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Transition study for asymmetric reflection
between moving incident shock waves
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The transition criteria seen from the ground frame are studied in this paper for
asymmetrical reflection between shock waves moving at constant linear speed. To limit
the size of the parameter space, these criteria are considered in detail for the reduced
problem where the upper incident shock wave is moving and the lower one is steady, and
a method is provided for extension to the general problem where both the upper and lower
ones are unsteady. For the reduced problem, we observe that, in the shock angle plane,
shock motion lowers or elevates the von Neumann condition in a global way depending
on the direction of shock motion, and this change becomes less important for large shock
angle. The effect of shock motion on the detachment condition, though small, displays
non-monotonicity. The shock motion changes the transition criteria through altering the
effective Mach number and shock angle, and these effects add for small shock angle and
mutually cancel for large shock angle, so that shock motion has a less important effect for
large shock angle. The role of the effective shock angle is not monotonic on the detachment
condition, explaining the observed non-monotonicity for the role of shock motion on
the detachment condition. Furthermore, it is found that the detachment condition has a
wavefunction form that can be approximated as a hybrid of a sinusoidal function and a
linear function of the shock angle.

Key words: shock waves, supersonic flow

1. Introduction

Shock reflection is an important flow phenomenon in high speed flow (Ben-Dor 2007).
Both regular reflection (RR) and Mach reflection (MR) may occur, as displayed in
figure 1(a,b) for symmetric shock reflection and figure 1(c,d) for asymmetric shock
reflection. Since the flow configurations of RR and MR are substantially different, the
transition between RR and MR has received great attention since the pioneering work of
von Neumann (1943, 1945).
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Figure 1. Illustration of shock reflection in supersonic flow: (a) steady symmetric RR; (b) steady symmetric
MR; (c) steady asymmetric RR; (d) steady asymmetric MR.

For steady symmetric shock reflection, there are two transition criteria: the von
Neumann condition and the detachment condition. The former is the necessary condition
to have MR. The latter is the sufficient condition for MR. In the Mach number (M0)–wedge
angle (θw) plane, these two criteria enclose a region, called dual solution domain
(DSD), for which both reflections are possible (Henderson & Lozzi 1975; Hornung,
Oertel & Sandeman 1979; Teshukov 1989; Li & Ben-Dor 1996). Hornung et al. (1979)
hypothesized a wedge-angle variation-induced hysteresis for transition, later on proved
by Chpoun et al. (1995) using experimental study and by Vuillon, Zeitoun & Ben-Dor
(1995) using numerical simulation. Ivanov et al. (2001) further demonstrated flow Mach
number variation induced hysteresis in steady flow shock wave reflections, using numerical
simulation. These studies clarified that, whether we have MR or RR in the DSD depends
on the history of the building of the actual steady flow – see Ben-Dor et al. (2002) and
Hornung (2014) for more works related to this issue.

Transition criteria for asymmetric shock reflection are obtained by Li, Chpoun &
Ben-Dor (1999) and Ivanov et al. (2002). Asymmetric MR has two different triple points,
the transition of one incident shock wave induces the transition of another, thus permitting
indirect MR (known as InMR), compared with the usual direct MR (known as DiMR). Li
et al. (1999) and Ivanov et al. (2002) not only clarified the domains of RR, MR and DSD,
but also identified the regions to have direct MR or indirect MR for each triple point.

In these past studies, all the shock waves are steady ones in the ground frame. Shock
reflections with at least one of these shock waves at motion becomes a subject of recent
interests.

Mouton & Hornung (2007) allows the Mach stem to grow while keeping the incident
shock wave steady, for purpose of improving a Mach stem height model. Various authors
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used large amplitude local perturbation to study forced transition in the double solution
(DS) domain, for which the shock waves near the triple point evolve in time (Ivanov et al.
1997, 1998; Ivanov, Kudryavtsev & Khotyanovskii 2000; Kudryavtsev et al. 2002; Li, Gao
& Wu 2011).

More recently, dynamic transition has been studied experimentally or numerically, for
shock reflection with moving incident shock waves caused by wedge rotation (Naidoo
& Skews 2011, 2014) and wedge pitch or oscillation (Laguarda et al. 2020). It was
shown by these studies that wedge motion alters the transition criteria (cf. the transition
from MR to RR is delayed by rotation). Laguarda et al. (2020) has further addressed the
characteristic unsteady flow features, such as the Mach stem growth, pressure evolution
across the shock system and corresponding flow deflections and entropy rise, apart
from the bidirectional RR to MR transition process. Asymmetric shock reflection also
occurs in shock-wave/boundary-layer interactions. When a strong enough incident shock
wave impinges a boundary layer, boundary layer separation is induced. The separation
bubble defines an effective wedge which produces another shock wave known as the
separation shock. The separation shock and the incident shock then define an asymmetric
shock reflection problem, for which both RR and MR occurs (Matheis & Hickel 2015).
Touré & Schülein (2020) experimentally studied an unsteady shock-wave/boundary-layer
interaction problem, where the boundary layer lies on a stationary wall, while the
incident shock wave has a translation pushed by a movable geometry. This unsteady
shock-wave/boundary-layer interaction problem is even more complex than the problem
considered here, since the velocity of the effective wedge is not fully defined.

The dynamical transition criteria for shock reflection with rotating and oscillating
wedges are very difficult to analyse using a theoretical approach such as that for steady
shock reflection. The reason is that, for such shock reflection process, one cannot find a
reference frame comoving with which the flow becomes steady. In the ground reference
frame, the motion of the reflection point involves acceleration and does not move at
constant (linear) velocity, though the wedge may just rotate at constant angular velocity.
According to the knowledge of the present authors, there appears to be no report on the
transition criteria of unsteady shock reflection where the incident shock waves move even
at constant speed, probably because that finding whether we have RR, MR or DS for a
particular condition is rather trivial: one can apply the steady reflection analysis to the
equivalent problem defined on the frame comoving with which the problem is steady.

However, for shock reflection between unsteady shock waves, finding the transition
criteria, to be displayed in the entire parameter space and with flow angles or shock angles
defined on the ground frame, is not as simple as it appears, due to the increase of the size of
the parameter space by shock motion. First, the number of input parameters over which the
transition criteria are to be displayed is increased. Secondly, to obtain the transition criteria
for a fixed M0, this inflow Mach number cannot be held fixed in the algorithm to calculate
the transition criteria. Moreover, as we will see, the transition criteria and their derivatives
with respect to shock speed may display features that cannot be expected through a simple
translation from the transition criteria of steady shock reflection. For these reasons and
maybe even more, the transition criteria for asymmetric shock reflection between moving
incident shock waves at constant speed deserve to be studied and this study forms the
objective of this paper.

In this study, we only consider asymmetrical shock reflection between weak enough
incident shock waves, so that only two triple points exist in the case of MR. The reflection
between a strong moving shock wave and a steady incident shock wave, not to be
considered here, is much more complex since it may lead to five triple points (Wang &
Wu 2021).
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Figure 2. The reduced problem of shock reflection between a moving shock wave (i1) and a steady shock
wave (i2).

To limit the size of the parameter space, we start with the reduced problem of shock
reflection between one moving shock wave and a steady shock wave, as displayed
in figure 2. In this reduced problem, the lower shock i2 is steady and the upper
shock i1 is moving with a given normal speed φn (positive if moving towards the
downstream direction and negative if moving towards the upstream direction). We then
discuss how to extend the result of the reduced problem to the general problem of
shock reflection between two unsteady incident shock waves which move at different
speeds.

The shock relations for both steady and unsteady shock waves needed in transition
analysis are provided in § 2. In § 3 we provide the method to derive the von Neumann
condition and the detachment condition for the reduced shock reflection problem, using a
reference frame comoving with the intersection point T of i1 and i2. In § 4.1, the transition
criteria will be displayed in both the β01–β02 plane and the θ01–θ02 plane, for different
φn of shock i1. In § 4.2, numerical simulation by computational fluid dynamics (CFD) is
used to check whether the influence of shock motion on transition predicted by theory is
also observed in numerical experiments. In § 5, we give a discussion about the inherent
mechanism by which shock motion alters the transition condition. This is done by looking
at how the effective parameters (Mach number and shock angles) which determine the
transition criteria are changed by shock motion. The functional form of the detachment
condition is also used to explain some observed phenomena. In § 6, we show how to
extend the results of the reduced problem to the general shock reflection problem where
both incident shock waves are moving, with a particular discussion of symmetric shock
reflection and shock reflection due to translation of a wedge. Section 7 is devoted to
conclusions.

2. Shock relations for steady and moving shock waves

We outline the oblique shock wave relations first for steady shock waves and then for
moving shock waves (considering i1 as an example). In this paper, γ is the ratio of specific
heats (we simply consider air so that γ = 1.4), the density is ρ, the pressure is p, the flow
velocity is V = (u, v), the Mach number is M, the sound speed is a = √γ p/ρ. For any
shock wave, the shock angle is β, the flow deflection angle is θ . We use subscript 0 to
denote inflow stream conditions.
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2.1. Oblique shock wave relations for steady shock waves
Shock relations relate the downstream conditions (here denoted with subscript d) to
upstream conditions (with subscript u). For steady oblique shock waves, we generally
specify the upstream flow conditions (such as the Mach number Mu, density ρu and
pressure pu) and the flow deflection angle θud or shock angle βud. The shock angle is
related to the flow deflection angle through the shock angle relation

tan θud = fθ (Mu, βud), fθ (M, β) =
2
(
M2sin2β − 1

)
(
M2 (γ + cos 2β)+ 2

)
tanβ

. (2.1a,b)

For given Mu and θud, the shock angle relation gives two values of βud. The smaller value
β corresponds to a weak solution and the larger value corresponds to a strong solution. In
certain occasions, it is the shock angle βud that is prescribed and (2.1a,b) is then used to
obtain θud.

Once βud is known, the downstream flow conditions (such as the Mach number Md,
density ρd and pressure pd) are obtained from the steady oblique shock wave relations

M2
d = fM(Mu, βud), ρd = ρufρ(Mu, βud), pd = pufp(Mu, βud), (2.2a–c)

where

fM(M, β) = (γ − 1)M2 + 2

2γM2sin2β − (γ − 1)
+ 2M2cos2β

(γ − 1)M2sin2β + 2
,

fρ(M, β) = (γ + 1)M2sin2β

(2γ − 1)M2sin2β
,

fp(M, β) = 1+ 2γ
γ + 1

(
M2sin2β − 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

With V = a×M, the velocity components normal (with subscript n) and tangent (with
subscript τ ) to the shock wave are

Vn,u = Vu sinβud,Vn,d = Vd sin (βud − θud) ,

Vτ,u = Vu cosβud,Vτ,d = Vd cos(βud − θud).

}
(2.4)

The shock detaches at the detached angle θ = θ(max)(M0) determined by
(∂fθ (Mu, β))/(∂β) = 0. For an upstream Mach number Mu, the expression for the
detached angle is

sin2 βm = 1
γM2

u

[
γ + 1

4
M2

u − 1+
√
(1+ γ )

(
1+ γ − 1

2
M2

u +
γ + 1

16
M4

u

)]
,

tan θ(max) = 2[(M2
u − 1) tan2 βm − 1]

tanβm[(γM2
u + 2)(1+ tan2 βm)+Mu(1− tan2 βm)]

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

2.2. Unsteady shock wave relations
For moving shock waves, if the flow conditions are defined in the frame comoving with
the shock wave, then the shock wave relations (2.1a,b), (2.2a–c) and (2.3) can still be used
to relate the downstream flow conditions (defined on the moving frame) to the upstream
conditions (defined on the moving frame). In the following we need shock relations and
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flow quantities defined on the ground frame. Note that shock relations for moving oblique
shock waves are provided by Emanuel & Yi (2000).

Consider just the reduced problem shown in figure 2. Since shock i2 is steady we only
consider unsteady shock relations for i1. These relations relate the flow parameters in
region (1) downstream of shock i1 to those in the upstream region (0). Here we will make
the role of the shock speed φn of shock i1 appear explicitly.

On the ground frame, the orientation of shock wave i1 is defined by its unit vector normal
to the shock wave n, and the unit vector parallel to the shock wave τ . We require the vector
n to point in the downstream direction and τ in the tangent velocity direction.

Apart from the upstream flow condition (with subscript 0), we also prescribe the shock
angle β01 or the flow deflection angle θ01. In the end of this subsection, we will show
how to compute β01 if θ01 and φn are prescribed, and to compute θ01 if β01 and φn are
prescribed. For the moment, we just prescribe β01.

Giving V 0 and the shock angle β01, the normal and tangent velocity components in
region (0) are given by

Vn,0 = V 0 · n = V0 sinβ01,

Vτ,0 = V 0 · τ = V0 cosβ01.

}
(2.6)

We will consider the case with p1 > p0, so that the unsteady shock i1 belongs to the first
family, in that its normal speed φn is related to the pressure jump by the following classical
relation in shock dynamics (Ben-Dor, Igra & Elperin 2001):

φn = Vn,0 − a0

√
γ + 1

2γ
p1

p0
+ γ − 1

2γ
. (2.7)

Since p > p0, we have

−∞ < φn < V0,n − a0 =
(
M0,n − 1

)
a (2.8)

so that the maximal value of φn is limited.
The shock speed φn is considered as a given parameter in this paper, the pressure p1 is

obtained from (2.7), as

p1 = 1
γ + 1

(
1− γ + 2γ

a2
0

(
φn − Vn,0

)2) p0. (2.9)

The downstream flow speed in the direction normal to the shock wave Vn,1 = V 1 · n is
then given by (see also Ben-Dor et al. 2001)

Vn,1 = Vn,0 − a0

γ

(
p1

p0
− 1

)(
γ + 1

2γ
p1

p0
+ γ − 1

2γ

)−1/2

(2.10)

and the density ρ1 is given by the well known density–pressure relation

ρ1

ρ0
=
γ + 1
γ − 1

p1

p0
+ 1

γ + 1
γ − 1

+ p1

p0

. (2.11)

The tangent component of the velocity does not change across the shock wave,
independent of the shock speed. Thus Vτ,1 = Vτ,0, or

Vτ,1 = Vτ,0 = V0 cosβ01 (2.12)

if (2.6) is used for Vτ,0.
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Figure 3. Shock angle curves for three different shock speeds for M0 = 4.96.

Now we derive the shock angle relation of unsteady shock wave similar to (2.1a,b) for a
steady one. By Vτ,1 = V1 cos(β01 − θ01) and Vn,1 = V1 sin(β01 − θ01), we have

tan (β01 − θ01) = Vn,1

Vτ,1
. (2.13)

Putting (2.10) and (2.12) into (2.13) gives the following shock angle relation for unsteady
shock wave:

tan (β01 − θ01) =
sinβ01 − 1

γM0
(σ − 1)

(
γ + 1

2γ
σ + γ − 1

2γ

)−1/2

cosβ01
, (2.14)

where

σ = 1
γ + 1

(
1− γ + 2γM2

0

(
Mφn

M0
− sinβ01

)2
)
. (2.15)

In (2.15), Mφn is the shock speed Mach number defined by

Mφn =
φn

a0
. (2.16)

The appearance of Mφn in the shock angle relation suggests that the influence of shock
speed should be accounted for in terms of Mφ defined by (2.16). This may explain why
Naidoo & Skews (2011, 2014) used a similar shock speed Mach number in studying the
effect of wedge rotation on transition. Note that Naidoo & Skews (2011, 2014) defined this
Mach number based on the linear shock speed due to rotation.

Figure 3 displays the curves θ01 = θ01(M0,Mφn, β01) given by (2.14) at M0 = 4.96, for
Mφn = −0.1, 0 and 0.1. It is seen that when Mφn < 0 or Mφn > 0, the flow deflection angle
is increased or decreased, compared with Mφn = 0.

3. Method to obtain transition criteria for the reduced problem

The transition criteria are studied here on an equivalent problem defined by choosing a
reference frame comoving with the intersection point T of shock i1 and i2 (see figure 2)
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Figure 4. Illustration of flow parameters for the reduced problem: (a) ground frame; (b) frame comoving
with T .

and expressed in terms of flow parameters defined on the ground frame. On this equivalent
problem, the method for transition criteria of steady shock reflection can be directly
applied to study the influence of shock speed. However, the analysis is not as simple
as it appears, since the inflow Mach number will be changed by this choice of frame.
Below we first define the comoving reference frame. We then provide the method to
study the transition criteria. We only consider the von Neumann condition and detachment
condition. The results will be displayed in § 4.

3.1. Equivalent flow conditions defined in the reference frame comoving with the
intersection point T

The flow parameters in the ground frame for the reduced problem are displayed in
figure 4(a). Now we choose a reference frame comoving with the intersection point T
of shock i1 and i2. In this reference frame, which moves at velocity φT to be determined
below, the flow parameters, called equivalent flow parameters, will be denoted using an
overbar (e.g. M̄ is the Mach number seen in the moving reference frame), as shown in
figure 4(b).

First we derive the velocity φT = (φTx, φTy) of the intersection point T of shock i1 and
i2. This velocity is due to the motion of shock i1. Since T also moves along the tangent
direction of shock i2, the velocity vector of T and the velocity of shock i1 (normal to
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Figure 5. Schematic view of parameters in relation (3.1a,b).

i1) form the two sides of a rectangular triangle such that −φn =φT sin(β01 + β02). See
figure 5 for a schematic view of the interaction location with all relevant angles and the
upper incident shock and interaction point velocity vectors. Since φTx = −φT cosβ02 and
φTy = −φT sinβ02, we obtain

φTx = φn
cosβ02

sin(β01 + β02)
, φTy = φn

sinβ02

sin(β01 + β02)
. (3.1a,b)

For the steady shock i2, if its shock angle β02 is given, then (2.1a,b) is used for θ02. If
θ02 is prescribed, then β02 is obtained from (2.1a,b). The flow parameters in region (2) are
determined by (2.2a–c). With the normal and tangent velocities Vn and Vτ in region (2)
determined from (2.4), we get

u2 = Vn,2 sinβ02 + Vτ,2 cosβ02,

v2 = −Vn,2 cosβ02 + Vτ,2 sinβ02.

}
(3.2)

For shock i1, which has a normal speed φn, if β01 is prescribed, then (2.14) is solved
for θ01. If θ01 is prescribed, then (2.14) is solved for β01. With the normal and tangent
velocities determined by (2.10) and (2.12), the flow velocity components in region (1) are
then computed by

u1 = Vn,1 sinβ01 + Vτ,1 cosβ01,

v1 = Vn,1 cosβ01 − Vτ,1 sinβ01.

}
(3.3)

With the velocity φT = (φTx, φTy) determined by (3.1a,b), the equivalent velocity
components and Mach number in region (k) with k = 0, 1, 2, 3, 4 are computed by

ūk = uk − φTx,

v̄k = vk − φTy,

M̄k =
√

ū2
k + v̄2

k

āk
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

Note that the pressure, density and sound speed do not change with the frame, so we have

p̄k = pk, ρ̄k = ρk, āk = ak. (3.5a–c)

In the ground frame, the flow deflection angle in region (0) is θ0 = 0 and the equivalent
flow deflection angle in region (0) (with respect to the horizontal direction) is given by

θ̄0 = arctan
v̄0

ū0
. (3.6)

If φn < 0, so that T moves along the upstream direction, then, ū0 > 0, v̄0 > 0 and θ̄0 > 0.
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The equivalent shock angles (see figure 4b for notation) are given by

β̄01 = β01 + θ̄0,

β̄02 = β02 − θ̄0

}
(3.7)

and the equivalent flow deflection angles satisfy

θ̄01 = θ̄0 − arctan
v̄1

ū1
,

θ̄02 = arctan
v̄2

ū2
− θ̄0.

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

Finally, the shock relations

p̄1 = p̄0fp(M̄0, β̄01), p̄2 = p̄0fp(M̄0, β̄02) (3.9a,b)

are used to find the equivalent pressures p̄1 and p̄2 downstream of shock i1 and shock i2.
In fact these pressures are invariant under frame transformation.

Note that the shock system (including shock angles and flow deflection angles) displayed
in figure 4(a) is obtained using the real conditions M0 = 4.96, θ01 = 25◦, θ02 = 15◦,
φn = −2a0. From these conditions we get β01 = 10.863◦ by (2.14) and β02 = 24.405◦
by (2.1a,b). Using (3.1a,b) we get φTx = −3.154a0 and φTy = −1.431a0. Note that due to
shock motion with φn = −2a0, the shock angle β01, which should be 35.858◦ in the case
of steady shock, is reduced to 10.863◦. Using (3.6), (3.4), (3.7) and (3.8) we obtain θ̄0 =
10.003◦, M̄0 = 8.240, θ̄01 = 15.132◦, θ̄02 = 9.0465◦, β̄01 = 20.866◦ and β̄02 = 14.402◦.
These shock angles are used to obtain the illustration in figure 4(b).

3.2. Method to determine the von Neumann condition and detachment condition
For steady asymmetrical shock reflection, the theory for critical conditions of transition
from RR to MR has been given by Li et al. (1999) and Ivanov et al. (2002). Now we
provide the method to derive the transition criteria for the reduced problem with i1 moving
at φn. The transition criteria now depend on the shock speed φn (shock i1) so that the von
Neumann condition has the functional form θ02 = θ(N)02 (M0, θ01, φn) and the detachment
condition has the functional form θ02 = θ(D)02 (M0, θ01, φn). Similar functional forms can
be defined for shock angles β01 and β02.

It seems to be very simple and straightforward to obtain the transition criteria to account
for φn, by simply putting the equivalent flow conditions into the analysis of transition
criteria for steady asymmetric shock reflection. However, while searching for θ02 (or β02)
such that the von Neumann condition or the detachment condition holds, the inflow Mach
number M̄0 cannot be made fixed, due to the fact that the velocity of T and thus M̄0 also
depend on θ02.

Now, for a given inflow Mach number M0, flow deflection angle θ01 and shock speed φn
of shock i1, we look for θ02 to meet the von Neumann condition and detachment condition
in the frame comoving with T . We provide below the steps to be followed in the algorithm
to find these transition criteria.

(i) Step 1. The flow velocity components u1 and v1 in region (1) are computed using
(3.3). A series of θ02 is considered for searching the von Neumann condition and
detachment condition, using the method provided below.
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θ̄01
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θ̄24
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Figure 6. The equivalent flow deflection angles in the comoving frame.

(ii) Step 2. For any θ02 thus preprescribed, the velocity of T is computed by (3.1a,b),
the flow velocity components in (2) are computed using (3.2). The equivalent flow
parameters M̄0, M̄1, M̄2, β̄01, β̄02, θ̄01 and θ̄02 are computed by (3.4)–(3.8), and p̄1, p̄2
by (3.9a,b).

(iii) Step 3. The detachment condition is searched. Referring to figure 6 for notations for
shock angles and flow deflection angles, the pressures p̄3 and p̄4 downstream of the
reflected shock waves r1 and r2 are computed by

tan θ̄13 = fβ(M̄1, β̄13), p̄3 = p̄1fp(M̄1, β̄13),

tan θ̄24 = fβ(M̄2, β̄24), p̄4 = p̄2fp(M̄2, β̄24).

}
(3.10)

Let the slipline s (see figure 6) deflect at an angle θ̄ s (assumed positive if the it deflects
in the clockwise direction). The expressions in (3.10) are solved along with the following
flow parallel condition

θ̄13 = θ̄01 − θ̄0 − θ̄ s,

θ̄24 = θ̄02 + θ̄0 + θ̄ s

}
(3.11)

and pressure balance condition
p̄3 = p̄4. (3.12)

The satisfaction of (3.11) and (3.12) means that the polar of the two reflected shock
waves have intersected. The detachment condition θ02 = θ(D)02 (M0, θ01, φn) is the condition
for θ̄02 such that the polar of the reflected shock originated from (θ̄02, p̄2), calculated from
(3.10)), is tangent to the polar of the reflected shock originated from (θ̄01, p̄1), calculated
from (3.10).

(iv) Step 4. The von Neumann condition is searched. Let p̄m be the pressure downstream
of a strong shock wave with flow deflection angle θ̄0 + θ̄ s and with the upstream
Mach number M̄0. Let βs be the strong shock wave solution of tan(θ̄0 + θ̄ s) =
fβ(M̄0, β̄s), then

p̄m = p̄0

(
1+ 2γ

γ + 1

((
M̄0 sin β̄s

)2 − 1
))
. (3.13)

We still use (3.10), (3.11) and (3.12) to find the pressure p̄3 and p̄4 behind the reflected
shock waves r1 and r2. The von Neumann condition θ02 = θ

(N)
02 (M0, θ01, φn) is

reached when

p̄m = p̄3 = p̄4. (3.14)

Algorithm 1 gives the pseudocode to obtain the transition conditions.
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Algorithm 1 Calculation of θ(D)02 and θ(N)02 with M0, θ01 and Mφn

Input: M0, θ01 and Mφn

Initialization:θ(1)02 ← 0,θ(2)02 ← θ(max)(M0)

repeat {Bisection method to get θ(D)02 }
θ
(test)
02 = (θ(1)02 + θ(2)02 )/2

Transform (M0, θ01, θ(test)
02 , Mφn) into (M̄0, θ̄01, θ̄02 ) by (3.4), (3.6) and (3.8)

if max(θ̄24 + θ̄13)(p) < (θ̄01 + θ̄02) then
region←MR

end if
if region is MR then
θ
(2)
02 ← θ

(test)
02

else
θ
(1)
02 ← θ

(test)
02

end if
until θ(2)02 − θ(1)02 < eps
θ
(D)
02 ← θ

(test)
02

Output: θ(D)02
Initialization: θ(1)02 ← 0,θ(2)02 ← θ

(D)
02

repeat {Bisection method to get θ(N)02 }
θ
(test)
02 = (θ(1)02 + θ(2)02 )/2

Transform (M0, θ01, θ(test)
02 , Mφn) into (M̄0, θ̄01, θ̄02 ) by (3.4), (3.6) and (3.8)

Polar 0: shock polar originated from (0, p̄0) with upstream Mach number M̄0
Polar 1: shock polar originated from (−θ̄01, p̄1) with upstream Mach number M̄0
Find the intersection point (θ∗, p∗) of polar 1 and polar 0
if (θ̄02 − θ̄24)(p∗) < θ∗ then

region← RR
end if
if region is RR then
θ
(1)
02 ← θ

(test)
02

else
θ
(2)
02 ← θ

(test)
02

end if
until θ(2)02 − θ(1)02 < eps
θ
(N)
02 ← θ

(test)
02

Output: θ(N)02

4. Transition criteria and numerical validation

In this section, we display the transition criteria accounting for the influence of the shock
speed for the reduced problem, predicted by theory. We then provide numerical validation.

4.1. The transition criteria for the reduced problem predicted by theory
We have computed the transition criteria for both M0 = 4.96 and M0 = 3.96, with seven
shock speeds φn = 0, φn = ±a0/10, φn = ±2(a0)/10, φn = ±4(a0)/10. The difference
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Figure 7. Transition criteria in the β01–β02 plane with M0 = 4.96. The arrow ↗ indicates the direction of
increasing |Mφn |. (a) For Mφn = 0 (steady), Mφn = −0.1, Mφn = −0.2 and Mφn = −0.4. (b) For Mφn = 0
(steady), Mφn = 0.1, Mφn = 0.2 and Mφn = 0.4.

of the transition criteria for φn /= 0 compared with that for φn = 0 reflects the influence
of the shock speed φn on transition. The transition criteria for φn = 0 recover the steady
state criteria of Li et al. (1999) and Ivanov et al. (2002). The conclusion is similar for both
Mach numbers so we only display results for M0 = 4.96.

If the von Neumann condition is lowered or elevated due to shock motion, the transition
from MR to RR is delayed or advanced. If the detachment condition is lowered or elevated
due to shock motion, the transition from RR to MR is advanced or delayed.

The transition criteria in the β01–β02 plane are displayed in figure 7(a) for φn < 0 and
in figure 7(b) for φn > 0.

First consider the von Neumann condition. For shock i1 moving with φn < 0 and φn > 0,
the von Neumann condition is globally lowered and elevated, respectively, compared with
φn = 0. Thus, the motion of shock i1 towards the upstream direction (φn < 0) delays
transition from MR to RR. On the contrary, for shock i1 moving along the downstream
direction, i.e. for φn > 0, the von Neumann condition is elevated compared with φn = 0.
Thus, the motion of shock i1 with φn > 0 advances transition from MR to RR. The
influence of shock motion on transition becomes less important for large β01.

Now consider the detachment condition. We observe that the influence of shock motion
on the detachment condition is not monotonic. In figure 7, we marked two dividing points
a and b showing non-monotonicity, across which the influence of shock motion changes
sign. In figure 7(a) which is for φn < 0, we have β01 = βa ≈ 19◦ at a and β01 = βb ≈
37.8◦ at b. The detachment condition for φn < 0 is lowered compared with φn = 0 when
β01 < βa, and elevated when βa < β01 < βb, and lowered again when β01 > βb. For φn >
0, similar behaviour is observed: the detachment condition is elevated compared with φn =
0 when β01 < 23.3◦, lowered when 23.3◦ < β01 < 41.5◦, and elevated again when β01 >
41.5◦. The reason to have these points (a and b) will be discussed in § 5.

In summary, for the detachment condition, the influence of shock motion is not
monotonic, i.e. it is not globally elevated or lowered by shock motion. Moreover, the
influence of shock motion on the detachment condition is small for both small and large
β01, and smaller than that on the von Neumann condition for small β01. These observed
behaviours will be further displayed at the end of this subsection using derivatives of the
transition criteria with respect to shock speed.
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Figure 8. Transition criteria in the θ(s)01 − θ02 plane with M0 = 4.96. (a) For Mφn = 0 (steady), Mφn = −0.1,
Mφn = −0.2 and Mφn = −0.4. (b) For Mφn = 0 (steady), Mφn = 0.1, Mφn = 0.2 and Mφn = 0.4.

Now we display the transition criteria in the θ01–θ02 plane. There are two methods to
view the influence of shock speed on transition in this plane.

In the first method, the abscissa of θ01, denoted as θ(s)01 , is the one associated with the
steady case, i.e. for a given β01, θ(s)01 is determined by (2.14) with φn = 0. Displaying
transition criteria in this plane allows the comparison of transition criteria when the shock
angle β01 is the same for different shock speeds φn.

The transition criteria in the θ(s)01 –θ02 plane are displayed in figure 8(a) for φn < 0 and
figure 8(b) φn > 0. The influence of transition criteria in this plane is similar to that in the
β01–β02 plane.

In the second method, the abscissa of θ01, denoted as θ(r)01 , is the real local one, that is
associated with the shock speed φn, i.e. for a given β01, θ(r)01 is determined by the unsteady
shock angle relation (2.14).

The transition criteria in the θ(r)01 –θ02 plane are displayed in figure 9(a) for φn < 0 and
figure 9(b) for φn > 0. It is interesting to note that, for the von Neumann condition, the
influence of φn is reversed in this plane compared with the transition criteria displayed
in the θ(s)01 –θ02 plane. For shock i1 moving along the upstream direction, i.e. for φn < 0,
both the von Neumann condition and the detachment condition are elevated compared
with φn = 0. This influence becomes larger when θ01 is larger. On the contrary, for shock
i1 moving along the downstream direction, i.e. for φn > 0, both of the von Neumann
condition and the detachment condition are lowered compared with φn = 0. This influence
becomes larger when θ01 is larger.

The influence of shock motion on the transition criteria can also be seen from the
derivatives of these criteria with respective to the shock speed. For β(N)02 and β(D)02 these
derivatives may be defined by

β
(N)
φn
= dβ(N)02

dMφn

, β
(D)
φn
= dβ(D)02

dMφn

(4.1a,b)
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Figure 9. Transition criteria in the θ(r)01 –θ02 plane with M0 = 4.96. (a) For Mφn = 0 (steady), Mφn = −0.1,
Mφn = −0.2 and Mφn = −0.4. (b) For Mφn = 0 (steady), Mφn = 0.1, Mφn = 0.2 and Mφn = 0.4.

and for θ(N)02 and θ(D)02 they may be defined by

θ
(N)
φn
= dθ(N)02

dMφn

, θ
(D)
φn
= dθ(D)02

dMφn

. (4.2a,b)

The exact values of these derivatives could be obtained from linear expansion of the
expressions for transition criteria, presented in § 3.2. However, such an approach leads
to a large number of algebraic formulae. To reduce the complexity, here we choose to
use the approximate values for these derivatives, obtained by the difference between the
transition criteria with small φn (here with Mφn = ±0.1) and the steady state transition
criteria, divided by Mφn .

The derivatives β(N)φn
and β(D)φn

thus evaluated are displayed in figure 10(a) and the

derivatives θ(N)φn
and θ(D)φn

for θ(r)01 are displayed in figure 10(b). The behaviour of derivatives

θ
(N)
φn

and θ(D)φn
for θ(s)01 , not displayed here, is similar to that displayed in figure 10(a).

The influence of shock motion on transition is more clearly seen here from these
derivatives than from the transition criteria displayed in figures 7(a) and 7(b). According
to figure 10(a), the derivative β(N)φn

is positive for all β01, showing that with φn < 0
the von Neumann condition is lowered globally and with φn > 0 it is elevated globally.
Moreover, the derivative β(N)φn

decreases in magnitude for increasing β01. The derivative

β
(D)
φn

is positive for β01 less than some value (point a of figure 7a), negative when β01 lies
between this value and another value (point b of figure 7a), and positive again when β01 is
larger, showing more clearly the non-monotonicity observed in figures 7(a) and 7(b). The
derivatives β(D)φn

are smaller in magnitude than the derivatives β(N)φn
even for small β01.

As displayed in figure 10(b), the derivatives θ(N)φn
and θ(D)φn

are negative for all θ(r)01 ,
showing that, with φn < 0, the von Neumann condition and the detachment condition
are elevated globally and, with φn > 0, the von Neumann condition and the detachment
condition are lowered globally.

The reason for these observations will be discussed in § 5.
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Figure 10. Derivatives of transition criteria for M0 = 4.96. (a) Derivatives for β(N)φn
and β(D)φn

. (b) Derivatives

for θ(N)φn
and θ(D)φn

.

4.2. Numerical validation
Now we use numerical simulation to check, for some particular cases, if the influence
of shock motion on transition, predicted by theory, is correct. In numerical simulations,
the unsteady Euler equations in gas dynamics are solved using the second-order upwind
advection upstream splitting method (known as AUSM) scheme, with a grid of 400× 400
points. We have checked that further refining the grid does not alter the results with regard
to the transition condition.

In the usual shock reflection problems, the transition from RR to MR or MR to RR can
be studied, both numerically and experimentally, by entering or leaving the DS domain
through wedge angle variation (cf. Chpoun et al. 1995; Vuillon et al. 1995) or through
inflow Mach number variation (Ivanov et al. 2001). However, this procedure cannot be
used in the present problem since we want the shock speed to be fixed at constant. The
influence of shock motion on transition cannot be checked in numerical simulations using
wedge rotation like that used by Naidoo & Skews (2011, 2014), since wedge rotation
involves non-constant shock speed and the present study is merely for constant speed. This
difficulty is overcome here by using the technique of forced transition in the DS domain.
Specifically, we use the forced transition method of Li et al. (2011). In this method, we
first compute an RR numerical result. We then superimpose a local discontinuity near
the reflection point on numerical solutions with RR. This local discontinuity is defined
in a similar way as for the initial condition of a one-dimensional Riemann problem.
Specifically, it uses the conditions downstream of a moving shock wave as the perturbation
state and this state is defined in an area centred at the intersection point of the two incident
shock waves, which spans 7× 5 grid points. See Li et al. (2011) for more details for how
to define such a local discontinuity.

Two sets of conditions are considered: the first set is with Mφn ≤ 0; the second set is
with Mφn > 0.

Nines cases are considered for Mφn ≤ 0 and the corresponding input conditions (M0, θ01
and β01, θ02 and β02,Mφn) are given in table 1.
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Case M0 θ
(r)
01 (deg.) β01 (deg.) θ02 (deg.) β02 (deg.) Mφn Theory CFD no FT CFD with FT

1 4.96 30 40.61 26.0 37.12 −0.1 DS RR MR
2 4.96 30 42.43 26.0 37.12 0.0 MR MR —
3 4.96 25 34.29 17.3 26.86 −0.1 RR RR RR
4 4.96 25 34.29 30.2 42.71 −0.1 DS RR MR
5 4.96 25 35.86 30.2 42.71 0.0 MR MR —
6 4.96 30 40.61 27.0 38.40 −0.1 MR RR MR
7 4.96 30 40.61 27.5 39.06 −0.1 MR MR —
8 4.96 30 40.61 28.0 39.71 −0.1 MR MR —
9 4.96 30 40.61 29.0 41.05 −0.1 MR MR —

Table 1. Comparison of reflection types predicted by theory and CFD. Here FT means forced transition with
a local discontinuity perturbation.
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θ
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Figure 11. The CFD results near the detachment condition for M0 = 4.96, Mφn = −0.1 compared with the
theoretical curve.

The eighth column is the possible reflection configuration (RR, DS, MR) predicted by
theory (§§ 3 and 4), the ninth column is the reflection observed from numerical simulation
without applying forced transition, and the last column is the reflection observed from
numerical simulation without applying forced transition. If we get RR without applying
forced transition and then MR after forced transition is applied, then we are in the DS
domain. We see that apart from case 4, which is close to the von Neumann condition,
theory agrees well with numerical simulations.

The reflection types predicted by CFD are also shown in figure 11. The filled circles
represents that the CFD result first shows RR and after the forced transition method shows
MR, the round doughnut represents that the CFD result first shows MR without the forced
transition method being used.
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Case M0 θ
(r)
01 (deg.) β01 (deg.) θ02 (deg.) β02 (deg.) Mφn Theory CFD no FT CFD with FT

1 4.96 30 44.38 22.5 32.80 0.1 DS RR MR
2 4.96 30 44.38 23 33.40 0.1 DS RR MR
3 4.96 30 44.38 23.5 34.01 0.1 MR MR —
4 4.96 30 44.38 24 34.62 0.1 MR MR —
5 4.96 30 44.38 24.5 35.24 0.1 MR MR —
6 4.96 30 44.38 25 35.86 0.1 MR MR —
7 4.96 30 44.38 25.5 36.49 0.1 MR MR —
8 4.96 30 44.38 26 37.12 0.1 MR MR —
9 4.96 30 44.38 26.5 37.76 0.1 MR MR —
10 4.96 30 44.38 27 38.40 0.1 MR MR —

Table 2. Comparison of reflection types for M0 = 4.96, Mφn = 0.1. Here FT means forced transition with a
local discontinuity perturbation.

To see some details we only show the flow for case 1 and case 2. The two incident
shock waves are steady for case 2, while the upper incident shock wave has Mφn = −0.1
for case 1. According to the transition criteria displayed in figure 9(a), case 1 is in the DS
domain and near the detachment condition, case 2 is in the MR domain. This difference
of solution domain is purely caused by shock motion according to the theory, so if DS and
MR can be observed numerically for case 1 and case 2, respectively, this theory is said to
be confirmed for a particular choice of test condition.

Figure 12 displays, for case 1, the Mach contours at various instants before
and after forced transition. Figure 12(a) shows Mach contours with RR, obtained
before imposing local perturbation. Figure 12(b) displays the Mach contours just
at the moment where the local discontinuity for forced transition is superimposed.
Figure 12(c–f ) display the Mach contours at several instants, after transition to MR
by forced transition. This confirms the theoretical prediction that case 1 is in the DS
domain.

The Mach contours at a typical instant for case 2 are displayed in figure 13. Theoretically
it is in MR region and computation indeed yields MR without the need of forced
transition.

We consider 10 cases for Mφn > 0, and the corresponding input conditions (M0, θ01 and
β01, θ02 and β02,Mφn) are given in table 2. The reflection type predicted by CFD is also
displayed in figure 14. As for figure 11, the filled circles represents that the CFD result first
shows RR and after the forced transition method shows MR, the round doughnut represents
that the CFD result first shows MR without forced transition method used. It is seen that
theory agrees with numerical simulations.

5. A discussion on the influence of shock motion

The inherent mechanism by which the transition criteria are altered by shock motion is
discussed here through looking at how the effective parameters (Mach number and shock
angles), which determine the unsteady transition criteria following the steady ones, are
changed by shock motion. Some observed phenomena are also explained by looking at the
functional form of the transition criteria.
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(a)

(b) (c)

(d ) (e)

( f )

Figure 12. Mach contours at different instants for case 1: (a) RR before forced transition, (b) RR
superimposed with local perturbation and (c–f ) evolution of MR after forced transitions.
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Figure 13. Mach contours for case 2.
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Figure 14. The CFD results near the detachment condition for M0 = 4.96, Mφn = 0.1 compared with the
theoretical curve.

5.1. The transition criteria for steady shock reflection
In order to understand the influence of shock motion on the transition condition, we need to
know the influence of the incident shock angle and the inflow Mach number on transition
criteria in steady asymmetric shock reflection. The reason is that the shock motion changes
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Figure 15. Transition criteria: (a) symmetric shock reflection in the M0–θw plane; (b) symmetric shock
reflection in the M0–β plane; (c) symmetric shock reflection in the θw1–θw2 plane for M0 = 4.96;
(d) asymmetric shock reflection in the β01–β02 plane for M0 = 4.96.

the transition criteria through changing the equivalent shock angle and equivalent Mach
number associated with the equivalent steady state problem, as will be discussed in § 5.2.

For steady symmetric shock reflection as shown in figure 1(a,b), the transition
conditions in the M0–θw plane and M0–β plane are illustrated in figure 15(a,b). See
figure 1(a,b) for notations of the flow deflection angle θw and shock angle β. It is interesting
to note that, in these two planes, the transition conditions (von Neumann condition
θw = θ(N)(M0) and detachment condition θw = θ(D)(M0)) follow different trends with
respect to the Mach number M0.

For asymmetric shock reflection, the two wedges have different wedge angles (θw1 and
θw2) leading to different shock angles (β01 and β02) of the incident shock waves. See
figure 1(c,d) for notations of these angles. For a given inflow Mach number M0, the
transition criteria, expressed in the θw1–θw2 plane and in the β01–β02 plane, are shown
in figures 15(c) and 15(d), respectively. In both planes, the von Neumann condition
θw2 = θ(N)(M0, θw1) or β02 = β(N)(M0, β01) is lower than the detachment condition
θw2 = θ(D)(M0, θw1) or β02 = β(D)(M0, β01), leading to a DS domain between them,
inside which both types of reflection are possible.

Figure 16(a,b) display the transition criteria for various Mach numbers. It can be seen
that on the θ01–θ02 plane, increasing M0 elevates the detachment condition, while there is

929 A26-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.856


M.-M. Wang and Z.-N. Wu

θ01 (deg.)

θ 0
2
 (

d
eg

.)

10 20 30 40

10

20

30

40
(a) (b)

M0 = 4.96

M0 = 3.96

M0 = 5.96

M0 = 4.96

M0 = 3.96

M0 = 5.96

β01 (deg.)

β
0
2
 (

d
eg

.)

10 20 30 40 50 60

20

30

40

50

60

M0 = 5.96

M0 = 3.96
M0 = 3.96

M0 = 5.96
M0 = 4.96

M0 = 4.96

θ02 = θ(D)(θ01,M0,Mφn)

θ02 = θ(N)(θ01,M0,Mφn)

β02 = β(N)(β01,M0,Mφn)

β02 = β(D)(β01,M0,Mφn)

Figure 16. Steady transition criteria for M0 = 3.96, 4.96, 5.96, (a) in the θ01–θ02 plane and (b) in the β01–β02
plane.

little influence on the von Neumann condition. On the β01–β02 plane, however, increasing
M0 lowers the von Neumann condition, while there is little influence on the detachment
condition.

5.2. Role of effective Mach number and effective shock angle due to shock motion
The role of change of transition criteria by shock motion is now explained by looking at
how this motion changes the effective Mach number and effective shock angle defined
by (3.4) and (3.7), since the unsteady transition criteria are given by the steady transition
criteria provided the inflow Mach number and the incident shock angles are replaced by
the equivalent Mach number and effective shock angles.

To see, in an explicit way, how shock motion effectively changes the Mach number and
shock angle, we simply consider shock motion with small φn. For this purpose, we rewrite
(3.1a,b) as

φTx = ωxφn, φTy = ωyφn, (5.1a,b)

where

ωx = cosβ02

sin(β01 + β02)
, ωy = sinβ02

sin(β01 + β02)
. (5.2a,b)

Using (3.4) and (5.1a,b), the equivalent flow velocity components ū0 and v̄0 become

ū0 = u0 − ωxφn, v̄0 = v0 − ωyφn =− ωyφn. (5.3a,b)

Since ā0 = a0, the Mach number M̄0 is

M̄0 =
√
(u0 − ωxφn)2 + (−ωyφn)2

a2
0

, (5.4)

which, for small φn, can be approximated as

M̄0 = M0 − ωxMφn . (5.5)

Recall that Mφn is the shock speed Mach number defined by (2.16).
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Putting (5.3a,b) into (3.6) and keeping the leading-order terms, we get

θ̄0 = − ωy

M0
Mφn . (5.6)

Inserting (5.6) into (3.7) yields

β̄01 = β01 − ωy

M0
Mφn,

β̄02 = β02 + ωy

M0
Mφn .

⎫⎪⎬
⎪⎭ (5.7)

In the case of small φn, the influence of φn on transition can be split into the separate
influences of the change of effective Mach number (from M0 to M̄0) and effective shock
angle (from β01 and β02 to β̄01 and β̄02) on transition.

According to (5.5), we have M̄0 > M0 for φn < 0 (moving along the upstream direction)
and M̄0 < M0 for φn > 0 (moving along the downstream direction). This means that, shock
motion with φn < 0 increases the effective Mach number and shock motion with φn > 0
reduces the effective Mach number. By (5.7), we have β̄01 > β01, β̄02 < β02 for φn < 0
and β̄01 < β01, β̄02 > β02 for φn > 0.

The role of shock speed on transition due to its role on the effective shock angle can
be understood from the steady transition criteria (Mφn = 0) displayed in figure 15(d).
According to figure 15(d), the von Neumann condition β(N)(M0, β01) decreases for
increasing shock angle β01. Since shock motion with φn < 0 increases the effective shock
angle for β01, the von Neumann condition should be lowered due to shock motion with
φn < 0, thus, as observed in figure 7(a), the von Neumann condition is lowered for
increasing −Mφn . However, in steady reflection, for small β01, the role of β01 is less
important for the detachment condition according to figure 15(d), which may explain the
small effect of shock motion on the detachment condition observed in figure 7(a).

The role of shock speed on transition due to its role on the effective Mach number can be
understood from the steady transition criteria (Mφn = 0) displayed in figure 16(a) or 16(b).
Since shock motion with φn < 0 increases the effective Mach number, by figure 16(b), we
see that the von Neumann condition should be lowered, and this trend should be reversed
for φn > 0.

The changes of the effective Mach number and effective shock angle due to shock
motion should have a combined effect on transition criteria. It is thus interesting to look at
their relative importance. For this purpose, we consider Mφn = −0.01 and Mφn = −0.1 to
see this relative importance.

Figure 17(a,b) display for Mφn = −0.01 and Mφn = −0.1 the influence of shock speed
on the von Neumann condition, when the change of effective Mach number M̄0 and the
change of effective shock angle β̄ are accounted for alone.

The influence is measured as ψN(M0,Mφn) = β(N)02 (M0,Mφn)− β(N)02 (M0, 0) and
ψD(M0,Mφn) = β(D)02 (M0,Mφn)− β(D)02 (M0, 0). For any M0,Mφn , β(N)02 is computed as
follows. The expression (3.4), (3.6) and the first expression of (3.7) are used to get M̄0, θ̄0
and β̄01. With the equivalent values of M̄0 and β̄01 thus obtained, the steady von Neumann
condition presented in the end of § 3.2 is used to find β̄(N)02 . Finally, the second expression
of (3.7) is used to compute β(N)02 . With β(N)02 (M0,Mφn) computed using Mφn = 0 and Mφn =
−0.1, ψN(M0,Mφn) is computed as ψN(M0,Mφn) = β(N)02 (M0,−0.1)− β(N)02 (M0, 0). The
value ψD(M0,Mφn) is similarly computed.
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Figure 17. Influence of change of effective Mach number and effective shock angle on the von Neumann
condition in the β01–β02 plane for M0 = 4.96; (a) Mφn = −0.01; (b) Mφn = −0.1.

Both ψN and ψD can be decomposed into a part due to effective Mach number change,
ψ
(M)
N and ψ(M)D , and a part due to effective shock angle change, ψ(β)N and ψ(β)D . The value

ψ
(M)
N is computed using the method for ψN , except that we use β01 for β̄01. The value ψ(β)N

is computed as ψN while fixing M̄0 to be M0. The values of ψ(M)D and ψ(β)D are similarly
defined.

It is seen from figure 17 that, for the von Neumann condition, the magnitude of ψN due
to the change of the effective shock angle is larger than that due to change of the effective
Mach number for β01 <≈ 22◦ and reversed for β01 >≈ 22◦. For β01 >≈ 30◦, the value of
ψN due to the effective shock angle changes sign so the roles of the effective shock angle
and effective Mach number mutually cancel. Thus, for large enough β01, the total effect of
shock motion on the von Neumann condition becomes small.

Similarly, figure 18(a,b) display for Mφn = −0.01 and Mφn = −0.1 the influence of
shock speed on the detachment condition. The relative influence of the effective Mach
number and effective shock angle is more complex, as shown in figure 18. For β01 <≈ 16◦,
the change of the effective β dominates the total influence. For ≈ 40◦ > β01 >≈ 20◦, the
role of the effective β changes sign which changes the total effect of shock motion on the
transition criteria. For β01 >≈ 40◦, the role of the effective β is reversed again and the
total effect of shock motion on the transition criteria also changes sign. Over the entire
range of β01, the role of effective Mach number does not change much.

By looking at figure 17(a) for Mφn = −0.01 and figure 17(b) and Mφn = −0.1, we
see that the shape of the curves are the same but the value of ψN for Mφn = −0.1 is
approximately 10 times that of ψN for Mφn = −0.1. The same is true for the detachment
condition, as shown in figure 18(a) for Mφn = −0.01 and figure 18(b) for Mφn = −0.1.
Thus, at least for small Mφn , the magnitude characterizing the influence of the shock speed
on transition is approximately proportional to Mφn .

5.3. Approximate functional forms of the transition criteria
The non-monotonicity of the influence of shock speed due to its role on the equivalent
shock angle is now explained by displaying the functional form of the transition criteria.
Here we consider this property with large enough M0. For M0 close to 1, one has weak
reflection (cf. Skews & Ashworth 2005; Hornung 2014) which is not considered here.
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Figure 18. Influence of change of effective Mach number and effective shock angle on detachment condition
in the β01–β02 plane for M0 = 4.96; (a) Mφn = −0.01; (b) Mφn = −0.1.

First we note that the sum β̄01 + β̄02, the angle between i1 and i2, is invariant under
change of reference frame from the ground frame to the frame comoving with the
intersection point T (this invariance is reflected by (3.7)). Due to this invariance, we
wonder whether the sum

Λ = β01 + β(D)02 (5.8)

has some functional form.
In figure 19 we display Λ for M0 = 4.96 and Mφn = 0, −0.1, −0.2, −0.4. From

figure 19, we see that Λ resembles a sinusoidal function of β01 for the steady case with
Mφn = 0. This is an interesting property that seems to have not been pointed out before.
We thus postulate the following functional form for the detachment condition β(D)02 :

β
(D)
02 = S(β01)− β01, (5.9)

where

S(β01) = A0 sin
(
β01

λβ
+ α0

)
+ B0 (5.10)

is a sinusoidal function. Here, A0 = 2.071 is the amplitude of the sinusoidal function,
B0 = 76.49 is a constant parameter, λβ = 5.728 is the wavelength and α0 = −5.092 is the
phase origin. This means that the detachment condition β02 = β(D)02 is, approximately, a
hybrid of a sinusoidal function and a linear function of β01.

For the unsteady case with Mφn /= 0, the curves Λ = Λ(β01) only approximately
resemble a sinusoidal function. The change of Mφn not only shifts the horizontal position,
but also changes its amplitude at the two half-wave parts. Despite this departure, the
detachment condition can still be regarded approximately as a hybrid of a sinusoidal
function and a linear function of β01.

The wavefunction form (5.9) and (5.10) in the case of Mφn = 0 may be then used to
explain why the influence of shock motion on the detachment condition is non-monotonic.
The two points a and b in figure 19 correspond to the two points a and b in figures 7(a)
and 8(a). These points are approximately the intersecting points of transition conditions
at various shock speeds. Since shock motion induces a shift of the equivalent flow
parameters, the detachment condition with shock motion should be a shift of the

929 A26-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.856


M.-M. Wang and Z.-N. Wu

β01 (deg.)

10 20 30 40 50 60
72

73

74

75

76

77

78

79

80

sine function
(β

0
1
+
β

0
2
  
) 

(d
eg

.)
(D

)

a

b

Mφn = 0

Mφn = –0.1

Mφn = –0.2

Mφn = –0.4

Figure 19. The variation of the sum β01 + β(D)02 with respect to β01, for M0 = 4.96 and for
Mφn = 0,−0.1,−0.2,−0.4.

steady one. For a curve obtained by the shift of a wavy curve it is easy to have
some intersection points with the original curve, meaning non-monotonicity in terms of
variation of the new curve compared with the original one.

Now we consider the influence of two different values of the (ground-frame measured)
free stream Mach number M0 on the positions of a and b at Mφn = −0.1. For M0 = 4, 6,
we get β01 = βa = 24.0◦, 17.7◦, compared with β01 = βa = 20.2◦ at M0 = 4.96, we also
get β01 = βb = 38.9◦, 39.4◦, compared with β01 = βb = 39.3◦ at M0 = 4.96.

Similarly, the sum β01 + β(N)02 is also invariant under change of frame of reference. In
figure 20 we display β01 + β(N)02 for M0 = 4.96 and Mφn = 0, −0.1, −0.2, −0.4. The
functional form of β01 + β(N)02 could be approximated by half of the sinusoidal function
(5.10) with A0 = 38.44 (the amplitude of the sinusoidal function), B0 = 100.1 (a constant
parameter), λβ = 28.32 (the wavelength) and α0 = 3.47 (the phase origin).

5.4. Summary of the mechanism
The observed influence of shock motion on the change of transition criteria was explained
in this section through looking at its role on the effective Mach number and effective shock
angle. The influence of these effective shock angles and inflow Mach number on transition
are then clear from the steady state transition criteria as shown in figures 15 and 16.

The effective change of the Mach number and that of the shock angle due to shock
motion are shown to have a mutually cancelling effect on the von Neumann condition for
large shock angle, explaining why the von Neumann condition is more affected by shock
motion for small shock angle.
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Figure 20. The variation of the sum β01 + β(N)02 with respect to β01, for M0 = 4.96 and for
Mφn = 0,−0.1,−0.2,−0.4.

For the detachment condition, the non-monotonic behaviour of the role due to the
change of the effective shock angle, following the wavy form (5.9)–(5.10), explains the
observed non-monotonicity of the change of the detachment condition due to shock
motion.

6. Extension to more general cases

In this section, a method is provided to extend the analysis of the reduced problem,
presented in §§ 2 and 3, to the general problem of shock reflection between two moving
incident shock waves, including the particular case of symmetric shock reflection between
two moving shock waves. Lastly, we show how to treat the problem where one incident
shock wave is caused by the translation of a wedge.

6.1. Extension to the general problem of shock reflection between two moving incident
shock waves

Now we provide a method for extension of the transition criteria obtained for the reduced
shock reflection problem to the general shock reflection between two moving incident
shock waves. This is done through a proper reference frame transformation. This reference
frame transformation is chosen such that shock i2 is made steady and the direction of the
inflow stream is unchanged. Thus, with such a frame transformation, the shock angles of
the incident shock waves are unchanged between the reduced and general shock reflection
problems.

Consider the general shock reflection between two moving shock waves as displayed in
figure 21. We use a prime to denote quantities before transformation. The incident shock
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Figure 21. General asymmetric shock reflection problem between two moving incident shock waves.

wave i1 moves at φ′n1 and i2 at φ′n2, in their normal directions, assumed to be positive if
moving towards the downstream direction.

The free stream, with a Mach number M′0 > 1, is assumed to be horizontal without
losing generality. The upper shock i1 has a shock angle β ′01 and flow deflection angle θ ′01,
and moves at speed φ′n1 normal to this shock wave. The lower shock i2 has a shock angle
β ′02 and flow deflection angle θ ′02, and moves at speed φ′n2 normal to this shock wave.

Now we determine a reference frame which moves at Vf = (uf , vf ) so that the shock
reflection problem with two moving incident shock waves defined by figure 21 is equivalent
to the reduced shock reflection problem (with i1 moving and i2 steady) defined by figure 2.
Moreover, on both frames the upstream flow remains horizontal, i.e.

vf = 0 (6.1)

and the shock angles do not change, i.e.

β01 = β ′01, β02 = β ′02. (6.2a,b)

Now let us find uf such that the speed φn2 of shock i2 in the moving reference frame
vanishes, i.e.

φn2 = φ′n2 − Vf · n2 = 0. (6.3)

Here n2 = sinβ02i − cosβ02j is the unit vector normal to shock i2. Since we require vf =
0, we obtain from (6.3) that

uf =
φ′n2

sinβ ′02
. (6.4)

In the moving reference frame, the shock speed φn = φn1 of shock i1 becomes φn1 =
φ′n1 − Vf · n1 where n1 = sinβ1i + cosβ1j is the unit vector normal to shock i1. Since
Vf = (uf , vf ) where uf is defined by (6.4) and vf = 0, we get

φn = φ′n1 − φ′n2
sinβ ′01
sinβ ′02

. (6.5)

The free stream velocity (horizontal) V0 now becomes

u0 = u′0 −
φ′n2

sinβ ′02
, v0 = 0 (6.6)
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Case M′0 β ′01 (deg.) M′φn1
β ′02 (deg.) M′φn2

M0 β01 (deg.) Mφn β02 (deg.)

1 5.88 40.61 0.50 37.12 0.56 4.96 40.61 −0.10 37.12
2 4.35 40.61 −0.50 37.12 −0.37 4.96 40.61 −0.10 37.12
3 5.27 40.00 −0.20 37.94 0.19 4.96 40 −0.40 37.94
4 4.65 40.00 0.20 38.34 −0.19 4.96 40.00 0.40 38.34
5 5.28 39.30 0.20 39.30 0.20 4.96 39.30 0 39.30
6 5.11 40.61 0 37.12 0.09 4.96 40.61 −0.1 37.12

Table 3. Correspondence of flow parameters between the general problem and the reduced problem.

and the inflow Mach number M0 = V0/a0 becomes

M0 = M′0 −
φ′n2

a0 sinβ ′02
. (6.7)

Thus, for the general shock reflection problem, where shock i1 has shock speed φ′n1 and
shock angle β ′01, and i2 has shock speed φ′n2 and shock angle β ′02, the reference frame
comoving with which the incident shock wave i2 becomes steady moves at a velocity
with components vf and uf determined by (6.1) and (6.4). Comoving with this reference
frame, the shock angles do not change, and the inflow quantities are defined by (6.7). The
transition criteria can then be obtained from the analysis provided in §§ 3 and 4, with M0
defined by (6.7) and φn by (6.5).

Table 3 displays six different cases of flow parameters according to the correspondence
between the general shock reflection problem and the reduced problem (the upper shock
has shock speed φn and the lower one is steady).

For case 1 both of the incident shock waves are moving towards the downstream
direction, and for case 2 both of the incident shock waves are moving towards the
upstream direction. For cases 3–4 the two incident shock waves are moving in different
directions. For case 5, the two incident shock waves have the same normal speed, meaning
symmetrical reflection. For case 6, the lower incident shock is moving while the upper one
is steady.

Case 5 is a symmetric shock reflection (φ′n1 = φ′n2 and β ′01 = β ′02). In this case, we have
φn = 0 in the reduced problem, meaning that the influence of the shock speeds φ′n1 and
φ′n2 on the transition criteria can be analysed by solely considering the influence of change
of inflow Mach number from M′0 to M0.

6.2. Shock reflection where one incident shock is moving due to wedge translation
Finally we give an example of how to derive the condition for the reduced problem when
the shock motion is caused by horizontal translation of the upper wedge.

Consider the shock reflection between a steady shock wave produced by a lower wedge
with angle θw2 = 30◦ and an unsteady shock wave produced by a upper wedge with angle
θw1 = 20◦. The upper wedge has a translation along the free stream direction at constant
speed φt (negative if translating along the upstream direction). The free stream Mach
number is M′0 = 4.96.

The shock angle of the lower shock is β ′02 = 42.43◦ and its speed is φ′n2 = 0.
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In the reference frame comoving with the upper wedge, the Mach number reduces to

M0 = M′0 −
φt

a0
. (6.8)

The shock angle β ′01 in this comoving reference frame is determined by

tan θw1 = fθ (M0, β
′
01) = fθ

(
M′0 −

φt

a0
, β ′01

)
. (6.9)

Let φt = −a0, then M0 = 5.96. By (6.9) and (2.1a,b), we get β ′01 = 28.30◦, compared
with β ′01 = 29.88◦ at M0 = 4.96, θw1 = 20◦ and φt = 0. Thus, for a fixed wedge angle
θw1, a left translation reduces the shock angle. The shock speed φ′n1 normal to the upper
shock wave is φ′n1 = φt sinβ ′01 so φ′n1 = −0.47a0. By (6.5), (6.7) and (6.2a,b), the reduced
problem has Mφn = −0.47, β01 = 28.30◦, β02 = 42.43◦ and M0 = 4.96.

Let φt = a0, then M0 = 3.96. By (6.9) and (2.1a,b), we get β ′01 = 32.61◦, compared with
β ′01 = 29.88◦ at M0 = 4.96, θw1 = 20◦ and φt = 0. Thus, for a fixed wedge angle θw1,
a right translation increases the shock angle. The shock speed φ′n1 normal to the upper
shock wave is φ′n1 = φt sinβ ′01 so φ′n1 = 0.54a0. The reduced problem thus has Mφn =
0.54, β01 = 32.61◦, β02 = 42.43◦ and M0 = 4.96.

7. Conclusions

In this paper, we studied the transition criteria for asymmetric shock reflection between
two moving incident shock waves. To limit the size of the parameter space, we began with
the reduced problem where the lower shock wave is steady and the upper one is unsteady,
and then, by a proper frame transformation, we made a connection of transition criteria
between the general problem and its reduced problem.

The transition criteria for the reduced problem were displayed in both the β01–β02 plane
and θ01–θ02 plane. The results indicate that, in the β01–β02 plane, the motion of shock i1
towards the upstream direction lowers the von Neumann transition criterion and its motion
towards the downstream direction elevates the von Neumann condition. The effect of shock
motion on the detachment condition is small but not monotonic.

In the θ01–θ02 plane, if the abscissa uses the flow deflection angle determined with
the same shock angle β01 of steady reflection, the role of shock motion on transition is
similar to that shown in the β01–β02 plane. If the abscissa uses the local flow deflection
angle accounting for unsteady shock motion, the trend is reversed: the motion of shock
i1 towards the upstream direction elevates the von Neumann transition criterion and its
motion towards the downstream direction lowers the von Neumann condition for transition
to MR. Moreover, the motion of shock i1 towards the upstream direction also elevates the
detachment transition criteria and its motion towards the downstream direction also lowers
the detachment condition for transition to MR.

It is shown that shock motion changes the transition criteria through changing the
effective Mach number and effective shock angle. The effective change of the Mach
number and that of the shock angle due to shock motion have a mutually cancelling effect
on the von Neumann condition for large shock angle, explaining why the von Neumann
condition is more affected by shock motion for small shock angle. For the detachment
condition, both the roles of the change of the effective Mach number and shock angle are
small, and the non-monotonic behaviour of the effective shock angle explains the observed
non-monotonicity of the change of the detachment condition due to shock motion.
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An interesting observation is that the detachment condition in the shock angle plane can
be regarded approximately as a hybrid of a sinusoidal function and a linear function of
β01. In case of steady shock reflection, the detachment condition appears to be more close
to a hybrid of a sinusoidal function and a linear function.

The present study clarifies the importance of constant shock speed of incident shock
waves on the transition criteria. It may be used to anticipate how transition is affected if
the incident shock waves have a local speed near the reflection point. However, further
works are needed to obtain theoretical knowledge for dynamic transition as studied
experimentally or numerically by Naidoo & Skews (2011, 2014) and Laguarda et al.
(2020), where acceleration of the reflection point and the historical effect, not included
in the present study, may be important, apart from the influence of shock motion at a given
or constant speed.
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