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The explicit exact analytic solution for harmonic perturbations from a line mass source
in an incompressible inviscid two-dimensional linear shear is derived using a Fourier
transform method. The two cases of an infinite shear flow and a semi-infinite shear
flow over an impedance boundary are considered. For the free-field and hard-wall
configurations, the pressure field is (in general) logarithmically diverging and its
Fourier representation involves a diverging integral that is interpreted as an integral
of generalized functions; this divergent behaviour is not present for a finite impedance
boundary or if the frequency equals the mean flow shear rate. The dominant feature
of the solution is the hydrodynamic wake caused by the shed vorticity of the source.
For linear shear over an impedance boundary, in addition to the wake, (at most) two
surface modes along the wall are excited. The implications for duct acoustics with flow
over an impedance wall are discussed.
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1. Introduction
The sound field from a mass point source in a cylindrical duct with a uniform

centre part of the mean flow and finite linearly varying boundary layers (as studied
in Brambley, Darau & Rienstra 2012), formulated in the form of a spatial Fourier
integral, has been shown to consist of modes (residues of the Fourier transform) and
the contribution from a branch cut. Some of the modes are purely acoustical and
disappear with increasing sound speed, and some are hydrodynamical, including some
surface waves related to the impedance wall, one of which is an instability due to the
interaction between the boundary layer, mean flow and impedance wall.

Of particular interest is the fact that if the source is inside the boundary layer, there
is a pole along the branch cut, triggering a non-modal contribution. This field is not
present when the mass source is within a uniform flow region, and it is therefore not a
normal mode, of which the existence is independent of the source.

† Email address for correspondence: s.w.rienstra@tue.nl
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Trailing vorticity behind a line source 619

The calculation of this contribution, and the contribution of the branch cut as a
whole, is determined in Brambley et al. (2012) numerically. In the present paper an
analytical form is obtained in the incompressible limit which provides some useful
insights into the behaviour and properties of this contribution.

On the other hand, the present results are of wider interest. In studies of the
related problem of a Green’s function in a free mixing layer (Suzuki & Lele 2003a),
a boundary layer along a wall (Suzuki & Lele 2003b), and a non-uniform jet flow
(Goldstein & Leib 2005, and other references therein), the solutions were formulated
by a similar spatial Fourier representation, but this non-modal contribution was either
not explicitly mentioned or was overlooked during approximation. Yet, as we will now
see, there must be one in any situation involving a mass source in sheared flow.

This non-modal contribution is here identified as a wake, non-acoustic and
hydrodynamic in nature, due to the shed vorticity of the mass source, which is
analogous to the phenomenon of vortex stretching. In linear theories of perturbations
of relatively simple mean flows, this vortex shedding is well known from an external
force, but it is not common from mass sources.

Consider the equations for conservation of mass and momentum in an inviscid flow
with density ρ, pressure p, velocity v, and a mass source Q and bulk force F,

∂ρ

∂t
+∇ · (ρv)= Q, ρ

∂v
∂t
+ ρ(v ·∇)v+∇p= F. (1.1)

In a barotropic fluid (for example a homentropic or incompressible fluid) we
have from the curl of the momentum equation the following equation for vorticity
ω =∇ × v:

∂ω

∂t
+ v ·∇ω = ω ·∇v− ω∇ ·v+∇ × (F/ρ), (1.2)

or, by using the mass equation,

ρ

(
∂

∂t
+ v ·∇

)(
ω

ρ

)
= ω ·∇v− ω

ρ
Q+∇ × (F/ρ), (1.3)

where ω · ∇v is called the vortex stretching term (Tennekes & Lumley 1972, p. 83;
Kundu & Cohen 2002, p. 139). This term stretches and tilts the vortex lines, changing
the local vorticity. Altogether we may conclude from (1.3) that the vorticity of a
particle changes either by stretching, by a mass source (provided ωQ 6= 0), or by a
non-conservative external force field. This shows that the presence of a mass source
in a region of sheared flow, as in Brambley et al. (2012) but indeed also in Suzuki
& Lele (2003a,b) and Goldstein & Leib (2005), necessarily causes a trailing vorticity
field.

In two dimensions the stretching term vanishes because there is no velocity
component in the direction of ω. So a particle’s vorticity can only change by an
external force or mass source. If ∇ × (F/ρ) = 0 we have for χ , where ω = χez, the
conservation equation

∂χ

∂t
+∇ · (vχ)= 0 (1.4)

affirming the classic result that (without a non-conservative external force) in two
dimensions vorticity χ is conserved. So if the vorticity of a particle changes due to a
mass source, it can only be a redistribution because there is no vorticity production.
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620 S. W. Rienstra, M. Darau and E. J. Brambley

If the problem of interest relates to linear perturbations of an irrotational mean flow
(i.e. with vanishing mean vorticity), caused by a small force or source field, the only
source of (linear) vorticity can be the force, because the product ωQ is quadratically
small. If, however, the mean vorticity is non-zero, the mass source too may produce
(redistribute) vorticity perturbations.

This is what we will study here in a very simplified and idealized model problem,
allowing exact solutions. Therefore we will assume in the following that F = 0. It
should be noted that to a large degree this is a modelling assumption, although
possibly a point heating, such as from a laser, may be a viable physical example of a
mass source, or at least a volume source, of the type considered here.

When we return to the two-dimensional vorticity equation (now without the force
term)

ρ

(
∂

∂t
+ v ·∇

)(
χ

ρ

)
=−χ

ρ
Q (1.5)

and assume that a small source induces harmonic isentropic perturbations to a parallel
sheared flow U with otherwise constant density ρ0 and sound speed c0 given by

v= U(y)ex + v̂eiωt, χ =−U′(y)+ χ̂eiωt, ρ = ρ0 + c−2
0 p̂eiωt, Q= q̂eiωt, (1.6)

we have

ρ0

(
iω + U(y)

∂

∂x

)(
χ̂ + U′(y)

ρ0c2
0

p̂

)
= U′(y)q̂. (1.7)

With a monopole-type line source of amplitude 2πS (we will use the term line source
in two dimensions for what is really a line source in three dimensions along the third
dimension)

q̂= 2πSδ(x)δ(y) (1.8)

(where δ( ) denotes the delta function) and abbreviations U(0) = U0, U′(0) = σ , we
have

ρ0

(
iω + U(y)

∂

∂x

)(
χ̂ + U′(y)

ρ0c2
0

p̂

)
= 2πSσδ(x)δ(y) (1.9)

which has, under causal free-field conditions (allowing only perturbations generated by
the source) and U0 > 0, the solution

χ̂ + σ

ρ0c2
0

p̂= 2πSσ

ρ0U0
H(x)e−ik0xδ(y), k0 = ω

U0
, (1.10)

where H(x) is Heaviside’s step function. Noting that the pressure term in (1.10) cannot
be discontinuous, we see that this simple derivation shows that a line source in
shear flow produces a semi-infinite sheet of vorticity, undulating with hydrodynamic
wavenumber k0. (Note that if the mean flow is unstable, for example if the profile has
an inflection point, this solution will probably not exist in reality without exciting the
unstable modes.)

This vortex shedding was observed in the acoustic problem of a (circumferential
Fourier component of a) point source in the linearly sheared boundary layer of a mean
flow in a duct (Brambley et al. 2012). In the present paper we will show that this
phenomenon is not essentially acoustical but more generally of hydrodynamic nature.

We consider the effect of a time-harmonic line mass source on an incompressible
inviscid two-dimensional shear flow of infinite (§ 2) or semi-infinite (§ 3) extent. The
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Trailing vorticity behind a line source 621

semi-infinite configuration concerns a shear flow along an impedance wall, including
its hard-wall limit. This problem is in many respects similar to the infinite shear case,
since there is again the vorticity trailing from the source, but at the same time the
interaction with the wall is more subtle.

In order to derive exact expressions for pressure and velocity, we will assume
a linearly sheared mean flow, so with a uniform mean flow vorticity. This is a
simplification valid in a (relatively) thick boundary layer, for example the atmospheric
boundary layer or down the bypass duct of an turbofan aero-engine. Although the
shear is obviously created by viscous forces, the present problem is effectively
inviscid if we assume that the Reynolds numbers related to the relevant length
scales (hydrodynamic wavelength 2π/k0, velocity–shear ratio U/U′) are large. For
a discussion of possible effects of viscosity, including analytical results, see Wu
(2002, 2011).

The exact analytic solutions obtained appear to be new, in spite of this rather simple
configuration, with the nearest known solutions being the velocity field given in Balsa
(1988) and Criminale & Drazin (1990, 2000) for the initial value problem of a line
source in a linear shear layer.

As far as the vorticity component is concerned, the problem is already solved by
(1.10). As the fluid is assumed incompressible, the factors proportional to 1/c2

0 reduce
to zero and (1.10) gives the vorticity as

χ̂ = 2πSσ

ρ0U0
H(x)e−ik0xδ(y). (1.11)

The solutions for pressure and velocities are not so simple, as they have to satisfy
boundary conditions. Here, they are found by Fourier transformation in x, as this
approach is most flexible and versatile, and can be utilized for both free-field and
impedance wall configurations to obtain the velocities as well as the pressure. In the
free-field problem, the velocities can also be obtained by a more direct integration of a
Greens function representation, but this approach does not seem to be as convenient as
Fourier transformation.

There is a catch however: the pressure field of a two-dimensional source without
mean flow diverges like log(x2 + y2) for large x2 + y2, and the same appears to happen
in linear shear flow if the frequency ω is not equal to the mean flow shear rate σ . As
a result, the pressure solutions for the free-field and the hard-wall configurations are
not classically Fourier transformable, although the impedance wall solution is found
not to share this divergent behaviour. We will circumvent this problem by considering
the divergent Fourier integral of the pressure in the context of generalized functions
(Jones 1982) and carefully subtract the singular part. The result is then only unique up
to addition of an undetermined constant. This, however, is expected, as the pressure
in an incompressible model with free-field or hard-wall boundary conditions appears
only in the form of its gradient and is therefore only defined up to a (time-dependent)
constant.

From an acoustic perspective we can understand this divergence also in another way.
This incompressible field is the inner solution, valid in a region

√
x2 + y2� O(c0/ω),

of a small-Helmholtz-number approximation of matched-asymptotic-expansion type in
much the same way as in Wu (2002, § 5). See also Lesser & Crighton (1975) and
Crighton et al. (1992). Therefore, the diverging source field is just the leading log-term
of the small-argument expansion of an outer solution of H(2)

0 (ω
√

x2 + y2/c0)-type.
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622 S. W. Rienstra, M. Darau and E. J. Brambley

2. A time-harmonic line mass source in infinite linear shear
2.1. Free-field solution

Consider the two-dimensional incompressible inviscid model problem of perturbations
of a linearly sheared mean flow due to a time-harmonic line source at x = y = 0 with
time dependence eiωt:

ρ0

(
∂u

∂x
+ ∂v
∂y

)
= 2πSδ(x)δ(y), (2.1a)

ρ0

(
iω + U

∂

∂x

)
u+ ρ0

dU

dy
v + ∂p

∂x
= 0, (2.1b)

ρ0

(
iω + U

∂

∂x

)
v + ∂p

∂y
= 0. (2.1c)

The far-field boundary conditions will be of vanishing velocity, but (as we will see)
not of vanishing pressure. Another point to be noted here, as it will be important later,
is that the pressure appears only as a spatial gradient, and so will necessarily only be
determined up to a (time-dependent) constant.

After Fourier transformation in x we obtain the following set of equations:

ρ0(−ikũ+ ṽ′)= 2πSδ(y), iρ0Ω ũ+ ρ0U′ṽ − ikp̃= 0, iρ0Ωṽ + p̃′ = 0, (2.2)

where Ω = ω − kU and the prime denotes a derivative to y. This system may be
further reduced to an incompressible form of the Pridmore-Brown (1958) equation by
eliminating ṽ and ũ, which, upon considering a doubly infinite linear shear flow with
U(y)= U0 + σy and Ω0 = ω − kU0, becomes

p̃′′ + 2kσ

Ω
p̃′ − k2p̃=−2πiSΩ0δ(y). (2.3)

The boundary conditions will be a decaying field at infinity, although that will be
strictly possible only for the velocity; the pressure will at best be slowly diverging.

The homogeneous equation has two independent solutions e±ky(Ω ± σ) (Rayleigh
1945, p. 368; Drazin & Reid 2004, p. 146), or

p̃1(y)= e|k|y(Ω + sign(Re k)σ ), p̃2(y)= e−|k|y(Ω − sign(Re k)σ ), (2.4)

where

|k| = sign(Re k)k =
√

k2, (2.5)

where √ denotes the principal-value square root, and |k| has thus branch cuts along
(−i∞, 0) and (0, i∞). Note that neither of these solutions has a log-like singularity or
requires a branch cut in the complex-y plane. The Wronskian is

W(y; k)= p̃′2(y)p̃1(y)− p̃′1(y)p̃2(y)=−2|k|Ω2, (2.6)

and the Fourier-transformed solution is thus

p̃(y, k)= iπS

|k|Ω0
e−|ky|(ΩΩ0 − σ 2|ky| − σ 2). (2.7)

The physical field in the x, y-domain is hence obtained by inverse Fourier
transformation:

p(x, y)= 1
2π

∫ ∞
−∞

p̃(y, k)e−ikx dk = 1
2

iS
∫ ∞
−∞

e−ikx−|ky|

|k|Ω0
(ΩΩ0 − σ 2|ky| − σ 2) dk, (2.8)
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Trailing vorticity behind a line source 623

which has singularities at k = 0 (if ω2 6= σ 2) and at k = k0 = ω/U0 from Ω0 =
−U0(k − k0) = 0. Folding the contour around the branch cuts of |k| (upwards if
x < 0 and downwards if x > 0) to obtain the steepest descent contour, while noting
from (1.11) that the contribution of the k0 pole is the downstream trailing vorticity of
the line source, we obtain

p(x, y)= πSσ 2

ω
(1+ k0|y|)H(x)e−ik0x−k0|y|

+ iS
∫ ∞

0

e−λ|x|

λΩ±0

[
(Ω±Ω±0 − σ 2) cos λy− σ 2λy sin λy

]
dλ (2.9)

where Ω± = ω ± iλU and ±= sign(x).
The singularity at k = 0 is, unlike the one at k0, not a pole and has a different origin.

Due to this singularity the Fourier representation of the pressure is too singular to be
interpreted normally. This is caused by p being not Fourier transformable, not because
p itself is singular. As mentioned before, (if ω2 6= σ 2) p diverges as ∼ log(x2 + y2)

for x2 + y2 →∞ and is hence not integrable. This is an artefact of the model,
including an infinite line source in an incompressible medium. When we consider
the incompressible problem as an inner problem of a larger compressible problem, as
in Lesser & Crighton (1975), Crighton et al. (1992) and Wu (2002), this divergent
behaviour disappears as it changes in the far field into an outward radiating acoustic
wave.

The inverse Fourier integral, however, can be found if the singular integral is
interpreted in the generalized sense, and the singular part is split off. Following Jones
(1982, p. 105), we change the semi-infinite integral into a doubly infinite one by
replacing 1/λ by the generalized function

λ−1H(λ)= d
dλ

H(λ) log |λ|. (2.10)

After integration by parts we obtain the convergent integrals

p(x, y)= πSσ 2

ω
(1+ k0|y|)H(x)e−ik0x−k0|y| − iS

∫ ∞
0

log λ
d

dλ

[
e−λ|x|Ω± cos λy

]
dλ

+ iSσ 2

∫ ∞
0

log λ
d

dλ

[
e−λ|x|

cos λy+ λy sin λy

Ω±0

]
dλ. (2.11)

Each one can be integrated as follows:∫ ∞
0

log λ
d

dλ

[
e−λ|x|Ω± cos λy

]
dλ= ωγ + 1

2ω log(x2 + y2)− iU
x

x2 + y2
, (2.12a)

ω

∫ ∞
0

log λ
d

dλ

[
e−λ|x|

cos λy+ λy sin λy

Ω±0

]
dλ= γ + 1

2 log(x2 + y2)

+ 1
2(1− k0y)E(k0, z)+ 1

2(1+ k0y)E(k0, z̄), (2.12b)

where z = x + iy, γ = 0.5772156649 . . . is Euler’s constant and E(k0, z) =
e−ik0zE1(−ik0z), with E1 the exponential integral with (here) the standard branch
cut along the negative real axis of its argument. This results for E1(−ik0z) in a
branch cut along the line x = 0, y > 0 and for E1(−ik0z̄) in a branch cut along the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.2


624 S. W. Rienstra, M. Darau and E. J. Brambley

line x= 0, y< 0 (see the Appendix, (A 3)). Altogether, we have

p(x, y)=−S(U0 + σy)
x

x2 + y2
+ iS
ω
(σ 2 − ω2)

[
γ + 1

2 log(x2 + y2)
]

+ iSσ 2

2ω
[(1− k0y)E(k0, z)+ (1+ k0y)E(k0, z̄)

− 2πi(1+ k0|y|)H(x)e−ik0x−k0|y|]. (2.13)

A seemingly different result would have been obtained if we had scaled λ by a
positive factor. The above regularization of the divergent integral would have produced,
via the logarithm, a result that differs by a constant. This, however, is entirely to be
expected because the pressure appears in the form of its gradient and is therefore only
defined up to a constant in the first place. Indeed, the term in (2.13) proportional to γ
is also not relevant and can be discarded. At the same time, this explains the, at first
sight dubious, dimensional argument of the log(x2 + y2) function.

Unlike p, the integrals for v or u are convergent (outside the source) and can be
found without resorting to generalized functions. We have

ṽ(y, k)= πS

ρ0
e−|ky|

(
sign(y)+ sign(Re k)

σ

Ω0

)
, (2.14a)

ũ(y, k)= iπS

ρ0
e−|ky|

(
sign(Re k)+ sign(y)

σ

Ω0

)
(2.14b)

and obtain

v(x, y)= S

ρ0

y

x2 + y2
− Sσ

2ρ0U0

[
E(k0, z)+ E(k0, z̄)− 2πiH(x)e−ik0x−k0|y|], (2.15a)

u(x, y)= S

ρ0

x

x2 + y2
+ iSσ

2ρ0U0

[
E(k0, z)− E(k0, z̄)+ 2πi sign(y)H(x)e−ik0x−k0|y|]. (2.15b)

The branch cuts of the exponential integrals (in the E-functions) cancel the jumps
due to the H(x)-terms, to produce continuous p and v fields. Only u has a tangential
discontinuity along y = 0, x > 0, but this is due to the sign(y) term. This corresponds
with the δ(y)-function behaviour of the vorticity given in (1.11).

2.2. An example
A typical example of this solution, in the form of iso-colour plots in the x–y plane of
snapshots in time of the (real parts of) pressure and velocity fields (i.e. including the
factor eiωt), is given in figure 1. The parameters used are ω = 8, σ = 6, U0 = 3, and
hence k0 = 2.667. The values of σ and ω are taken of the same order of magnitude to
include the effects of both shear and vortex shedding.

The size of the figure is chosen such that there are two or three vortices visible. The
time (corresponding to a phase point ωt = π) is the same in all figures.

In order to remove the effect of the undetermined constant, the plot-domain-
averaged value of p is subtracted from p. The hydrodynamic wavelength is
2π/k0 = 2.36, corresponding in the figures to twice the length of the vorticity
blobs. As expected, u is discontinuous across y = 0, x > 0, whereas v and p are
continuous everywhere (outside the source). The velocity fields are confined to the
neighbourhoods of source and trailing vortices. Since ω 6= σ , the pressure diverges
logarithmically, indicating the generation of acoustic waves in a compressible far-field
outer problem.
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FIGURE 1. (Colour online) See § 2.2. Iso-colour plots of the (real parts of) pressure and
velocities for a typical free-field case in the x–y plane as snapshots in time. ω = 8, σ = 6,
U0 = 3, giving k0 = 2.67: (a) pressure; (b) u-velocity; (c) v-velocity.

2.3. Interpretation for compressible duct flow
For a comparison with the three-dimensional acoustic problem of a cylindrical duct
of radius a, mean flow of Mach number M and boundary layer thickness ah as
considered by Brambley et al. (2012), we note that in the shear layer we have (in
dimensionless form)

U(r)=Mh−1(1− r)=Mh−1(1− r0)+Mh−1(r0 − r) (2.16)

which is equivalent to the two-dimensional problem if we identify y = a(r0 − r),
U0 = c0M(1 − r0)/h, and σ = c0M/ah and ω := ωc0/a, such that the dimensionless
duct equivalent of k0 is

k0 := k0a= aω

U0
= ωh

M(1− r0)
. (2.17)

Exactly the same trailing vorticity wavenumber k0 is found in the acoustic duct
problem as in the present two-dimensional incompressible problem. In the next section
we will show that this analogy extends to the configuration where the source is
positioned near an impedance wall. We will show that the surface waves excited in
the incompressible problem have a clear and strict counterpart among the modes of the
acoustic duct problem.

3. A time-harmonic line mass source in linear shear over an impedance wall
3.1. The soft wall

Consider the same equations (2.2) as before, but now in a region y ∈ [0,∞), with
a source at y = y0, and a wall of impedance Zw = ρ0ζ at y = 0 where U vanishes.
We have, with Ω = ω − kU, U(y) = U0 + σ(y − y0) = σy, U0 = σy0, Ω0 = ω − kU0,
k0 = ω/U0 and p̃(0) = −ρ0ζ ṽ(0) at y = 0, the same incompressible Pridmore-Brown
equation (2.3) and far-field conditions as for the free-field problem, but now with
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boundary condition

iωp̃(0)= ζ p̃′(0). (3.1)

Note that ζ has the dimension of velocity. Similarly to the free-field configuration, the
Fourier-transformed solution can be constructed and is found to be

p̃= iπS

|k|Ω0
e−|k|y>+|k|y<

(
Ω> − sign(Re k)σ

)(
Ω< + sign(Re k)σ

)
+ iπS

|k|Ω0
e−|k|y>−|k|y<

(
Ω> − sign(Re k)σ

)(
Ω< − sign(Re k)σ

)
× ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
(3.2)

where y< = min(y, y0), y> = max(y, y0) and Ω<> = Ω(y<>). We distinguish the
incident and reflected parts:

p̃= p̃in + p̃ref , (3.3a)

p̃in = iπS

|k|Ω0
e−|k||y−y0|(ΩΩ0 − σ 2|k||y− y0| − σ 2), (3.3b)

p̃ref = iπS

|k|Ω0
e−|k|(y+y0)(Ω − sign(Re k)σ )(Ω0 − sign(Re k)σ )

× ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
. (3.3c)

A warning is in order here, that this split may imply the false suggestion that p̃ is
singular at k = 0. In reality the singularities of p̃in and p̃ref cancel each other, at least
when ζ is finite. In that case we have

p̃= 2πS(iωy< + ζ )+ O(k) for k→ 0. (3.4)

As a result the physical field p does not diverge for large x2 + y2, and there is no
undetermined constant. In the hard-wall case (ζ →∞), on the other hand, we still
have a singularity at k = 0, while the physical field diverges and is determined only
up to a constant. Note that all this agrees correctly with the role of p in the boundary
condition: a soft-wall condition contains p explicitly, but in the hard-wall condition we
have only its derivative.

As before, the physical field in the x, y-domain is obtained by inverse Fourier
transformation,

p(x, y)= 1
2π

∫ ∞
−∞

p̃(y, k)e−ikx dk = pin + pref , (3.5)

with a pole at k = k0 (the vorticity shed from the source), and possibly at one or two
locations k = ks given by the dispersion relation for surface-wave-like modes

ks = iζ−1 (σ − sign(Re ks)ω) . (3.6)

In particular, assuming that σ > 0 and ω > 0, and noting that Re ζ > 0 on physical
grounds, we may distinguish the following cases (see figure 2):
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Trailing vorticity behind a line source 627

FIGURE 2. Complex k-plane with possible positions of poles, branch cuts of |k|, and original
(- - -) and deformed (—–) Fourier inversion contours for x< 0 and x> 0.

Case i. Im ζ > 0, σ > ω : ks = k1 ∈ 1st quadrant
Case ii. Im ζ > 0, σ 6 ω : no ks present
Case iii. Im ζ < 0, σ > ω : ks = k2 ∈ 2nd quadrant
Case iv. Im ζ < 0, σ < ω : ks = k1 ∈ 4th quadrant

ks = k2 ∈ 2nd quadrant

where

k1 = iζ−1(σ − ω), k2 = iζ−1(σ + ω). (3.7)

If Im(ζ )= 0, the ks poles are located just on the imaginary axis, i.e. on the branch cut
of |k|. In that case we have to take the limit Im(ζ )→ 0 from above or below, with
either limit giving the same result. If ω = σ , k1 = 0 while there will be no contribution
from this pole.

These modes are evidently the incompressible limit of the acoustic surface waves
(Rienstra 2003)

k =±iω
√
ζ−2 − c−2

0 '±iωζ−1 (3.8)

that exist for Im ζ < 0 and no flow. There is no such clear relation, however, with the
incompressible limit of the surface waves along an impedance wall in a uniform mean
flow with the Ingard–Myers condition, given by Rienstra (2003). This is indeed to be
expected as we have an infinite shear layer in one case against a vanishing boundary
layer in the other. If we rewrite (12) of Rienstra (2003) into the present notation (and
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correct a typo), we obtain the dispersion relation

(k∞ − k)2−i(ζ/U∞)k∞|k| = 0, (3.9)

where k∞ = ω/U∞ and U∞ is the uniform mean flow velocity. This equation has zero,
two or four solutions (one in each quadrant) depending on Im ζ/U∞ being >2, 62,
and 6 − 2 respectively. This is to be compared with the zero, one or two solutions,
depending on the signs of Im ζ and σ − ω, for the present shear flow case.

Because of the presence of the mean flow, it is not immediately clear whether the
ks-modes are stable. However, a Briggs–Bers stability analysis (Briggs 1964; Bers
1983) shows that any ks is a stable mode. In fact, we will show that, with ζ = ζ(ω),
and ω = ω(k) defined by dispersion relation (3.6), Imω is bounded from below by
zero as a function of real k, and hence no instabilities (either absolute or convective)
are possible. Indeed, if we have k ∈ R, then

Imω = |k|Re ζ(ω). (3.10)

For a passive liner with Re ζ > 0 for real ω, this shows that Imω = 0 only if k = 0.
Under reasonable assumptions of smoothness of ζ(ω), Imω(k) is continuous and
hence can only change sign once, namely at k = 0. However, it does not change
sign, for the following reason. When |ζ(ω)| > O(ω) for ω → ∞ (a reasonable
assumption if the impedance involves inertia effects), ζ must vanish for large k,
and so limk→±∞ ζ(ω) = 0. Because of causality (Rienstra 2006), 1/ζ must be analytic
in Imω < 0 and so any zero of ζ has a positive imaginary part. So limk→±∞ Imω(k) is
always positive, and in particular Imω is positive on either side of k = 0 and therefore
does not change sign. Hence, mink∈R(Imω) = 0. Since this minimum is not negative,
the modes are not unstable.

We continue with our construction of an explicit expression for p by noting that
pin is the same as for the free field, with y replaced by y − y0, and we denote this
free-field pressure by pf (with a similar notation for the velocities). The reflected field
is a contribution of the k0 pole, any ks poles present, and the branch cut integrals. The
contribution from k0 is only present downstream (x > 0). If we close the integral via
−i∞ we capture the k0-residue of pref

−πSσ 2

ω
(1+ k0(y− y0))

k0 − k2

k0 − k1
H(x)e−ik0 z̄+ (3.11)

(where z± = x + i(y ± y0)) representing something like the image field of the shed
vorticity. For the contributions from ks poles we have to consider different cases,
according to the possible positions of the ks poles (see below).

Folding the integration contour around the branch cuts (see figure 2), we obtain
integrals of the following type (derived in the same way as for (2.13), and with the
branch cuts of E still to be determined):∫ ∞

0

(λ+ p1)(λ+ p2)(λ+ p3)

λ(λ− iq1)(λ− iq2)
e−λz dλ= 1

z
+ p1p2p3

q1q2
(γ + log z)

− (p1 + iq1)(p2 + iq1)(p3 + iq1)

q1(q1 − q2)
E(q1, z)

− (p1 + iq2)(p2 + iq2)(p3 + iq2)

q2(q2 − q1)
E(q2, z). (3.12)
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Trailing vorticity behind a line source 629

Altogether we can construct for the various cases explicit results, depending on the
locations of the ks poles. In general the pressure looks like

p(x, y)= pf (x, y− y0)− Sσy
x

x2 + (y+ y0)
2 −

iS
ω
(σ 2 − ω2)

[
γ + 1

2 log
(
x2 + (y+ y0)

2
)]

− iSσ 2

2ω

[
(1− k0(y− y0))

k0 − k1

k0 − k2
E(k0, z+)

+ (1+ k0(y− y0))
k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x)e−ik0 z̄+)]

+ Sk0

ζ

[
k1(U0 − iζ )

k0 − k1
(σy− iζ )

(
E(k1, z̄+)− C1

)
+ k2(U0 + iζ )

k0 − k2
(σy+ iζ )

(
E(k2, z+)− C2

)]
(3.13)

where C1 and C2, given below, relate to the possible contributions of the poles k1 and
k2. As noted above, this p is not divergent for large x2 + y2 and has no undetermined
constant. The terms with γ and log appear in both pf and pref and cancel each other.

Using similar reasoning as before, this time without divergent integrals, we obtain
from

ṽref = πS

ρ0
e−|k|(y+y0)

(
1− sign(Re k)

σ

Ω0

)
ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
, (3.14a)

ũref = iπS

ρ0
e−|k|(y+y0)

(
sign(Re k)− σ

Ω0

)
ikζ + σ + sign(Re k)ω

ikζ + σ − sign(Re k)ω
(3.14b)

the velocities

v(x, y)= vf (x, y− y0)+ S

ρ0

y+ y0

x2 + (y+ y0)
2

+ Sσ

2ρ0U0

[
k0 − k1

k0 − k2
E(k0, z+)+ k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x)e−ik0 z̄+)]

+ iSk0

ρ0ζ

[
k1(U0 − iζ )

k0 − k1

(
E(k1, z̄+)− C1

)+ k2(U0 + iζ )
k0 − k2

(
E(k2, z+)− C2

)]
, (3.15)

u(x, y)= uf (x, y− y0)+ S

ρ0

x

x2 + (y+ y0)
2

− iSσ
2ρ0U0

[
k0 − k1

k0 − k2
E(k0, z+)− k0 − k2

k0 − k1

(
E(k0, z̄+)− 2πiH(x)e−ik0 z̄+)]

− Sk0

ρ0ζ

[
k1(U0 − iζ )

k0 − k1

(
E(k1, z̄+)− C1

)− k2(U0 + iζ )
k0 − k2

(
E(k2, z+)− C2

)]
. (3.16)

The contributions C1 and C2 are as follows.
Case i (1 pole). ks = k1 is found in the upper half-plane and therefore contributes
upstream:

C1 =−2πiH(−x)e−ik1 z̄+, C2 = 0. (3.17a)

Case ii (no pole). No ks pole present, so

C1 = 0, C2 = 0. (3.17b)
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Case iii (1 pole). ks = k2 is found in the upper half-plane and contributes upstream:

C1 = 0, C2 = 2πiH(−x)e−ik2z+ . (3.17c)

Case iv (2 poles). One ks = k1 is now found in the lower half-plane and contributes
downstream, while a second ks = k2, and therefore C2, is the same as in case iii above.
We have

C1 = 2πiH(x)e−ik1 z̄+, C2 = 2πiH(−x)e−ik2z+ . (3.17d)

The exponential integral E1 in the function E(q, z), q ∈ C, defined in (A 3) in the
Appendix, does not follow the standard definition anymore. Instead of a branch cut
along the negative real axis of the argument, the branch cut is rotated and depends
on q in such a way that if Re(q) > 0, the branch cut of E1(−iqz) is always mapped
along the line x = 0, y < 0, and thus for E1(−iqz̄) is the branch cut located along the
line x = 0, y > 0; if Re(q) < 0 it is the other way round (see the Appendix for more
details). This definition only differs from the standard one if q is not both real and
positive, and therefore agrees with E(k0, z) in (2.13).

As for the free-field problem, the branch cuts of the E functions now compensate
for the jumps of the Heaviside functions, which were not physical but were artefacts
of the contour being closed via the lower (if x > 0) or upper (if x < 0) complex
half-plane. The resulting fields are therefore smooth and continuous apart from the
discontinuity in u due to the sign(y) term in the free-field solution uf mentioned
previously.

3.2. The hard-wall limit
A special case of interest is the hard-wall limit, i.e. ζ →∞. This limit is relatively
easily found for the velocities. They show a certain symmetry about y= 0:

vHW(x, y)= S

ρ0

y− y0

x2 + (y− y0)
2 −

Sσ

2ρ0U0

[
E(k0, z−)+ E(k0, z̄−)− 2πiH(x)e−ik0x−k0|y−y0|]

−
(

S

ρ0

−(y+ y0)

x2 + (y+ y0)
2 −

Sσ

2ρ0U0

[
E(k0, z̄+)+ E(k0, z+)− 2πiH(x)e−ik0x−k0(y+y0)

])
,

(3.18)

uHW(x, y)= S

ρ0

x

x2 + (y− y0)
2 +

S

ρ0

x

x2 + (y+ y0)
2

+ iSσ
2ρ0U0

[
E(k0, z−)− E(k0, z̄−)+ 2πi sign(y− y0)H(x)e−ik0x−k0|y−y0|]

+ iSσ
2ρ0U0

[
E(k0, z̄+)− E(k0, z+)+ 2πi sign(−(y+ y0))H(x)e−ik0x−k0(y+y0)

]
. (3.19)

As a result, the expressions can be written in terms of the free-field velocities as
follows:

vHW(x, y)= vf (x, y− y0)− vf (x,−(y+ y0)), (3.20a)

uHW(x, y)= uf (x, y− y0)+ uf (x,−(y+ y0)). (3.20b)

The hard-wall limit for pressure, on the other hand, is more subtle than may be
expected, because it contains (like the free-field solution) an inherent undetermined
additive constant, in contrast to the soft-wall solution. A limit of large ζ is therefore
not straightforward and it seems better to derive the solution directly from the Fourier
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integral representation. We have

p̃ref = iπS

|k|Ω0
e−|k|(y+y0)(Ω − sign(Re k)σ )(Ω0 − sign(Re k)σ ) (3.21)

which yields for x> 0 a contribution from the k0-pole

−πSσ 2

ω
(1+ k0(y− y0))H(x)e−ik0 z̄+ . (3.22)

For the contributions from the branch cuts we follow the same procedure as before,
using the auxiliary result (valid whenever the integral converges)∫ ∞

0

(z+ p1)(z+ p2)

z(z− iq)
e−λzx dλ= 1

x
− i

p1p2

q
(γ + log x)

− i
1
q
(p1 + iq)(p2 + iq)E(q, x) (3.23)

to obtain

pHW(x, y)= pf (x, y− y0)− Sσy
x

x2 + (y+ y0)
2

− i
S

2ω

[
(σ + ω)2(γ + Log(−iz+)

)+ (σ − ω)2(γ + Log(iz̄+)
)]

− i
Sσ 2

2ω
[(1− k0(y− y0))E(k0, z+)

+ (1+ k0(y− y0))(E(k0, z̄+)− 2πiH(x)e−ik0 z̄+)] (3.24)

valid for both x > 0 and x < 0, and where Log denotes the principal-value logarithm
(see (A 3)). As before, the constants (like the terms with γ ) can be discarded.

Indeed, if we take directly the limit ζ →∞ of (3.13) but ignore the diverging
log ζ -terms, we find the same result, apart of course from the additive constant.

Note that pHW is, remarkably, not similar to the corresponding expressions (3.20) for
the velocities.

3.3. Examples

In figures 3 and 4 graphical representations in the form of iso-colour plots in the x–y
plane are given for the (real parts of) pressure and velocity fields along soft and hard
walls for a number of typical cases: ω = 8 combined with σ = 6 and σ = 10, and hard
walls compared with soft walls of ζ = 4− 2i, corresponding to a case iii and a case iv.
This value of ζ is selected to be of the order of magnitude of U0. The variation in σ
has a significant effect. However, taking ζ = 4 + 2i, corresponding to case i and case
ii situations, does not give significantly different results and is therefore not shown
here. Again the effect of the undetermined constant in p for the hard-wall case is
removed by subtracting its plot-domain-averaged value. The time (corresponding to a
phase point ωt = π) is the same in all figures.

The parameters chosen for figure 3 are ω = 8, y0 = 0.5, σ = 6, and hence U0 = 3,
k0 = 2.67, and k1 = 0.2 − 0.4i and k2 = −1.4 + 2.8i (case iv) for the soft wall. The
hydrodynamic wavelength is 2π/k0 = 2.36, just large enough to have some interaction
with the wall.
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FIGURE 3. (Colour online) See § 3.3. Iso-colour plots in the x–y plane of a typical case
with hard and soft walls along y = 0, as snapshots in time, of the (real parts of) pressure
and velocities, when ω = 8, σ = 6, y0 = 0.5, giving U0 = 3, k0 = 2.67. For the soft wall:
ζ = 4 − 2i, k1 = 0.2 − 0.4i, k2 = −1.4 + 2.8i (case iv): (a) pressure, soft wall; (b) pressure,
hard wall; (c) u-velocity, soft wall; (d) u-velocity, hard wall; (e) v-velocity, soft wall; (f )
v-velocity, hard wall.

The parameters chosen for figure 4 are ω = 8, y0 = 0.5, σ = 10, and hence U0 = 5,
k0 = 1.6, and k1 = −0.2 + 0.4i and k2 = −1.8 + 3.6i (case iii) for the soft wall. The
hydrodynamic wavelength 2π/k0 = 3.93 is now large compared to the wall distance
y0 = 0.5. This results into a strong interaction of the shed vorticity field with the wall,
especially for the velocities.

3.4. Interpretation for acoustic duct modes with lined walls

In order to compare with the acoustic problem of a lined flow duct, we note that
ρ0ζ = ρ0c0Z such that the dimensionless duct equivalents of ks are

ks := ksa= i
Z

(
M

h
± ω

)
. (3.25)

These do indeed correspond to two of the compressible surface modes, as is clearly
seen in figure 5. We use the notation and geometry of Brambley et al. (2012), i.e. a
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FIGURE 4. (Colour online) See § 3.3. Iso-colour plots in the x–y plane of a typical case
with hard and soft walls along y = 0, as snapshots in time, of the (real parts of) pressure
and velocities, when ω = 8, σ = 10, y0 = 0.5, giving U0 = 5, k0 = 1.6. For the soft wall:
ζ = 4− 2i, k1 =−0.2+ 0.4i, k2 =−1.8+ 3.6i (case iii): (a) pressure, soft wall; (b) pressure,
hard wall; (c) u-velocity, soft wall; (d) u-velocity, hard wall; (e) v-velocity, soft wall; (f )
v-velocity, hard wall.

cylindrical duct with linear-then-constant mean flow

U(r)=
{

M, 0 6 r 6 1− h,
M(1− r)/h, 1− h 6 r 6 1,

(3.26)

with M the mean flow Mach number.
It should be noted that the surface modes k+ and k− found by Brambley et al.

(2012) and shown in figure 5 around k = 70 do not have incompressible infinite-shear
counterparts, suggesting that the physics causing them may be significantly different
from the physics causing the k0-pole despite their similar locations in the k-plane.

4. Conclusions
The analytically exact and explicit solutions for the problem of a time-harmonic line

mass source in incompressible inviscid two-dimensional linear shear mean flow are
derived for the free-field situation and for a semi-infinite space with the mean flow
directed parallel to and vanishing at an impedance wall. Both problems were motivated
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FIGURE 5. Tracking the k1 and k2 surface modes in a three-dimensional duct, for a medium
turning from fully compressible to incompressible. A case iv parameter choice is shown, with
ω = 31, m = 0, U0 = 0.5, h = 0.05, Z = 0.5 − 0.5i (scaled on ρ0). k0 depends on source
position r0 and is not drawn.

by the problem of an acoustic source in a shear flow along a lined wall, for example a
boundary layer.

Both solutions were obtained by Fourier transformation in the mean flow direction
x, which leads to equations in the cross-wise direction y that are solvable exactly
(Rayleigh 1945; Drazin & Reid 2004). The inverse transform of the pressure,
however, leads for the free-field and the hard-wall problems to divergent integrals
because of logarithmic behaviour of the far field of a line source in two-dimensional
incompressible flow. This behaviour is well-known in uniform or vanishing mean flow
conditions, but appears to exist also in shear flow unless the shear parameter σ is
exactly equal to the frequency ω. In a more comprehensive compressible context, this
divergence does not exist. In a small Helmholtz and Mach number setting of matched
asymptotic expansions, the far field of the incompressible ‘inner’ problem would
match with a decaying compressible ‘outer field’ like in Wu (2002); see also Lesser
& Crighton (1975) and Crighton et al. (1992). Apart from its physical relevance, the
divergent integral is not insurmountable and can be cured by interpreting the integrals
in a generalized sense.

The dominating feature in the solutions found is a non-decaying train of vortices,
shed from the line source (possibly comparable with a von Kármán vortex street). This
trailing vorticity field is essentially due to the mean flow shear. In an irrotational mean
flow, a line source would not generate vorticity, as shown in (1.3); generating vorticity
in an irrotational mean flow would require at least a force.

Since with hard-wall conditions the pressure appears only in the form of its gradient
while it has no natural conditions at infinity, this variable is only determined up to an
undetermined constant, so care is needed when the hard-wall limit is taken from the
soft-wall solution. In general, it seems better to derive the solution directly from the
Fourier integral, albeit via divergent integrals. All this is not the case with the velocity.
Here the natural conditions at infinity are a vanishing velocity, such that the method of
Fourier transformation automatically sifts out the required solution.

In a compressible context, this work identifies the k0-pole found by Brambley et al.
(2012) as shed vorticity from the point source, as was speculated. However, this work
also shows that the possibly related surface modes k+ and k− found by Brambley et al.
(2012) are not present here and therefore do not have incompressible infinite-shear
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counterparts, suggesting that the physics causing them may be significantly different
from the physics causing the k0-pole despite their similar locations in the k-plane. As
shown in figure 5, the two surface modes that do occur here correspond to another
two of the possible six compressible surface modes for compressible shear flow over a
lining (Brambley 2011).
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Appendix. The exponential integral

An important function in the foregoing analysis is the function E(q, z), closely
related to the exponential integral E1 (Abramowitz & Stegun 1965, equation (5.1.1)).
For q, z ∈ C, but with the branch cut for E1 yet to be selected, we have

E(q, z)= e−iqzE1(−iqz), (A 1a)

E1(z)=
∫ ∞

z

e−t

t
dt =−γ − log z+

∞∑
k=1

(−1)k+1 zk

k k! , (A 1b)

where γ = 0.5772156649 . . . is Euler’s constant. The variable q corresponds here to
complex wavenumbers (k0 and ks), while z= x + iy relates to the physical (x, y)-space.
As is clear from the series representation, E1(z) has a logarithmic singularity, for
which the standard definition is to use the principal value, Log, with Log(1) = 0
and a branch cut along the negative real axis. However, with our applications this
choice would result in q-dependent branch cuts in the x, y-domain and is therefore not
convenient.

The branch cut discontinuity is the counterpart of the discontinuity at the line x = 0
due to the upward or downward closure of the Fourier integral contour for x < 0
or x > 0 respectively. Therefore, a most natural location for the branch cut is the
imaginary axis.

The choice used here is such that if Re q > 0 the branch cut of E(q, z) is along the
line x = 0, y < 0 and thus for E(q, z̄) along the line x = 0, y > 0. If Re q < 0 it is the
opposite: the branch cut of E(q, z) is then taken along the line x = 0, y > 0. This is
most easily obtained by the logarithm

log(−iqz)
def= Log

(
−iz

q

|q|
)
+ Log(|q|) (A 2)
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with the principal value Log and |q| as defined in (2.5). So we define, with this log
and E1 the standard exponential integral, our function E as

E(q, z)
def= e−iqz

(
E1(−iqz)+ Log(−iqz)− Log

(
−iz

q

|q|
)
− Log(|q|)

)
. (A 3)
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