV - f, = 0. (3.10)
2

According to Rellich, equation (3.9) implies strong convergence of {¢,},00 In
L?(02) to zero, which entails convergence in measure, that is,

L¥{lpu] 2 6}) — 0 (3.11)
for any fixed 6 > 0. We split ¢, into

oo =M + o2,
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where

—6 on {p, < —6},

¢, on {lp,| <0},

5 on {p, > d}.

Our construction is such that 4,0(”1) , 4,0(”2) € H}(£2) and

oM =

|¢,(1)| ) on {2,
V@ — a.e. on {[p, | > 6}, (3.12)
Vel =Vp,  ae. on{|p,| <3}

[ovn=[ v f——/.f Ve,
N N
1/2
<5/W%ﬁu(/ mﬁfﬁwm).
n {lov]>d} 0

We observe that (3.9) in particular implies the boundedness of

L@W%ﬁkm.

so that by (3.12),

oV - fu
2

Hence (3.8) and (3.11) yield

limsup/ V- fu] < dlimsup/ V- ful
vToo 2 vToo 2
Since 6 > 0 was arbitrary, we obtain (3.10) as desired from (3.7). |

In the second step, we apply the tools of Young measures and compensated
compactness in the spirit of Tartar [18]. According to Young’s theory of generalized
functions (also called Young measures), there exists a non-negative Borel measure
1 such that, for a subsequence,

/ /C (z,2) dpg(z)de = hm ¢(my(z),r)dx for all ¢ € C3°(R? x £2), (3.13)

V o0 0
with the understanding that the function
252 [ ¢ s
is integrable for any ¢ € C§°(R? x 2) (see [4,5,18]). The family {j; }zcq is called

the Young measure associated to the subsequence {m,},j. According to (1.5),
{Imv|*}115 is uniformly integrable. Therefore, equation (3.13) can be improved to

/ /C (2, 2) dpa(2) dz = T | ((my(2), ) dx, (3.14)

VOO 0
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for all ¢ € C°(R? x R?) with sup|((z,2)|/(1 + |2|*) < oo. By choosing ¢ = ¢(z)
in (3.14), we see that

/d,um =1 fora.e x€f2 (3.15)

Besides (3.13), the Young measure also satisfies

/Q/C(z,x) du(z)dz < listup /Q C(my(z),z)dz
for all non-negative ¢ € C>°(R? x R?). (3.16)
By choosing ((z) = (1 — |2]?)? in (3.16), we see that (1.5) implies
supp p, C S* for a.e. x € 0. (3.17)
Let &, & be two entropies. According to our first step,
{V - [®(m,)],V x [R®(m,)] = V- [®(m,)]}s1e0 are compact in H1(12).

Therefore, by the div-curl lemma of Murat and Tartar [15,18], the weak™ limit of
the product of &(m,,) and R®(m,,) in measures is the product of the weak limits in
L?(£2) of ®(m,) and RP(m,,), respectively. According to (3.13), these weak limits
can be expressed in terms of the Young measure {u:}zcn; hence, on the level of
the Young measure, we obtain the commutation relation

/@-Rédurz (/@dum> -(/Risdur> for a.e. x € £2.

Using this relation and (3.15), (3.17), we apply lemma 2.6 to conclude that
1o is a Dirac measure for a.e. x € (2.

This entails

/ |22 dps(2) = |m(z)*>  where m(z) = / zdpg(z) for all x € 2, (3.18)

where, according to (3.14), m is the weak™® limit of {m,},10 In measures. As a
consequence of (1.5), {|m,|?},100 is uniformly integrable, so that m is the weak
limit of {my },100 in L?(£2). According to (3.18) and (3.14) for {(z,z) = ||, we
have

lmllz20) = nglglo lmullz2(0)-

As it is well known, convergence of the norm strengthens weak convergence to
strong convergence in L2({2), so that

nglglo [my —m|lL2(2) = 0.
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