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Abstract

We prove that for any prime power q � {3, 4, 5}, the cubic extension Fq3 of the finite field Fq contains a
primitive element ξ such that ξ + ξ−1 is also primitive, and TrFq3 /Fq (ξ) = a for any prescribed a ∈ Fq. This
completes the proof of a conjecture of Gupta et al. [‘Primitive element pairs with one prescribed trace over
a finite field’, Finite Fields Appl. 54 (2018), 1–14] concerning the analogous problem over an extension of
arbitrary degree n ≥ 3.
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1. Introduction

Let q be a prime power and n an integer at least 3, and let Fqn denote a degree-n
extension of the finite field Fq. We say that (q, n) ∈ P if, for any a ∈ Fq, we can find
a primitive element ξ ∈ Fqn such that ξ + ξ−1 is also primitive and Tr(ξ) = a. This
problem was considered by Gupta et al., who proved a complete result for n ≥ 5 [4].
We refer the reader to [4] for an introduction to similar problems. Cohen and Gupta [2]
extended the work of [4], providing a complete result for n = 4 and some preliminary
results for n = 3. We improved the latter results in [1, Section 7], showing in particular
that (q, 3) ∈ P for all q ≥ 8 × 1012. It is a formidable task to try to prove the result for
the remaining values of q and, indeed, the computation involved in [2] is extensive.

In this paper, we combine theory and novel computation to resolve the remaining
cases with n = 3, proving the following theorem and affirming [4, Conjecture 1].

THEOREM 1.1. We have (q, n) ∈ P for all q and all n ≥ 3, with the exception of the
pairs (3, 3), (4, 3) and (5, 3).

The main theoretical input that we need is the following result, which Cohen and
Gupta term the ‘modified prime sieve criterion’ (MPSC).
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THEOREM 1.2 [2, Theorem 4.1]. Let q be a prime power, and write rad(q3 − 1) = kPL,
where k, P, L are positive integers. Define

δ = 1 − 2
∑
p|P

1
p

, ε =
∑
p|L

1
p

, θ =
ϕ(k)

k
and Cq =

⎧⎪⎪⎨⎪⎪⎩
2 if 2 | q,
3 if 2 � q.

Then (q, 3) ∈ P provided that

θ2δ > 2ε and q1/2 >
Cq
(
θ24ω(k)(2ω(P) − 1 + 2δ) + ω(L) − ε)

θ2δ − 2ε
. (1.1)

In practice, we take k to be the product of the first few prime factors of q3 − 1 and L
the product of the last few. In particular, taking L = 1, we recover the simpler ‘prime
sieve criterion’ (PSC) [2, Theorem 3.2], in which the hypothesis (1.1) reduces to

δ > 0 and q1/2 > Cq4ω(k)
(2ω(P) − 1

δ
+ 2
)
.

We will use this simpler criterion in most of what follows.

2. Proof of Theorem 1.1

2.1. Applying the modified prime sieve. Thanks to [1, Theorem 7.2], to complete
the proof of Theorem 1.1 for n = 3, it suffices to check all q < 8 × 1012. To reduce
this to a manageable list of candidates, we seek to apply the MPSC. For prime
q < 1010 and composite q < 8 × 1012, we do this directly with a straightforward
implementation in PARI/GP [6], first trying the PSC and then the general MPSC when
necessary.

For larger primes q, the direct approach becomes too time-consuming, mostly
because of the time taken to factor q3 − 1. To remedy this, we developed and coded
in C the following novel strategy that makes use of a partial factorisation. Using
sliding window sieves, we find the complete factorisation of q − 1, as well as all prime
factors of q2 + q + 1 below X = 220. Let u = (q2 + q + 1)

∏
p<X p− ordp(q2+q+1) denote

the remaining unfactored part. If u < X2, then u must be 1 or a prime number, so we
have enough information to compute the full prime factorisation of q3 − 1 and can
apply the PSC directly.

Otherwise, let {p1, . . . , ps} be the set of prime factors of u. Although the pi are
unknown to us, we can bound their contribution to the PSC via

s ≤ �logX u� and
s∑

i=1

1
pi
≤
�logX u�

X
.

We then check the PSC with all possibilities for P divisible by p1 · · · ps. This sufficed
to rule out all primes q ∈ [1010, 8 × 1012] in less than a day using one 16-core
machine.

The end result is a list of 46896 values of q that are not ruled out by the MPSC,
the largest of which is 4708304701. Of these, 483 are composite, the largest being
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379512 = 1440278401. We remark that with only the PSC, there would be 87157
exceptions, so using the MPSC reduces the number of candidates by 46% and
reduces the time taken to test the candidates (see Section 2.2) by an estimated 61%.
This represents an instance when the MPSC makes a substantial and not merely an
incidental contribution to a computation.

2.2. Testing the possible exceptions. Next we aim to test each putative exception
directly, by exhibiting, for each a ∈ Fq, a primitive pair (ξ, ξ + ξ−1) satisfying Tr(ξ) = a.
Although greatly reduced from the initial set of all q < 8 × 1012 from [1, Theorem 7.2],
the candidate list is still rather large, so we employed an optimised search strategy
based on the following lemma.

LEMMA 2.1. Let g ∈ F×q be a primitive root, let d ∈ Z and define the polynomial
P = x3 − x2 + gd−1x − gd ∈ Fq[x]. Suppose P is irreducible. Let ξ0 = x + (P) be a root
of P in Fq[x]/(P) � Fq3 and assume that ξ0 is not a pth power in Fq3 for any
p | q2 + q + 1. Then for any k ∈ Z such that gcd(3k + d, q − 1) = 1, ξk := gkξ0 is a
primitive root of F×q3 satisfying Tr(ξk) = gk and Tr(ξ−1

k ) = g−k−1.

PROOF. Note that ξ0 has trace 1 and norm gd, so ξk has trace gk and norm ξq
2+q+1

k =

g3k+d. Furthermore,

ξ30 − ξ
2
0 + gd−1ξ0 − gd = 0 =⇒ ξ−3

0 − g−1ξ−2
0 + g−dξ−1

0 − g−d = 0,

so Tr(ξ−1
k ) = g−k Tr(ξ−1

0 ) = g−k−1.
Let p be a prime dividing q3 − 1. If p | q2 + q + 1, then

ξ
(q3−1)/p
k = (gkξ0)(q3−1)/p = gk(q2+q+1)(q−1)/pξ

(q3−1)/p
0 = ξ

(q3−1)/p
0 � 1,

since ξ0 is not a pth power. However, if p | q − 1, then

ξ
(q3−1)/p
k = ξ

(q2+q+1)(q−1)/p
k = g(3k+d)(q−1)/p � 1,

since gcd(3k + d, q − 1) = 1. Hence ξk is a primitive root. �

REMARK 2.2. If q ≡ 1 (mod 3), then the hypotheses of Lemma 2.1 imply that 3 � d.
Hence there always exists k such that gcd(3k + d, q − 1) = 1, and this condition is
equivalent to gcd(k + d̄, r) = 1, where r =

∏
p|q−1, p�3 p and 3d̄ ≡ d (mod r).

Thanks to the symmetry between ξ and ξ−1, if we find a ξ that works for a given gk

via Lemma 2.1, we also obtain a solution for g−k−1. Furthermore, when q ≡ 1 (mod 4),
α ∈ F×q3 is primitive if and only if −α is primitive, and thus a solution for gk yields
one for −gk by replacing ξ with −ξ. Therefore, to find a solution for every a ∈ F×q , it
suffices to check k ∈ {0, . . . , K − 1}, where

K =

⎧⎪⎪⎨⎪⎪⎩
�q/4� if q ≡ 1 (mod 4),
�q/2� otherwise.
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Note that this does not handle a = 0, for which we conduct a separate search over
randomly chosen ξ ∈ Fq3 of trace 0.

Our strategy for applying Lemma 2.1 is as follows. First we choose random values
of d (mod q − 1) until we find sufficiently many (210 in our implementation) satisfying
the hypotheses. (We allow repetition among the d values, but for some small q there
are no suitable d, in which case we fall back on a brute-force search strategy.) For
each d, we precompute and store d̄ = d/3 mod r and g−d, so we can quickly compute
ξk + ξ

−1
k = a−1g−d(ξ20 − ξ0) + aξ0 + a−1g−1 given the pair (a, a−1) = (gk, g−k). Then for

each k, we run through the precomputed values of d satisfying gcd(k + d̄, r) = 1, and
check whether (ξk + ξ−1

k )(q3−1)/p � 1] for every prime p | q3 − 1.
Thanks to Lemma 2.1, our test for whether ξk itself is a primitive root, which is just a

coprimality check, is very fast. In fact, since we run through values of k in linear order,
we could avoid computing the gcd by keeping track of k mod p and −d̄ mod p for each
prime p | r, and looking for collisions between them. However, in our numerical tests,
this gave only a small reduction in the overall running time.

We are therefore able to save a factor of roughly (q3 − 1)/ϕ(q3 − 1) over a more
naive approach that tests both ξ and ξ + ξ−1. Combined with the savings from
symmetries noted above, we estimate that the total running time of our algorithm over
the candidate set is approximately 1/15th of what it would be with a direct approach
testing random ξ ∈ Fq3 of trace a for every a ∈ Fq.

We are not aware of any reason why this strategy should fail systematically, though
we observed that for some fields of small characteristic (the largest q we encountered
is 312 = 531441), ξk + ξ−1

k is always a square for a particular k. Whenever this
occurred, we fell back on a more straightforward randomised search for ξ of trace gk

and g−k−1.
We used PARI/GP [6] to handle the brute-force search for q ≤ 211, as well as the

remaining composite q with a basic implementation of the above strategy. For prime
q > 211, we used Andrew Sutherland’s fast C library ff_poly [5] for arithmetic in
Fq[x]/(P), together with an implementation of the Bos–Coster algorithm for vector
addition chains described in [3, Section 4]. The total running time for all parts
was approximately 13 days on a computer with 64 cores (AMD Opteron processors
running at 2.5 GHz). The same system handles the largest value q = 4708304701 in
approximately one hour. Our code is available upon request.
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