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Slowing down convective instabilities in
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Couette–Poiseuille (CP) flow in the presence of longitudinal grooves is studied by means
of numerical analysis. The flow is actuated by movement of the flat wall and pressure
imposed in the opposite direction. The stationary wall features longitudinal grooves that
modify the flow, change hydrodynamic drag on the driving wall and cause onset of
hydrodynamic instability in the form of travelling waves with a consequent supercritical
bifurcation, already at moderate ranges of the Reynolds number. We show that by
manipulating this system it is possible to significantly decrease phase speed of the unstable
wave and to effectively decouple time scales of wave propagation and amplification with a
potential to significantly reduce the distance required for the onset of nonlinear effects.
Current analysis begins with concise characterization of stationary, laminar CP flow
and the effects of applying a selected corrugation pattern, followed by determination of
conditions leading to the onset of instabilities. In the second part we illustrate selected
nonlinear solutions obtained for low, supercritical values of the Reynolds numbers and
due to the amplification of unstable travelling waves of possibly low phase velocities. This
work is concluded with a short discussion of a linear evolution of a wave packet consisting
of a superposition of a number of unstable waves and initiated by a localized pulse. This
part illustrates that in addition to the reduction of the phase velocity of a single, unstable
mode, imposition of the Couette component also reduces group velocity of a wave packet.

Key words: instability control, absolute/convection instability

1. Introduction

Use of patterned surfaces has been of interest as a potential method for passive control of
various aspects of the flow. Possible applications range from large-scale, turbulent flows,
where surface manipulations have been investigated as a means to reduce drag in the
turbulent boundary layer (i.e. riblets, see e.g. Luchini, Manzo & Pozzi (1991), Goldstein &
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Figure 1. Longitudinal grooves.

Tuan (1998) and Jimenez (2004)), down to small-scale, or even microfluidic arrangements
as diverse as micro-heat-exchangers for cooling of microelectronics, compact biochemical
reactors or molecular and DNA screening devices (Beebe, Mensing & Walker 2002). In the
case of small-scale flows, enhancement of the diffusive transport (see Aref et al. (2017),
for an extensive review) along with a low energy requirement is often the objective of the
design, made especially difficult to achieve due to the fact that dynamics of such flows
remains dominated by viscous effects (Bergles & Webb 1983; Gepner & Floryan 2020). In
such cases patterned surfaces might be used in order to force enough complexity into the
otherwise laminar flow, causing onset of chaotic advection (Aref 1984; Aref et al. 2017)
and resulting in sufficient kinematic stirring to significantly improve transport processes
(Stroock et al. 2002; Stremler, Haselton & Aref 2004).

While the number of possible surface patterns is limitless, here we focus on the regular
wall roughness in the form of longitudinal grooves positioned such that ridges of the
geometry run parallel to the flow direction, as schematically illustrated in figure 1. This
type of grooves has been investigated as a means to manipulate flow dynamics in a doubly
periodic grooved channel (Szumbarski 2007; Mohammadi & Floryan 2014; Mohammadi,
Moradi & Floryan 2015; Yadav, Gepner & Szumbarski 2017; Gepner & Floryan 2020;
Gepner, Yadav & Szumbarski 2020), singly periodic corrugated duct (Yadav, Gepner &
Szumbarski 2018; Pushenko & Gepner 2021) and grooved, annular (Moradi & Floryan
2019; Moradi & Tavoularis 2019) configurations. It has been shown that properly shaped
longitudinal grooves lead to a reduction of hydraulic drag (Szumbarski & Błoński 2011;
Szumbarski, Blonski & Kowalewski 2011; Mohammadi & Floryan 2015; Ng, Jaiman &
Lim 2018; Moradi & Floryan 2019). Interestingly, there are indications, both experimental
(Kim & Hidrovo 2012; Bolognesi, Cottin-Bizonne & Pirat 2014) and theoretical (Crowdy
2017), that drag reduction, attributed to the superhydrophobic effect, could, at least in some
cases, be related to drag reduction reported for flows through longitudinally patterned
geometries, such as those considered here.

Longitudinal grooves introduce variation of the streamwise velocity component and
have been shown to result in the onset of two types of instabilities. The first is shear
driven, similar to the classical Tollmien–Schlichting wave of the plane Poiseuille flow
and has been described in detail by Moradi & Floryan (2014). The second is inviscid in
nature and results from deformation of the spanwise distribution of the streamwise velocity
component that results from the presence of longitudinal grooves. This mechanism has
been reported by Szumbarski (2007) and described in detail by Mohammadi et al. (2015)
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and Yadav et al. (2017). This mode has a form of a wave travelling downstream and
becomes amplified at Reynolds numbers that are two orders of magnitude lower than those
established for the onset of a Tollmien–Schlichting wave in the case of plane Poiseuille
flow (canonical plane channel flow linear stability limit of approximately Re = 5772, using
channel’s half-height and maximum laminar, centreline velocity as scales), and much
below the subcritical transition limits reported for the case of plane channel flow (Carlson,
Widnall & Peeters 1982; Gomé, Tuckerman & Barkley 2020) of slightly below Re = 1000.
In this work we consider the second, inviscid instability mechanism.

While numerical investigations characterizing effects of longitudinal corrugation on
hydrodynamic stability (Szumbarski 2007; Szumbarski & Błoński 2011; Mohammadi
et al. 2015), and analysis of consequent nonlinear states (Yadav et al. 2017; Pushenko
& Gepner 2021) have been performed, to date there seem to be no experimental results
reported to support existing numerical findings. The lack of experimental results is
somewhat surprising, considering that the alternative, transverse groove configuration
received much attention, both from experimental as well as computational perspectives
(Sobey 1980; Nishimura, Ohori & Kawamura 1984; Nishimura et al. 1985, 1990a,b;
Gschwind, Regele & Kottke 1995; Blancher, Creff & Quere 1998; Cabal, Szumbarski
& Floryan 2002; Floryan & Floryan 2010; Mitsudharmadi, Jamaludin & Winoto 2012;
Rivera-Alvarez & Ordonez 2013; Gepner & Floryan 2016). On the other hand, it seems
that, at least in the qualitative sense, the destabilization mechanism caused by the presence
of longitudinal grooves and consequent variation in the streamwise velocity, is similar to
the gap instability (Moradi & Tavoularis 2019; Lamarche-Gagnon & Tavoularis 2021) that
exists in the eccentric annular flow configuration and has been experimentally investigated
(Piot & Tavoularis 2011).

To the best of the authors’ knowledge, shortage of experimental results for the case of
longitudinal grooves is not for the lack of trying, as experimental verification has been
attempted by at least two groups. The first effort comes from the work of Błoński (2009,
a PhD thesis in Polish), where a microscale particle-image-velocimetry set-up was used
to study the effects of longitudinal grooves. Results of this experiment were described
in Szumbarski et al. (2011) but focus was given only to the drag reducing effect, and
characterization of hydrodynamic stability remained at best cursory. The second attempt
was carried out by the group that conducted successful experimental investigations for the
case of transverse configurations (Asai & Floryan 2006; Floryan & Asai 2011). However,
our understanding is that for the longitudinal configuration the effort undertaken by that
group was not successful.

One of the problems in conducting a successful experiment is the fact that considered
instability is convective and has the form of a wave travelling downstream. Such an
unstable mode, if amplified, develops downstream at a relatively slow pace, while all the
time being advected with the speed that is comparable with the bulk flow velocity. This,
in turn, requires any prospective experimental set-up to imitate periodicity conditions,
so easily enforced numerically, either by resorting to the corrugated Taylor–Couette
configuration (see Ng et al. (2018), for numerical analysis of such configuration) or by
application of impractically long arrangements with very long test sections, such as to
allow for the development of the unstable mode long enough for it to become detectable.
Preferably, the measurement section should be long enough to the point where nonlinear
interactions cause nonlinear saturation and onset of secondary flows, before the bulk of
the flow flushes the investigated phenomenon out of the measurement domain.

A viable alternative might lie in manipulating the flow system in such a way as to
decrease propagation speed of the unstable mode to the point that it can be considered
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a stationary one. Ideally, such manipulation should result in the change of the instability
character, at least during the phase of exponential growth, while perturbations remain
small, in such a way as to drastically decrease the speed of wave propagation. Preferably,
such a system manipulation should maintain the low Reynolds number requirement for
destabilization. An interesting solution to this problem comes from the application of
the Couette–Poiseuille (CP) configuration with pressure applied to act opposite to the
movement of the driving wall. Such a configuration, featuring very low or even zero-mean
flow was proposed by Klotz et al. (2017) for the study of transitional turbulence. It
has been successfully applied to experimental investigation of transient amplification
of turbulent spots (Klotz & Wesfreid 2017), quenching experiment (Liu et al. 2021)
and measurements of large- and small-scale flows in planar CP flow configurations
(Klotz, Pavlenko & Wesfreid 2021), allowing for long time scales to be obtained in
measurements. The rationale for this solution comes from the fact that localized, turbulent
features are advected with speeds comparable to the mean velocity of the base flow.
Thus, reducing this speed keeps them stationary in the laboratory frame of reference.
Similarly, the unstable mode that results from longitudinal corrugation, and which is
of interest to this work, travels at a speed that is related to the mean velocity of the
base flow. In principle, sufficiently limiting propagation speed of this mode should allow
for a change of the instability character and allow amplification over a much shorter
distance. Consequently, the ensuing secondary flows might become slowly advected or
even stationary, allowing for longer observation times to be possible using relatively
compact experimental arrangements.

In general analysis of the evolution of perturbations in both time and space might be
approached within the spatiotemporal setting, looking for both spatial, as well as temporal
growths. Some early work on the evolution of perturbations in the boundary layer may
be traced to Gaster (1962, 1965, 1968) and in the case of wakes and jets to Betchov &
Criminale (1966). An extensive review of the spatiotemporal approach is given by Huerre
& Monkewitz (1990) with an overview of concepts of absolute and convective types of
instabilities (Huerre & Monkewitz 1985) that can be traced to the works of Briggs (1964)
and Bers (1975). Those concepts allow us to discern the nature of the instability in a flow
system as either absolute, i.e. such that it is amplifying in the stationary frame of reference,
or convective, that is, moving with the flow while growing downstream and attenuated
in the stationary frame where perturbation has been introduced. Both the spatiotemporal
approach as well as absolute/convective concepts have been applied to a number of
problems concerning various flow configurations (Loiseleux, Chomaz & Huerre 1998;
Loiseleux, Delbende & Huerre 2000; Gelfgat & Kit 2006; Valluri et al. 2010). Here, we
focus on the determination of conditions necessary for the onset of instabilities, for which
temporal analysis is sufficient, but an outlook towards spatial evolution of disturbances is
given by examination of the evolution of a wave packet, formed by the application of a
localized, initial pulse.

The main intention of the current work is to address the problem of hydrodynamic
stability of the CP flow, modified with regular, longitudinal corrugation applied to the
stationary wall. Of primary interest is characterization of temporal stability properties
and determination of flow conditions that result in low-Reynolds-number (Re < 500)
destabilization of the flow and at the same time cause propagation speed of the unstable
mode to become as low as possible with the ensuing secondary flow forming a slowly
propagating or a standing-wave-like state. To this end, focus is given to configurations that
lead to base flows characterized by zero-mean flow and low phase speed of the unstable
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Figure 2. Channel geometry.

mode (it turns out those two do not necessarily lead to the same conditions). At last, this
paper addresses a conjecture which states that the form of the instability detected for the
case of corrugated Poiseuille flow (Yadav et al. 2017) is also attainable in the Couette
configuration, an issue that, surprisingly, remains uninvestigated today.

The layout of this paper is as follows. In § 2, we formulate the flow problem, define
geometry and discuss the computational approach used in this work. In § 3 properties of
the base flow are discussed and zero-mean flow conditions are selected and characterized.
In § 4 temporal hydrodynamic stability for the corrugated CP flow is provided. Possible
decrease in phase velocity of the unstable wave mode is discussed and suitable conditions
selected for further analysis. Section 5 describes direct numerical simulation (DNS) at
supercritical flow conditions performed for cases corresponding to zero-mean stationary
flow and those that significantly limit propagation speed of the unstable mode. In § 6 we
present evolution of a wave packet, formed as a superposition of a number of unstable
waves excited by a localized, initial pulse and traced as it is being amplified while travelling
through the domain. Section 7 concludes the work and provides a brief summary.

2. Problem description

Consider flow of an incompressible, Newtonian fluid through a channel with a plane top
and corrugated bottom wall schematically illustrated in figure 2. The channel is assumed
to be doubly periodic in the streamwise z- and spanwise x-directions and constrained by
walls located at

yu = 1,

yl = −1 + S cos(αx),

}
(2.1)

with α and S the corrugation wavenumber and amplitude. The resulting groove pattern
runs parallel to the streamwise z-direction.

The flow is driven by motion of the plane, top wall towards the positive z-direction (the
Couette component) and pressure applied to act in opposition (the Poiseuille component)
with the corrugated, bottom wall remaining stationary. Half of the average distance h
between walls defines the length scale and velocity W of the moving top wall is used as
the velocity scale. Time is scaled with h/W, pressure with ρW2 where ρ stands for density
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and is taken to be unity. The Reynolds number corresponding to the Couette component
is Re = Wh/ν, where ν denotes kinematic viscosity. Applied pressure is p = 2Az/Re and
acts against the motion of the top wall with A representing the Poiseuille pressure ratio
parameter. We note that the pressure ratio is selected such that in the absence of the
Couette component for the smooth channel case (S = 0), A = 1 results in a parabolic
profile with the centreline velocity Wp = −1. Consequently, the Poiseuille component
Reynolds number is Rep = ARe. The flow velocity vector field u = [u, v, w]T satisfies
continuity and momentum equations, that can be written as

∇ · u = 0,

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + f ,

⎫⎬
⎭ (2.2)

where f represents body forcing used to excite unstable modes in the stability and
nonlinear analysis, and otherwise is taken to be zero. The flow problem is augmented with
appropriate boundary conditions imposed at the top and bottom wall along with periodicity
conditions in the streamwise and spanwise directions, and of the form

u = [0, 0, 1]T at y = yu,

u = [0, 0, 0]T at y = yl,

u(x = 0) = u(x = kLx) for k = ±1, ±2, . . . ,

u(z = 0) = u(z = mLz) for m = ±1, ±2, . . . ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

with Lx and Lz dimensions of the computational domain in the periodic directions.
Irrespective of the corrugation amplitude, under constant pressure gradient aligned with
the geometry there exists a stationary, laminar solution that is streamwise invariant. This
reduces (2.2) to a Poisson problem for streamwise velocity, of the form

Δw = 2A, with

⎧⎪⎨
⎪⎩

w = 1 at y = yu,

w = 0 at y = yl,

w(x = 0) = w(x = kLx) for k = ±1, ±2, . . . .

(2.4)

Consequently, the resulting velocity vector for the stationary, laminar flow is

U(x, y) = [0, 0, w(x, y)]. (2.5)

In the forthcoming analysis we shall maintain the Couette component fixed, and
manipulate the pressure ratio of the Poiseuille component A, such as to minimize either
the bulk velocity of the laminar flow, or phase speed of the occurring unstable mode.
For the case of zero amplitude corrugation, the considered problem is identical to the
plane CP configuration and consequently, primary reference is the canonical Couette
flow between infinite parallel plates placed at y = ±1, driven by constant wall velocity,
characterized by velocity vector field u = [0, 0, 0.5( y + 1)] and flow rate per unit width
V̇c = 1. The secondary reference is the Poiseuille flow in the opposite direction and
characterized by u = [0, 0, A( y2 − 1)] with flow rate per unit width V̇p = −4A/3, using
the adopted Poiseuille pressure ratio parameter A. In the case of plane channel flow, the
resulting CP combination yields flow velocity u = [0, 0, A( y2 − 1) + 0.5( y + 1)] with
A = 0.75 for the case of zero bulk flow (Mohammadi & Floryan 2014; Klotz et al. 2017).
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Corrugation of the stationary, bottom wall changes the laminar flow and the pressure ratio
A leading to the zero-mean flow needing to be recalculated.

For the pressure-driven flow, presence of longitudinal grooves has been shown to cause
onset of nonlinear flow solutions (Yadav et al. 2017, 2018; Moradi & Tavoularis 2019), to
which the flow transitions via a supercritical Hopf bifurcation (Gepner et al. 2020) already
at very low values of the Reynolds number (critical conditions occur below Re = 60 using
the Poiseuille, centreline velocity scale). Those non-stationary solutions remain connected
to the laminar state in the linear sense and are linked to the travelling wave mode instability
that develops due to the corrugation-induced variations in the streamwise velocity. In this
work, onset of secondary flows is addressed in two steps. First, by means of modal, linear
hydrodynamic stability theory with linearization of (2.2) around a stationary, laminar flow
solution (2.5). Second, by means of the DNS of flows at supercritical conditions and up
to the onset of nonlinear interactions in the saturation process. For the linear part the
flow is represented as a superposition of the stationary solution (2.5) (U, P) and a small
disturbance, i.e.

UT(x, y, z, t) = U(x, y) + up(x, y, z, t),

PT(x, y, z, t) = P(x, y) + pp(x, y, z, t),

}
(2.6)

where subscripts T and p stand for total and perturbation quantities. Perturbed quantities
(2.6) are substituted into governing equations (2.2), followed by standard linearization of
the perturbation problem. The form of the perturbation is restricted to a normal mode,
periodic in the spanwise x- and streamwise z-directions, of the form

up(x, y, z, t) = ûp(x, y) exp(i(βz + δx − σ t)) + c.c.,

pp(x, y, z, t) = p̂p(x, y) exp(i(βz + δx − σ t)) + c.c.,

}
(2.7)

where ûp and p̂p(x, y) are perturbation amplitude functions, c.c. stands for complex
conjugate, (β, δ)-pair represents the streamwise and spanwise wavenumbers (both are real
and treated as parameters) and σ = σr + iσi is the complex amplification rate whose real
and imaginary parts correspond to perturbation frequency and growth rate, respectively.
We note that Yadav et al. (2017) shows that within the linear range and at moderately
supercritical conditions, for the considered type of instability the spanwise periodicity
of the mode, characterized by the wavenumber δ (see (2.7)) is bound to the periodicity
of the corrugation pattern, characterized by geometrical wave number α (see (2.1)),
i.e. δ = α, with the streamwise wavenumber β remaining a parameter. The linearized
flow problem with perturbation (2.7) leads to a generalised eigenvalue problem for the
partial differential equations for the modal functions with σ as the complex eigenvalue.
Discretization transforms this problem into an algebraic eigenvalue problem for σ which
is solved numerically.

In the forthcoming analysis the arising flow and stability problems are solved using the
spectral element/hp solver available within the Nektar++ software package (Cantwell et al.
2015). Spatial discretization is based on spectral element discretization in the spanwise
(x, y) plane augmented with Fourier decomposition in the streamwise z-direction,
truncated to M leading modes and of the form

u(x, y, z, t) =
k=M∑

k=−M

uk exp(ikβz), (2.8)

with conjugacy condition uk = u∗
−k. The spectral element grid spans the (x, y) plane

and uses a structured quadrilateral mesh of 13 × 11 elements per corrugation section,
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generated with the Gmsh package (Geuzaine & Remacle 2009). Within each mesh
element, local polynomial expansion is performed with a modified Jacobi base (Cantwell
et al. 2011) consisting of hierarchical assembly of six, up to the fifth-order polynomials,
combined with Gauss–Lobatto–Legendre quadrature using six quadrature points, in each
elemental direction. The number of Fourier modes used in expansion (2.8) for calculation
of the nonlinear states is selected such that ratio of the modal energy of the leading, zeroth
mode (the mean flow), to the Mth (highest used in calculations) mode is sufficiently large.
Temporal discretization is achieved with the second-order velocity-correction scheme
(Serson, Meneghini & Sherwin 2016). Spatial accuracy of the computational approach
used here is verified by resolving the demanding hydrodynamic stability eigenproblem
on a sequence of meshes and with varying polynomial expansion order. Results of this
verification are outlined in the Appendix. We also note that the approach used here
has already been established for similar flows (Gepner & Floryan 2016; Yadav et al.
2017, 2018; Hossain, Cantwell & Sherwin 2021; Yadav, Gepner & Szumbarski 2021)
and both spatial and temporal resolutions used in this work are more than sufficient
to recover both hydrodynamic stability and nonlinear saturation states, as outlined in
Yadav et al. (2017).

In the remainder of this work we shall concentrate on a single corrugation pattern,
characterized by corrugation wavenumber and amplitude pair (α, S) = (1, 0.7). Focus will
be given to the influence of pressure ratio A of the Poiseuille component on hydrodynamic
stability, propagation speed of the unstable wave and character of the resulting secondary
flows, with interest in the deceleration of the nonlinear flow pattern resulting from the
amplification of the unstable wave mode. This choice of the geometrical configuration is
dictated by the fact that this geometry results in amplification of the travelling wave mode
instability already at values of the Reynolds number that are close to the lowest available
(below 60), and at the same time offers drag reduction in the case of pressure-only driven
flow (Yadav et al. 2017; Gepner & Floryan 2020) and allows us to achieve a significant
decrease of the unstable wave propagation speed at moderate and low values of the
Reynolds number (Re < 500).

3. Stationary flow solution

Detailed characterization of stationary, laminar CP flow in the presence of wall
corrugation has already been provided by Mohammadi & Floryan (2014). The analysis
contained therein has been performed for a wide range of geometries, both by means of
semianalytical asymptotic analysis and domain-transformation-based numerical methods.
In the case of a stationary, plane CP flow it remains invariant in the spanwise direction,
satisfies (2.4) and at A = 0.75 features zero-mean flow rate. Imposition of grooves
introduces spanwise variation of the streamwise component and modifies the stationary
flow. For A = 0.75 this change is illustrated in figures 3 and 4 by means of contours
and profiles of streamwise velocity, both for the corrugated and reference, plane CP
flow. The most prominent change due to the imposition of grooves is modulation of the
streamwise velocity and formation of regions of accelerated flow (we refer to those regions
as stream tubes) accompanied by a downward shift of the w = 0 line (marked by the
solid contour line in figure 3) and its slight, upward bending around the groove centre
formed to accommodate the stream tube. Consequently, presence of grooves leads to the
onset of an alternating streamwise velocity pattern with the same periodicity as that of
wall corrugation (see figure 3), and not unlike the one shown for the case of corrugated
Poiseuille flow characterized by Yadav et al. (2017).
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Figure 3. Contours of the streamwise velocity component of the stationary solution for a single corrugation
section characterized by (α, S) = (1, 0.7) (left-hand subpanel) compared with the plane CP flow (right-hand
subpanel) for pressure ratio A = 0.75. Solid line distinguishes w = 0 contour.
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Figure 4. Streamwise velocity profiles of the stationary solution at x/λα = 0, 0.25, 0.5 (left-hand subpanels)
compared with the plane CP flow (right-hand subpanel). Conditions same as in figure 3.

From the perspective of flow rate per unit width (V̇/λα), similarly to the semianalytical
solution of Mohammadi & Floryan (2014), grooves obstruct the Couette and benefit the
Poiseuille flow component, in the sense that imposition of grooves decreases the overall
flow rate. This is illustrated in figure 5 (the left-hand axis and corresponding plots) which
shows that for the corrugated geometry (solid line) average flow rate is decreased compared
with that of the reference, plane CP flow (dashed line) for all values of the pressure ratio
A. Consequently, for the groove pattern considered here the pressure ratio leading to zero
flow rate is decreased to A ≈ 0.71. Figure 5 also shows variation of the mean rate of strain
at the flat, moving wall,

γmean = 1
λα

∫ λα
0

dw
dy

∣∣∣∣
y=1

dx, (3.1)

over a single corrugation wavelength which is proportional to the drag force exerted
onto the moving wall. Naturally, increase of the Poiseuille component, while the speed
of the upper wall remains constant, results in an increased rate of strain γmean, both for
the reference, plane CP as well as for the corrugated geometry. What is surprising is
that for pure Couette configuration (A = 0) the average rate of strain is greater for the
corrugated geometry, while for A = 1 (both Couette and Poiseuille components fully
active) it is reversed, with the change at around A = 0.5. This can be attributed to the
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Figure 5. Flow rate per unit width V̇/λα (left-hand axis) and area averaged mean rate of strain (3.1) (right-hand
axis) at the moving, plane wall as functions of the Poiseuille pressure ratio parameter A for the reference, plane
(dashed line) and corrugated (solid) geometry.
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1
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1

0.75
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0.25

A = 0

A

x/λα

γ

Figure 6. Variation of the rate of strain γ = dw/dy|y=1 at the moving, plane wall along the spanwise
x-direction across a single corrugation wavelength λα for selected pressure ratios A for the reference, plane
(dashed line) and corrugated (solid) geometry.

fact that application of selected longitudinal grooves decreases hydraulic resistance of
pressure-driven, Poiseuille flow while at the same time increases resistance of the Couette
component. An insight into the distribution of the rate of strain γ at the top, flat wall,
across the spanwise, x-direction for selected pressure ratios A is shown in figure 6. Strain
rate distribution obtained for the reference, plane CP case (depicted using dashed lines)
remains invariant with spanwise x-coordinate while imposition of grooves causes the
strain rate (solid line) to change periodically in the spanwise direction. In the case of
Couette-only forcing (A = 0), strain rate at the top wall is increased in the converging,
and slightly decreased in the diverging section of the channel, compared with the plane
CP flow reference. With the increase of the opposing pressure gradient, overall strain rate
increases while its variation reverses, achieving maximum in the diverging and minimum
in the converging sections, starting from around A = 0.5. We note, that similar rate of
strain distribution has been reported by Mohammadi & Floryan (2014) for the case of
finite wavenumber corrugations.

Variation of the rate of strain γ corresponds to the growth of the reversed flow region,
the appearance of the stream tube in the diverging section, and push-out of the w = 0 line
upward as the ratio of the Poiseuille component is increased. This change is shown by
means of streamwise velocity contour plots in figure 7(a–e) along with velocity profiles
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1.0
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(d)
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A = 0.25 A = 0.5
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A

y

0
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0

Figure 7. Streamwise velocity contours with changing Poiseuille pressure ratio A (a–e) and streamwise
velocity profiles ( f ) at the grove centreline x/λα = 0.5. Couette forcing remains unchanged and the plot shown
in (a) and the left-most profile corresponds to the pure Couette action. Distinguished contour-line corresponds
to w = 0. Onset of the reversed flow appears first within the groove bottom. Well-defined stream tube develops
around A = 0.5 and around A < 0.75 reversed flow spans the entire wavelength. Colour map and contour-lines
same as in figure 3.

taken across the centreline of the diverging section. We note that the region of the reversed
flow forms immediately as the Poiseuille component is introduced but it is initially
constrained to the lower part of the groove and does not span into the converging part
of the channel. With the increase of the pressure ratio A, more of the flow is pushed in
the negative z-direction with the stream tube becoming distinguishable around A = 0.5.
Eventually, regions of the reversed flow connect and span throughout the entire wavelength
of the corrugation.
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Figure 8. Comparison of the time stepping (DNS, solid black line) and direct (solution of the eigenproblem,
thick grey line) methods used to recover σ in the limit σr → 0. Variation of (σr, σi) pair with Re at (β, A) =
(0.288, 0.462). Dashed line in (a) results from extrapolation.

4. Slowing down the travelling wave

Our objective here is to decrease the propagation speed of the unstable travelling wave
by manipulating the ratio of Couette to Poiseuille forcing and if possible to decelerate or
immobilize the unstable mode and the consequent, nonlinear flow pattern that develops
as the unstable mode is amplified. We examine hydrodynamic stability by mapping the
parametric space that spans the Reynolds number Re, streamwise wavelength of the
perturbation λβ = 2π/β, determined by the size of the computational box Lz and the
Poiseuille pressure ratio A. We use two solution methods interchangeably to perform
continuation over parameters and to assure that we track the least stable mode. First, we
solve the full, nonlinear flow problem via DNS with the stationary, laminar solution as an
initial condition. Unstable modes are excited with the application of body forcing that has
a form of a low variance, zero-mean Gaussian noise and is applied only initially to result in
a possibly small perturbation amplitude. At this stage, complex amplification σ is retrieved
from the time history of the solution. We then perform parametric continuation with the
direct method solving the generalized eigenvalue problem that results from application
of modal linear stability approach outlined in § 2, periodically verifying results using the
nonlinear time stepping used to initialize the process. For cases where σr → 0, retrieving
frequency with a time stepping method becomes difficult since nonlinear effects disturb
the process before we are able to capture a single periodic cycle. In this limit we resort to
the direct approach, and only σi is verified against time stepping. Comparison of the two
approaches is given in figure 8 showing variation of σi and σr with Re while remaining
parameters remain fixed at (β, A) = (0.288, 0.462). A solid black line depicts results of
the DNS and the dashed extension results from extrapolation of the σr as σr → 0, while the
thicker grey lines illustrate values obtained by direct solution of the eigenproblem ensuing
from linearization.

For brevity of the presentation, we omit various relations of parameters and present
dependence of critical Reynolds number Recr and phase speed vp = σr/βcr (βcr represents
wavenumber of the least attenuated perturbation) on the Poiseuille pressure ratio A and
focus on the range of parameters for which vp → 0.

We start our considerations by first looking at purely pressure-driven flow, without the
Couette component (zero wall speed) as this provides a direct connection to our previous
studies of hydrodynamic stability, and recall that in the case of pressure-driven channel
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Figure 9. Variation of critical Reynolds number Recr with changing Poiseuille pressure ratio A for pure
Poiseuille (zero wall speed, dashed line) and mixed CP (thick solid line) flow. Thick grey line corresponds
to relation (4.1). Dots represent conditions selected for nonlinear analysis.

flow, grooves result in flow destabilization (Yadav et al. 2017). For the geometry selected
here, with grooves applied only to one of the walls and with only the Poiseuille component
(A = 1 and no Couette forcing) active, the unstable mode becomes amplified already at
Recr(A = 1) ≈ 63. The unstable mode has a form of a wave, with the critical wavenumber
βcr = 0.39 and travels with phase speed vp = σr/βcr ≈ 0.79 in the direction of the flow,
i.e. pointed by the applied pressure (negative z-direction using current parametrization,
see figure 2). Keeping the Couette component off and decreasing the Poiseuille pressure
ratio A leads to a decrease in the phase speed (the unstable wave mode slows down) and
increase of the critical Reynolds number. Both quantities scale with A as

vp(A) = vp(A = 1)A

Recr(A) = Recr(A = 1)/A,

}
(4.1)

due to the linear nature of the stability mechanism. Consequently, Recr → ∞ and vp → 0
as A → 0. Relation (4.1) agrees with numerical results shown in figures 9 and 10, which
illustrate variation of the critical Reynolds number Recr and phase speed vp with A,
respectively.

Turning the Couette component back on (the speed of the moving wall is now W = 1) we
trace changes of critical conditions with variation of the Poiseuille pressure ratio parameter
A. Variation of the quantities of interest, i.e. critical Reynolds number and phase speed of
the most unstable wave with the Poiseuille ratio A are shown using thick lines in figures 9
and 10. One notes immediately that application of the Couette component has a stabilizing
effect, in the sense that at A = 1 critical the Reynolds number is increased to Recr =
78, compared with the Poiseuille-only configuration and grows above 104 already around
A = 0.24 (we have tested critical conditions up to Recr = 13 000 at A = 0.24). At this point
we wish to address a conjecture, stated in § 1, on the possible destabilization of the Couette
flow over a longitudinally grooved surface. We note that the value of Reynolds number
required for the onset of unstable modes increases as A → 0, which indicates that without
pressure forcing the flow remains stable against considered travelling wave instability up
to very high (possibly arbitrary high) Reynolds numbers. Consequently, the unstable wave
mode found for the Poiseuille configuration (Yadav et al. 2017), seems to be attenuated in
the Couette configuration. Therefore, similarly to the plane reference, Couette flow over
a grooved wall remains linearly stable and nonlinear solutions are attainable only via a
subcritical scenario.
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Figure 10. Variation of phase speed magnitude of the most unstable mode vp at corresponding critical
Reynolds (see figure 9) number and with changing Poiseuille pressure ratio A for pure Poiseuille (zero wall
speed – dashed line) and mixed CP (thick solid line) flow. Thick grey line corresponds to relation (4.1).
Direction of the wave propagation, marked in the plot is retrieved a posteriori.

Along with the stabilizing effect, application of the Couette component leads to the
decrease of the phase speed of the critical perturbation. This is shown in figure 10,
which illustrates variation of the phase speed magnitude of the most unstable wave
mode with changing of the pressure ratio. In the A → 1 limit the unstable wave mode
travels in the direction determined by applied pressure forcing, the same as in the pure
Poiseuille configuration (negative z-direction using current parametrization), but with
phase speed decreased due to the influence of the Couette forcing to vp(A = 1) ≈ 0.3 and
at conditions corresponding to the zero bulk flow (A = 0.705) to 0.179. Further decrease
of the Poiseuille pressure ratio leads to decreased phase speed and at around A∗

cr ≈ 0.462
the phase speed of the most unstable mode achieves its minimum and then again increases.
The non-monotonic change of phase speed magnitude with A indicates that as the pressure
gradient is decreased the unstable wave mode decelerates, and eventually stops as vp → 0
and then reverses for A < A∗

cr and travels in the positive z-direction, the same as the
direction of the moving wall. Note that the direction of the wave propagation is retrieved
a posteriori by examination of the DNS solution (see also the nonlinear solutions outlined
in § 5). Using bisection, we estimate critical wave inversion conditions at which the most
unstable mode changes direction as vp → 0 to be A∗

cr = 0.462 ± 0.0004 and (Recr, βcr) =
(296, 0.288) for which vp = ±10−6.

We will now focus on the determination of pressure ratios A∗(Re) corresponding to the
inversion of the propagation direction of the unstable mode at conditions above critical. To
this end we test linear stability at slightly supercritical conditions and look for conditions
such that for the most amplified unstable wave σr → 0. Figure 11 outlines the approach and
shows variation of the components of the complex amplification rate σ with streamwise
perturbation wavenumber β at Re = 400 for selected values of A around the wave inversion
A∗ value (marked with an open circle in figure 11a,b). Positions corresponding to the
maximum of σi are marked with dots in figure 11(a) and determine a curve that crosses the
σi = 0 at corresponding critical conditions (intersection not illustrated). Corresponding
values of σr are distinguished by dots in figure 11(b) and show that with the decrease of
the pressure ratio A the real part of the complex amplification σ initially decreases to zero,
determining the specific wave inversion ratio A∗(Re) and then increases again as the wave
changes direction.
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Figure 11. Components of the complex amplification rate σ at flow conditions corresponding to Re = 400.
Variation of σi in (a) and σr in (b), with streamwise length of the perturbation λβ = 2π/β for a range of
pressure ratios A selected around A∗(Re = 400) for which at Re = 400 the unstable mode changes direction
and vp → 0. Solid dots, connected by a thick solid line in (a) distinguish positions of maximum amplification.
Extension of this line crosses the horizontal axis (σi = 0) at βcr = 0.27 and for Acr = 0.427, i.e. at conditions
for which Recr = 400 is the critical value (intersection not shown – compare with figures 9 and 10). Frequencies
corresponding to maximal amplifications are distinguished by a thick line in (b) and travelling directions of
the unstable mode, determined a posteriori are added for reference. For Re = 400 pressure ratio resulting
in wave reversing direction is A∗(Re = 400) = 0.447 (marked in plots with an open circle), compared with
A∗(Recr) = 0.462 at critical conditions.
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Figure 12. Propagation direction of the unstable wave mode below A∗
cr ≈ 0.462 showing supercritical

conditions for which the wave changes direction. Conditions above (below) vp = 0 correspond to the wave
travelling in the −z- (+z)-direction. Grey region below Recr line corresponds to mode attenuation. Intersection
of vp → 0 and Recr(A) lines falls around A∗

cr, Recr ≈ (0.462, 296). Dots represent conditions selected for
nonlinear analysis.

For selected, moderately supercritical values of the Reynolds number the wave inversion
ratio A∗ determines conditions for which phase speed of the most unstable mode decreases
to the point that the unstable mode may be considered to become stationary, i.e. vp → 0.
This slow down of the unstable mode is to the point that eventually this mode may be
considered to have become stationary. The vp → 0 curve in the (A, Re) plane is shown
in figure 12 and illustrates that inversion pressure ratio decreases with Reynolds number;
i.e. A∗(Re > Recr) < A∗

cr. Figure 12 depicts existence of distinct regions that divide the
(A, Re) plane. Conditions corresponding to the region below the Recr(A) line (marked in
grey) result in attenuation of the mode being traced. In-between the Recr(A) and vp → 0
curves there exist a range of parameters for which the most unstable mode is amplified,
has a character of a wave propagating towards the +z-direction (against applied pressure),
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while to the right of the vp → 0 line the unstable mode travels in the −z direction (along
applied pressure). The σ → 0 line distinguishes conditions for which the most unstable
wave mode is immobilized and its intersection with the Recr(A) curve defines critical
conditions for which the unstable mode changes direction around A∗

cr.

5. Nonlinear saturation of the unstable mode

At supercritical conditions (Re > Recr) small amplitude perturbations result in
amplification of unstable modes. We will now examine temporal evolution of a single
unstable mode as it is being amplified. While amplitude of this mode remains small its
growth and propagation remain governed by the linear theory. Increase of the mode’s
amplitude causes nonlinear interactions to become non-negligible, impeding further
growth and causing the onset of the nonlinear saturation state. For the travelling wave
instability, that is considered here, the growth and transition into the nonlinear saturation
state bears features of the supercritical Hopf bifurcation (Yadav et al. 2018) with the
nonlinear saturation state corresponding to the system’s limit cycle. At nonlinear saturation
the flow develops a number of characteristic features, not unlike those reported for
the case of corrugated Poiseuille flow (Yadav et al. 2017). In the nonlinear solution a
spanwise, periodic velocity component appears and causes the meandering-like motion
of the velocity tube positioned in the diverging sections of the channel accompanied by
formation of pairs of counter-rotating vortices. Both the meandering of the velocity tube
as well as the vortex pairs travel through the domain at the same rate.

Here we discuss the transition to and character of the nonlinear saturation states
using four characteristic cases outlined in table 1 and designated CP1−4. Each case
is considered at supercritical conditions, and of special interest to us are relations
of amplification and propagation rates, characterized by components of the complex
amplification rate σ , throughout the stage of exponential growth as well as times to
saturation Ts and periods of resulting limit cycles past the nonlinear saturation T (to
be compared with the period of the unstable mode 2π/σr). For each of the considered
cases computational boxes span two corrugation sections in the spanwise direction and
correspond to respective critical perturbation wavelengths in the streamwise direction.
Consequently, computational dimensions are (Lx, Lz) = (2λα, λβcr) with spanwise and
streamwise periodicity assumption maintained. For cases CP1 and CP3,4 the applied
Reynolds number range from 110 % to 120 % of respective critical values and CP2 is
considered at marginally supercritical conditions of approximately 101 % of the critical
Reynolds number and very close to conditions determined in § 4 as the point where
the unstable mode changes direction at the lowest value of the Reynolds number, i.e.
for A ≈ A∗. Case CP1 corresponds to zero-mean base flow at A = 0.705 and (Re, β) =
(150, 0.364) with the unstable mode travelling in the negative z-direction with phase
speed vp ≈ 1.8 × 10−1 and period of the resulting limit cycle T close to the period
of the unstable mode resulting from the linear approximation. Cases CP2 and CP3 are
particularly interesting and correspond to conditions that lie close to the vp → 0 line,
depicted in figure 12, and feature propagation speeds of the unstable modes that are
very small but with propagation in the negative z-direction. Case CP2 is marginally
critical at (Re, β) = (300, 0.292) and close to the intersection of Recr(A) and vp → 0
curves depicted in figure 12, i.e. around A∗

cr ≈ 0.462. Consequently, this case features
low phase speed of vp ≈ 2.3 × 10−4 but also the amplification rate is moderate and small
perturbation requires a long time to saturate with the resulting nonlinear state featuring
a low amplitude secondary flow. Contrary, CP3 at (Re, β) = (340, 0.281) corresponds
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Case: A Recr βcr Re β σi × 103 σr × 103 T × 10−3 Ts × 10−3 vp × 103 Direction

P1 1 63 0.385 100 0.385 11.9 320 0.02 1 833 −z
CP1 0.705 124 0.364 150 0.364 4.81 65 0.1 2.4 179 −z
CP2 0.462 296 0.292 300 0.292 0.0658 0.068 68 90 0.23 −z
CP3 0.455 313 0.281 340 0.281 1.16 10−5 10 8 < 0.01 −z
CP4 0.42 412 0.274 460 0.274 0.8 4.4 1.4 15 15.9 +z

Table 1. Characterization of the selected cases: pressure ratio, critical and applied conditions, complex
amplification σ , oscillation period past saturation T and time to saturation Ts, phase speed and propagation
direction of the perturbation for the cases selected for the study of saturation states. Cases are:
Couette–Poiseuille (CP); Poiseuille only forcing (P).

to moderate, supercritical conditions with a relatively large amplification rate and phase
speed as low as vp ≈ 10−5. For cases CP2,3 the amplification process, starting from
small, random perturbations and up to the onset of nonlinear interactions, is illustrated
in the accompanying supplementary movies. At this point we note, that in the CP2
case, throughout the amplification stage slowly moving structures are present. This
corresponds to the small, but finite phase speed of the unstable wave travelling through
the domain while it is being amplified. In the CP3 case the amplification stage is much
shorter and the phase speed of the least stable perturbation is much lower. Consequently,
developing structures remain virtually immobile throughout the amplification stage.
However, once nonlinear interactions become large enough to sufficiently change the mean
flow, secondary flows begin to move and the flow settles onto a periodic cycle with a
period of around 104 advective time units, much shorter than predicted by the linear theory
and apparently unrelated to the linear stability result. This discrepancy in the period of
the nonlinear limit cycle past saturation with the period predicted by the linear theory
result (2π/σr) is common for both CP2 and CP3, but does not seem to be present for
cases where phase velocity is higher, i.e. CP1,4 and P1. Finally, CP4 at A ≈ 0.42 and
(Re, β) = (460, 0.274) corresponds to conditions where propagation of the unstable wave
reverses towards positive z-direction with phase speed vp ≈ 1.6 × 10−2. For comparison,
table 1 contains critical and stability properties at supercritical conditions (around 155 %
of the respective Recr) for the travelling wave instability for the case of pure Poiseuille
flow (Couette component turned off) through the considered geometry, designated as P1
(compare with figure 9). We note, that amplification rate is much larger for the P1 case
than for the CP1−4 (10–103 times larger) and that at the same time phase speed of the
perturbation is around 10–105 times that reported for CP1–4 cases.

Each of the considered cases is started using an undisturbed, stationary flow as the
initial condition and a body force in the form of a low variance Gaussian (Var = 10−5)
noise is applied over the initial five advective time units of the simulation to excite the
unstable mode. We note that the resulting initial flow state satisfies (2.2) and due to the
character of the forcing a number of modes are initially energized, but only the unstable
one is expected to be amplified with the rest initially attenuated, but possibly excited via
nonlinear interactions after sufficiently long amplification time. Evolution of the flow is
monitored using variation of the three-dimensional perturbation energy in time, defined as

E3D = 1
2Ω

k=M∑
k=1

∫
Ω

u−k · uk dΩ, (5.1)
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Figure 13. Variation of the perturbation E3D (5.1) energy throughout saturation process for selected cases. In
each case the flow is initially perturbed with an impulse of low variance Gaussian body forcing (Var = 10−5

over five time units) and left to develop into nonlinear saturation. Initial, transient stage (t < 250) is shown
in the left-hand subpanel, and variation around saturation time Ts ± 1000 (Ts is different for each case – see
table 1) in the right-hand subpanel.

with uk(x, y) representing the kth amplitude of the Fourier expansion (2.8) and
representing deviation from instantaneous spatial velocity average. Variation of E3D in
time is shown in figure 13. For each case initial perturbation results in a brief, transient
amplification–attenuation phase (t ≈ 100 – see the left-hand subpanel of figure 13)
followed by a prolonged stage of exponential growth (not shown), throughout which
perturbation amplification is dictated by the linear mechanism. Depending on the case,
exponential growth lasts in-between 103–104 for CP1,3–4 and up to around 105 advective
time units in the CP2 case, depending on the perturbation amplification rate. Eventually
nonlinear interactions impede further growth and lead the flow to the nonlinear saturation
state. Using E3D we define saturation time Ts such that E3D(t = Ts) = 0.99E3D(t = Ts +
1000), i.e. past Ts perturbation energy does not change significantly with time (we tested
different thresholds and time shifts, and up to reasonable values, Ts does not vary much).
The right-hand subpanel of figure 13 shows variation of the E3D around the respective
saturation time Ts, (different for each case – see table 1).

Past saturation time Ts energy of the perturbation changes little and flow topology
(shown in figures 14, 15a,b and 16) remains simple, limited to the passing of, possibly
decelerated or reversed, periodic secondary flows through the domain. Due to the changes
in the frequency, growth rate and phase speed of the unstable mode, distance travelled
by the amplified perturbation changes significantly. Considering that the size of the
prospective test domain needs to be proportional to the product of vp and Ts, we note
that this value is decreased from around 830 units in the case of pure Poiseuille flow (P1)
to 430 for CP1, 240 for CP4, 21 for CP2, and below 0.1 for CP3.

At nonlinear saturation the flow develops a three-dimensional form with a number of
distinctive features. Figures 14 (case CP1), 15(a,b) (CP2 and CP3) and 16 (CP4) illustrate
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Figure 14. Snapshot of the non-stationary flow topology past the nonlinear saturation time Ts. Flow conditions
correspond to zero-mean base flow at A = 0.705 (case CP1) and supercritical Reynolds number Re = 150
(Recr = 124). Length of the computational box corresponds to streamwise wavenumber β = 0.364 (βcr =
0.364) and spans two corrugation sections in the spanwise direction. Slices on the right-hand side (left-hand
side) depict streamwise velocity w (streamwise vorticity ωz) contours. Stream tube (travelling vortex pair) is
(are) shown in the right-hand (left-hand) part of the figure using isosurfaces of velocity (second invariant Q of
the velocity gradient tensor, coloured according to the positive or negative value of streamwise vorticity ωz)
taken at w = −0.4 (Q = 3.5 × 10−3). Direction of the flow at the flat, top and next to the bottom walls, as well
as instantaneous rotation of vortices and direction of the unstable wave propagation are marked using arrows.
Phase speed of the unstable wave mode is vp = 0.179, with propagation direction aligned with applied pressure
(negative z-direction).

snapshots of flow topologies past nonlinear saturation time Ts for each of the considered
cases. One of the distinctive changes compared with the stationary solution is onset of
the meandering-like motion of the streamwise velocity tubes. This is illustrated to the
right-hand side in the figures by means of constant streamwise velocity surfaces (taken
at w = −0.4 in figure 14 and w = −0.2 in the remaining figures and velocity-coloured
slices). Onset of spanwise motions is accompanied by formation of travelling vortices,
illustrated by means of isosurfaces of the second invariant Q of the velocity gradient
tensor, coloured by positive/negative streamwise vorticity ωz and supplemented by arrows
to indicate instantaneous rotation direction. Qualitatively, flow solutions remain similar
with the exception of the marginally supercritical CP2 case, which features secondary
structures of very low magnitude.

In the case of corrugated channel flow with only the Poiseuille forcing applied (Yadav
et al. 2017, 2021) flow features formed in consequence of nonlinear saturation propagate
downstream, along the direction that the applied pressure acts. In the case of the CP
configuration, considered here, propagation direction might change as the Poiseuille
component is decreased. Features formed as a result of nonlinear saturation of cases
CP1–3 propagate in the negative z-direction, marked in the figures using arrows. Case CP4
corresponds to conditions where the unstable mode, and consequently three-dimensional
features of the saturated flow propagates against the pressure, i.e. the positive z-direction.

We now focus on CP2 and especially CP3 cases, which we consider to be especially
interesting since for those cases propagation speed of the unstable wave decreases
substantially. The amplification process, starting with the initial random perturbation and
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Figure 15. Flow topology snapshots past saturation time Ts. Conditions chosen around A∗ where the direction
of the wave changes (CP2,3). Respective cases correspond to A = 0.462, Re = 300 and β = 0.292 – case
CP2 – (Recr = 296, βcr = 0.292) in (a) and A = 0.455, Re = 340 and β = 0.281 – case CP3 – (Recr = 313,
βcr = 0.281) in (b). For both cases wave propagation is in negative z-direction. Slices same as in figure 14,
streamwise velocity isosurfaces at w = −0.2 in (a,b), Q = 1.5 × 10−4 in (a) and Q = 5 × 10−4 in (b).

past the nonlinear saturation, captured for those cases is illustrated in the accompanying
supplementary movies. In the case of CP2, due to the low value of the Reynolds number,
amplification rate remains small, leading to a long time that is required for the nonlinear
saturation to take place and allowing for the observation of the amplification phase for
around 2 × 105 advective time units. It is interesting to point out that, while formally
the unstable mode remains a travelling wave and instability itself, a convective one, the
time that it takes for the wave to pass through the computational domain, i.e. travel
a single perturbation wavelength, is around 6.8 × 104 time units. At the same time
nonlinear effects, such as noticeable bending of the velocity tube and onset of vortex
pairs, while small in amplitude due to marginal supercriticality of the case, become
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Figure 16. Flow topology snapshot past saturation time Ts. Conditions are A = 0.42, Re = 460 and β = 0.27
(case CP4, Recr = 412, βcr = 0.274) with the unstable wave changing direction and propagating against applied
pressure (positive z-direction). Slices same as in figure 14, streamwise velocity isosurfaces at w = −0.2 and
Q = 4 × 10−4.

noticeable already around 9 × 104 time units (the wave travels less than 1.5 perturbation
wavelengths) and throughout the entire process shown in the movie the wave travels a
distance of roughly three times the length of the computational box. On the other hand,
very low phase speed obtained for the unstable mode in the CP3 case results in virtually
no movement of the unstable mode during amplification (travelled distance is below 0.1
length units). Consequently, throughout the amplification stage the unstable mode may be
considered stationary, with resulting secondary flow structures developing both upstream
and downstream.

Figure 17 illustrates this by depicting changes to the flow field at selected time instances
close to the saturation time Ts taken every 200 time units. Immobility of the developing
secondary flow structure is illustrated by the streamwise velocity component isosurface
at w = 0.2, which shows a developed but motionless meandering pattern formed in the
diverging section of the channel. At the same time, spatial growth of the immobilized
secondary flow is illustrated with isosurfaces of the second velocity gradient tensor
invariant Q, showing spatial spread of flow regions where features of the secondary flow
develop. It should be noted that spatial growth runs both in the positive as well as negative
z-direction and developing structures are not advected by the bulk of the flow indicating
that when a single, infinitely long, unstable mode is concerned, at least prior to saturation,
its growth can be localized. Finally, we note that past the saturation time, possibly due
to the changes to the mean flow by the nonlinear mechanism, developed secondary flow
structures begin moving in the direction pointed by applied pressure and the flow settles
onto a periodic cycle solution.

6. Extension to spatial evolution of a packet of waves

Results presented in §§ 4 and 5 stem from the application of temporal stability analysis and
are limited to the considerations of a single, infinitely long, monochromatic perturbation
and its temporal evolution. We will now illustrate evolution of a number of superimposed
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Figure 17. Isosurfaces of the streamwise velocity component at w = 0.2 (grey) and second invariant Q of
the velocity gradient tensor at Q = 4 × 10−4 at times close to the saturation time Ts for the CP3 case at t =
7.6 × 103 (a), t = 7.8 × 103 (b) and t = 8 × 103 (c) illustrating both upstream and downstream propagation of
the secondary flow structure.
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Figure 18. Variation of the complex amplification rate σ in (a) and group velocity vg = ∂σr/∂β in (b) with
the wavenumber β at conditions corresponding to the CP3 (dashed lines) and CP4 (solid lines) configurations.
Markers on the horizontal line correspond to wavenumbers of unstable modes amplified to form the wave
packet illustrated in figure 19.

waves (a wave packet) that result from the application of a localised pulse of body forcing
applied at the beginning of a simulation. For this we will consider the CP4 configuration,
extended to the range of unstable wave numbers (see table 1 for the details on applied
flow conditions) under linear assumptions, and refer to CP3 for comparison. For the
sake of this illustration computational box now extends to Lz = 1024 (approximately 45
wavelengths of the unstable perturbation characterized in table 1). Fourier expansion (2.8)
is maintained, resulting in a periodic computational box with 17 out of M = 144 modes
representing unstable waves (see figure 18 and also discussion below). The applied initial
pulse has a form of body forcing. It is applied to all velocity components and is spatially
limited to streamwise positions distanced 8 to 12 units from the box’s boundary, to ensure
all unstable waves are perturbed. Additionally, an applied pulse is modulated in time as
sin(σrt) with σr the same as given in table 1 for the CP4 case and is applied over a single
period, i.e. the pulse lasts around 1430 time units.

First, we compare temporal stability results obtained for CP3 and CP4. Figure 18(a,b)
shows variation of the temporal growth rate σi, frequency σr and of the group velocity
vg = ∂σr/∂β as functions of the wavenumber β in solid (dashed) lines for CP4 (CP3).
We note that, while the range of unstable wavenumbers is similar, the frequency for
the case CP3 and consequently also phase velocity, decreases and changes sign within
the range of those unstable wavenumbers. This means that some of the unstable waves
propagate in the positive, while other in the negative direction. In fact, it is the CP3
case that has been considered in § 5 as it allows for a normal mode with minimum phase
velocity and a standing wave solution, when a single wave with wavenumber β = 0.281
is considered. Contrary, for the CP4 case the frequency is positive for the entire range of
unstable wavenumbers, meaning that phase velocity of all unstable waves is directed in
the positive direction, including the one selected for the nonlinear analysis in § 5 (see also
figure 16). Variation of the frequency σr with the wavenumber means that unstable waves
are dispersive, propagate at different phase velocities and that a group of waves around
a selected wavenumber β0 will travel at a given group velocity vg = (∂σr/∂β)(β0). For
both cases variation of group velocity is shown in figure 18(b). At this moment we note
that group velocity for the pure Poiseuille forcing (no Couette component) over the range
of unstable wavenumbers is in the range of approximately vg ∈ (−0.8, −0.9) (depending
on the wavenumber β and Reynolds number) and in the case of CP configuration at
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A = 1 group velocity magnitude decreases to vg ∈ (−0.47, −0.48) while for the CP4 it
changes from vg ≈ −0.017 to vg ≈ −0.029 over the range of unstable wavenumbers. For
all unstable waves the group velocity is negative, meaning that a wave packet resulting
from excitation of a narrow band of waves will travel in the negative direction (Poiseuille
direction using current parametrization). It is interesting to point out, that for large enough
A both group and phase velocity are directed in the same direction as the applied pressure
(negative), but as A is decreased some of the unstable waves redirect and move opposite
to the group velocity, meaning that certain waves (see figure 18) propagate in the positive
direction, while the packet as a whole moves in the direction of pressure, i.e. in the negative
one.

Finally, figure 19 shows variation of the spanwise velocity component u taken at a
line passing through the computational domain at the center of the converging section,
i.e. it extends from (x, y, z) = (π, 0, 0) to (π, 0, Lz) and illustrates propagation of a wave
packet that has formed as a result of the initial, localized forcing pulse. Note that since the
packet travels in the negative direction, the horizontal axis has been inverted for the sake
of presentation. While in the short time transient effects might be present, it is expected
that only the exponential growth is observed for longer times. In figure 19(a) three distinct
states, captured, respectively, at t = 3 × 103 (dotted line), t = 104 (dashed line) and at
t = 2 × 104 (thin solid) are shown. Comparing the change of position of the largest peak
as well as its increase in amplitude the spatial growth rate evaluates to approximately
2.9 × 10−4, while group velocity of the wave packet evaluates to vg ≈ −0.028. We also
note that the distance that the wave packet has moved during 2 × 104 time units is
approximately 500 unit lengths or 22 perturbation lengths considered in table 1 for the
CP4 case. Figure 19(b) shows the front and rear of the wave packet at t = 104 (solid line)
and after an additional 300 time units (dashed line) and illustrates the fact that phase
velocity of unstable waves points opposite than the group velocity. This results in the wave
appearing as moving in the opposite direction than the wave packet moves as a whole.
It is worth noting that while the wave packet, moving at a group velocity propagates
faster than a single unstable mode, moving at the phase velocity does, as indicated in
§ 5, the reduction in the group velocity, compared with the pure Poiseuille configuration is
substantial and consequently it is expected that distances required for nonlinear effects to
become noticeable should decrease significantly.

7. Conclusion

Study of a CP flow through a channel with flat driving, and a corrugated stationary wall
with an opposing pressure gradient has been performed. The primary reason for this
research lies in establishing flow conditions that lead to the onset of low-Reynolds-number
hydrodynamic instabilities, in the form of travelling waves and at the same time allow for
drastic decrease of propagation speeds and distances travelled by those waves, down to
the point that time scales associated with wave amplification and propagation may be
considered to decouple when evolution of a single, infinite wave is considered.

We have characterized the main properties of the two-dimensional, stationary flow for
the selected geometry which offers destabilization at very low values of the Reynolds
number (Recr < 102). Using smooth CP flow as reference, we illustrate properties of the
flow for a range of Couette to Poiseuille ratios and discuss formation of distinct flow
features in the stationary regime.

The analysis shows that addition of the Couette component decreases phase speed of the
perturbation but also has a stabilizing effect, compared with the pressure-only driven flow.
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Figure 19. Spanwise velocity component u during linear evolution of a wave packet initiated by a localized
pulse taken at a line extending from (x, y, z) = (π, 0, 0) to π, 0, Lz. In (a) three time snapshots at t = 3 × 103

(dotted), t = 104 (dashed) and t = 2 × 104 (solid). In (b) the front and rear of the wave packet at t = 104

(dashed) and after additional 300 time units (solid).

Our results suggest that decreasing the pressure gradient down to the limit of Couette-only
forcing causes the flow through the corrugated geometry to become unconditionally stable,
similarly to the classical plane wall Couette flow.

The nonlinear analysis performed for selected cases corresponding to zero-mean and
close to minimum phase speed conditions illustrates a possibility for orders of magnitude
reduction in the perturbation propagation speed compared with the pure Poiseuille
configuration (see table 1). Presented results suggest significant reduction of the distance
travelled by the amplified perturbation and in some of the cases, immobilization of a single
unstable mode during linear amplification phase. On the other hand, when considering a
packet composed of a number of unstable waves the distance travelled is greater, but still
decreased compared with the pressure only forcing due to a decrease in group velocity.

Using data from table 1, saturation time Ts and phase speed, one can attempt to
estimate distances covered by the travelling wave mode as it is amplified during the stage
of exponential growth. For the case CP2, the distance travelled by the monochromatic
perturbation is reduced to around 20 units, a distance comparable to the perturbation
wavelength, and for CP3 this is below 0.1 units, indicating that the unstable mode becomes
virtually immobile, when a single wave is considered. By comparison, in the case of the
pure Poiseuille forcing this distance is close to 900 units or 50 perturbation wavelengths.
Finally, in the case of a wave packet the distance travelled over 2 × 104 time units is around
500 units, or 22 perturbation wavelengths.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.805.
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Elements Oder σi × 102 σr × 102 εσi εσr

3 4.825 6.500 1.7 × 10−5 1.1 × 10−6

9 × 11 5 4.817 6.501 3.57 × 10−8 2.2 × 10−9

7 4.817 6.501 2.34 × 10−8 1.12 × 10−9

3 4.821 6.502 1.15 × 10−6 2.2 × 10−7

13 × 11 5 4.817 6.502 7.34 × 10−9 1.05 × 10−9

7 4.817 6.501 2.8 × 10−9 1.19 × 10−9

3 4.816 6.502 1.17 × 10−6 2.34 × 10−7

15 × 13 5 4.817 6.501 7.1 × 10−9 8.8 × 10−10

7 4.817 6.501 — —

Table 2. Grid convergence for the computation of the complex amplification rate σ of the least stable mode
using a sequence of meshes and polynomial expansions. Conditions correspond to A = 0.705, Re = 150 and
β = 0.36. Selected configuration marked with grey.
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Appendix

Accuracy of the computational method is asserted through grid convergence study. We
compare values of the complex amplification rate σ = σr + iσi obtained using a set
of meshes of increasing complexity and varying the degree of elemental polynomial
expansion. The case considered here corresponds to the laminar zero-mean flow,
A = 0.705. Results obtained using the largest mesh of 15 × 13 quadrilaterals combined
with up to seventh-order polynomials are used as reference. Analysis of the results
presented in table 2 shows that acceptable accuracy is achievable using a grid consisting
of 13 × 11 quadrilaterals in combination with up to fifth-order polynomial expansion.
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