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Dynamics of dense sheared granular flows.
Part II. The relative velocity distributions

V. KUMARAN†
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

(Received 10 May 2008 and in revised form 15 February 2009)

The distribution of relative velocities between colliding particles in shear flows of
inelastic spheres is analysed in the volume fraction range 0.4–0.64. Particle interactions
are considered to be due to instantaneous binary collisions, and the collision model
has a normal coefficient of restitution en (negative of the ratio of the post- and pre-
collisional relative velocities of the particles along the line joining the centres) and a
tangential coefficient of restitution et (negative of the ratio of post- and pre-collisional
velocities perpendicular to line joining the centres).

The distribution of pre-collisional normal relative velocities (along the line joining
the centres of the particles) is found to be an exponential distribution for particles
with low normal coefficient of restitution in the range 0.6–0.7. This is in contrast to
the Gaussian distribution for the normal relative velocity in an elastic fluid in the
absence of shear. A composite distribution function, which consists of an exponential
and a Gaussian component, is proposed to span the range of inelasticities considered
here. In the case of rough particles, the relative velocity tangential to the surfaces at
contact is also evaluated, and it is found to be close to a Gaussian distribution even
for highly inelastic particles.

Empirical relations are formulated for the relative velocity distribution. These are
used to calculate the collisional contributions to the pressure, shear stress and the
energy dissipation rate in a shear flow. The results of the calculation were found
to be in quantitative agreement with simulation results, even for low coefficients of
restitution for which the predictions obtained using the Enskog approximation are in
error by an order of magnitude. The results are also applied to the flow down an
inclined plane, to predict the angle of repose and the variation of the volume fraction
with angle of inclination. These results are also found to be in quantitative agreement
with previous simulations.

1. Introduction
The dynamics of a dense collection of sheared inelastic particles was analysed in

Part I using event-driven simulations. Some of the salient results of that analysis, which
have motivated the present more detailed analysis of the relative velocity distributions,
are first discussed, and then the scope of the present analysis is outlined. First, we
recall that for the shear flow of inelastic hard spheres, the dynamics of a binary
collision depends on the normal and tangential coefficients of restitution, which are
dimensionless, and the only time scale is the inverse of the strain rate. Therefore, the
strain rate can be set equal to 1 without loss of generality in a homogeneous shear
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146 V. Kumaran

flow. The mean square velocity and the angular velocity of the particles (granular
temperatures) depend on the strain rate and the normal and tangential coefficients of
restitution, en and et , through the energy balance condition. Therefore, the dynamics
of the flow is completely determined by the volume fraction φ and the coefficients
of restitution en and et . From dimensional analysis, it can be inferred that all
components of the stress are proportional to γ̇ 2, while the rate of dissipation of
energy is proportional to γ̇ 3, where γ̇ is the strain rate. The Bagnold coefficients
(ratio of the stress and γ̇ 2) and the scaled dissipation rate (dissipation rate scaled by
γ̇ 3) are only functions of the volume fraction and coefficients of restitution.

In Part I, the ordering in a shear flow of inelastic particles was first analysed using
both the in-plane and icosahedral bond orientational order parameters, denoted as q6

and Q6, respectively. For a gas of elastic spheres in the absence of shear, it should be
recalled that the icosahedral order parameter Q6 is close to zero for volume fraction
φ < 0.49. At φ = 0.49, there is an ordering transition, and the bond orientational order
parameter increases to a maximum value larger than 0.5. In contrast, for the shear
flow of inelastic particles, it was shown in Part I that Q6 is close to zero even at a
volume fractions significantly larger than 0.49 if the system size is large enough. For
a system with 500 particles in a cubic box at en = 0.98 and et = 1, it was observed that
Q6 is close to zero at volume fraction φ = 0.6. For a lower coefficient of restitution
en = 0.6, Q6 was found to be close to zero at φ = 0.56; simulations could not be
carried out for higher volume fraction due to numerical errors. This indicates that
the random state is the natural state for a sheared inelastic fluid in the limit of large
system size, though ordering is induced when the system size is sufficiently small.

A second interesting result is that when there is no ordering (Q6 is close to zero),
particle motion is found to be diffusive, and the root mean square displacement of
the particles is found to be proportional to time. However, when there is ordering,
the root mean square displacement did not increase proportionally to time, and it
was not possible to measure a diffusion coefficient. There was a sharp decrease in the
diffusion coefficient at the onset of ordering. The diffusive motion of particles in the
random state indicates that it is appropriate to treat the sheared inelastic material as
a fluid, rather than as an anisotropic material in which ordered planes of particles
slide past each other, or as a glassy material with diverging relaxation time. The
diffusive motion is not isotropic, however, and the diffusion coefficient in the flow
direction is larger than that in the other two directions. All off-diagonal components
of the diffusion tensor were found to be zero within numerical accuracy.

The temperatures (mean square fluctuating velocities) were determined as a function
of volume fraction and coefficient of restitution. It was found that the temperatures
seem to approach a finite value as the close packing limit is approached, and the
distribution of the fluctuating velocities is remarkably isotropic, with a variation of
only about 20 % in the fluctuating translational and rotational energies in the different
directions for φ > 0.5.

An important finding of Part I: the collision frequency of particles showed a very
sharp increase with volume fraction in the dense limit, and the collision frequency in
a shear flow was much higher than that predicted for an elastic system at equilibrium
(Torquato 1995). It is more common to write the collision frequency in terms of
the pair distribution function in literature, but most of the relations are based on
the assumption that the distribution of relative velocities is a Gaussian distribution.
Therefore, in Part I, we preferred to work with the collision frequency itself. In the
present paper, after analysing the distribution of relative velocities, we return and
calculate the pair distribution function from the collision frequency. It was found, in
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Dynamics of dense sheared granular flows. Part II 147

Part I, that the collision frequency for an inelastic shear flow diverges at a volume
fraction lower than the random close packing volume fraction φ =0.64. For highly
inelastic rough particles with en in the range 0.6–0.8, the collision frequency was
found to diverge for a volume fraction of about φad = 0.585. Here, φad is the volume
fraction for arrested dynamics, where the collision frequency and stresses diverge
at constant strain rate, or the strain rate goes to zero at constant stress. The form
of the divergence was also found to be very different from that for an elastic fluid
at the random close packing limit, where the pair distribution function increases
as (φc − φ)−1. Empirical correlations were proposed for the increase in the collision
frequency with volume fraction near close packing.

The Bagnold coefficients (ratio of stress and γ̇ 2) and the scaled dissipation rate
(ratio of stress and γ̇ 3) were found to increase proportionally to the collision frequency
in the close packing limit. One of the approximations in the Enskog kinetic theory
is that all collisional transfer rates, including the collision frequency, collisional stress
and dissipation rates, increase proportionally to the pair distribution function, which
diverges at the random close packing volume fraction. Therefore, the finding that
the stress and dissipation rates increase proportionally to the collision frequency
suggests that an important part of the Enskog approximation is valid. However,
it was also found in Part I that the numerical agreement between the theory and
simulation results is poor, even when the modified form of the collision frequency
is incorporated into the theory. This suggests the failure of the molecular chaos
assumption in the Enskog approximation, that the two-particle velocity distribution
is the product of the single particle velocity distributions and the pair distribution
function at contact. This implies that for inelastic systems, the correlations in the
particle velocities alter the form of the distribution of relative velocities, and this
results in a change in the collisional transport rates. In the present analysis, this
aspect is analysed in detail, and we examine whether the inclusion of correlations
in the relative velocity distribution can provide numerically accurate results for the
stress and dissipation rate.

Since the shear flow is not isotropic, the distribution of relative velocities depends
on the angle between the line joining the centres of the particles and the direction
of flow. Therefore, the distribution of relative velocities is resolved into its spherical
harmonic components, and it was found that in an expansion correct to second order
in the strain rate there are only four non-zero components. These components are
calculated from simulations, and the relations between these components and the
pressure, dissipation rate, shear stress and normal stress differences are determined.
For smooth particles, the relative velocity distribution in the direction along the line
joining the centres can be used to calculate all components of the stress and the
dissipation rate, since there is no impulse perpendicular to the line joining the centres
at collision. In rough particles, only the shear stress depends on the impulse in the
direction perpendicular to the line joining the centres, and we find that even this
contribution is only about 10–20 % of the total shear stress. For rough particles, the
distribution of velocities perpendicular to the line joining the centres is close to a
Gaussian even at high volume fraction and low coefficient of restitution. However,
we find that the distribution of velocities along the line joining the centres is very
different from a Gaussian distribution.

The velocity distribution function for the pre-collisional relative velocity between
particles is found to be an exponential distribution for both smooth and rough
particles for coefficients of restitution in the range 0.6–0.8; we find that the variance
of this distribution decreases to zero as the volume fraction φad (where the collision
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frequency diverges) is approached. We propose empirical forms for this distribution,
and predict the dissipation rate and stresses using the empirical forms. Excellent
agreement is found between predictions and the simulation results. This indicates that
the dynamics of dense shear flows of inelastic particles can be successfully predicted
by models based on the binary collision approximation, without the necessity of
invoking correlations or coherent structures.

Collisions between particles are considered to be inelastic, and the normal coefficient
of restitution en is less than 1, so that there is energy dissipation in the collisions.
The collision models analysed include the smooth particle model, where the relative
velocity tangential to the surfaces at contact is unchanged in a collision, as well as
the rough particle model. In the rough particle model, we considered two cases, et = 1
where the relative tangential velocities of the surfaces at contact is exactly reversed
in a collision, as well as et = en. In our analysis of the relative velocity distribution,
we focus on the component of the relative velocity normal to the surfaces at contact,
since this is the component which exhibits the maximum deviation from the Gaussian
distribution for an elastic fluid. For rough inelastic particles, the dissipation of energy
in a collision can be calculated from the normal relative velocity distribution only for
et = 1; it would be necessary to model the tangential relative velocity distribution as
well for the case et < 1 to calculate the energy dissipation. Since we restrict attention
to the normal velocity distribution, we compare theory and simulations only for
the case et =1; a model for et < 1 would require additional fitting functions for the
tangential velocity distributions which we do not analyse here. The comparison for
et = −1 and et = 1 achieves the present objective of obtaining quantitative agreement
between theory and simulations for all dynamical properties for a known collision
model for a dense granular flow.

The theory and simulation results are also compared with an application of practical
importance, which is the granular flow down an inclined plane. There are several
remarkable features of the granular flow down an inclined plane which have been
revealed by simulations (Silbert et al. 2001). It is observed that the volume fraction
of the particles is a constant in the bulk of the flow, the granular temperature and
all stress components are linear functions of height and the mean velocity increases
as the square root of the height from the bottom of the layer. The lack of variation
in the volume fraction was explained using kinetic theory (Kumaran 1998, 2006a, b,
2008), where the ‘conduction length’ δ = (d/(1 − en)

1/2) was identified as the distance
over which there is a balance between the rate of conduction of energy, and the rate
of dissipation of energy due to inelastic collisions. Here, d is the particle diameter
and en is the normal coefficient of restitution. When the thickness of the flowing layer
h is large compared to the conduction length, the rate of conduction of energy can
be neglected in the leading approximation, and the rate of production of energy due
to mean shear is balanced by the rate of dissipation due to inelastic collisions. It has
been shown that as a consequence of the balance between the rates of production
and dissipation, the volume fraction is a constant in the leading approximation. The
correction to the volume fraction is O(δ/h)2 smaller than the leading-order volume
fraction. The variation of temperature and volume fraction in the boundary regions
was analysed using boundary layer theory and matched asymptotic expansions in
Kumaran (2008). An exact result was derived showing that a boundary layer solution
is possible if and only if the volume fraction in the bulk decreases as the angle
of inclination is increased. In addition, an expansion in the inverse of the pair
distribution function was also used in the dense limit (where the pair distribution
function is large) in order to obtain a single nonlinear differential equation for the
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temperature profile. These results qualitatively reproduced the salient features of the
flow down an inclined plane.

For the flow down an inclined plane, experiments (Pouliquen 1999) and simulations
(Silbert et al. 2001) also show a steady flow is possible at a given angle of inclination
only if the height of the layer is larger than a minimum height hstop . While this
height has been interpreted as a distance over which there are correlations in the
flow (Ertas & Halsey 2002), the recent study of Kumaran (2008) showed that this
could be explained on the basis of the dissipation of energy at the base. Analytical
approximations were derived for the limits of small and large dissipation rates. The
value of hstop was calculated explicitly for different particle models, and the results are
in qualitative agreement with experiments and simulations. Though all the features of
the flow were reproduced qualitatively, the analysis of Kumaran (2008) indicated that
there are quantitative differences between theory and simulations for the dependence
of the volume fraction on the angle of inclination. The theory used for comparison
was that of Kumaran (2006a) for rough and partially rough particles, in which the
pair distribution function was assumed to be the same as that for elastic particles in
the random close packing limit (Torquato 1995), and the Enskog approximation (two-
particle velocity distribution is the product of the single-particle velocity distributions
and the equilibrium pair distribution at contact) was used. The present analysis
shows that these approximations are not valid for the shear flow of inelastic particles,
and proposed alternate forms for the collision frequency (pair distribution function)
and the distribution of relative velocities of colliding particles. Using these modified
forms, we revisit the calculation of the stresses and the dependence of the angle of
inclination on the volume fraction in the flow down an inclined plane. It is shown
that quantitative agreement is obtained with these modifications.

2. Microscopic model and simulation technique
The system consists of rough inelastic spheres of diameter d subjected to a rate of

deformation field G = γ̇ exey . In the coordinate system used here, the flow is in the x

direction, the velocity gradient in the y direction and the z coordinate is perpendicular
to the flow plane, as shown in figure 1 of Part I. The particle mass m is set equal to
1 without loss of generality, so that all mass dimensions are non-dimensionalized by
the particle mass. The ED simulation technique was already described in Part I. For
completeness, we provide the microscopic collision model for the ED simulations. A
rough particle collision model is used, in which the post-collisional relative velocity
normal to the surfaces at contact is −en times the pre-collisional normal relative
velocity, and the post-collisional relative velocity tangential to the surfaces at contact
is −et times the pre-collisional relative tangential velocity. The normal coefficient
of restitution en varies between 0 and 1; en = 1 corresponds to perfectly elastic
collisions, while en =0 corresponds to perfectly inelastic collisions. The tangential
coefficient of restitution et varies between −1 and +1, et = −1 corresponds to smooth
particles where there is no change in the relative velocity after collision, while et =1
corresponds to perfectly rough particles where the relative velocity perpendicular to
the line joining the centres is reversed after the collision. Energy is conserved for en =1
and et = ±1.

There have been detailed measurements of binary collisions between particles (see,
for example, Foerster et al. 1994) which show that the collision dynamics is more
complicated than that assumed in the rough particle model. There are two types of
collisions depending on the angle between the relative velocity vector and the line
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joining the centres. Head-on collisions are found to be ‘sticking’ collisions, where
the asperities on the particles lock during a collision. The impulse tangential to the
colliding surfaces is proportional to the relative tangential velocity at the point of
contact. Grazing collisions are found to be ‘sliding’ collisions, where the tangential
impulse is equal to the coefficient of friction times the normal impulse. It is difficult
to make quantitative comparisons with this collision model, because it is difficult to
obtain constitutive relations for sliding collisions. It was possible to obtain results for a
‘partially rough’ collision model in earlier studies (Kumaran 2006a, 2008), where head-
on collisions were considered rough, while grazing collisions were considered smooth.
Here, we consider all collisions to be rough and characterized by just one normal
and one tangential coefficients of restitution, in order to facilitate a quantitative
comparison between theory and simulations. As explained in § 1, we have carried
out simulations for rough particles for et = −1, et = 1 and et = en for a range of
normal coefficients of restitution. The comparison between analysis and simulations
is restricted to et =1 and et = −1, since this requires description of just the normal
relative velocity distributions in collisions.

3. Two-particle velocity distribution function
Since we are interested in the collisional transport and dissipation of momentum

and energy, we restrict our attention to particles in contact which are separated
by one-particle diameter. We first carry out the analysis of the relative velocity
distribution for rough particles; the results for smooth particles are a special case
where the tangential velocity distribution and the angular velocity distribution are
not relevant.

In a steady shear flow, it is necessary to define the two-particle velocity distribution
function carefully, because the mean velocity U is a linear function of distance in
the gradient direction. We consider two particles α and β with positions xα and xβ ,
respectively. Without loss of generality, we can consider the mean velocity to be zero
at the location xα . In this case, the relative velocity distribution is a function of only
the separation between the two particles, xαβ =(xα − xβ), and does not depend on
the absolute positions of the two particles. This assignment of zero mean velocity
at the centre of particle α does not affect the stresses and dissipation rate. This
is because the streaming stresses are related to the distribution of single-particle
fluctuating velocities, and the collisional stresses are related to the distribution of
relative velocities, while the rate of dissipation of energy is related only to the relative
velocity distribution at contact.

The probability distribution that a particle α with position and velocity (xα, uα, ωα)
is in contact with a second particle with position and velocity (xβ, uβ, ωβ), such that the
unit vector from the centre of particle α to β is k, is defined as F (xα, uα, ωα, uβ, ωβ, k).
Here, uα , uβ , ωα and ωβ are defined to be the pre-collisional velocities of the particles.
Note that in a steady homogeneous shear flow, if the mean velocity U is zero at xα ,
this function is independent of the location xα and time, and so we do not specify
these in the following analysis. The two-particle distribution function for particles in
contact can be used to determine the collision frequency, the collisional stresses and
the rate of dissipation of energy. Before proceeding to define these transfer rates, it is
useful to effect a change of variables from the particle velocities to the centre of mass
velocity

v = (uα + uβ)/2 (3.1)
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and the velocity difference

w = (uα − uβ) (3.2)

In a similar manner, the angular velocities of the two particles at contact can also be
written in terms of the sum of the two angular velocities,

� = ωα + ωβ (3.3)

and one half of the difference in angular velocities,

υ = (ωα − ωβ)/2 (3.4)

It can be easily verified that the Jacobians for these two transformations is 1.
The collisional impulse is independent of the velocity of the centre of mass v, and

the difference between the angular velocities, υ . Therefore, we can define a reduced
distribution function, which is the integral of the total distribution function over the
centre of mass velocity and the difference in angular velocities for a pair of colliding
particles.

f (w, � , k) =

∫
dv

∫
dυF (uα, uβ, ωα, ωβ, k) (3.5)

For future reference, we also define the reduced distributions fw(w, k) and f� (� , k)
for the relative velocity and angular velocity, respectively,

fw(w, k) =

∫
d�f (w, � , k), (3.6)

f� (� , k) =

∫
dwf (w, � , k). (3.7)

A further reduction can be carried out to express the relative velocity in terms of its
components along and perpendicular to the line joining the centres of the particles.
For this purpose, we define

wn = w · k (3.8)

wt = (I − kk) · w (3.9)

� n = � · k (3.10)

� t = (I − kk) · � (3.11)

Here, the unit vector k along the line joining the centres of the particles is defined as

k = sin (θ) cos (φ)ex + sin (θ) sin (φ)ey + cos (θ)ez, (3.12)

where ex , ey and ez are the unit vectors along the three-coordinate directions. The
reduced distributions for each of these velocity components can be written as

fwn(wn, k) =

∫
d�

∫
dwtf (w, � , k), (3.13)

fwt (wt , k) =

∫
d�

∫
dwnf (w, � , k), (3.14)

f�n(� n, k) =

∫
d� n

∫
dwf (w, � , k), (3.15)

f� t (� t , k) =

∫
d� n

∫
dwf (w, � , k). (3.16)
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Here, the integrals over dwt and d� t are two-dimensional integrals over two
independent components of the vectors wt and � t . It should be noted that the
angular velocity in the direction of the line joining the centres, � n, does not affect
the collisional impulses, and therefore we do not consider the distribution of � n in
the following analysis.

Since the anisotropy in the distribution function is generated due to the mean
shear, the anisotropy has to be a function of the invariant components of the mean
strain rate tensor Gij , which are the symmetric part Sij = (Gij + Gji)/2 and the
antisymmetric part Aij = (Gij − Gji)/2. This dependence is incorporated by defining
a set of basis functions which are the spherical harmonics of the unit vector k. The
spherical harmonics are usually defined as

Yl,m(θ, φ) =

√
(2l + 1)

4π

(l − m)!

(l + m)!
P m

l (cos (θ)) exp (ımφ) (3.17)

where the index m can vary between −l and +l, P m
l (cos (θ)) are the Legendre

polynomials, the azimuthal angle θ is the angle between the unit vector k and the z

axis, and the meridional angle φ is the angle between the projection of the unit vector
k on the x–y plane and the x axis. The spherical harmonics are orthonormal∫ 2π

0

dφ

∫ π

0

dθ sin (θ)Yl,m(θ, φ)Y ∗
pq(θ, φ) = δlpδmq, (3.18)

where the superscript ∗ represents the complex conjugate.
Rather than using the complex spherical harmonics as the basis functions, it is

more convenient to separate them into their real and imaginary parts, so that the
entire analysis is carried out on the real axis. This is facilitated by the relationship
between the real and imaginary parts of Yl,m and Yl,−m, which is of the form
Yl,−m(θ, φ) = (−1)mY ∗

l,m(θ, φ). Due to this relationship, the real and imaginary parts
of Yl,m(θ, φ) for 0 � m � l can also be used as the basis functions. We use the
following basis functions, which provide the only non-zero contributions to the
collision frequency, pressure, shear stress and normal stress differences:

X0(θ, φ) = 1,

X1(θ, φ) =
1

4

√
15

π
sin (θ)2 sin (2φ),

X2(θ, φ) =
1

4

√
5

π
(3 cos (θ)2 − 1),

X3(θ, φ) =
1

4

√
15

π
sin (θ)2 cos (2φ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

These basis functions are orthogonal with respect to integrations over the solid
angle k, ∫

dkXi(k)Xj (k) = Niδij , (3.20)

where the normalization constant N0 = 4π, while the other normalization constants
are all equal to 1. The distribution function is expanded in a series in the basis
functions X(i)(θ, φ),

f (i)(w, � ) = N−1
i

∫
dkf (w, � , k)Xi(k). (3.21)
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The distribution function can be reconstructed from its individual components,

f (w, � , k) =

3∑
i=0

f (i)(w, � )Xi(k). (3.22)

In expansion (3.22), we have included all spherical harmonics Ylm(θ, φ) (3.17) with
l = 0 and l = 2. It is easy to see, from symmetries, that the coefficients of the terms
with l = 1 are zero for a linear shear flow. The series has been truncated at l = 2,
because all the dynamical quantities of interest in the present analysis, the collision
frequency (3.61), the dissipation rate (3.60), the pressure (3.67), the shear stress due
the normal impulse at collision (3.69) and the normal stress differences ((3.73) and
(3.74)) can be evaluated from these components. There are no contributions to these
dynamical quantities from the spherical harmonic components with l � 3.

In the simulations, the distribution function is obtained by first calculating the
frequency of collisions between two particles with a relative normal or tangential
velocity in the interval dwd � about (w, � ). It should be noted that collisions occur
only when wn is positive, while particles are moving away from each other when wn

is negative. Since the magnitude of the relative velocities before and after collision
are different, the procedure for calculating the distribution function from the collision
frequency is different from that for elastic systems, and we discuss this briefly.

The collision frequency, which is a function of the relative velocity and the angle
of the line joining the centres of the particles at the point of collision, is expanded in
a series in the spherical harmonics,

ν(w, � , k) =

3∑
i=0

νi(w, � )Xi(k), (3.23)

where the functions νi(w, � ) can be calculated from the collision frequency as follows:

νi(w, � ) =
1

Ni

∫
dk ν(w, � , k)Xi(k). (3.24)

In the simulations, the individual functions νi are determined by summing up the
functions Xi over all collisions with relative linear and angular velocities in the interval
d w about w, and d� about � .

νi(w, � )dw d� =
1

τ

∑
collisions

Xi(k), (3.25)

where τ is the total time period of the simulation. In the above expressions, the
summation is carried out only over collisions with relative velocities in the interval
dw about w, and d� about � . In order to obtain νi as a function of w and �

in the simulations, we use a binning procedure as follows. For the normal velocity
wn, the interval 0 � (wn/

√
2T ) � 5 is divided into 50 intervals of width 0.1 each,

and all collisions which occur within an interval are assigned to the velocity at the
mid-point of the interval. Here, and in the following analysis, T is the translational
temperature. In a similar manner, for the tangential velocity wt and the component
of the angular velocity tangential to the surface � t , the intervals 0 � (|wt |/

√
2T ) � 5

and 0 � (|� t |/
√

2T/I ) � 5 are divided into 50 intervals of width 0.1 each, and
all collisions which occur within an interval are assigned to the mid-point of that
interval. In this manner, we obtain the dependence of the collision frequency on the
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relative velocity and angular velocity, and then extract the distribution functions for
the relative velocity and angular velocity as discussed below.

The collision frequency can be related to the two-particle velocity distribution
function as follows. First, we note that collisions occur only when the component of
the relative velocity along the line joining the centres, wn, is positive. In the dilute
(point particle) limit, the frequency of collisions per unit volume between particles
with relative velocity (w, � ) and relative orientation k can be written as

ν(w, � , k) dw d� dk =
ρ2

2
f (w, � , k) wn dw d� dk, (3.26)

where the factor (1/2) accounts for the fact that two particles are involved in a
collision. In a dilute gas of hard particles, the single-particle distribution function
is a Gaussian, the two-particle distribution is the product of the single-particle
distributions, and the collision frequency can be evaluated by integrating (3.26) over
velocities w and � , and the relative orientation of the line joining the centres
with the relative velocity k. We should note here that while calculating the collision
frequency from (3.26), the relative velocity wn should be integrated only in the domain
0 � wn � ∞, because collisions take place only when the relative velocity is positive.
Using the Gaussian relative velocity distribution, and integrating over w, � and k,
we obtain the collision frequency as 2ρ2

√
πT , which is the standard expression in

kinetic theory of gases (Chapman & Cowling 1970). For dense gases, the frequency of
collision is larger than that predicted by (3.26), because the particles occupy a finite
volume and due to the shadow effect, which increases the collision frequency. In this
case, the collision frequency is written as

ν(w, � , k) dw d� dk =
ρ2χ

2
f (w, � , k) wn dw d� dk. (3.27)

Equation (3.27) defines the pair distribution function at contact, χ , when the relative
velocity distribution function is defined to be normalized. Since the relative velocity
distribution depends on the angle of the line joining the centres of the particles at
collisions, represented by the unit vector k, the normalization condition has to be
represented as ∫

dk
∫

dw

∫
d�f (w, � , k) = 4π, (3.28)

where the factor 4π accounts for the integration over the solid angle k. This
is equivalent to assuming that the isotropic component of the relative velocity
distribution function, f (0), is normalized

∫
dw

∫
d�f (0)(w, � ) = 1, (3.29)

where the above integral is carried out over both positive and negative values of wn.
This serves to remove any ambiguity in the definition of the pair distribution function
from (3.27). Defined this way, the pair distribution function at contact is a function
of the volume fraction and the coefficient of restitution. The total collision frequency
is obtained using an integral over the relative velocity distribution and the solid
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angle k,

ν =
ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)wn

=
ρ2χ

2

(∫ ∞

0

dwnf
(0)
wn

wn

)(∫
dkX0(k)

)

= 2πρ2χ

∫ ∞

0

dwn wn f (0)
wn

. (3.30)

The distribution function for particles with negative wn (moving away from each
other) is obtained from that for positive wn (approaching each other) using the flux
balance condition

f (w′, � ′, k)w′
ndw′ d� ′ = f (w, � , k)wndw d� . (3.31)

Since w′
n = −enwn, for wn < 0, the Jacobian for transformation (wt , � ) to (w′

t , �
′) is

1 for et = ±1, we find the relation between the distribution functions to be

f (w′, � ′, k) = e−2
n f (w, � , k). (3.32)

Using normalization condition (3.29), we find that the integral for positive relative
velocities is given by∫ ∞

0

dwn

∫
dwt

∫
d�

∫
dkf (w, � ) =

4π

1 + e−1
n

. (3.33)

Using the above condition, pair distribution function is related to the collision
frequency by

χ =

(
1 + e−1

n

)
2

∫
dk

∫ ∞

0

dwn (ν(wn, k)/(ρ2wn))

= 2π
(
1 + e−1

n

) ∫ ∞

0

dwn (ν0(wn)/ρ
2wn). (3.34)

The distribution function for the relative velocity for wn > 0 is then given by (3.27)
while the relative velocity distribution for wn < 0 is given by (3.32). In a similar
manner, the terms in the spherical harmonic expansion (3.24) for the relative velocity
distribution are given by

f (i)(w, � ) =
2ν(i)(w, � )

ρ2χwn

(3.35)

for wn > 0. We first analyse the velocity distribution functions, obtained from the
collision frequency using (3.27), and then return to properties such as the pair
distribution function, dissipation rate and the stresses.

The distribution of the pre-collisional velocity along the line joining the centres,
f (0)

wn (wn), is shown as a function of wn for a linear shear flow with volume fraction
ν = 0.56 and for different values of the coefficient of restitution in figure 1 for
smooth particles, and in figure 2 for rough particles. An important observation is
that the qualitative nature of the relative velocity distribution is the same for both
smooth and rough particles. When the particles are nearly elastic (en = 0.98), the
relative velocity distribution is close to a Gaussian, and mean square of the relative
velocity distribution is actually more than two times the translational temperature.
However, as the coefficient of restitution decreases, the velocity distribution deviates
significantly from a Gaussian distribution, and approaches an exponential distribution
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(a) (b)

Figure 1. The relative velocity distribution f (0)
wn

as a function of the scaled relative velocity

(wn/
√

2T ) for ν = 0.56, for smooth particles (et = −1), and for normal coefficients of restitution
en = 0.98 (�), en =0.8 (�) and en =0.6 (∇). (a) The distribution function on a linear scale and
(b) the same distribution on a semi-log scale. The dotted lines show the best Gaussian fit, the
dashed line is the composite distribution function (3.40) and the solid line is the Gaussian
distribution function for an elastic system.

0

1

2

(a) (b)

10–2

10–1

1

21 2 310

(wn/
√

2T )(wn/
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2T )

f w
n(0
)

Figure 2. The relative velocity distribution f (0)
wn

as a function of the scaled relative velocity

(wn/
√

2T ) for ν = 0.56, for rough particles for coefficients of restitution en = 0.98, et = 1.0
(◦); en = 0.8, et = 1.0 (�); en = 0.6, et = 1.0 (∇); and en =0.8, et = 0.8 (�). (a) The distribution
function on a linear scale and (b) the same distribution on a semi-log scale. The dashed lines
are the best fits to the composite distribution function (3.40), the dotted lines show the best
Gaussian fit and the solid line is the Gaussian distribution function for an elastic system.
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Figure 3. The velocity distributions f (u∗
x) (�), f (u∗

y) (	) and f (u∗
z) (∇) as a function of the

scaled velocities (u∗
x = ux/

√
T ), (u∗

y = uy/
√

T ) and u∗
z = (uz/

√
T ) for φ = 0.56 and en =0.6. The

solid symbols show the results for rough particles et = 1.0, and the open symbols show the
results for smooth particles et = −1.0. The solid line is the Gaussian distribution function for
an elastic system.

at a coefficient of restitution of 0.6, while the distribution function is intermediate
between an exponential and a Gaussian at en = 0.8. It is observed from figure 1 that
for en = 0.98, the decay is slower than the best Gaussian fit in the limit of large
velocities. The fourth standardized moment (ratio of fourth moment and square of
second moment) for this distribution is larger than that for a Gaussian distribution,
and therefore the Gaussian distribution does not provide a good fit. In addition,
even the composite distribution (3.40) does not provide a good fit for the distribution
function at en = 0.98. This is because the composite distribution is designed to model
the transition from a Gaussian to an exponential distribution, which involves a
reduction in the fourth standardized moment, and therefore it cannot capture an
increase in the fourth standardized moment. In a similar manner, for en = 0.6, there
is a deviation from the exponential form at high velocities, and the best fit seems to
be either a smaller exponent or slower than exponential decay. However, we do not
observe this deviation for rough particles. This is an interesting feature which deserves
closer examination, but this does not significantly alter the results. This is because
the distribution function decreases rapidly at large velocities, and a difference in the
form of the velocity distribution in the large velocity limit does not significantly alter
the predictions for the stresses and dissipation rates.

It should be noted that even though the distribution function for the velocity of
approach deviates significantly from a Gaussian, the distribution function for the
particle velocities does not show a similar deviation. Figure 3 shows the distribution
function for the actual particle velocities for en = 0.6 and the volume fraction φ = 0.56,
for both rough and smooth particles. It is observed that the distribution function for
rough particles is quantitatively close to a Gaussian even at high volume fraction
and low coefficient of restitution. This indicates that the departure of the distribution
function for the relative velocity from the Gaussian form is not because the single-
particle velocity distributions are distorted, but rather because of the correlation in
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the velocities of the neighbouring particles. So this effect cannot be captured by
altering the single-particle velocity distribution; it is necessary to have a model for
the distribution of relative velocities between pairs of particles.

In order to describe the functional form of the distribution function for the relative
velocity both for nearly elastic and for highly inelastic systems, it is necessary to
accommodate both the exponential and Gaussian forms of the distribution function.
The Gaussian distribution function for the pre-collisional relative velocity for wn > 0
is given by

f (0)
wn (wn) =

1√
πTwn/2

(
1 + e−1

n

) exp
(
−w2

n/2Twn

)
. (3.36)

The post-collisional relative velocity (for wn < 0) can be obtained from the pre-
collisional relative velocity using a flux balance condition for the colliding particles

f (0)
wn (wn) =

1√
πTwn/2

(
1 + e−1

n

)
e2
n

exp
(
−w2

n/2e2
nTwn

)
. (3.37)

It should be noted that Twn is defined to be the temperature for the pre-collisional
velocities in (3.36); the temperature for the post-collisional velocities is (Twn/e

2
n). In

a similar manner, if the distribution function is an exponential distribution, then the
distribution for the pre-collisional velocity has the form

f (0)
wn (wn) =

α

1 + e−1
n

exp (−αwn), (3.38)

where the parameter α is obtained from the exponential decay of the distribution
function. The post-collisional relative velocity distribution for wn < 0 is then given
by

f (0)
wn (wn) =

α

e2
n

(
1 + e−1

n

) exp (−αwn/en). (3.39)

Once again, the parameter α is calculated from the standard deviation for the pre-
collisional velocity.

In order to account for the transition from a Gaussian to an exponential
distribution, we define a composite distribution function for the velocity which
accommodates both the exponential and the Gaussian forms. Since the stresses and
dissipation rate can be calculated from the distribution of pre-collisional velocities, it
is necessary to propose a composite distribution only for the pre-collisional velocities.
This composite distribution is of the form

f (0)
wn (wn) =

C

1 + e−1
n

α exp (−αwn) +
(1 − C)√

πTwn/2
(
1 + e−1

n

) exp
(

− w2
n/2Twn

)
, (3.40)

where the parameter α is calculated from the distribution function obtained by the
simulations using

α =

(
6

∫ ∞
0

dwn w3
n f (0)

wn (wn)∫ ∞
0

dwn wn f
(0)
wn (wn)

)−1/2

(3.41)

and Twn, the effective temperature for the normal velocity fluctuations and the
translational temperature is given by

Twn =

(
2

∫ ∞
0

dwn w3
n f (0)

wn (wn)∫ ∞
0

dwn wn f
(0)
wn (wn)

)
=

3

α2
. (3.42)
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Figure 4. The parameter α in the normal velocity distribution (3.40) for en = 0.98 (�), en = 0.95
(	), en = 0.9 (∇), en = 0.8 (�), en = 0.7 (�), en = 0.6 (�), and for (a) smooth particles et = −1.0
(open symbols) and (b) et = 1.0 (filled symbols) and et = en (open symbols with inscribed dots).
The dashed lines show fits (3.45) and (3.46).

The constant C in (3.40) is a fitted parameter, which is obtained by minimizing the
mean square of the deviation of the actual distribution from the composite distribution
(3.40). The reasoning behind the above composite distribution is as follows. Since the
distribution function is an exponential distribution for small values of the coefficient
of restitution, it is expected that C = 1 in (3.40). In this case, it is easily verified that the
parameter α is given by (3.41). If the distribution function is a Gaussian distribution
at coefficients of restitution close to 1, the value of C in (3.40) will be small. In
this case, the parameter Twn is given by (3.42). The composite distribution, shown by
the broken lines in figures 1 and 2, is in excellent agreement with the distribution
function obtained from simulations for rough particles, even at the intermediate value
of en =0.8, at which neither the Gaussian nor the exponential distribution provides
a good fit. For smooth nearly elastic particles en =0.98, it is observed that the
distribution function for the relative velocity is broader than the equivalent Gaussian
distribution for elastic particles at the same translational temperature. This indicates
that the effective temperature for the relative velocity distribution initially increases
as the coefficient of restitution is reduced from 1. However, for lower values of the
coefficient of restitution, the distribution function changes in form. For rough particles
at en = 0.6, a single exponential decay provides an excellent fit. For smooth particles at
en = 0.6, the distribution function has one exponential decay at low relative velocity,
and a slower exponential decay in the high velocity limit. The composite distribution
function (3.40) accurately captures the first exponential decay for smooth particles.
The high velocity exponential decay is not accurately captured by the distribution
function (3.40), but as explained earlier, the distribution function is numerically small
in the high velocity region, and the error in this region does not significantly affect
the stresses and the dissipation rates.

The parameters α and C are shown as a function of en for different volume fractions
in figures 4 and 5. It is observed that C is close to 1 for en =0.6, 0.7; it decreases to
about 0.5 for en = 0.8, and is close to 0 for en = 0.9 and 0.95. This indicates a clear
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0
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φ

Figure 5. The constant C in distribution function (3.40) as a function of volume fraction at
en = 0.98 (�), en = 0.95 (�), en = 0.9 (∇), en = 0.8 (�), en = 0.7 (�) and en = 0.6 (�). The open
symbols show the results for smooth particles (et = −1), while the filled symbols show the
results for rough particles (et = 1), and the symbols with inscribed dots show the results for
rough particles with et = en.

change in the nature of the distribution function from a Gaussian to an exponential
form at about en = 0.8. An important observation from figure 5 is that the constant
C, which provides the fractions of the exponential and Gaussian distributions in the
composite distribution function (3.40), is nearly a constant with volume fraction in
the range 0.52–0.58. The only exception is the value for smooth inelastic particles
with en = 0.8 and rough inelastic particles with et = 0.8 and en = 0.8, for which C

varies in the range 0.6–0.9 as the volume fraction is increased. For all other values,
the variation in C is very small in the range 0.5 to φmax , though there is a larger
variation in the range 0.4–0.5. This can be used to advantage in arriving at a model
for the distribution function in the dense limit. The average value of C in the range
φ = 0.52 to φ = φmax is shown in figure 6 for both smooth and rough particles. For
rough particles, the fitting form

C =

{
2.5(1 − en) for en > 0.6

1.0 for en < 0.6
(3.43)

is in very good agreement with the data. In the case of smooth particles, we find that
C = 0 for en � 0.95, and C = 1 for en � 0.8. There is only one intermediate point
en = 0.9 at which C is about 0.26. More simulations in the range 0.8 � en � 0.95
would be required to infer a functional form for C. Here, we use the form

C =

⎧⎪⎨
⎪⎩

0.0 for en � 0.95

1.0 for en � 0.8

0.26 for en = 0.9.

(3.44)

As explained earlier, we do not attempt to model the case of rough particles with
et = en, since this requires a detailed analysis of the relative tangential velocity
distributions as well.
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Figure 6. The average value of C in distribution function (3.40), averaged over the volume
fraction range 0.52 to φmax , as a function of en for rough particles (et = 1) (�), rough particles
with et = en (∇) and for smooth particles (et = −1) (�). The line shows fit (3.43).

Figure 4 provides an indication that the parameter α is diverging as the close
packing limit is approached for coefficients of restitution between 0.6 and 0.8 for
et =1; this divergence is more clearly seen for en = 0.8 and et = 0.8. However, it
should be cautioned that a definitive conclusion cannot be drawn because we do not
have simulation results for volume fractions very close to φad . As best as we can
infer, the divergence is logarithmic for rough particles, and a power law for smooth
particles. In the case of rough particles, the parameter α is found to be fitted best by
a logarithmic relationship of the form

α = Aα log (φad − φ) + Bα (3.45)

while for smooth particles, the best fit is found to be of the form

α = Bα(φad − φ)Aα , (3.46)

where the parameters Aα and Bα are provided in table 1. The best fits, obtained using
(3.45) and (3.46), and the parameters in table 1, are shown by the dotted lines in
figure 4.

It should be noted that both of the divergences in (3.45) and (3.46) are weak in
comparison to the divergence of the collision frequency in (3.25) in Part I. Therefore,
these do not qualitatively alter the dynamics of the flow in the close packing limit
or the divergence of the stresses in the close packing limit. However, the divergence
of α has two consequences, one intuitively expected and the second puzzling. The
divergence of α near the close packing limit indicates that the distribution function of
relative velocities between particles is tending to a delta function around wn = 0 in the
close packing limit; this is intuitively expected, since the delta function at zero relative
velocity represents the stoppage of flow at close packing. However, the divergence
would result in a violation of the energy balance relation. This is because the shear
stress is proportional to the second moment of the relative velocity distribution, and
so the shear production of energy (at constant strain rate) diverges as α−2 for an
exponential distribution. In contrast, the rate of dissipation of energy is proportional
to the third moment of the relative velocity distribution, and so the rate of dissipation
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Rough particles Smooth particles: en = −1.0

en et Aα Bα en Aα Bα

0.98 1.0 0.0085 0.2781 0.98 −0.0280 0.4637
0.95 1.0 0.0121 0.5163 0.95 −0.0528 0.6950
0.90 1.0 −0.0178 0.7643 0.90 −0.1237 0.9402
0.80 1.0 −0.2049 1.2258 0.80 −0.2642 1.0961
0.70 1.0 −0.4860 1.1721 0.70 −0.2659 1.4842
0.60 1.0 −0.5400 1.8013 0.60 −0.3254 1.6200
0.90 0.90 −0.3005 0.5086
0.80 0.80 −1.6100 1.4500

Table 1. The parameters Aα and Bα in (3.45) and (3.46) for the parameter α as a function of
the coefficient of restitution and the volume fraction.
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Figure 7. The ratios −(f (1)
wn/f

(0)
wn ) (a), (f (2)

wn/f
(0)
wn ) and (f (3)

wn/f
(0)
wn ) (b), as a function of (wn/2

√
T ),

for different volume fractions and coefficients of restitution for smooth particles with et = −1,
(◦) en = 0.6, φ =0.56; (	) en = 0.6, φ =0.52; (∇) en = 0.6, φ = 0.4; (�) en = 0.98, φ = 0.58; (�)

en = 0.98, φ = 0.52; (
) en = 0.98, φ = 0.4. In (b), the open symbols show (f (2)
wn/f

(0)
wn ) and the

filled symbols show (f (3)
wn/f

(0)
wn ).

diverges as α−3. A balance between these cannot be achieved in the limit α → ∞, even
if the divergence is only logarithmic. This could indicate that there is a true divergence
which is cutoff for some reason; it is also possible that there is no true divergence
and (3.45) and (3.46) are a consequence of our inability to get close enough to the
close packing volume fraction. More detailed simulations or theoretical investigations
are required to resolve this issue.

Next, we turn to the components of the distribution function in the spherical
harmonic expansion, f (1)

wn , f (2)
wn and f (3)

wn , which are not spherically symmetric. Instead
of analysing the distributions themselves, it proves more profitable to analyse the
ratio of these components with the isotropic distribution function f (0)

wn , which are
referred to as the distribution ratios. These are shown in figure 7 for smooth particles,
and in figure 8 for rough particles. First, we examine the variation of the distribution
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Figure 8. The ratios −(f (1)
wn/f

(0)
wn ) (a), (f (2)

wn/f
(0)
wn ) and (f (3)

wn/f
(0)
wn ) (b), as a function of (wn/2

√
T ),

for different volume fractions and coefficients of restitution for rough particles with et = 1,
(◦) en = 0.6, φ = 0.56; (	) en = 0.6, φ = 0.52; (∇) en = 0.6, φ =0.4; (�) en = 0.98, φ = 0.58; (�)

en = 0.98, φ = 0.52; (
) en = 0.98, φ = 0.4. In (b), the open symbols show (f (2)
wn/f

(0)
wn ) and the

filled symbols show (f (3)
wn/f

(0)
wn ).

ratios with volume fraction. It is evident that the ratios (f (1)
wn/f (0)

wn ), (f (2)
wn/f (0)

wn ) and
(f (3)

wn/f (0)
wn ) are nearly independent of volume fraction in the volume fraction range

between 0.52 and φmax , even though the collision frequency is increasing by 1–2
orders of magnitude in this range. There is a change in the form of the distribution
ratios when the volume fraction is further reduced to 0.4. This indicates that all
the components of the distribution function in a spherical harmonic expansion are
evolving in a self-similar manner as the volume fraction is changed in the dense
limit.

The distribution ratios for nearly elastic particles are nearly independent of the
relative velocity wn in the dense limit. This is surprising, and in contradiction to the
results based on the Enskog approximation for dense gases, where the two-particle
distribution function is written as

f (2)(x, x′, u, u′) = χ(φ)f (x, u)f (x′, u′), (3.47)

where χ(φ) is the pair distribution function which is a function of the volume
fraction φ, x′ = x + k, where k is the unit vector along the line joining the centres
of the particles (the particle diameter is considered to be 1 in the present analysis).
Figure 3 shows that at high volume fraction and low coefficient of restitution, the
single-particle velocity distribution is remarkably close to a Gaussian distribution. In
addition, the distribution of velocities is nearly isotropic. The same is not true at lower
volume fractions, where the shear has a significant effect on the single-particle velocity
distribution (Lutsko 1996; Garzo & Dufty 1999). Consider the single-particle velocity
distribution, consistent with figure 3, to be a Gaussian function of the fluctuating
velocity

f (x, u) =
1

(2πT )3/2
exp (−(u − G · x)2/2T ), (3.48)
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where u is the absolute particle velocity, and G · x is the mean velocity at the location x,
where G is the strain rate. Substituting this into the equation for the pair distribution
function, we obtain,

f (2)(x, x′, u, u′) = χ(φ)fv(v)fw(w), (3.49)

where v =(u + u′)/2 is the velocity of the centre of mass, w =(u − u′) is the velocity
difference and the distribution functions fv and fw are

fv(v) =
1

(πT )3/2
exp (−(v − G · (x + x′)/2)2/T ), (3.50)

fw(w) =
1

(4πT )3/2
exp (−(w + G · (x − x′))2/(4T )). (3.51)

If the relative velocity distribution (3.51) is expanded in the strain rate G, and only
the term proportional to G is retained in the expansion, we obtain

fw(w) =
1

(4πT )3/2
exp (−w2/4T )

(
1 − w · G · k

2T

)
. (3.52)

The normal velocity distribution is obtained by integrating (3.52) over the tangential
velocities of the particles, to obtain

fwn(wn) =
1

(4πT )1/2
exp

(
− w2

n/4T
) (

1 − wnk · G · k
2T

)
. (3.53)

The spherical harmonic component f (1)
wn , obtained using (3.53), for a linear shear flow

with G= γ̇ exey , is

f (1)
wn = −

√
2π

15

wn exp (−w2/4T )

(4πT )3/2
. (3.54)

Therefore, the Enskog approximation would predict that (f (1)
wn/f (0)

wn ) ∝ wn in the
limit wn  1. Clearly, this approximation is not valid in the dense limit even for
nearly elastic particles. Instead, we observe that the ratio of f (1)

wn and f (0)
wn is nearly

independent of wn. If a similar procedure was carried out to second order in G, the
Enskog approximation would predict that there are two contributions to f (2)

wn and
f (3)

wn , one of which is independent of wn, while the other is quadratic in wn. However,
we observe that the ratios (f (2)

wn/f (0)
wn ) and (f (3)

wn/f (0)
wn ) are nearly independent of wn for

nearly elastic particles.
For inelastic particles with en = 0.6, the distribution function f (0)

wn decreases

exponentially, and it decreases by more than an order of magnitude for (wn/
√

2T ) = 1.
In this range, the distribution ratios are nearly independent of the relative velocity.
A constant distribution ratio provides a significant simplification, because the higher
moments of the distributions f (1)

wn , f (2)
wn and f (3)

wn can be written as the products of the
distribution ratio and the corresponding moments of f (0)

wn . Since we already have an
analytic form for the distribution function f (0)

wn , this can be used to predict analytic
forms for the other spherical harmonic components of the distribution function. These
can then be used to provide predictions for the shear stress and the normal stress
differences.

One possible approximation which could be made to relate f (1)
wn and f (0)

wn is to
assume that the mean strain rate affinely advects the distribution function. In this
case, the relative velocity distribution should be a function of (w − G · k) only,
where w = (uα − uβ) is the difference in the absolute velocity of the two particles,
and (w − G · k) is the difference in the fluctuating velocities. If the relative velocity
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distribution function is an exponential distribution, the equivalent of (3.53) for a
distribution function of the form (3.38), with w replaced by (w − G · k), is

fwn(wn) = α exp (−αwn) (1 − αk · G · k) . (3.55)

Using this, the ratio (f (1)
wn/f (0)

wn ) is given by

(
f (1)

wn/f (0)
wn

)
= 2

√
2π

15
αγ̇ . (3.56)

We find that the above prediction is too high by more than an order of magnitude
for all the cases studied here, leading us to conclude that we cannot approximate the
distribution function by an isotropic exponential distribution affinely deformed by
the mean shear.

There are two ways in which one could evaluate the constant distribution ratios. The
first is to take the value in the limit of small wn, where the distribution ratio is nearly
a constant. However, this method has the drawback that the actual value obtained
depends on the range of wn over which the averaging is carried out. One could also
define the distribution ratio as the ratios of the integrals of the distribution functions

c(1)
wn =

∫ ∞
0

dwnf
(1)
wn∫ ∞

0
dwnf

(0)
wn

c(2)
wn =

∫ ∞
0

dwnf
(2)
wn∫ ∞

0
dwnf

(0)
wn

c(3)
wn =

∫ ∞
0

dwnf
(3)
wn∫ ∞

0
dwnf

(0)
wn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.57)

This definition is advantageous because it is unambiguous. In addition, while carrying
out the integrals, the regions where the distribution function have lower numerical
values are given less weightage. The values of the ratios of the integrals of the distri-
bution function are shown as a function of volume fraction for different coefficients of
restitution in figure 9. It is observed that c(1)

wn is negative, and increases as the coefficient
of restitution decreases. It is also observed that c(1)

wn is larger for rough particles than
for smooth particles. The ratio c(2)

wn is mostly negative for the range of volume fractions
and coefficients of restitution studied here, and is larger for rough particles. The ratio
c(3)
wn is much smaller in magnitude than c(2)

wn, and is negative in sign. These coefficients
are used to calculate the shear stress and the normal stress differences a little later.

Before proceeding to use the relative velocity distribution to obtain the dissipation
rate and the stress, we briefly examine the distribution of the tangential velocity and
the angular velocity for rough particles in the dense limit. The tangential velocity
distribution is not relevant for the dissipation rate and stresses for smooth particles,
because there is no transmission of impulse in the direction tangential to the surface
at contact. For rough particles, there is a transmission of impulse tangential to the
surface at contact, and this leads to a non-zero contribution to the shear stress.
The distributions for the pre-collisional velocity perpendicular to the line joining the
centres, f

(0)
wt (wt ), and the sum of the pre-collisional angular velocities along the line

joining the centres, f (0)
υt (� t ), are shown for rough particles at volume fraction φ = 0.56

for different coefficients of restitution in figures 10 and 11. It is observed that the
relative tangential velocity and the relative angular velocity are close to Gaussian
distributions, though their variances differ from the expected value 2T for an elastic
system. Also shown in figures 10 and 11 are the best Gaussian fits for the distribution
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Figure 9. The ratios −c
(1)
wn (a), c

(2)
wn (b) and c

(3)
wn (c), as a function of volume fraction φ, for

different coefficients of restitution (�) en = 0.98, (�) en = 0.95, (∇) en = 0.9, (�) en = 0.8, (�)
en = 0.7, (�) en =0.6. The open symbols show the results for smooth particle et = −1, and the
filled symbols show the results for rough particles et =1, and the open symbols with inscribed
dots show the results for et = en.

functions. It is observed that the Gaussian fits for the relative tangential velocity wt

and the relative angular velocity � t are in good agreement with the distributions
evaluated in simulations.

Next, we examine the deviation from the relative mean square velocities and angular
velocities from the values for an elastic fluid by plotting (〈w2

t 〉/2T ) and (〈I� 2
t 〉/2T )

in figure 12. As expected, these ratios are close to 1 for nearly elastic collisions, but
deviate significantly from 1 as collisions are made more inelastic. Interestingly, it is
observed that the mean square of the tangential relative velocity is larger than 2T ,
though the maximum deviation is less than 10 % even for highly inelastic collisions
with en =0.6. The mean square of the relative angular velocity during a collision
shows a larger deviation from 2T , but the form of the distribution is still Gaussian,
as shown in figure 12. It is observed that the effective temperature for the relative
tangential velocity is quite close to the translational temperature even for en = 0.6,
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Figure 10. The relative velocity distribution f
(0)
wt as a function of the scaled relative velocity

(wt/
√

2T ) for ν = 0.56, for coefficients of restitution en = 0.95, et = 1.0 (◦); en =0.9, et = 1.0
(�); en = 0.8, et = 1.0 (�); en = 0.7, et = 1.0 (∇); en = 0.6, et = 1.0 (�); en = 0.9, et =0.9 (∗);
en = 0.8, et = 0.8 (×). (a) The distribution function on a linear scale and (b) the same
distribution on a semi-log scale. The dotted lines are the best Gaussian fits, and the broken
line is the Gaussian distribution function for an elastic system.
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Figure 11. The relative angular velocity distribution f
(0)
υt as a function of the scaled

relative velocity (υt/
√

2T/I) for ν = 0.56, and for coefficients of restitution en = 0.98, et = 1.0
(◦); en = 0.9, et = 1.0 (�); en =0.8, et = 1.0 (�); en = 0.7, et =1.0 (∇); en = 0.6, et =1.0 (�);
en = 0.9, et = 0.9 (∗); en = 0.8, et = 0.8 (×). (a) The distribution function on a linear scale and
(b) the same distribution on a semi-log scale. The dotted lines are the best Gaussian fits, and
the broken line is the Gaussian distribution function for an elastic system.
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Figure 12. The mean square of the relative velocities scaled by two times the temperature,
(〈w2

t 〉/2T ) (filled symbols) and (I〈υ2
t 〉/2T ) (open symbols), as a function of the volume fraction

for rough particles et =1.0 (a) and et = en (b), and with normal coefficients of restitution (�)
en = 0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8; (�) en = 0.7; (�) en = 0.6.

while the effective temperature for the relative rotational velocity does decrease to a
minimum of about 0.6 times the translational temperature. For the case of et = en,
there is a significantly larger decrease in the ratio of the mean square of the relative
angular velocity distribution, and the effective temperature for the relative rotational
velocity decreases to about 0.3 times the translational temperature. This indicates
that the rotational velocity fluctuations decrease faster than the relative translational
velocity fluctuations as the coefficient of restitution is decreased, even though the
distribution functions continue to be well approximated by a Gaussian distribution.

The pair distribution function, as calculated from (3.34) is compared with that
obtained using the Gaussian distribution (3.36) for the relative velocity distribution
and for elastic particles

ν = ρ2χ
√

2πTwn = 2ρ2χ
√

πT (3.58)

in figures 13 and 14. Here, the temperature for the relative velocity distribution Twn

is two times the translational temperature for the particles. The pair distribution
function calculated using the correction proposed by Garzo & Dufty (1999) differs
by less than 2 % from that calculated using (3.58) in the present calculations, and
so we do not plot this separately here. It is observed there is a large difference
between the two results, which has a maximum of a factor of 4 for en = 0.6. The
Gaussian approximation for the relative velocity (3.58) always underestimates the
pair correlation function in all cases, except for smooth particles with en = 0.98. The
over-estimation in the case of en =0.98 for smooth particles is because the effective
normal temperature is larger than the translational temperature of the particles. This
indicates that (3.58), or the modified form of Garzo & Dufty (1999), is not a good
approximation for the pair distribution function in the dense limit, and it is preferable
to use a correlation for the collision frequency in the form of (3.34).
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1
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φ

Figure 13. The pair distribution function χ as a function of the volume fraction φ for smooth
particles with et = −1, and with normal coefficient of restitution en = 0.98 (�); en = 0.95 (�);
en = 0.9 (∇); en = 0.8 (�); en = 0.7 (�); en = 0.6 (�). The filled symbols show the results
obtained using (3.34), while the open symbols show the result using a Gaussian distribution
for the relative velocity distribution (3.58). The pair distribution function calculated using the
correction proposed by Garzo & Dufty (1999) is indistinguishable from that calculated using
(3.58).

1
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0.40 0.44 0.48 0.52 0.56

φ

Figure 14. The pair distribution function χ as a function of the volume fraction φ
for rough particles with coefficient of restitution en = 0.98, et = 1.0 (�); en = 0.95, et = 1.0
(�); en = 0.9, et = 1.0 (∇); en = 0.8, et = 1.0 (�); en = 0.7, et = 1.0 (�); en = 0.6, et = 1.0 (�);
en = 0.9, et = 0.9 (∗); en = 0.8, et = 0.8 (×). The filled symbols and the symbols with superscribed
circles show the results obtained using (3.34), while the open symbols and the symbols without
superscribed circles show the result using a Gaussian distribution for the relative velocity
distribution (3.58). The pair distribution function calculated using the correction proposed by
Garzo & Dufty (1999) is indistinguishable from that calculated using (3.58).

The rate of dissipation of energy can be obtained quite easily because the dissipation
is only due to the change in the normal velocity at contact

D = −ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)wn

(
w

′2
n − w2

n

4

)
, (3.59)
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where w′
n = −enwn is the post-collisional relative velocity in a collision in which the

pre-collisional relative velocity is wn. Note that in (3.59), we have included the energy
dissipation of only one of the particles involved in the collision, and so we do not
have the factor (1/2) which takes into account double-counting. The integrals over
the tangential component of the relative velocity wt can be explicitly carried out, to
provide

D =
ρ2πχ(1 − e2

n)

2

∫ ∞

0

dwnf
(0)
wn (wn)w

3
n. (3.60)

The collision frequency can be written, in terms of the relative velocity distribution,
as

ν =
ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)wn

= 2πρ2χ

∫ ∞

0

dwnf
(0)
wn (wn)wn. (3.61)

The ratio of the rate of dissipation of energy and the collision frequency is

D

ν
=

1 − e2
n

4

∫ ∞

0

dwnf
(0)
wn (wn)w

3
n∫ ∞

0

dwnf
(0)
wn (wn)wn

. (3.62)

The rate of dissipation of energy for rough particles is little more difficult to
calculate, since it is necessary to express the linear and angular velocities of the
particles in terms of w and � using (3.11), and then simplify the resulting expressions.
After some algebra, we obtain

D =
−ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)(w.k)

×
(

I
(
1 − e2

t

)
1 + 4I (4wi(δij − kikj )wj + � i(δij − kikj )� j )

+
4I(1 + et )

2(1 − 4I)

(1 + 4I)2
εijkwikj� k +

(
1 − e2

n

)
(kiwi)

2

)
. (3.63)

A direct simplification of the above equation can be used to isolate the contributions
to the rate of dissipation due to the tangential and normal impulses,

D =
ρ2πχ

(
1 − e2

n

)
2

∫
dwnf

(0)
wn

w3
n

+
ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)wn

(
I(1 − e2

t )

1 + 4I
(
4w2

t + � 2
t

)
+

4I(1 + et )
2(1 − 4I)

(1 + 4I)2
εijkwt ikj� tk

)
. (3.64)

For perfectly smooth particles with et = −1, it is clear that the rate of dissipation
depends only on the distribution function for the normal velocity. In the case of
perfectly rough particles, where et = 1, we find that the rate of dissipation of energy
depends only on the distribution f (0)

wn because the average of εijkwt ikj� tk is identically
zero. In this case, the rate of dissipation of energy reduces to (3.60), which is the same
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Figure 15. The rate of dissipation of energy due to inelastic collisions D, divided by
the collision frequency and T , as a function of the volume fraction for smooth particles
et = −1 (a) and for rough particles et = 1 and et = en (b), for different normal coefficients of
restitution, (�) en =0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8; (�) en = 0.7; (�) en = 0.6; (∗)
en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8. The filled symbols show the results from simulations,
while the open symbols show the prediction (3.62) with the relative velocity distribution given
by (3.40) for particles with et = 1 and et = −1. Only the simulation results are shown for
particles with et = en.

as that for smooth particles. In the case of rough particles with et = en, the dissipation
rate requires the distribution of linear and angular velocities tangential to the surfaces
at contact. This could be done using a Gaussian form as shown in figures 10 and 11,
but we do not proceed further as this would involve additional fitting functions.

The ratio of the dissipation rate and the collision frequency, using approximation
(3.40) for the normal velocity distribution, with α given by (3.45) and (3.46), and the
constant C given by (3.43) and (3.44), is shown in figure 15. It is observed that there
is an excellent numerical agreement between predictions of approximate form (3.40)
and the actual value obtained in simulations indicating that the dissipation rate can
be accurately predicted using a good model for the relative velocity distribution in the
dense limit. It is observed that the ratio of the dissipation rate and frequency shows
a much larger decrease near the close packing limit for et = en = 0.8. This is related
to the larger increase in the parameter α in figure 4 for et = en = 0.8, which results in
a much smaller ratio of the dissipation rate and frequency. A similar feature will be
observed a little later for the ratio of the components of the stress and the collision
frequency.

The collisional stress, due to the collisional transport of momentum, can be written
using indicial notation as

σij =
ρ2χ

2

∫
dw

∫
d�

∫
dkf (w, � , k)wn(�ui)kj , (3.65)

where �ui , the impulse in a collision, is (�wi/2), where �wi is the change in
the velocity difference between the two particles. We first examine the case of
smooth particles, for which the impulse is along the line joining the centres k, and
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Figure 16. The isotropic part of the stress tensor divided by the collision frequency (p/ν), as a
function of the volume fraction for smooth particles et = −1 (a) and for rough particles et = 1
(b), for different normal coefficients of restitution, (�) en = 0.98; (�) en = 0.95; (∇) en =0.9;
(�) en = 0.8; (�) en = 0.7; (�) en = 0.6; (∗) en =0.9, et = 0.9; (×) en = 0.8, et =0.8. The filled
symbols show the results from simulations, while the open symbols show the prediction (3.68)
with the relative velocity distribution given by (3.40) for particles with et = 1 and et = −1. Only
the simulation results are shown for particles with et = en.

�wi = − (1 + en)wnki . In this case, the stress is given by

σij =
ρ2χ(1 + en)

4

∫
dw

∫
dkf (w, k)w2

nkikj . (3.66)

The pressure p = (σii/3) is only due to the normal component of the impulse on the
particles

p =
πρ2χ(1 + en)

3

∫
dwn w2

nf
(0)
wn (wn). (3.67)

The ratio of the pressure and the collision frequency is given by

p

ν
=

(1 + en)

6

∫
dwn w2

nf
(0)
wn (wn)∫

dwn wnf
(0)
wn (wn)

. (3.68)

The ratio of the pressure and the collision frequency, using approximation (3.40) for
the normal velocity distribution, with the constants α given by (3.45) and (3.46) and
C given by (3.43) and (3.44), is shown in figure 16. It is observed that there is excellent
numerical agreement between approximate form (3.40) and the actual value obtained
for rough particles. This is because, as can be seen from figure 2, the exponential
approximation for the distribution function is a very good approximation for rough
particles. The agreement for smooth particles is also numerically very good over the
range of coefficients of restitution examined here, though it is not as good as that for
rough particles. This is because of the deviation of the actual distribution function
from the exponential distribution, as shown in figure 1. Therefore, it is clear that
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Figure 17. The negative of the shear stress divided by the collision frequency (−σxy/ν), as
a function of the volume fraction for smooth particles (et = −1) (a) and for rough particles
(et = 1) (b), for (�) en =0.98; (�) en =0.95; (∇) en = 0.9; (�) en = 0.8; (�) en = 0.7; (�) en = 0.6;
(∗) en =0.9, et = 0.9; (×) en = 0.8, et =0.8. The filled symbols show the results from simulations,
while the open symbols show the prediction obtained from the dissipation rate (3.62) using
the energy balance equation, with the relative velocity distribution given by (3.40) for particles
with et = 1 and et = −1. Only the simulation results are shown for particles with et = en.

the pressure can be accurately predicted using a good model for the relative velocity
distribution in the dense limit.

The shear stress can be obtained from the velocity distribution function in two
ways. The first is to use the energy balance condition to obtain the shear stress
from the rate of dissipation of energy. The stress obtained in this manner, shown in
figure 17, is in excellent agreement with the simulation results for both rough and
smooth particles; this is not surprising because the stress has been obtained from the
dissipation rate, and (3.40) was found to predict the dissipation rate very well. The
other approach is to use the decomposition of the normal velocity distribution in
spherical harmonics in order to obtain the shear stress. For smooth particles, there
is no tangential impulse at the point of collision. Therefore, the integral over the
tangential velocity can be explicitly carried out to obtain the shear stress. However,
for rough particles, the tangential impulse has to be incorporated, and the stress
calculated using only the normal impulse will provide only a part of the total shear
stress. In order to distinguish between the two contributions, we define the shear
stress due to the normal impulse as

σn
xy = ρ2χ

∫
dw

∫
d�

∫
dkf (w, � , k)wn((�ui)ki)kxky, (3.69)

where (�ui)ki is the component of the impulse along the line joining the centres
of the particles. The expression for the shear stress due to the normal impulse can
be simplified using �ui = −((1 + en)wi/2), and integrating over the angular velocity
distribution and the tangential component of the linear velocity distribution, to obtain

σn
xy = 2πρ2χ(1 + en)

√
π

15

∫ ∞

0

dwn w2
nf

(1)
wn (wn). (3.70)
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Figure 18. The negative of the shear stress due to normal impulse divided by the pressure
(−σn

xy/p), as a function of the volume fraction for, (a) smooth particles (et = −1) and (b) rough
particles (et = 1), for (�) en = 0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8; (�) en = 0.7; (�)
en = 0.6; (∗) en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8. The filled symbols show the results from
simulations, while the open symbols show the prediction of (3.72) for particles with et = 1 and
et = −1. Only the simulation results are shown for particles with et = en.

The ratio of σn
xy and the pressure is given by

σn
xy

p
= 6

√
π

15

∫ ∞

0

dwn w2
nf

(1)
wn∫ ∞

0

dwn w2
nf

(0)
wn

. (3.71)

The above relationship is exact, and we have verified that the simulation results are
in numerical agreement to within 0.1 %. An approximation can be made if we assume
that the ratio of the distribution functions f (1)

wn and f (0)
wn is independent of velocity. In

this case, the ratio of the shear stress and the pressure can be written as

σn
xy

p
= 6

√
π

15
c(1)
wn, (3.72)

where c(1)
wn is defined in (3.57).

The ratio (−σn
xy/p) is shown as a function of volume fraction for different

coefficients of restitution in figure 18. Here, the purpose is to test the approximation
that (f (1)

wn/f (0)
wn ), (f (2)

wn/f (0)
wn ) and (f (3)

wn/f (0)
wn ) are independent of the relative velocity wn.

The filled symbols are the simulation results, while the open symbols show the
result obtained using approximation (3.72). It is observed that there is fairly good
quantitative agreement for the normal component of the shear stress for rough
particles in the range 0.52 � φ � φmax . This indicates that approximation (3.72),
which assumes that the ratio (f (1)

wn/f (0)
wn ) is independent of wn is a good one for rough

particles. The agreement is not as good for smooth particles, and there are errors of
the order of 15 % in the dense limit.

Since the stress due to the normal impulse provides only a part of the shear stress
for rough particles, it is of interest to determine the ratio of the shear stress due to
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Figure 19. The ratio of the shear stress due to the normal impulse between particles σn
xy

and the total shear stress σxy as a function of volume fraction φ for rough particles,
(�) en = 0.98, et = 1.0; (�) en = 0.95, et = 1.0; (∇) en =0.9, et = 1.0; (�) en = 0.8, et = 1.0; (�)
en = 0.7, et = 1.0; (�) en = 0.6, et =1.0; (∗) en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8.

normal impulse and the total shear stress. This ratio is shown in figure 19, where it
is observed that (σn

xy/σxy) varies in a narrow range between about 0.8 and 0.9 for the
entire range of volume fractions and coefficients of restitution considered here. For
rough particles with coefficient of restitution in the range 0.6–0.7, the ratio is very
close to 0.8, and is nearly independent of volume fraction for φ > 0.52. This implies
that the stress due to the tangential impulse at contact is not more than 10–20 % of
the total stress even in rough particles with coefficient of restitution et =1, and the
shear stress can be well approximated as the stress due to the normal impulse even
for rough particles. This is significant, because the stress due to the normal impulse
can be calculated from the normal velocity distribution alone, and it is not necessary
to have a model for the distribution of the relative velocity tangential to the surfaces
of contact.

The normal stress differences can be determined from the distributions f (2)
wn and

f (3)
wn in a manner similar to (3.72) for the shear stress. It can easily be shown, based

on symmetry arguments, that the components σxx , σyy and σzz result only from
the normal impulse between particles at contact; there is no contribution to these
components due to the tangential impulse at contact in a simple shear flow. Using
this simplification, the final results for the ratio of the normal stress differences and
the pressure are

σxx − σyy

p
= 12

√
π

15

∫ ∞

0

dwn w2
nf

(3)
wn∫ ∞

0

dwnw
2
nf

(0)
wn

(3.73)

σyy − σzz

p
= −6

√
π

15

∫ ∞

0

dwn w2
nf

(3)
wn∫ ∞

0

dwnw
2
nf

(0)
wn

− 6

√
π

5

∫ ∞

0

dwn w2
nf

(2)
wn∫ ∞

0

dwnw
2
nf

(0)
wn

. (3.74)
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Figure 20. The scaled first normal stress difference ((σxx −σyy)/p), as a function of the volume
fraction for smooth particles et = −1 (a) and for rough particles et = 1 (b), for different normal
coefficients of restitution, (�) en = 0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8, et = 1.0; (�)
en = 0.7, et = 1.0; (�) en =0.6, et = 1.0; (∗) en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8. The filled
symbols show the results from simulations, while the open symbols show the results of (3.75)
for particles with et = 1 and et = −1. Only the simulation results are shown for particles with
et = en.

If we assume that the ratios (f (2)
wn/f (0)

wn ) and (f (3)
wn/f (0)

wn ) are independent of velocity wn,
then (3.73) and (3.74) can be simplified

σxx − σyy

p
= 12

√
π

15
c(3)
wn (3.75)

σyy − σzz

p
= −6

√
π

15
c(3)
wn − 6

√
π

5
c(2)
wn. (3.76)

The results of the above approximation, with c(2)
wn and c(3)

wn given by (3.57), are shown
in figures 20 and 21.

The simulation results show that the magnitude of the first normal stress difference
is significantly smaller than the second normal stress difference. In addition, the first
normal stress difference could be either positive or negative, while the second normal
stress difference is always positive. Both of these observations are in agreement with
the results based on the Enskog approximation (Kumaran 2006a), as well as with
simulation results (Silbert et al. 2001). For the second normal stress difference depicted
in figure 21, the agreement between the theoretical predictions and the simulation
results is quite good for coefficient of restitution 0.9 and above. The agreement is
poorer as the coefficient of restitution decreases, primarily because the approximation
that the distribution ratio is a constant, implicit in (3.57), becomes poorer as collisions
become more inelastic. If we use the actual distributions calculated in the simulations
in (3.74) for calculating the normal stress differences, we obtain results accurate to
within 1 % of the value obtained in simulations. The qualitative trends of the second
normal stress difference are well captured by the theory. The agreement is poorer for
the first normal stress difference for smooth particles. This is because the first normal
stress difference involves calculating the small difference of two stress components
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Figure 21. The scaled second normal stress difference ((σyy − σzz)/p), as a function of the
volume fraction for smooth particles et = −1 (a) and for rough particles et =1 (b), for different
normal coefficients of restitution, (◦) en = 0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8, et = 1.0,
(�) en = 0.7, et = 1.0; (�) en = 0.6, et = 1.0; (∗) en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8. The filled
symbols show the results from simulations, while the open symbols show the results of (3.76)
for particles with et = 1 and et = −1. Only the simulation results are shown for particles with
et = en.

σxx and σyy which are nearly equal in value, and the numerical errors are quite
large.

As an application of the model developed here to a system of practical interest, we
consider the relation between the volume fraction and the angle of inclination for the
flow down an inclined plane, which is inclined at an angle θ to the horizontal. The
flow down an inclined plane has several striking features whose physical mechanisms
are just beginning to be understood. Even though the flow is relatively dense, with
volume fraction between 52 % and 58 %, recent work (Reddy & Kumaran 2007)
indicates that particle interactions are dominated by binary contacts for particles
with shear modulus comparable to sand or glass. Even for softer particles where there
are multiple contacts, it has been found that brief binary contacts dominate (Silbert
et al. 2007). Many of the qualitative features of the flow have been understood on the
basis of constitutive relations derived using the Enskog procedure (Kumaran 2008),
where the transmission of stress is assumed to be due to binary collisions. Though
the earlier analysis of Kumaran (2006a, 2008) did explain all the qualitative features
of the inclined plane flow, the quantitative estimates for the angle of repose, and the
variation of the angle of inclination with volume fraction, were not in agreement with
simulations. It was suggested that the poor agreement may be because the relative
velocity distributions were affected by the correlations between particles. Since we
have calculated the relative velocity distributions in a dense flow in the present
analysis, we re-calculate the angle of repose and the variation of the volume fraction
with angle of inclination using the model proposed here.

From momentum balance, the rate of change of the shear and normal stresses
perpendicular to the plane of the flow are equal to the body forces in the respective
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Figure 22. The tangent of the angle of inclination, tan (θ ) = − (σxy/σyy), as a function of the
volume fraction for smooth particles with et = −1.0 (a) and rough particles with et = 1.0 (b)
and for (�) en = 0.98; (�) en = 0.95; (∇) en = 0.9; (�) en = 0.8, et = 1.0; (�) en = 0.7, et =1.0;
(�) en = 0.6, et = 1.0; (∗) en = 0.9, et = 0.9; (×) en = 0.8, et = 0.8. The solid symbols show the
results of the simulations, and the open symbols show the results of the model using (3.40)
for the relative velocity distribution, with α given by (3.45) and (3.46), C given by (3.43) and
(3.44), the pressure given by (3.68) (we assume σyy = p in the model), the shear stress obtained
as the ratio of dissipation rate and strain rate, and the dissipation rate obtained from (3.62)
for particles with et = 1 and et = −1. Only the simulation results are shown for particles with
et = en.

directions

(dσxy/ dy) = −ρg sin (θ),

(dσyy/dy) = ρg cos (θ). (3.77)

The ratio of the shear and normal stresses is a constant in the flow

(σxy/σyy) = − tan (θ). (3.78)

The above ratio can be used to determine the variation of tan (θ) with volume
fraction for smooth and rough particles with different coefficients of restitution. The
simulation results are compared with the theoretical model predictions using (3.68)
for the pressure, and (3.62) for the dissipation rate, and using the energy balance
condition that the dissipation rate is the product of the shear stress and strain rate
in figure 22. The filled symbols show the results from simulations, while the open
symbols are the prediction of the model. It is observed that the difference between
the simulation results and the model prediction is equivalent to a difference in angle
of only about 1◦.

4. Conclusions
At the outset, it is important to note that the simulations carried out here have

all been on relatively small systems of 500 particles. In addition, the event-driven
simulations were able to access a maximum volume fraction in the range 0.56 (for
en = 0.6) to 0.62 (for en = 0.98), and so results for higher volume fractions were
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obtained by extrapolation. It is necessary to carry out simulations of larger sizes,
and it is possible that the numerical values of the results obtained here will change
slightly if larger system sizes are used, and simulations of higher numerical accuracy
are used to probe higher volume fractions. However, the simulation studies have given
us fundamental insights into several aspects of the shear flow of inelastic particles,
and have clarified a number of puzzles that have existed previously in literature. The
nature of the insights obtained are likely to be more robust, and to hold even for
larger systems. We discuss these in detail, and place them in the context of previous
studies.

4.1. Ordering

One of the important results is the lack of icosahedral or planar ordering in sheared
systems, provided the system size is sufficiently large. In an equilibrium elastic fluid,
there is a crystallization transition at a volume fraction of 0.49, as evidenced by the
increase in the icosahedral order parameter Q6 from zero to a value slightly higher
than 0.5. In a sheared fluid of inelastic particles, we find that there is no transition to
an ordered structure if the system size is sufficiently large, and the system continues
to be in a random state with Q6 near zero. However, when the system size is small,
there appears to be first an ordering transition, and then subsequent disordering when
the volume fraction is further increased. It appears that the ordered state is unstable
to perturbations with wavelength greater than a minimum value, and undergoes a
spontaneous transition to the random state; this transition requires further systematic
study.

There is a significant difference in the structure between the equilibrium and
sheared states, so that the order parameter and the pair distribution function in the
sheared state cannot be expressed simply as a small perturbation about their values
in the equilibrium state. Another method that has been proposed (Lutsko 1996) is
an expansion of the pair distribution function for the shear flow in powers of the
strain rate, in which the leading contribution is the equilibrium distribution function.
This expansion is also not likely to accurately represent dense sheared flows, since
the structure in the equilibrium and sheared states are so different.

It should be noted that this transition is different from the shear melting transition in
colloidal crystals (Stevens & Robbins 1993; Lahiri & Ramaswamy 1994) for particles
which have long-range electrostatic interactions. In a colloidal crystal, the melting of
a solid to a liquid is induced by an increase in the strain rate at constant temperature,
and the temperature and strain rate are independent variables. Since there is an
energy scale which characterizes the strength of the interaction between particles, the
temperature is usually scaled by the interaction potential between particles, while the
shear rate is scaled by the diffusion time. A similar distinction can also be drawn with
the ordering in a sheared elastic or thermostatted fluid (Kirkpatrick & Nieuwoudt
1986; Lutsko & Dufty 1986; Lutsko 1996), where the temperature and the strain rate
can be varied independently, and where shear ordering can be obtained as the strain
is increased. Here, a non-dimensional strain rate can be defined by scaling the strain
rate by the square root of the temperature of the system. In the present case, there is
a coupling between the temperature and the strain rate due to energy balance, and
so the strain rate can be set equal to 1 without loss of generality. Consequently, the
state of order of the system depends only on the volume fraction of the particles and
the system size.

The ordering in the present system is also different from the shear ordering in low-
Reynolds-number suspensions (Foss & Brady 2000), where the ordering is induced
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by changes in the Péclet number. The strain rate in suspensions is also scaled by the
inverse of the diffusion time, and the ratio is the square root of the Péclet number. In
the present system, the strain rate and the temperature are coupled through the energy
balance equation, and since all time scales can be scaled by the inverse of the strain
rate, the transition cannot be induced by variation in the strain rate. The only relevant
parameters for the order–disorder transition (apart from the wavelength or box size)
are the volume fraction and the coefficients of restitution. Therefore, shear ordering
and disordering in the present system is qualitatively different from that observed in
systems such as colloidal crystals or suspensions in previous studies. It should also
be noted that the aforementioned studies were carried out at lower volume fractions
than that in the present analysis, where we have specifically examined the approach
to the close packing limit. It is likely that the results obtained for moderately dense
systems may not be applicable as the close packing limit is approached.

This indicates that previous simulation results indicating the presence of ordering in
sheared systems (Kumar & Kumaran 2006) should be treated with care, because the
validity of these results is limited to small simulation cells; it is likely that the ordering
would have disappeared if the simulation cells were made larger. The present analysis
indicates that the rheology of a granular shear flow is coupled to the ordering, and
it underscores the importance of monitoring the order parameters when rheological
experiments or simulations are performed. This is of particular importance when
comparing the rheology in different flow systems (GDR MiDi 2004; Delannay et al.
2007), since the order parameter may vary from system to system, and it may also
vary within a system between the bulk flow and the flow near boundaries.

The presence of ordering in small systems also has implications for the flow near
boundaries, since the presence of a flat surface bounding a flow of monodisperse
particles is likely to order the particles near the boundary. Simulations consistently
show a signature of ordering, which is the layering of particles, at boundaries (see, for
example, Delannay et al. 2007). However, the planar and icosahedral order parameters
are seldom probed near the boundaries. Since the rheology of the system is dependent
on the state of ordering in the system, it is essential to incorporate this in theories
when treating the flow near boundaries. This could explain why theories based on
the assumption of a random state typically predict a small increase in the volume
fraction at the boundaries, but this increase is seldom observed in simulations.

Finally, we should note that ordering is a phenomenon largely restricted to
monodisperse spherical particles. A small amount of polydispersity is likely to destroy
order (in addition to generating other complications like segregation), and so the
random state is definitely more applicable to real systems. The ordered state is
very limited in its applicability, and the ordering near boundaries for the flow of
monodisperse particles is not likely to be observed in real systems with a small
amount of polydispersity. Therefore, it is more natural to consider the random state
in the context of practical applications.

4.2. Collision frequency and pair distribution function

An important result of the present analysis is that the collision frequency in a sheared
granular flow diverges at a lower volume fraction than φc =0.64 for random close
packing. The volume fraction at which the collision frequency diverges is designated
as φad , the volume fraction for arrested dynamics, where the collision frequency
and stress go to infinity at constant strain rate, or the strain rate goes to zero at
constant stress. The equivalent volume fraction for an elastic hard-particle system in
the absence of shear is the random close packing volume fraction φc = 0.64, where the
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collision frequency diverges at constant temperature. The term ‘arrested dynamics’
is used here to distinguish it from the other volume fractions such as the jamming,
isostatic and close-packing.

It is clear that the arrest of particle motion under shear, as the volume fraction is
increased, is a dynamical phenomenon; the analogue in an equilibrium hard sphere
system is the random close packing volume fraction where the collision frequency
diverges at constant temperature. Another important finding regarding the volume
fraction for arrested dynamics is that the variance of the relative velocity distribution
of pairs of particles along the line joining their centres seems to show a decrease to zero
as the volume fraction is approached, though the rate of decrease is weak (logarithmic
for rough particles). This indicates that the degrees of freedom corresponding to the
relative motion between pairs of particles is getting arrested faster than that for single
particle motion.

The functional form of the variation of the collision frequency with volume fraction
also depends on the coefficient of restitution. For rough particles, it is found that the
volume φad at which the frequency diverges decreases from 0.64 for elastic particles
to a minimum of about 0.58 as the coefficient of restitution is decreased. In addition,
whereas the collision frequency increases proportionally to (φc −φ)−1 near the random
close packing volume fraction, it shows a power law increase proportional to (φad −φ)a

near the volume fraction for arrested dynamics, where the exponent a increases from
1 as the particles are made more inelastic.

It is important to note that for particles with elastic interactions, the volume
fraction of 0.64 is of significance only for hard monodisperse spheres. If particles
can be deformed without breaking, then it would be possible to achieve volume
fractions close to 1.0. However, the volume fraction of 0.64 still has significance, in
that it is the maximum volume fraction that can be achieved for hard particles. In
the context of soft particles, the implication is that the system has to transition to
a multi-body contact regime at or lower than the volume fraction lower than 0.64;
the transition volume fraction will approach 0.64 as the particle stiffness is increased.
In the present analysis, we have found that the arrested dynamics volume fraction
(defined as the volume fraction at which the collision frequency diverges) is lower for
a sheared inelastic fluid of hard particles; this implies that in soft-particle systems
under shear, the transition from a binary contact regime to a multi-body contact
regime should take place at a lower volume fraction than that for elastic particles
in the absence of shear. This enables us to resolve some apparent inconsistencies in
previous soft-particle simulation results.

One of the puzzling features observed in simulations of dense granular flows down
an inclined plane (Silbert et al. 2001), is that the maximum volume fraction at the
initiation of flow seems to be about 59 %, whereas the maximum volume fraction
attainable for random close packing of elastic particles is 64 %. The present analysis
indicates that the maximum close packing volume for a shear flow depends on the
coefficient of restitution, and the numerical figure of 58.5 % for the lowest coefficients
of restitution is close to the value of 59 % observed in simulations of flow down an
inclined plane. The discrepancy of less than 1 % between the two values could be
because the system sizes used here are too small. It is also possible that for the volume
fraction between 58 % and 59 %, the flow is no longer in the binary contact regime,
and it is necessary to incorporate multiple contacts in order to accurately capture the
rheology of the flow.

The present simulations may not be able to capture the angle of repose if the
system is in the multi-body contact regime just before the flow stops. However, the
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multi-body contact regime is often associated with chains of particles which transmit
stress from one boundary to the other. This requires a compressive load at both
boundaries. The flow down an inclined plane does not have a compressive load at
the free surface, and so it is difficult to see how stress could be transmitted by force
chains. That is the reason why the maximum volume fraction in inclined plane flows
is about 59 %, which is the volume fraction at which there should be a transition
from a binary contact regime to a multi-body contact regime for very stiff particles.

The pair distribution function is usually derived from the collision frequency using
(3.58). The present analysis indicates that this equation is not accurate in dense
flows of inelastic particles, because the distribution function for the relative normal
velocities of the particles is not a Gaussian distribution. It should be noted that
the definition of the pair distribution function we have used here is not the usual
thermodynamic definition, but rather a definition which provides the correct frequency
of collisions between particles. This is more appropriate for a dense flow, because we
are interested in the collisional transport of momentum and energy in order to derive
constitutive relations, and it is appropriate to choose the pair distribution function
in such a way that it provides the correct collision probability for particles that are
approaching each other prior to collision. We find that there is a significant numerical
difference between the pair distribution function calculated in this manner, and that
derived previously in literature (Mitarai & Nakanishi 2007) using (3.58), or the pair
distribution function of Garzo & Dufty (1999) which incorporates the inelasticity
of the particles. The pair distribution function also diverges much faster than the
Carnahan–Starling pair distribution function, or the high density pair distribution
function of Torquato (1995). The magnitude of the deviation from the equilibrium
distribution in a shear flow is also much larger than that observed by Luding (2001)
for dense hard disc systems in the absence of shear. It should be noted that the
analysis of Luding (2001) considers both the random and the ordered branches in
two dimensions. In contrast, we do not find an ordered state for a shear flow of
inelastic particles when the coefficient of restitution is less than about 0.9. In the
study of sheared hard core fluids by Lutsko (2001), the maximum increase in the pair
distribution function at volume fractions of about 25 % was found to be about 1 at
contact. The present difference in the pair distribution function is much larger; in
addition, the present analysis indicates a divergence of the pair distribution function
at a lower volume fraction than that for an elastic fluid.

4.3. Diffusion

In all the simulation studies carried out it was found that the diffusion coefficient
is always non-zero for the random state, but it decreases almost discontinuously to
zero when there is an ordering transition. This suggests that previous simulation
results, indicating that there is no diffusion in sheared granular materials with volume
fraction of above 55 % (Campbell 1997), are valid only if the system size is sufficiently
small, so that there is ordering. The trends shown by the diffusion coefficients are
qualitatively similar to those in simulations of viscous suspensions of lower volume
fraction (Dufty 1984; Foss & Brady 2000); the diffusion coefficient in the flow
direction Dxx is always larger than those in the gradient (Dyy) and vorticity (Dzz)
directions. The coefficient Dyy could be smaller or larger than Dzz depending on the
volume fraction and coefficient of restitution. The diffusion coefficient Dxy is an order
of magnitude smaller than the other diffusion coefficients, and it fluctuates between
positive and negative values. The standard deviation in the measurement of Dxy is
comparable to the mean value itself, leading us to conclude that Dxy is zero within
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the numerical accuracy that can be obtained in simulations. It is found that there is a
smaller variation in the diffusion coefficient when it is scaled by the strain rate than
the granular temperature.

The diffusive nature of the particle motion was verified by analysing the intermediate
scattering function for this flow. If the particles are in diffusive motion, the
intermediate scattering function decreases proportionally to exp (−Dijkikj t), where
k is the wavenumber and Dij is the tensor of diffusion coefficients in the different
directions. In a dense liquid, in contrast, there are two distinct relaxation processes,
the fast β relaxation corresponding to the equilibration of a particle within the
cage made up of neighbouring particles, and the slow α relaxation corresponding
to cage breakage and escape at long times. There is virtually no decrease in the
intermediate scattering function in the β relaxation process because the particle
position is fluctuating only within its cage.

For a fluid of elastic particles in the absence of shear, we find that the intermediate
scattering functions show almost no decrease with time, because the system has
crystallized and the particles are trapped in cages created by the neighbouring
particles. The simulations are able to access only the β relaxation process, because the
α relaxation process is very slow after crystallization. In contrast, in a sheared inelastic
fluid, it is found that the intermediate scattering function decays proportionally to
exp (−Dijkikj t) even at volume fractions as large as 0.57 in the simulations. There are
no distinct β and α relaxation processes, and the diffusion process can be described
with just one diffusion coefficient. The diffusion coefficients calculated from the
intermediate scattering function were in close agreement with those calculated from
the mean square displacement.

4.4. Velocity autocorrelation function

The velocity autocorrelation function in a dense sheared granular flow was also
analysed in the simulations. For an elastic gas at equilibrium, it is well known that
the velocity autocorrelation function decays proportionally to t−3/2 due to the diffusive
nature of momentum transport. This slow decay is referred to as the ‘long time tail’
in the velocity autocorrelation function. In a dense liquid, on the other hand, particles
are confined within cages formed by neighbouring particles, and the correlation time
for the velocity is very small because it is the time taken for a particle to rattle within
its cage.

Though the structure and diffusion in an inelastic sheared granular flow resembles
a system with no caging, we find that the velocity autocorrelation function decreases
much faster than the t−3/2 scaling for an elastic fluid at equilibrium with no caging
effects (Dorfman & Cohen 1972). There was an earlier prediction (Kumaran 2006c)
that the velocity autocorrelation function should decay as t−9/2 in a dense granular
flow because energy is not conserved over length scales larger than the conduction
length. More recent calculations (Kumaran 2009a, b) indicate that the scaling laws
for the decay of the velocity autocorrelation function are anisotropic, the decay is
much faster than the t−3/2 scaling law for an elastic fluid at equilibrium. There is
also recent experimental evidence (Orpe et al. 2008) for the fast decay of the velocity
autocorrelation function.

The decay in the velocity autocorrelation function in our simulations is consistent
with the above prediction for both rough particles as well. However, scaling laws
cannot be definitively verified because the decay is very fast and the time window
over which the scaling is observed is not sufficiently long. However, the present
simulations do indicate that the decay of the velocity autocorrelation in a dense
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granular flow is much faster than the t−3/2 decay expected for a normal fluid even
for rough particles. This has significant implications for the renormalization of the
transport coefficients due to correlations in dense gases (Ernst et al. 1978; Kumaran
2006c).

4.5. Granular temperature

We find that the equipartition approximation is a good one in a dense flow, and the
energy fluctuations in the translational and rotational modes in the different directions
vary by only about 20 %. This is primarily because the packing at high densities is
primarily determined by steric effects, and not by the flow. The dense packing at
high volume fractions results in a very efficient transport of energy between the
different directions, and even though the ‘temperature’ is anisotropic, the anisotropy
is numerically small, and it decreases as the volume fraction increases by more than
50 %. We also find that the temperature tends to a finite value in the close packing
limit, even though the collision frequency diverges.

4.6. Stress and dissipation rate

One of the most important results obtained here is that the stress and the rate of
dissipation of energy have the same divergence as the collision frequency as the limit of
close packing is approached. There have been previous studies which have concluded
that either the viscosity and the pressure diverge at different volume fractions (Khain
& Meerson 2006; Khain 2007), or that the shear viscosity diverges with a power law
different from that for the pressure (Bocquet, Errami & Lubensky 2002). The system
considered by Khain (2007) was two-dimensional, and the difference in divergence was
due to the constraints on shearing motion of a hexagonal close packed state. If a layer
of particles is to slide relative to another fixed layer in two dimensions, it is necessary
for the particles to have a significant displacement (approximately equal to 0.29 times
the particle diameter) perpendicular to the direction of the mean velocity. This results
in a greater resistance to shearing than to compression for large area fractions in two
dimensions. In three directions, hexagonally close packed layers of particles can slide
relative to each other in a zig-zag manner with a smaller perpendicular displacement,
and so the difference in the volume fractions for the divergence of the viscosity and
pressure is not as large.

There is an important distinction to be made regarding the divergence of
the pressure and the viscosity. It is clear that for ordered states, the divergence
of the shear viscosity in a shear flow will take place at a lower volume fraction
than the divergence of the pressure in a system with no flow. From the rheological
standpoint, the more relevant question is whether the divergence of the viscosity and
pressure in a shear flow take place at different volume fractions; it is possible that
even when there is ordering in two dimensions, the pressure and viscosity diverge at
the same volume fraction for a shear flow, even though the pressure in the absence
of shear diverges at a different volume fraction than the viscosity in the presence of
shear. The present simulation studies show, quite clearly, that the pressure, viscosity
and dissipation rate for a shear flow diverge at the same volume fraction. This is
related to the fact that there is no icosahedral ordering in the shear flow, and so the
arguments based on the presence of icosahedral ordering (or hexagonal ordering in
two dimensions) do not apply in this case. We also find that the rate of divergence
for pressure, viscosity and dissipation rate are the same, in contrast to the assumption
made in the study of Bocquet et al. (2002).
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The studies also showed that the Chapman–Enskog procedure using the Enskog
approximation for the two-particle distribution function (Kumaran 2004, 2006a) do
predict the correct qualitative behaviour for the stress and the dissipation rate,
but the quantitative accuracy is poor for all values of the coefficient of restitution
except en =0.9. Reddy & Kumaran (2007), in their numerical comparisons for the
case where en =0.9, found good agreement between theory, event-driven and discrete-
element simulations. This is an indication that the results obtained here are applicable
not only to simulations which assume binary collisions between particles, but also
to simulations where multi-body contacts are taken into account. However, the
agreement between theory and simulations is poor for the cases where en is less
than 0.9.

It was also observed that the prediction for the rate of dissipation of energy based on
the Enskog approximation is also significantly larger than that observed in simulations.
The agreement for the dissipation rate is reasonable for en > 0.9, but becomes poor as
the coefficient of restitution is reduced below 0.9. This discrepancy was also observed in
previous studies (Mitarai & Nakanishi 2005). This has motivated postulates (Jenkins
2006, 2007) that the mechanism for energy dissipation is different from that for stress
transmission, and that it is necessary to introduce an additional length scale for
the energy dissipation. However, the over-prediction of the dissipation rate does not
provide the complete picture, because it is also found that a calculation based on
the Enskog approximation under-predicts the collision frequency, as demonstrated
by the significantly smaller prediction of the pair distribution function in figures 13
and 14. This has also been observed in previous studies (Goldschmidt, Beetstra &
Kuipers 2002). Since the collision frequency is proportional to the first moment of the
relative velocity distribution function of colliding particles, and the energy dissipation
rate is proportional to the third moment, it must be concluded that the distribution
function for the relative velocities is in error. Here, the distribution function for the
relative velocities of colliding particles was examined to determine how the collision
frequency, stress and dissipation rate are modified.

4.7. Relative velocity distribution

In a dense granular flow where the transport of momentum and energy occurs
primarily due to particle collisions, the rate of transfer of momentum and energy
depends on the distribution of relative velocities between colliding particles. In the
Enskog approximation, the two-particle velocity distribution function is the product
of the single-particle distributions and the pair distribution function at contact, and
the relative velocity distribution turns out to be a Gaussian distribution, with variance
two times that of the single-particle velocity distribution. In the present analysis, we
resolved the distribution of relative velocity and angular velocity into two components,
one along the line joining the centres wn and the other perpendicular to the line joining
the centres wt and υt . It was found that the forms of the distributions for wt and
υt are close to Gaussian distributions. The ‘temperature’ for distribution of wt shows
little variation as the coefficient of restitution is decreased, and it has a value close
to two times the translational temperature even at en = 0.6. The temperature for the
distribution of υt does decrease to about 1.2 times the translational temperature
at en = 0.6, though the form of the distribution function continues to be close to
a Gaussian distribution. However, the distributions for wt and υt have relevance
only for the shear stress in rough particles, where the stress is influenced by the
tangential impulse at the surfaces of contact; the collision frequency, normal stress
and dissipation rate are not affected by the distribution of wt and υt . Therefore, we
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did not analyse these distributions further, and focused on the distribution of normal
velocities wn.

The distribution function for the normal velocities, fwn
(wn), in a shear flow is

anisotropic, since it depends on the angle between the line joining the centres and the
flow direction. In order to take into account this anisotropy, the distribution function
was expanded in a series in its spherical harmonic components. Even though the series
has an infinite number of terms, it can be shown that there are only four non-zero
contributions correct to second order in the strain rate in a simple shear flow. All of
these components were analysed individually in some detail.

The term of largest magnitude in the spherical harmonic expansion is the spherically
symmetric component f (0)

wn (wn). For a fluid of elastic particles in the absence of flow,
the spherically symmetric component is the only component in the expansion, and it
can be shown that the distribution function for the normal velocities is a Maxwell–
Boltzmann distribution with the temperature two times the translational temperature
of the particles. For nearly elastic particles with en = 0.98, we find that the distribution
function is close to a Gaussian distribution, but as the coefficient of restitution
decreases below 0.8, we find from the simulations that the distribution function is
an exponential distribution. The exponential form provides an excellent fit for rough
particles; for smooth particles, the exponential form is in excellent agreement at low
velocities, but there appears to be a transition to a slower decay at high velocities.

It should be noted that the relative velocity distribution function is an exponential
distribution for low en, even though the distribution function of the particle velocities
is close to a Gaussian. Kinetic theories (Sela & Goldhirsch 1998) calculate the
correction to the single-particle velocity distribution due to the applied shear, and
then use the Enskog approximation to express the two-particle distribution function
as the product of the single-particle distribution functions. The more sophisticated
theories (Lutsko 1996), which incorporate the effect of shear on the structure, consider
the pair distribution function to be anisotropic, but still use the molecular chaos
approximation for the pre-collisional velocities. Here, we find that the two-particle
distribution is very different from the product of the single-particle distributions, even
for the pre-collisional velocities. The molecular chaos assumption is not applicable,
and there are significant correlations in the velocities of colliding particles. We also
propose a method for incorporating these correlations by directly modelling the
relative velocity distribution, which is responsible for the transmission of collisional
stresses.

The reason for the exponential distribution in dense flows is not difficult to
understand. In dense hard or soft particle systems, it is known that particles are
confined in a ‘cage’ formed by surrounding particles, and diffusion takes place by
rare cage-breaking events, where a particle jumps to a neighbouring cage. A similar
procedure takes place in shear flow, except that the mean shear is likely to aid the
cage-breaking procedure, so that the escape events become more frequent as the mean
strain rate increases. However, in a shear flow, there is an additional effect, which
is that if a particle is displaced across streamlines when it jumps to a neighbouring
cage, the mean velocity of the surrounding particles in the new location is different
from the mean velocity in the original location. Due to this, the particle experiences
a larger fluctuation in the impulse from the surrounding particles. This fluctuation
decays due to inelastic collisions till the particle velocity distribution equilibrates to
the mean velocity at the new location. This results in rare large fluctuations in the
velocity of the particles, and gives rise to a slower-than-Gaussian decay of the velocity
distribution function.
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Though the form of the distribution function is relatively easy to rationalize,
the coefficients in the distribution function will be more difficult to obtain from
first principles. Here, we have obtained fitting relations for the parameter α in the
exponential distribution f (0)

wn = α exp (−αwn). It is found that α diverges as the volume
fraction approaches the close packing volume fraction for a given coefficient of
restitution. This divergence is expected, since we anticipate that the particles will all
come to rest at the close packing volume fraction, in which the distribution function
for relative velocities is a delta function at wn = 0. Based on the data available, the
best fit we can infer for the form of the divergence turns out to be log divergence for
rough particles, and a power law divergence for smooth particles. The reason for the
difference in the divergence behaviour is not clear.

In order to obtain a uniform approximation for the distribution function for all
coefficients of restitution, a composite distribution function was postulated. This is a
linear combination of an exponential and a Gaussian distribution, with the weights
of the two components adjusted to reduce the difference between the composite
distribution and the actual distribution functions. The parameters in the composite
distribution were evaluated as a function of volume fraction and coefficient of
restitution, and this composite distribution was further used to study the pressure
and rate of dissipation of energy.

The other spherical harmonic components of the distribution function, f (1)
wn , f (2)

wn and
f (3)

wn were also analysed. It was found that these components have a form that is similar
to that of f (0)

wn , and the variation of the ratios (f (1)
wn/f (0)

wn ), (f (2)
wn/f (0)

wn ) and (f (3)
wn/f (0)

wn ) with
wn is small compared to the variation of f (0)

wn itself. One of the implications of this is
that the Enskog approximation (the two-particle velocity distribution function is the
product of the single-particle velocity distributions of the colliding particles and the
pair distribution function) is not a good approximation; if the Enskog approximation
were valid, then we would have found that (f (1)

wn/f (0)
wn ) ∝ wn for en close to 1. For

low values en = 0.6, the Enskog approximation would predict that the ratio (f (1)
wn/f (0)

wn )
is independent of wn; however, the value predicted by the Enskog approximation is
more than an order of magnitude larger than that obtained from simulations. This
leads us to conclude that the Enskog approximation is uniformly poor for all values
of the coefficient of restitution in dense flows. The constant distribution ratio indicates
some self-similarity in the evolution of the different spherical-harmonic components
of the distribution function which deserves further study.

The pressure and the dissipation rates were calculated using the model for the
distribution of relative velocities. The shear stress was obtained from the dissipation
rate using the energy balance condition. It was found that there is quantitative
agreement between the theoretical results based on the composite distribution and
the simulation results for the pressure and dissipation rate. The agreement is within
1 % in the case of rough particles, since we found that the exponential distribution is
an excellent fit for the relative velocity distribution. The agreement is a little poorer,
within 5 %, for smooth particles, possibly because the slower decay in the tail of
the distribution is not well captured by the composite distribution. In any case, the
agreement is much better than the predictions obtained using the Chapman–Enskog
procedure and the Enskog approximation for the pair distribution function, which
are in error by an order of magnitude or more for the dissipation rate at the lowest
coefficient of restitution en =0.6.

For smooth particles, the spherical harmonic component f (1)
wn can be used to evaluate

the shear stress. In the case of rough particles, there is an additional component to
the stress due to the tangential impulse at the surface of contact. In the simulations,
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it is found that the component due to the tangential component of the impulse is
numerically small, and the shear stress due to the normal impulse constitutes between
80 % and 90 % of the total shear stress. Therefore, it is possible to obtain the shear
stress within an accuracy of 10 %–20 % by just considering the normal component
of the impulse during particle collisions.

The shear stress due to the normal impulse at contact was evaluated using the
approximation that (f (1)

wn/f (0)
wn ) is a constant. Quantitative agreement was found to

within 15 % for smooth particles; the agreement for rough particles was even better.
The approximations for (f (2)

wn/f (0)
wn ) and (f (3)

wn/f (0)
wn ) were used to obtain the first- and

second-normal stress differences as well.

4.8. Relation to soft particle studies

The calculation carried out here, which is restricted to hard particles, needs to be
placed in the context of real granular flows, which have a finite particle stiffness.
For definiteness, let us consider the flow down an inclined plane. At high angles of
inclination, when the density is low, the particle interactions will be dominated by
binary collisions. In this case, by dimensional analysis, all the stress components scale
as the square of the strain rate, since the period of interaction does not affect the
dynamics. As the angle of inclination decreases or the density increases, the system
will transition into a multi-body contact regime, where the finite stiffness of the
particles does affect the dynamics. When the angle is further decreased, the flow will
stop and the density will assume the limiting value it has in a static state. The volume
fraction at which there is a transition from the binary to the multi-body contact
regime will depend on the particle stiffness. For very stiff particles, the transition
will be at a higher volume fraction (lower angle of inclination), whereas for softer
particles, the transition will take place at a lower volume fraction (higher angle of
inclination).

There are different measures of the volume fraction (or angle of inclination) range
for which the binary contact regime is encountered, such as the average collision time
(Campbell 2005) and the contact lifetime distribution (Silbert et al. 2007). Another
indirect measure is from the stress law for a steady shear flow; dimensional analysis
indicates that the stress is proportional to the square of the strain rate in the binary
contact regime, whereas it is independent of strain rate for a very dense flow with
multi-body frictional contacts. The simplest measure is probably the co-ordination
number, which is the number of particles which are simultaneously in contact.
This co-ordination number was analysed as a function of angle of inclination and
volume fraction by Reddy & Kumaran (2007) in three dimensions. The calculations
were carried out using the DEM simulation technique for a system whose angle of
repose is approximately θ =21◦, and which has a stable flow regime in the range
21◦ � θ � 25◦. The results indicated that for relatively soft particles of the type
first analysed by Silbert et al. (2001), the co-ordination number is larger than 1 for
θ � 24◦. However, if the spring stiffness was increased to correspond to real materials
such as sand or glass beads, the co-ordination number decreases more rapidly with
angle of inclination, and is less than 1 for θ � 22◦. Thus, the multi-body contact
regime is encountered for over a range of less than 1◦ of inclination for real materials,
and the system rapidly transitions to a binary contact regime.

In the present analysis, we deal exclusively with hard-particle systems which have
infinite spring stiffness, and so the particle interactions are considered to be binary
collisions. So the present calculation can capture the binary collision regime, but not
the multi-body contact regime, and so it is important to place the present results in
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the context of real granular flows with finite stiffness. We find, for example, that the
collision frequency (scaled by the inverse of the strain rate) increases as the volume
fraction is increased, and it diverges at a finite volume fraction φad . For particles
with finite stiffness, the collision frequency will deviate from the hard-particle value
when the system transitions to a multi-body contact regime, and the divergence of
the collision frequency will be cutoff at this volume fraction. The volume fraction at
which this deviation occurs will increase as the particle stiffness is increased, and so
the present calculation provides an upper limit for the collision frequency for real
granular flows. As particle stiffness is increased, there will be a smaller and smaller
range of volume fractions (or angles of inclination) in the multi-body regime for
which there is a deviation from the hard-particle results. As discussed above, the
simulations of Reddy & Kumaran (2007) indicate that this range is less than 1◦ for
real materials such as sand and glass. The present simulations provide quantitative
results for the collision frequency, stress and dissipation rate outside this multi-body
regime where binary contacts dominate.

It should be noted that the divergence of the collision frequency is not a simulation
artefact. Even for monodisperse elastic hard spheres in the absence of shear, there
is a divergence of the collision frequency at the random close packing volume
fraction. This divergence is usually expressed as a divergence of the pair distribution
function χ (Torquato 1995), but the two are equivalent, since the collision frequency
is (2

√
πρ2χ

√
T ), where T is the translational temperature. Note that the divergence

of the collision frequency occurs at a constant temperature as the volume fraction
is changed. (Since there is no molecular energy scale in a hard-sphere fluid, the
temperature just sets the scale for the fluctuating velocity of the particles, and does
not induce any phase transitions.) Here, we are analysing how this divergence is
affected by the imposed shear.

The divergence of the collision frequency in the hard-particle model also has an
important implication for real granular materials which have finite stiffness. Since it is
not possible to access volume fractions greater than φad in the hard-particle model, the
implication is that the system has to be in the multi-body contact regime for φ > φad .
Of course, the curves for the collision frequency (or pressure, viscosity, etc.) versus
volume fraction will depart from the limiting curves for the hard-particle model even
for φ < φad , but the departure will decrease as the spring constant is increased. We
will discuss the various estimates of this volume fraction range a little later. However,
it is important to note here that the hard-particle limit for the variation of collision
frequency, pressure, stress and dissipation rate with volume fraction is relatively
easy to obtain by extrapolating the results of hard-particle simulations. It would be
much more difficult to obtain by using soft-particle simulations and increasing the
spring stiffness systematically, because the simulation time step decreases as the spring
stiffness increases, and it requires prohibitively long computational times to simulate
particles with stiffness corresponding to sand and glass beads. This is one reason why
many of the simulations (notably Silbert et al. 2001) are carried out with particles
whose stiffnesses are about four orders of magnitude smaller than sand particles or
glass beads.

One of the persistent puzzles that has arisen out of previous large-scale simulations
on chute flows is that the results for the stresses obtained do not vary much as the
spring stiffness is decreased, and the system transitions from a binary contact regime
to a multi-body contact regime. This was first observed by Silbert et al. (2001), and
was later confirmed by Reddy & Kumaran (2007). The latter also reported that the
results for the stress at constant volume fraction from binary contact event-driven
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simulations are in numerical agreement with those for DEM simulations at the
same volume fraction even when the particles have multiple contacts in the DEM
simulations. The reasons for this are not established yet, but one reason investigated
by Reddy & Kumaran (2007) is that even when there are multiple contacts between
particles, there is one contact which has the largest force. This indicates that the
results obtained from a hard-particle model may have significance even when the
system is in the multi-body contact regime. A similar observation was made for
equilibrium liquids such as water, where it was found that the Chapman–Enskog
procedure using the Enskog approximation for the pair distribution function provides
dynamical properties correct to within about 25 %–30 % of experimentally measured
values (Theodosopulu & Dahler 1974a, b).

This indicates that there are two different issues here, the first is whether the system
is actually in the binary contact regime, and the second is whether the numerical
predictions of a hard-sphere calculations provide quantitative estimates for a granular
material composed of soft particles in the binary contact regime. We first examine
the former, which requires the estimation of the appropriate numerical values for the
spring constants for contacts between particles. There are considerable differences
for the spring constants assumed for sand particles, for example, in literature. It is
known that real contacts between smooth particles have a Hertzian force law, where
the restoring force is proportional to the square root of the overlap between particles.
However, it is more convenient to use a Hookean (linear) contact model between
particles in simulations. If we assume that the spring constant depends only on the
particle diameter and the elasticity modulus of the material, then the spring stiffness
for the linear model can be estimated as kn ∼ (Ed), while that for the Hertzian model
can be estimated as kn ∼ (Ed1/2), where E is the elasticity modulus and d is the
particle diameter. If we assume an estimate of the elasticity modulus of 1011 N m2

appropriate for sand and glass, the spring constant for the linear model is in the range
kn ∼ 107–108 Nm−1 for particles with diameter in the range 100 μm–1 mm, while the
spring constant for the Hertzian model is in the range kn ∼ 109–1010 Nm−3/2. There
have been recent experiments by Cole & Peters (2007, 2008) which report that for
smooth particles, the spring constant is very well approximated (to within 20 %) by
the Hertzian contact law. A more interesting finding is that even though a Hertzian
model is more appropriate for contacts between smooth particles, the contacts between
sand grains are, in fact, linear, due to the asperities on the grains. For a range of
particle diameters (0.2–2 mm), Cole & Peters (2007) find that the spring stiffness is
in the range of 106 N m−1. This is about two orders of magnitude higher than the
estimate of Campbell (2005), where the spring constant (based on the speed of sound
in loose sand) is assumed to be of the order of 104 Nm−1, though it is about an
order of magnitude lower than the value of 107 Nm−1 obtained based on the material
elasticity modulus for 100 μm particles. This difference in estimates leads to differing
conclusions when the dimensionless numbers used in simulations are transformed
into dimensional numbers for real systems. In particular, the under-estimation of the
spring constant by two orders of magnitude by Campbell (2005, 2006) also leads to
an over-estimation, by 1–2 orders of magnitude, of the minimum strain rate for which
the binary collision approximation is valid.

The differences in the interpretation of constant volume simulations are relatively
easily resolved. The Discrete Element simulations of Campbell (2002) show that the
system undergoes a transition to the multi-body regime when the volume fraction is
increased beyond about 59 %. This is in agreement with the results of the present
simulations, which show that in a sheared simulation of hard particles, the collision
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frequency diverges at a volume fraction between 58 % and 59 % for sufficiently
inelastic particles. Simulations of flows down an inclined plane (Silbert et al. 2001;
Reddy & Kumaran 2007) also find that the volume fraction in the flow does not
exceed 59 % even at the lowest angle of inclination, even though the random close
packing volume fraction for elastic spheres is 64 %. All of these results indicate that
the volume fraction for dynamical arrest for sheared inelastic particles needs to be
defined as the volume fraction at which the collision frequency diverges in the sheared
state, and this volume fraction is a function of the coefficients of restitution, as shown
in the present analysis. Once this is done, then all the results are consistent with
each other. In constant volume simulations, the system undergoes a transition to a
multi-body contact regime at a volume fraction of about 59 %, beyond which stress
transmission is by contact forces between particles which are transmitted presumably
by ‘force chains’. However, force chains require compressive forces at both ends. Since
there cannot be a compressive force at the free surface of an inclined plane flow, the
flow expands such that volume fraction does not exceed about 59 %.

The constant stress simulations (Campbell 2005) are more difficult to reconcile with
the inclined plane simulations. A part of the reason is that the inclined plane flow is
not a constant stress flow, but is actually a constant volume fraction flow in which the
stresses increase linearly with height. This is because the volume fraction in the bulk
of the flow is remarkably constant, as shown by the pioneering work of Silbert et al.
(2001). This is a consequence of the constant ratio of shear and normal stresses in the
bulk (Kumaran 2008), and their linear variation with height in the bulk. Due to this,
it may be more appropriate to compare the inclined plane simulations with constant
volume fraction simulations. There is one equivalence which is easily apparent, which
is that the limiting low stress critical state in the simulations of Campbell (2005)
would correspond to the volume fraction at which the collision frequency diverges in
the present simulations; this volume fraction is found to decrease from 0.62 to about
0.58 as the dissipation is increased in both studies. The other equivalences are less
clear, probably because different quantities are being measured to infer the presence of
multi-body contacts. On the basis of average contact time between particles, Campbell
(2005) concludes that the system is in the multi-body contact regime, whereas on the
basis of the contact lifetime distribution, Silbert et al. (2007) infer that the dominant
stress transmission mechanism is due to short-lived contacts with large impulses.
Both of these measures could be simultaneously correct if the distribution function
for the contact lifetime has an appropriate form, where the stress transmission is
dominated by rare short-lived contacts with large forces, while the average contact
time is dominated by long-lived contacts with small force. It is necessary to examine
not just the contact lifetime, but also the distribution of forces in contacts. Another
measure used is the ratio of shear and normal stresses, and the expectation that this
should be a constant when the Bagnold law is satisfied for collisional flows. However,
the volume fraction is changing in the constant stress simulations, and the ratio of
stresses may not be a constant due to the variation in volume fraction. Reddy &
Kumaran (2007) considered the forces on a single particle, and measured the ratio
of the second largest and the largest forces in magnitude. They found that this ratio
is quite small even in the multi-body contact regime; this is in contrast to the force
chain picture where the particles are held in contact by nearly equal and opposite
forces along the line of contact. More work needs to be done to clarify these issues.

Another simulation procedure used for dense granular flows is the contact dynamics
simulations (Lois, Lemaitre & Carlson 2005). This is a combination of event-driven
and molecular dynamics simulations; the simulations are advanced in constant time
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steps, and all particles which collide within one time interval are considered to
be in simultaneous contact. The stresses transmitted by these particles are called
‘contact stresses’, in contrast to collisional stresses. The definition of collisional and
contact stresses is clearly subjective, since it depends on the time interval used for
advancement. This subjectivity is more acute in a regime where the collision frequency
is diverging. As the volume fraction is increased and the collision frequency increases,
there will be more and more particles colliding within a fixed time interval, and this
will result in more particles considered to be in simultaneous contact. This is an
artefact of the finite time step of the simulation; if the simulation time step is made
sufficiently small (much smaller than the inverse of the collision frequency), there will
be only one collision per time interval, and there will be no contact stresses. It is
necessary to carry out simulations in which the period of the simulation time step is
decreased in proportion to the inverse of the collision frequency, in order to examine
whether the system is actually going from the binary contact to the multi-body
collision regime.

Finally, an issue of vigorous debate in soft-particle systems is the ‘jamming
transition’ and the ‘jamming phase diagram’ (Liu & Nagel 1998). An analogy is
drawn between the glass transition in thermal systems and the jamming transition
in dissipative systems, by depicting a boundary in the (1/density)–temperature–shear
(stress or rate) three-dimensional coordinate system. In our interpretation here, the
point at which the collision frequency diverges for a hard-particle system is the point
at which the system has to transition to an extended contact (finite elasticity modulus)
regime for particles of large but finite stiffness. While studying the jamming transition,
one usually moves in the direction of decreasing the density from a static state until
the particles are no longer in permanent contact. Therefore, for a hard-particle system,
the jamming volume fraction should be the volume fraction at which the collision
frequency diverges, and beyond which the particles have to be in extended contact.
However, the variables used to describe the jamming point will be different for hard-
particle systems. Since there is no energy scale for the particle interactions, the time
dimension can be scaled by the inverse of the strain rate, and the jamming volume
fraction will not depend on strain rate; it will depend only on the coefficients of
restitution which characterize the inter-particle interaction. In this interpretation, the
volume fraction for ‘jamming’ decreases as the coefficients of restitution is decreased,
or the collisional dissipation is increased. In the limit of elastic collisions (en = 1), the
‘jamming’ volume fraction would correspond to the random close packing volume
fraction φc = 0.64. As the coefficient of restitution is decreased, the volume fraction
for arrested dynamics, φad , decreases to a value of about 0.58 for highly inelastic
particles. Therefore, if the inverse of the density is plotted as a function of (1−en), the
curve would have an upward curvature around (1 − en) = 0, and approach a constant
value as en decreases below about 0.8. This is in contrast to the downward curvature
about the shear axis, and the decrease in (1/density) to zero at finite shear rates,
which is usually depicted (Liu & Nagel 1998).

4.9. Flow down an inclined plane

The models for the pressure and shear stress were used to predict the angle of repose
for the flow down an inclined plane. It was found that in the range 0.6 � en � 0.8,
the angle of repose predicted by the model is about 21◦. This is slightly higher than
the value close to 20◦ observed in simulations (Silbert et al. 2001). The discrepancy
may be because the model is based on simulations of relatively small size; an increase
in the size of the simulations may slightly alter the numerical values of the ratio of
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shear stress and pressure. The discrepancy could also be because the binary contact
regime is only valid upto an angle of inclination of 21◦, and the flow in the range
20◦–21◦ could be in the multi-body contact regime. Similarly, the angle of inclination
is predicted to be in the range 24◦–25◦ for the lowest volume fractions of around
φ = 0.54 which could be attained in simulations; this is also in quantitative agreement.

The present study complements an earlier analysis (Kumaran 2008), where
the constitutive relations obtained using the Chapman–Enskog procedure based on
the Enskog approximation for the pair distribution function were used to analyse the
granular flow down an inclined plane. There, it was shown that all the features of
the flow were captured by the constitutive models. However, there was quantitative
disagreement in the prediction of the angle of repose, as well as in the variation of the
volume fraction with the angle of inclination. It was already anticipated in Kumaran
(2008) and Reddy & Kumaran (2007) that a part of the disagreement is because the
pair distribution function for a shear flow of inelastic particles is different from that
for elastic particles at equilibrium in the absence of shear; the latter is often used
in literature for quantitative predictions of the stresses in shear flows. It was also
anticipated (Kumaran 2008) that the Enskog approximation may be in error because
there are strong correlations in the velocities of colliding particles. The objective of
the present analysis was to correct these deficiencies. We have determined the form
of the collision frequency in the dense limit, and obtained the distribution function for
the pre-collisional relative velocity of colliding particles, and incorporated these into
the constitutive relations for dense shear flows of inelastic particles. The results are in
quantitative agreement for the angle of repose and the variation of volume fraction
with angle of inclination for the flow down an inclined plane. This definitively shows
that the constitutive relations for the shear flow of inelastic particles obtained using
the binary collision approximation are valid for dense granular flows of practical
interest.

The present analysis is valid only when contacts are instantaneous; this leads to
a Bagnold form for the stress–strain relationship. To the extent that the Bagnold
law is satisfied in real systems such as chute flows, this analysis provides a way of
calculating the stress–strain rate relationship for these flows. The purpose is to provide
constitutive models that can actually be used to calculate coefficients which can then
be used in practical applications. Of course, one would expect that as the angle of
inclination is decreased, the system goes into a multiple contact regime and then
stops. The present analysis will not be applicable in the multiple contact regime, but
simulations discussed above have shown that this regime is small, at least for chute
flows. The present analysis provides the transition from binary to multi-body contact
regime as the point at which the collision frequency diverges; to the extent that this is
close to the angle at which flow stops, this would provide a good numerical estimate
of the angle or repose, as well as the Bagnold coefficients.

A lot of work has been done in trying to account for about particle correlations,
force networks, force chains, etc. in systems with multi-body contacts. Though these
studies classify flow domains into various regions in which inertial dominates, elasticity
dominates, etc. (Campbell 2006), there are no calculations of constitutive relations. It
is fair to say that at present, no calculation, apart from those based on kinetic theory
(Kumaran 2008), can even predict the slope of the variation of angle of inclination with
volume fraction. Apart from classification, there are often references to force chains
and force networks, which are very qualitative, and which are not ultimately connected
to the stress values (Campbell 2002, 2005). We can get quantitative measures of the
stress transmitted by force chains only if we can quantitatively define a force chain,
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and show that most of the stress in a sample is actually transmitted in a force chains.
Therefore, for the concept of force chains to be useful in practical calculations, there
needs to be some consensus evolved on fundamental issues, such as whether a force
chain has to have a compressive stress on both sides due to bounding surfaces (this is
clearly not present in flows with a free surface), or whether it can just disappear into
a free surface. System size dependence is another important unresolved aspect, and it
is important to determine whether the dynamics of the force chain is independent of
system size. If the dynamics does depend on system size and boundary conditions, the
rheology is not local, and one cannot write constitutive relations in terms of gradients
of hydrodynamic fields. If it does not depend on system size, there needs to be
some conceptual understanding of the meaning of force chains in an infinite system,
with regard to whether they are sample spanning or not. Perhaps renormalization
procedures developed in the study of critical phenomena would be of some use.

The same is true with the concept of percolating force networks. In a flowing
material, the network has to be transient, so it is necessary to specify if there is a
percolating network at all times, or only some of the time. The dependence of the
percolation threshold on spring stiffness and system size are important issues. An
important question is the applicability of percolation network models to open systems
such as chute flows, where there is one stress-free boundary at which there is no stress
on the system. Another conceptual question is that one can obtain constitutive
equations only if the rheology is local, whereas in percolating networks the rheology
is not local, because the network spans the system. It would be necessary to define
other additional parameters, such as the force distribution in a network or in a force
chain, and write gain–loss equations for these. These other order parameters would
then coupled to the momentum equation. The gain–loss equations would involve rate
constants, and it is not clear how one would obtain these, and whether quantitative
comparisons can be made without fitting parameters.

In a phenomenological description of the rheology (GDR MiDi 2004), the ratio of
the shear and normal stress is expressed in terms of the I parameter, which is the ratio
of the strain rate and the square root of the normal stress (suitably scaled by particle
mass and diameter to make the ratio dimensionless). This is a useful approximation,
since it seems to collapse the data for a range of experimental situations, though
it should be noted that it does not collapse data near walls where temperature
boundary layers (Kumaran 2008) are present. However, this does not qualify as a
valid rheological model for the following reason. The purpose of a rheological model
is to calculate all components of the stress in terms of the the rate of strain or its
derivatives, not to calculate one component of the stress in terms of another. A flowing
material is described by the mass and momentum conservation equations (energy is
not conserved in the present system). In the momentum conservation equation, there
is a momentum flux (stress tensor) which has to be related to the field variables
(density and velocity) and their gradients by the constitutive relation. While the I

parameter description may be useful for yield criteria, it cannot be directly inserted
into mass and momentum conservation equations to obtain a closed set of governing
equations for the density and velocity fields.

There have been some theories which attempt to obtain the ratio of stresses from
correlations (Ertas & Halsey 2002). Motivated by the observation of Pouliquen (1999)
that there is a connection between the average velocity in the flowing state of a
granular material and the minimum height hstop required to sustain a flow. These
studies postulate that there is a correlation length within the flow which is of order
hstop . There are many ad-hoc approximations in these theories, such as the calculation
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of times for the time taken for inelastic collapse, or a vortex rotation time in the
flow. If these structures do exist in the flow, then it should be relatively easy to
verify from simulations, since the positions and velocities of all particles are available
from the simulation results. There is, as yet, no evidence that these structures are
actually observed in simulations, and recent calculations (Baran et al. 2006) conclude
that particle motion is correlated over relatively short distances of the order of
one-particle diameter, and this distance does not increase proportionally to hstop .

Another correlation effect that has been postulated is the decrease in the dissipation
rate (but not the stresses) due to correlations (Jenkins 2006, 2007). This is motivated
by event-driven (Mitarai & Nakanishi 2005) and contact dynamics (Lois et al. 2005)
simulations which showed that while the stress is well predicted by expressions from
kinetic theory, the dissipation rate is smaller than that predicted by kinetic theory.
Lois et al. (2005) also modified the energy equation by postulating an additional
parameter in the energy equation, and obtained this parameter on the basis of a shear
transformation zone theory. However, the dissipation rate alone does not provide the
complete picture, because it has also been found that the frequency of collisions is
higher than that predicted by kinetic theory in dense flows (Goldschmidt et al. 2002).
The present study shows that there is a change in the form of the relative velocity
distribution, from a Gaussian to an exponential form. Once this is incorporated in
the theory, numerically accurate results are obtained for the collision frequency, stress
and the dissipation rate, without the need for postulating correlations.

While postulating that there are correlations in the flow, it is important to make
a definite conclusion about whether the rheology is local or not. The rheological
model will be valid only if the thickness of the differential volume considered is larger
than the correlation length; if it is smaller than the correlation length, its surface
would break though a chain of particles or an eddy, and the stress response would
depend on the dimensions of the volume considered. If the length scale is comparable
to the correlation length, then one cannot do a gradient expansion in the ratio of
the microscopic (correlation) length and the macroscopic length, and so it is not
possible to write constitutive relations. When the correlation length diverges it should
be comparable to the system size at some point, and at this point the assumption
of local rheology is invalid. This is the same reason why eddy viscosity models for
turbulence do not have a rigorous basis.

In the kinetic theory calculations based on binary interactions (Kumaran 2004,
2006a, b, c), a constitutive relation for the stress tensor is explicitly calculated. It
predicts all the qualitative features of the flow down an inclined plane.

(a) It does predict the minimum angle at which the flow of hard-spherical particles
would stop, as the angle at which the collision frequency and the Bagnold coefficients
diverge. Since the Bagnold coefficients diverge and the gravitational force density does
not change much, the strain rate decreases to zero. It has commonly been assumed
(Campbell 2006) that since kinetic theories treat a granular material as a viscous
fluid, these theories cannot predict a yield condition. This is erroneous, because the
granular material does not have equilibrium thermal fluctuations, and the particles
are fluidised only when there is an energy source. For a homogeneous granular flow,
there is a coupling between the shear production and the inelastic dissipation of
energy. A flowing state is possible only when the rate of production due to shear is
sufficient to overcome the rate of dissipation due to inelastic collisions. As the angle
of inclination is decreased, the component of the gravitational force along the plane
decreases, and the rate of shear production decreases. At some minimum angle, the
rate of shear production is not sufficient to overcome the rate of inelastic dissipation,
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and the flow stops. Thus, it is possible to obtain a macroscopic yield criterion without
any microscopic yield condition or yield stress.

(b) In addition, constitutive relations obtained by the Chapman–Enskog procedure
using the Enskog approximation for the pair distribution function correctly predict
the qualitative features of the stress tensor if the coefficients are derived using the
rough particle model and the Burnett coefficients are included; the first normal stress
is found to be negligible and could be positive or negative, while the second normal
stress difference is much larger and positive. The correct slope of the volume fraction
angle of inclination curve, required for stability, is also obtained if a rough particle
model is used for binary interactions. Though the slope required for stability is
obtained, the numerical values of the angle of inclination are not in quantitative
agreement. The purpose of this paper (Part II of the present analysis) is to examine
the reasons for this. We find that distribution of the pre-collisional relative velocities
is not a Gaussian, but approaches an exponential as the coefficient of restitution is
decreased. Once this is incorporated, we are able to quantitatively predict the volume
fraction as a function of the angle of inclination.

(c) Simulations show that the dynamics of the flow in thin regions at the top
and bottom is different from that in the bulk (Silbert et al. 2001). The temperature
conditions at the boundary are known to have virtually no effect on the bulk flow.
Most theories either do not have a boundary layer length scale, or assume that it
is the same as the correlation length. A major advantage of kinetic theory is that it
does predict a boundary length scale, which is the conduction length. This length is
obtained without having to make assumptions about correlations lengths, force chains,
etc. When this is small compared to the height of the flow, there is a balance between
shear production and viscous dissipation in the bulk. The conduction term becomes
important only in thin boundary layers at the top and bottom. Analytical solutions are
possible for these in the high-density limit (Kumaran 2008), and solvability conditions
for the boundary layer equations can also be derived. The theory naturally predicts
that the conditions at the boundary do not affect the flow in the bulk; this result is
not obtained from other correlation-length theories.

(d) Most theories assume that the minimum height required for a flowing layer
(hstop) is the same as the correlation length in the flow, but this is equivalent to
assuming the physical mechanism at the beginning of the calculation. In contrast,
the present theory is able to qualitatively predict the variation of volume fraction
with angle of inclination for an infinite flow, as well as the variation of the minimum
height (hstop) with angle of inclination, without having to invoke a correlation length
at the beginning of the calculation. It also qualitatively provides the variation of hstop

with angle of inclination for a dissipative base, and predicts that hstop = 0 if the base
is energetic (injects energy into the flow).

In summary, in the earlier analysis (Kumaran 2008), it was noted that though all
the qualitative features are accurately predicted, there are numerical differences. In
the present analysis, we have identified the source of these differences, and shown
how these can be corrected, to obtain quantitative predictions for the dynamics of
the flow down an inclined plane.
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and Technology, Government of India. The author would like to thank Mr K. Anki
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