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Abstract

In this paper we characterize when non-classical polynomials are necessary in the inverse
theorem for the Gowers Uk-norm. We give a brief deduction of the fact that a bounded
function on F

n
p with large Uk-norm must correlate with a classical polynomial when k ≤

p + 1. To the best of our knowledge, this result is new for k = p + 1 (when p > 2). We then
prove that non-classical polynomials are necessary in the inverse theorem for the Gowers
Uk-norm over Fn

p for all k ≥ p + 2, completely characterising when classical polynomials
suffice.

1. Introduction

The inverse theorem for the Gowers Uk-norm states that a bounded function f : G →C has
large Uk-norm if and only if f correlates with a certain structured object. When G =Z/NZ,
these structured objects are quite complicated and need the theory of nilsequences to
describe. When G = F

n
p, the situation is somewhat simpler. When p ≥ k, a bounded func-

tion f : Fn
p →C has large Uk-norm if and only if f has non-negligible correlation with a

polynomial phase function, i.e., e2π iP(x)/p where P : Fn
p → Fp is a polynomial of degree at

most k − 1.
The situation when p is small compared to k is more delicate. Green and Tao [3] and

independently Lovett, Meshulam and Samorodnitsky [4] showed that the corresponding con-
jecture is false for k = 4 and p = 2. In other words, there exist bounded functions f : Fn

2 →C

with large U4-norm but with correlation on→∞(1) with every cubic phase function. Tao
and Ziegler [7] clarified this situation by proving that for all k and p, a bounded function
f : Fn

p →C has large Uk-norm if and only if f has non-negligible correlation with a non-

classical polynomial phase function, i.e., e2π iP(x) where P : Fn
p →R/Z is a non-classical

polynomial of degree at most k − 1. (See Section 2 for the relevant definitions.)
A natural question which remains from the above discussion is to determine for which

pairs p, k does the Uk-inverse theorem over F
n
p hold with classical polynomials. In the

positive direction, it is known due to Samorodnitsky [5] that the U3-inverse theorem over
F

n
2 holds with classical polynomials. In the negative direction, Lovett, Meshulam and
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Samorodnitsky [4] proved that the Up�
-inverse theorem over Fn

p requires non-classical poly-
nomials for all p and � ≥ 2. (A curious feature of this problem is that it is not monotone
in k, e.g., the Lovett–Meshulam–Samorodnitsky result does not imply that non-classical
polynomials are necessary in the Uk-inverse theorem for all k ≥ p2.)

In this paper we completely characterize when classical polynomials suffice in the state-
ment of the inverse theorem. We first prove the inverse theorem for the Gowers Up+1-norm
with classical polynomials. This result is proved via a short deduction from the usual inverse
theorem for the Up+1-norm that involves non-classical polynomials.1

THEOREM 1·1 Fix a prime p and δ > 0. There exists ε > 0 such that the following holds.
Let V be a finite-dimensional Fp-vector space. Given a function f : V →C satisfying ‖f ‖∞ ≤
1 and ‖f ‖Up+1 > δ, there exists a classical polynomial P ∈ Poly�p (V → Fp) such that

|Ex∈Vf (x)ep(− P(x))| ≥ ε.

Second, we give an example showing that non-classical polynomials are necessary in the
Uk-inverse theorem for all k ≥ p + 2.

THEOREM 1·2 Fix a prime p and an integer k ≥ p + 2. For all n, there exists a function
f : Fn

p →C satisfying ‖f ‖∞ ≤ 1 and ‖f ‖Uk = 1 such that for all (classical) polynomials P ∈
Poly�k−1 (Fn

p → Fp),

|Ex∈Fn
p
f (x)ep(− P(x))| = op,k;n→∞(1).

Our example is fairly simple to write down. For k ≥ p + 2, we write k − 1 = r + (p − 1)�
where � ≥ 1 and 0 < r < p. Then our function is

f (x) = e
2π i

∑n
i=1 |xi|r
p�+1

(where | · | : Fp → {0, . . . , p − 1} is the standard map). Note that this function f is a non-
classical polynomial phase function of degree k − 1, so the content of this result is that it
does not correlate with any classical polynomial phase functions of the same degree.

The o(1) correlation in Theorem 1·2 is fairly bad – the inverse of many iterated logarithms.
This is due to our use of a Ramsey-theoretic argument inspired by an argument of Alon and
Beigel. (A similar argument appeared in the previous works [3,4].) We conjecture that this
bound on the correlation can be improved.

CONJECTURE 1·3 Fix a prime p and an integer k ≥ p + 2. For all n there exist f : Fn
p →

C satisfying ‖f ‖∞ ≤ 1 and ‖f ‖Uk ≥ cp,k > 0 such that for all (classical) polynomials P ∈
Poly�k−1 (Fn

p → Fp),

|Ex∈Fn
p
f (x)ep(− P(x))| ≤ exp (− �p,k(n)).

In fact, we believe that this conjecture is true with the same functions that we use to prove
Theorem 1·2.

Structure of the paper: in Section 2 we give the definition of the Gowers Uk-norm and
of non-classical polynomials. In Section 3 we prove Theorem 1·1. We prove Theorem 1·2
in the remainder of the paper. Section 4 develops the symmetrization tool that we use and
Section 5 gives the full proof.

1 See Section 2 for the definitions and notation used in the statement of these results.

https://doi.org/10.1017/S0305004121000682 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000682


Non-classical polynomials and the inverse theorem 527

Notation: we use | · | for the standard map Fp → {0, . . . , p − 1}. We often treat Fp as an
additive subgroup of R/Z via the map x 	→ |x|/p and, by some abuse of notation, freely
switch between these two viewpoints. We use e : R/Z→C for the function e(x) = e2π ix and
ep : Fp →C for the function ep(x) = e2π i|x|/p.

2. Background on non-classical polynomials

Definition 2·1 Fix a prime p, a finite-dimensional Fp-vector space V , and an abelian group
G. Given a function f : V → G and a shift h ∈ V , define the additive derivative �hf : V →
G by

(�hf )(x) = f (x + h) − f (x).

Given a function f : V →C and a shift h ∈ V , define the multiplicative derivative ∂hf : V →
C by

(∂hf )(x) = f (x + h)f (x).

Definition 2·2 Fix a prime p and a finite-dimensional Fp-vector space V . Given a function
f : V →C and d ≥ 1, the Gowers uniformity norm ‖f ‖Ud is defined by

‖f ‖Ud = |Ex,h1,...,hd∈V (∂h1 · · · ∂hd f )(x)|1/2d
.

See [7, lemma B.1] for some basic facts about the Gowers uniformity norms.

Definition 2·3 Fix a prime p and a non-negative integer d ≥ 0. Let V be a finite-
dimensional Fp-vector space. A non-classical polynomial of degree at most d is a map
P : V →R/Z that satisfies

(�h1 · · · �hd+1P)(x) = 0

for all h1, . . . , hd+1, x ∈ V . We write Poly�d (V →R/Z) for the set of non-classical
polynomials of degree at most d.

A classical polynomial is a map V → Fp satisfying the same property. By composing
with the standard map x 	→ |x|/p we can view Poly�d (V → Fp) as a subset of Poly�d (V →
R/Z).

See [7, lemma 1·7] for some properties of non-classical polynomials. We give one
property below which will be used several times in this paper.

LEMMA 2·4 ([7, lemma 1·7(iii)]) Fix a prime p and a finite-dimensional
Fp-vector space V = F

n
p. Then P : V →R/Z is a non-classical polynomial of degree at most

d if and only if it can be expressed in the form

P(x1, . . . , xn) = α +
∑

0≤i1,...,in<p, j≥0:
0<i1+···+in≤d−j(p−1)

ci1,...,in,j|x1|i1 · · · |xn|in
pj+1

(mod 1),

for some α ∈R/Z and coefficients ci1,...,in,j ∈ {0, . . . , p − 1}. Furthermore, this representa-
tion is unique.
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Define Uk ⊂R/Z to be {0, 1/pk, . . . , (pk − 1)/pk}. As a corollary we see that in char-
acteristic p, every non-classical polynomial of degree at most d takes values in a coset of
U�(d−1)/(p−1)�+1.

Finally we state the inverse theorem of Tao and Ziegler.

THEOREM 2·5 ([7, theorem 1·10]) Fix a prime p, a positive integer k, and a parameter
δ > 0. There exists ε > 0 such that the following holds. Let V be a finite-dimensional Fp-
vector space. Given a function f : V →C satisfying ‖f ‖∞ ≤ 1 and ‖f ‖Uk > δ, there exists a
non-classical polynomial P ∈ Poly�k−1 (V →R/Z) such that

|Ex∈Vf (x)e−2π iP(x)| ≥ ε.

Earlier works of Bergelson, Tao and Ziegler [2] and Tao and Ziegler [6] show this result
in the high-characteristic regime p ≥ k, with the additional guarantee that P is a classical
polynomial of degree at most k − 1.

3. Classical polynomials for the Up+1-inverse theorem

The inverse theorem for the Uk-norm does not require non-classical polynomials when
p ≥ k for the simple reason that every non-classical polynomial of degree at most p − 1 is
a classical polynomial of the same degree (up to a constant shift). To prove Theorem 1·1,
about the Up+1-inverse theorem, we use the following fact. Every non-classical polynomial
of degree p agrees with a classical polynomial on a codimension 1 hyperplane (up to a
constant shift).

PROPOSITION 3·1 Let P ∈ Poly�p (V →R/Z) be a non-classical polynomial of degree at
most p. Then there exists a codimension 1 hyperplane U ≤ V, a classical polynomial Q ∈
Poly�p(V → Fp), and α ∈R/Z such that P(x) = α + |Q(x)|/p for all x ∈ U.

Proof. Pick an isomorphism V  F
n
p. By Lemma 2·4, we have

P(x1, . . . , xn) = α + P′(x1, . . . , xn) + c1|x1| + · · · + cn|xn|
p2

(mod 1)

for α ∈R/Z, a polynomial P′ taking values in U1 = {0, 1/p, . . . , (p − 1)/p}, and
c1, . . . , cn ∈ {0, . . . , p − 1}. Define the codimension 1 hyperplane U ≤ V by c1x1 + · · · +
cnxn = 0. Note that for (x1, . . . , xn) ∈ U, we have c1|x1| + · · · + cn|xn| ≡ 0 (mod p). Thus
P|U takes values in α +U1. Thus by our identification of U1 with Fp, P|U − α is a classical
polynomial of degree at most p.

Proof of Theorem 1·1. By the usual inverse theorem, Theorem 2·5, there exists P ∈
Poly�p (V →R/Z) such that |Ex∈Vf (x)e(− P(x))| ≥ ε. By Proposition 3·1, there exists a
codimension 1 hyperplane U and α ∈R/Z such that P|U takes values in α +U1, i.e.,
P|U − α is classical. Pick an isomorphism V  F

n
p such that U is the hyperplane defined

by x1 = 0. In this basis, there exists a classical polynomial Q ∈ Poly�p (Fn
p → Fp) and

c ∈ {0, . . . , p − 1} so that

P(x1, . . . , xn) = α + |Q(x1, . . . , xn)|
p

+ c|x1|
p2

(mod 1).
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Thus we have

ε ≤ |Ex∈Fn
p
f (x)e(− P(x))|

≤Ex1∈Fp

∣∣∣∣Ey∈Fn−1
p

f (x1, y)e(− P(x1, y))

∣∣∣∣
=Ex1∈Fp

∣∣∣∣Ey∈Fn−1
p

f (x1, y)ep(− Q(x1, y))

∣∣∣∣
≤
(
Ex1∈Fp

∣∣∣∣Ey∈Fn−1
p

f (x1, y)ep(− Q(x1, y))

∣∣∣∣2
)1/2

.

By Parseval and the pigeonhole principle, there exists a ∈ Fp such that∣∣∣∣Ex1∈Fpe(− ax1)Ey∈Fn−1
p

f (x1, y)ep(− Q(x1, y))

∣∣∣∣≥ ε/
√

p.

Therefore f has correlation at least ε/
√

p with the classical polynomial Q(x1, . . . , xn) +
ax1.

4. Symmetrisation techniques

We now extend a symmetrisation technique of Alon and Beigel [1] which will be needed
to prove the non-correlation property of our example. The original version of this technique
uses Ramsey theory to show that if a function correlates with a bounded degree multilinear
polynomial, then some restriction of coordinates correlates with a symmetric polynomial.
This result was used in the previous works [3,4] on this problem.

For our application we need a result which applies to arbitrary polynomials. We show that
if a function correlates with a bounded degree polynomial, then some restriction of coordi-
nates correlates with a so-called quasisymmetric polynomial. These are a generalisation of
the notion of symmetric polynomials which have found extensive use in enumerative and
algebraic combinatorics.

Definition 4·1 For a prime p and a tuple (α1, . . . , αs) of positive integers satisfying αi < p
for all i, the elementary quasisymmetric polynomial associated to (α1, . . . , αs) in n variables
is the polynomial Qα : Fn

p → Fp defined by

Qα(x1, . . . , xn) =
∑

1≤i1<···<is≤n

s∏
j=1

x
αj
ij

.

We additionally note the total degree is |α|: = α1 + · · · + αs.

THEOREM 4·2 Fix a prime p and an integer d ≥ 1. For any n, there exists m =
ωp,d;n→∞(1) such that the following holds. Let P(x1, . . . , xn) be a polynomial of degree
at most d with coefficients in Fp. There exists I ⊆ [n] of size |I| = m such that for any

y[n]\I ∈ F
[n]\I
p , the function P(xI , y[n]\I) (viewed as a polynomial in the xI) can be written

as a quasisymmetric polynomial of degree d plus an arbitrary polynomial of degree at most
d − 1.
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Proof. We can uniquely express P in the form

P(x1, . . . , xn) =
d∑

s=0

∑
1≤i1<···<is≤n

∑
α∈{1,...,p−1}s

|α|≤d

ci1,...,is,α

s∏
j=1

x
αj
ij

,

where the ci1,...,is,α ∈ Fp are arbitrary.
Define � = {λ ∈ {0, . . . , p − 1}d:|λ| = d}. We define a colouring of the complete

d-uniform hypergraph on n vertices where the set of colours is F�
p . For an edge {i1, . . . , id}

with 1 ≤ i1 < · · · < id ≤ n, let the colour of this edge be given by ci1,...,id : � → Fp. We define
ci1,...,id (λ) = cj1,...,js,α where α is formed by removing the 0’s from the tuple λ and (j1, . . . , js)
is formed from (i1, . . . , id) by removing the coordinate ik if λk = 0.

Applying the hypergraph Ramsey theorem, there exists a subset I ⊆ [n] such that the
induced subhypergraph on vertex set I is coloured monochromatically with colour c : � →
Fp and |I| = ωp,d;n→∞(1). Unwinding the definitions, we see that

P(xI , y[n]\I) =
d∑

s=0

∑
α∈{1,...,p−1}s

|α|=d

c(α, 0, . . . , 0︸ ︷︷ ︸
d−s 0’s

)Qα(xI) + mixed terms.

Now the mixed terms involve at least one factor of y[n]\I , so their total xI-degree is strictly
smaller than d.

5. Non-classical polynomials are necessary

In this section we prove Theorem 1·2, namely that non-classical polynomials are neces-
sary in the Uk+1-inverse theorem when k > p. To do this, we use the function f (k)

n : Fn
p →

R/Z defined by

f (k)
n (x) = 1

p�+1

n∑
i=1

|xi|r, (5·1)

where k = r + (p − 1)� with � ≥ 1 and 0 < r < p. Note that f (k)
n is a non-classical polynomial

of degree k, so ‖e(f (k)
n )‖Uk+1 = 1.

In order to motivate our proof, suppose for the sake of contradiction that f (k)
n has correla-

tion at least ε with some classical polynomial of degree at most k. By Theorem 4·2, we will
be able to reduce to the situation

ε ≤
∣∣∣Ex∼Fn

p
e(f (k)

n (x) + g(x) + h(x))
∣∣∣

where g is a homogeneous quasisymmetric polynomial of degree k and h is a classical poly-
nomial of degree at most k − 1. By the monotonicity of the Gowers norms (alternatively by
the Gowers–Cauchy–Schwarz inequality), we deduce

ε2k ≤
∣∣∣Exe(f (k)

n (x) + g(x) + h(x))
∣∣∣2k

=Ex,h1,...,hk (∂h1 · · · ∂hk e(f (k)
n + g + h))(x)

=Eh1,...,hk e(�h1 · · · �hk (f (k)
n + g)).
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Since f (k)
n and g are polynomials of degree k, the iterated derivatives (�h1 · · · �hk f (k)

n )(x) and
(�h1 · · · �hk g)(x) are constants independent of x. Furthermore, they take values in U1 which
(with some abuse of notation) we identify with Fp. Many results on these objects are known,
including the fact that in general they are multilinear functions of h1, . . . , hk (see [7, section
4]). For the purposes of this paper, it is sufficient to do the following explicit computation.

LEMMA 5·1 For k = r + (p − 1)� with � ≥ 0 and 0 < r < p,

ιk(h1, . . . , hk): = �h1 · · · �hk f (k)
n = (− 1)�r!

n∑
i=1

(h1)i · · · (hk)i,

and for α = (α1, . . . , αs) with α1 + · · · + αs = k and 0 ≤ αi < p,

τα(h1, . . . , hk): = �h1 · · · �hk Qα =
∑

π∈Sk

∑
�ı

(h1)iπ(1) · · · (hk)iπ(k) ,

where the sum is over sequences 1 ≤ i1 ≤ · · · ≤ ik ≤ n that satisfy iα1+···+αj+1 = · · · =
iα1+···+αj+αj+1 and iα1+···+αj < iα1+···+αj+1 for all j.

Proof. For classical polynomials P, Q : Fn
p → Fp, of degrees d1, d2, the discrete Leibniz

rule, �h(PQ) = (�hP)Q + P(�hQ) + (�hP)(�hQ), can be easily verified. This implies the
more convenient

�h(PQ) ≡ (�hP)Q + P(�hQ) (mod Poly�d1+d2−2(Fn
p → Fp)).

Note that taking d discrete derivatives kills Poly�d(Fn
p → Fp), so if P ≡ Q

(mod Poly�d(Fn
p → Fp)), then �h1 · · · �hd P(x) = �h1 · · · �hd Q(x).

We compute τα first. Define f ∈ Poly�k(V → Fp) by f (x) = xi1 · · · xik . By many applica-
tions of the discrete Leibniz rule, we see that

�h1 · · · �hk f (x) =
∑

π∈Sk

�h1(xiπ(1) ) · · · �hk (xiπ(k) ) =
∑

π∈Sk

(h1)iπ(1) · · · (hk)iπ(k) .

Extending this result by linearity gives the formula for τα .
Now for ιk. For any k ≥ 1, write k = r + (p − 1)� with 0 < r < p and � ≥ 0.

Define Qk ∈ Poly�k(Fp →R/Z) by Qk(x) = |x|r/p�+1. By linearity, it suffices to
prove that �h1 · · · �hk Qk(x) = r!(− 1)�h1 · · · hk. We prove that �hQk(x) ≡ r|h|Qk−1(x)
(mod Poly�k−2(Fp →R/Z)) for k ≥ 2, while obviously �hQ1(x) = |h|/p. Iterating (and
applying the fact that (p − 1)! ≡ −1 (mod p)) gives the desired result.

We break into two cases. First, if r = 1 (and � ≥ 1) then

�hQk(x) = |x + h| − |x|
p�+1

= |h|
p�+1

− 1(|x| + |h| ≥ p)

p�

= |h|
p�+1

−
p−1∑

c=p−|h|

1(|x| = c)

p�

= |h|
p�+1

+ |h| |x|
p−1

p�
−

p−1∑
c=p−|h|

1(|x| = c) + |x|p−1

p�
.
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Now 1(|x| = c) ≡ 1 − (|x| − c)p−1 (mod p), say 1(|x| = c) = 1 − (|x| − c)p−1 + pEc,p(x) for
some function Ec,p. Then we see

�hQk(x) − |h| |x|
p−1

p�
= |h|

p�+1
−

p−1∑
c=p−|h|

1 − (|x| − c)p−1 + |x|p−1

p�
−

p−1∑
c=p−|h|

Ec,p(x)

p�−1
.

We know that every term in this equation is a non-classical polynomial of degree at
most k − 1 except for the last term. Thus we conclude that the last term is also a non-
classical polynomial of degree k − 1. Furthermore, of the three terms on the right-hand
side, the first is a constant, the second is a non-classical polynomial of degree at most
(p − 1)(� − 1) + (p − 2) = k − 2 (since the |x|p−1/p� terms cancel), and the third has degree
at most (p − 1)(� − 1) = k − p (since it takes values in U�−1). Thus the right-hand side lies
in Poly�k−2(Fp →R/Z), proving the desired result in the r = 1 case.

Now assume that k = r + (p − 1)� where r ≥ 2. We compute

�hQk(x) = |x + h|r − |x|r
p�+1

= (|x| + |h|)r − |x|r
p�+1

− 1(|x| + |h| ≥ p)
(|x| + |h|)r − (|x| + |h| − p)r

p�+1

=
∑r

i=1

(r
i

)|h|i|x|r−i

p�+1
− 1(|x| + |h| ≥ p)

(
r∑

i=1

(− 1)i−1
(r

i

)
(|x| + |h|)r−i

p�+1−i

)
.

We rewrite this as

�hQk(x) − r|h| |x|
r−1

p�+1
=
∑r

i=2

(r
i

)|h|i|x|r−i

p�+1

− 1(|x| + |h| ≥ p)

(
r∑

i=1

(− 1)i−1
(r

i

)
(|x| + |h|)r−i

p�+1−i

)
.

We know that every term in this equation is a non-classical polynomial of degree at most
k − 1 except for the last term, implying that the last term is also a non-classical polyno-
mial of degree k − 1. Furthermore, of the two terms on the right-hand side, the first is a
non-classical polynomial of degree at most (p − 1)� + r − 2 = k − 2 and the second has
degree at most (p − 1)� = k − r (since it takes values in U�−1). Thus the right-hand side lies
in Poly�k−2(Fp →R/Z), proving the desired result in the r ≥ 2 case. This completes the
proof.

Define the maps Ik, Tα :
(
F

n
p

)k−1 → F
n
p by the equations ιk(h1, . . . , hk) =

Ik(h1, . . . , hk−1) · hk and τα(h1, . . . , hk) = Tα(h1, . . . , hk−1) · hk. From Lemma 5·1,
clearly Ik(h1, . . . , hk−1)i = (− 1)�r!(h1)i · · · (hk−1)i. To continue the argument we will need
to show that Tα can be expressed in a particularly convenient form.

LEMMA 5·2 For α = (α1, . . . , αs) with α1 + · · · + αs = k and 0 < αi < p for all i,

Tα(h1, . . . , hk−1)i =
∑

J⊆[k−1]

Ci,α,J(h[k−1],<i, (τβ (hI))β,I)
∏
j∈J

(hj)i
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for some functions Ci,α,J(·, ·), evaluated at the tuple of (hj)i′ for all j ∈ [k − 1] and i′ < i
and the tuple of τβ (hI) for all I ⊆ [k − 1] and β = (β1, . . . , βt) with β1 + · · · + βt = |I| and
0 < βi < p for all i. Furthermore,

Ci,α,[k−1] = (− 1)s−1α1(k − 1)!.
Proof. Fix i ∈ [n] for the rest of the proof. We introduce some notation. We have

h1, . . . , hk−1 ∈ F
n
p. For I ⊆ [k − 1], we write hI = (hj)j∈I . We use

hI,< = ((hj)1, . . . , (hj)i−1)j∈I ∈ (Fi−1
p )I and hI,> = ((hj)i+1, . . . , (hj)n)j∈I ∈ (Fn−i

p )I .

For α = (α1, . . . , αs) we write α<� = (α1, . . . , α�−1) and α>� = (α�+1, . . . , αs). We define
α�� analogously. Recall that we use |α| = α1 + · · · + αs.

By inspection, we can write

Tα(h[k−1])i =
s∑

�=1

α�!
∑

I�J�K=[k−1]:
|I|=|α<�|,
|J|=α�−1,
|K|=|α>�|

⎛
⎝∏

j∈J

(hj)i

⎞
⎠ τα<�

(hI,<)τα>�
(hK,>). (5·2)

We now remove the terms depending on h[k−1],>. Take β = (β1, . . . , βt) with 0 < βi < p
for all i and L ⊆ [k − 1] with |L| = |β|. We have the identity

τβ (hL,>) = τβ (hL) −
t∑

�=1

∑
I�K=L:

|I|=|β��|,
|K|=|β>�|

τβ��
(hI,<)τβ>�

(hK,>)

−
t∑

�=1

β�!
∑

I�J�K=L:
|I|=|β<�|,
|J|=β�,

|K|=|β>�|

⎛
⎝∏

j∈J

(hj)i

⎞
⎠ τβ<�

(hI,<)τβ>�
(hK,>).

(5·3)

Repeatedly applying this identity eventually puts Tα(h[k−1])i into the desired form. To see
this, note that applying this identity to τβ (hL,>) produces many terms of the form τβ>�

(hK,>)
but all of these satisfy |β>�| = |K| < |β| = |L|, so we always make progress.

Finally we need to compute Ci,α,[k−1]. Obviously this coefficient is a constant since the
final decomposition that we produce is multilinear in the h1, . . . , hk−1. Furthermore, the only
way to produce a term that is a multiple of (h1)i · · · (hk−1)i is to have no factors of τβ<�

(hI,<)
in that term. (However, we have a choice of I, J, K in (5·2).) This means that in the initial
decomposition we need to be in the � = 1 case of the sum and every time we use the identity
(5·3) we need to be in the � = 1 case of the second sum. Again, in every subsequent choice
although � = 1 is fixed, we have a choice of I, J, K. Tracing through all of these reductions,
we see that we produce the coefficient

α1!
(

k − 1

α1 − 1

) s∏
j=2

(
− (αj!)

(
k − α1 − · · · − αj−1

αj

))
= (− 1)s−1α1(k − 1)!.

This proves the desired result.
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So far we have developed the tools to, starting with the assumption of correlation with a
classical polynomial, reduce to a situation in which

ε2k ≤E

[
ep

(
ιk −

∑
α

cατα

)]
= P

(
Ik +

∑
α

cαTα = 0

)

= Ph1,...,hk−1∼Fn
p

(
∀i ∈ [n], Ik(h1, . . . , hk−1)i +

∑
α

cαTα(h1, . . . , hk−1)i = 0

)
.

Therefore, we need a bound on the probability that a multiaffine function equals zero.

LEMMA 5·3 Let L : Fr
p → Fp be a multiaffine function whose leading coefficient (i.e.,

coefficient of x1 · · · xr) is non-zero. Then

Px1,...,xr∼Fp(L(x1, . . . , xr) = 0) ≤ 1 −
(

1 − 1

p

)r

= :1 − cp,r.

Proof. We prove this result by induction on r. The bound is trivially true for r = 0.
For r ≥ 1, we can write

L(x1, . . . , xr) = xrM(x1, . . . , xr−1) + N(x1, . . . , xr−1),

where M and N are multiaffine and the leading coefficient of M is non-zero. Then for each
fixed x1, . . . , xr−1, there is at most 1 choice of xr that makes L vanish unless M(x1, . . . , xr) =
0. Then

Px1,...,xr∼Fp(L(x1, . . . , xr) �= 0) ≥
(

1 − 1

p

)
Px1,...,xr−1∼Fp(M(x1, . . . , xr−1) �= 0).

The second term can be handled by the inductive hypothesis, completing the desired
induction.

We now have the tools to prove the main theorem. The probability we are considering is
the probability that n multiaffine functions vanish simultaneously. If these were independent,
by the above lemma, we could bound the probability by (1 − cp,k)n = op,k;n→∞(1).

In order to introduce such independence, we can take a union bound over all possible
τβ (hI). Then Lemma 5·2 shows that our multiaffine forms have the following property: if
we plug in values for ((h1)i′ , . . . , (hk−1)i′)i′<i and τβ (hI) for all β, I, then Tα(h1, . . . , hk−1)i

is multiaffine in (h1)i, . . . , (hk−1)i with non-zero leading coefficient. Then we may reveal
((h1)i, . . . , (hk−1)i) one-by-one for i ∈ [n], and find that the total probability is bounded by
(1 − cp,k)n. As the number of possible choices in the union bound is Op,k(1) we will be able
to prove the desired bound.

Proof of Theorem 1·2. Take k ≥ p + 1. Consider f (k)
n : Fn

p →R/Z defined in (5·1). Since

f (k)
n is a non-classical polynomial of degree k, we know that ‖e(f (k)

n )‖Uk+1 = 1. For a classical
polynomial P ∈ Poly�k(Fn

p → Fp), set ε = |Exe(f (k)
n (x) + |P(x)|/p)|. We will prove that ε =

op,k;n→∞(1).
By Theorem 4·2, there exists m = ωp,k;n→∞(1) and a subset I ⊆ [n] such that for all

y[n]\I ∈ F
[n]\I
p ,

P(xI , y[n]\I) = Q(xI) + Py[n]\I (xI),
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where Q is a homogeneous quasisymmetric polynomial of degree k and Py[n]\I is a
polynomial of degree at most k − 1.

Without loss of generality, assume that I = [m]. Then

ε = |Ex∼Fn
p
e(f (k)

n (x) + |P(x)|/p)| ≤Ey∼F
n−m
p

|Ex∼Fm
p

e(f (k)
n (x, y) + |P(x, y)|/p)|.

Then by the pigeonhole principle, there exists y ∈ F
n−m
p such that the inner expectation is at

least ε. Fix this choice of y for the rest of the proof. Note that f (k)
n (x, y) = f (k)

m (x) + cy where

cy = f (k)
n−m(y) ∈R/Z is a constant. Thus we have

ε ≤ |Ex∼Fm
p

e(f (k)
m (x) + |Q(x)|/p + |Py(x)|/p + cy)|.

Note that the right-hand side is a U1-norm. Using the monotonicity of the Gowers norms
(see, e.g., [7, lemma B.1.(ii)]) we deduce

ε2k ≤ ‖e(f (k)
m + |Q|/p + |Py|/p + cy)‖2k

U1

≤ ‖e(f (k)
m + |Q|/p + |Py|/p + cy)‖2k

Uk

=Ex,h1,...,hk∂h1 · · · ∂hk e(f (k)
m + |Q|/p + |Py|/p + cy)(x)

=Ex,h1,...,hk e(�h1 · · · �hk (f (k)
m + |Q|/p + |Py|/p + cy)(x)).

Taking k discrete derivatives kills (non-classical) polynomials of degree at most k − 1 and
turns those of degree k into constants. Thus the final expression is equal to

Eh1,...,hk e(�h1 · · · �hk (f (k)
m + |Q|/p)).

Since Q is a homogeneous quasisymmetric polynomial of degree k, it can be written as∑
α cαQα where α ranges over all tuples (α1, . . . , αs) with |α| = k and 0 < αi < p for all i

and the cα ∈ Fp are arbitrary coefficients.

We computed �h1 · · · �hk f (k)
m and �h1 · · · �hk Qα in Lemma 5·1. These are the k-linear

forms denoted ιk, τα : (Fm
p )k → Fp respectively. Thus so far we have shown that

ε2k ≤Eh1,...,hk ep

(
ιk(h1, . . . , hk) +

∑
α

cατα(h1, . . . , hk)

)
.

For an arbitrary k-linear form σ :
(
F

m
p

)k → Fp, there is a unique (k − 1)-linear function

S :
(
F

m
p

)k−1 → F
m
p that satisfies σ (h1, . . . , hk) = S(h1, . . . , hk−1) · hk. Furthermore, we have

Eh1,...,hk ep(σ (h1, . . . , hk)) =Eh1,...,hk ep(S(h1, . . . , hk−1) · hk)

= Ph1,...,hk−1(S(h1, . . . , hk−1) = 0).

From this we conclude

ε2k ≤ Ph1,...,hk−1

(
∀i ∈ [m], Ik(h1, . . . , hk−1)i +

∑
α

cαTα(h1, . . . , hk−1)i = 0

)
.
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Recall that Ik(h1, . . . , hk−1)i = (− 1)�r!(h1)i · · · (hk−1)i where k = r + (p − 1)� with � ≥ 1
and 0 < r < p. Note that (− 1)�r! �= 0 in Fp. Furthermore, Lemma 5·2 states that

Tα(h1, . . . , hk−1)i =
∑

J⊆[k−1]

Ci,α,J(h[k−1],<i, (τβ (hI))β,I)
∏
j∈J

(hj)i.

In other words Tα(h1, . . . , hk−1)i, viewed just as a function of (h1)i, . . . , (hk−1)i is multi-
affine with coefficients given by Ci,α,J . Additionally, Lemma 5·2 also gives the critical fact
that the leading coefficient, Ci,α,[k−1], is equal to (− 1)s−1α1(k − 1)! for all i. Since k ≥ p + 1,
we have that Ci,α,[k−1] = 0 (recall that the coefficients live in Fp).

This implies that Ik(h1, . . . , hk−1)i +∑
α cαTα(h1, . . . , hk−1)i, viewed just as a function

of (h1)i, . . . , (hk−1)i is multiaffine with non-zero leading coefficient, say

Ik(h1, . . . , hk−1)i +
∑
α

cαTα(h1, . . . , hk−1)i =
∑

J⊆[k−1]

Ci,J(h[k−1],<i, (τβ (hI))β,I)
∏
j∈J

(hj)i,

where Ci,[k−1] = (− 1)�r! �= 0 for all i.
By Lemma 5·3, if the coefficients are fixed then this function vanishes with probability

at most 1 − cp,k < 1. To complete the proof, we need to show that we can approximately
decouple these events. Formally,

ε2k ≤ Ph1,...,hk−1

⎛
⎝∀i ∈ [m],

∑
J⊆[k−1]

Ci,J(h[k−1],<i, (τβ (hI))β,I)
∏
j∈J

(hj)i = 0

⎞
⎠

=
∑

(Aβ,I )β,I

Ph1,...,hk−1

(∀β, I, τβ (hI) = Aβ,I

∩
∑

J⊆[k−1]

Ci,J(h[k−1],<i, (τβ (hI))β,I)
∏
j∈J

(hj)i = 0

⎞
⎠

≤
∑

(Aβ,I )β,I

Ph1,...,hk−1

⎛
⎝ ∑

J⊆[k−1]

Ci,J(h[k−1],<i, (Aβ,I)β,I)
∏
j∈J

(hj)i = 0

⎞
⎠ .

The final replacement simply comes by substituting in the values Aβ,I .
Now for each i ∈ [m], let Ei be the event that∑

J⊆[k−1]

Ci,J(h[k−1],<i, (Aβ,I)β,I)
∏
j∈J

(hj)i = 0.

We wish to bound

Ph1,...,hk−1 (Ei
∣∣∀i′ < i, Ei′

)
.

Since the event we are conditioning on only depends on h[k−1],<i, the conditional distribution
of (h1)i, . . . , (hk−1)i is still uniform. Thus we can upper bound the above probability by

sup
h[k−1],<i

P(h1)i,...,(hk−1)i∼Fp

⎛
⎝ ∑

J⊆[k−1]

Ci,J(h[k−1],<i, (Aβ,I)β,I)
∏
j∈J

(hj)i = 0

⎞
⎠ .
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By Lemma 5·3, and the fact that Ci,[k−1] = (− 1)�r! �= 0 always, this probability is upper-

bounded by 1 − cp,k < 1. Putting everything together, we have shown that ε2k ≤ Op,k((1 −
cp,k)m). (The hidden constant is the number of terms in the sum over (Aβ,I)β,I , which depends

on p, k but not on m, n. It can be bounded by p4k
.) We showed that m = ωp,k;n→∞(1),

implying that ε = op,k;n→∞(1).
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