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Abstract

We determine, up to multiplicative constants, the number of integers n 6 x that have a divisor in (y, 2y]
and no prime factor ≤ w. Our estimate is uniform in x, y,w. We apply this to determine the order of the
number of distinct integers in the N × N multiplication table, which are free of prime factors 6 w, and the
number of distinct fractions of the form (a1a2)/(b1b2) with 1 6 a1 6 b1 6 N and 1 6 a2 6 b2 6 N.
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1. Introduction
In the paper [5], the author established the order of growth of H(x, y, z), the number of
integers n 6 x, which have a divisor in the interval (y, z], for all x, y, z. An important
special case is

H(x, y, 2y) �
x

(log y)E(log2 y)3/2 (3 6 y 6
√

x), (1-1)

where
E = 1 −

1 + log2 2
log 2

= 0.086071332 . . . .

(The notation log2 x stands for log log x.) A shorter, more direct proof of the order
of magnitude bounds in the special case (1-1) is given in [6]. More on the history of
estimations of H(x, y, z), further applications and references may be found in [5].

A number of recent applications have required similar bounds, but where the
underlying set of integers n is restricted to a special set, for example, the set of shifted
primes ([5, Theorem 6,7], [9]) or the values of a polynomial [1, 4, 7, 12, 13]. More
generally, we define

H(x, y, z;A) = |{n 6 x, n ∈ A : d | n for some d ∈ (y, z]}|.

Research supported by National Science Foundation grant DMS-1802139.
c© 2020 Australian Mathematical Publishing Association Inc.

17

111 (2021), 17–36

https://doi.org/10.1017/S1446788719000442 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788719000442&domain=pdf
https://doi.org/10.1017/S1446788719000442


18 K. Ford [2]

Another natural set to consider is Rw, the set of integers with no prime factor p 6 w;
called w-rough numbers by some authors. Here we determine the exact order of
growth of H(x, y, 2y;Rw) for all x, y,w; the more general quantity H(x, y, z;Rw) can
be estimated by similar methods, although there are many cases depending on the
relative size of the parameters w, x, y, z.

Theorem 1.1. Suppose that 4 6 y 6
√

x, 4 6 w 6 y/8 and write δ = log2 w/log2 y.

(i) When 1 − 1/log 4 6 δ 6 1,

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 w
� H(x, y, 2y;Rw).

(ii) When 0 6 δ < 1 − 1/log 4,

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)� xδB(w, y)(log y)−E+((log(1−δ))/log 2)

� H(x, y, 2y;Rw),

where
B(w, y) = min(1, (log2 y)−1/2((1 − δ) log 4 − 1)−1).

Remark 1.2. Some special cases are worth noting. From Theorem 1.1 we have, for
each fixed ε > 0,

xδB(w, y)(log y)−E+((1−δ)/log 2)

�ε


x log2 w

(log2 y)3/2 (log y)−E+((log(1−δ))/log 2)
(
δ 6 1 −

1
log 4

− ε
)

x log2 w
(log y)E(log w)1/log 2(log2 y)3/2 (log2 w 6

√
log2 y).

Remark 1.3. When y >
√

x, one can obtain similar results by using the duality
d | n ⇐⇒ (n/d) | n. That is, if x/2 < n 6 x, then d | n with y < d 6 2y is equivalent to
d′ | n with d′ � x/y.

We illustrate the utility of Theorem 1.1 with two applications. The first is related to
the well-known multiplication table problem of Erdős [2, 3], which asks for estimates
on the number, M(N), of distinct integers in an N × N multiplication table. In [5] the
author proved, using (1-1), that

M(N) �
N2

(log N)E(log2 N)3/2 . (1-2)

More generally, consider the restricted multiplication table problem of bounding
M(N;A), the number of distinct entries in an N × N multiplication table that belong
to the setA. For example, when λ , 0 is fixed andA = {p + λ : p prime}, the order of
M(N;A) was determined in [5, Theorem 6] (upper bound) and [9] (lower bound).

Observe that M(N;Rw) = 1 when w > N.
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[3] Rough integers with a divisor in a given interval 19

Corollary 1.4. Uniformly for 4 6 w 6 N/2 and log w > (log N)1−(1/log 4),

M(N;Rw) �
N2

log2 w
,

and when log w = (log y)δ with δ 6 1 − (1/log 4),

M(N;Rw) � N2δB(w,N)(log N)−E+((log(1−δ))/log 2).

Proof. If
√

N < w 6 N/2, then M(N;Rw) counts entries in the multiplication table,
which are primes in (w, N] or the product of two such primes. The desired bounds
follow. If 4 6 w 6

√
N, we use the inequalities

H
(N2

4
,

N
4
,

N
2

;Rw

)
6 M(N;Rw) 6

∑
k>0

H
(N2

2k ,
N

2k+1 ,
N
2k ;Rw

)
.

The proof is easy: consider ab ∈ Rw, a 6 N and b 6 N. If N/4 < a 6 N/2 and
ab 6 N2/4, then b 6 N and this proves the lower bound. The upper bound comes
from taking N/2k+1 < a 6 N/2k for some nonnegative integer k. The desired bound
for M(N;Rw) now follow from Theorem 1.1, since we have H(x, y, 2y;Rw) � x f (y,w)
where f (u,w) � f (y,w) for log u � log y. �

Next, we consider the ‘Farey fraction multiplication table’. Let FN of Farey
fractions of order N, that is,

FN =

{a
b

: 1 6 a 6 b 6 N, (a, b) = 1
}
.

In private conversation, Igor Shparlinski asked the author about the size of the
product set FNFN (in general, for sets A, B ⊆ Z, AB denotes the product set
{ab : a ∈ A, b ∈ B}).

Corollary 1.5. We have

M(N)2 � |FNFN | 6 M(N)2.

Consequently, by (1-2),

|FNFN | �
N2

(log N)E(log2 N)3/2 .

Proof. The upper bound is trivial, and thus the real work is on the lower bound. We
achieve this by placing restrictions on the fractions, firstly by putting them in dyadic
intervals and secondly by removing those elements divisible by small primes. To this
end, define

AN = {n : N/2 6 n 6 N}, A
(w)
N =AN ∩ Rw.
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Let w be a large, fixed constant. A simple inclusion–exclusion argument yields (here
p denotes a prime in the sums)

|FNFN | >

∣∣∣∣∣{a1a2

b1b2
: a1, a2 ∈ A

(w)
N/2; b1, b2 ∈ A

(w)
N ; (a1a2, b1b2) = 1

}∣∣∣∣∣
> |A(w)

N/2A
(w)
N/2| · |A

(w)
N A

(w)
N | −

∑
w<p6N/2

|A
(w)
N/2A

(w)
N/2p| · |A

(w)
N A

(w)
N/p|

> |A(w)
N/2A

(w)
N/2| · |A

(w)
N A

(w)
N | −

∑
w<p6N/2

|AN/2AN/2p| · |ANAN/p|.

It is clear that for M 6 N,

|ANAM | 6 H(MN,M/2,M)

and we deduce from (1-1) that∑
w<p6N/2

|AN/2AN/2p| · |ANAN/p| �
∑
p>w

N4

p2(log(N/p))2E(log2(N/p))3

�
M(N)2

w log w
.

We also have the lower bound

|A
(w)
N A

(w)
M | > H(MN,M/2,M;Rw) − H(MN/2,M/2,M;Rw).

It follows that

|FNFN | >
(
H

(N2

4
,

N
4
,

N
2

;Rw

)
− H

(N2

8
,

N
4
,

N
2

;Rw

))
×

(
H

(
N2,

N
2
,N;Rw

)
− H

(N2

2
,

N
2
,N;Rw

))
−O

( N4

(log N)2E(log2 N)3(w log w)

)
. (1-3)

Inserting Theorem 1.1 into the estimate (1-3), and taking w to be a sufficiently large
constant, we obtain the lower bound in Corollary 1.5. �

1.1. Notation. Let τ(n) be the number of positive divisors of n, and τ(n; y, z) denotes
the number of divisors of n within the interval (y, z]. Let ω(n) be the number of distinct
prime divisors of n. Let P+(n) be the largest prime factor of n and let P−(n) be the
smallest prime factor of n. Adopt the notational conventions P+(1) = 0 and P−(1) =∞.
Constants implied by O, � and � are absolute. The notation f � g means f � g and
g� f . The symbol p will always denote a prime. Lastly, log2 x denotes log log x.

1.2. Heuristics. Here we give a short heuristic argument to justify the formulas in
Theorem 1.1. This is similar to the heuristics givin in [5, 6].
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Write n = n′n′′, where n′ is composed only of primes in (w, 2y] and n′′ is composed
only of primes >2y. For simplicity, assume n′ is squarefree and n′ 6 y100. Assume for
the moment that the set D(n′) = {log d : d | n′} is approximately uniformly distributed
in [0, log n′]. If n′ has k prime factors, then τ(n′) = 2k and we thus expect that
τ(n′, y, 2y) > 1 with probability about

min
(
1,

2k

log y

)
.

This expression changes behavior at k = k0 := blog2 y/log 2c. The number of n 6 x
with n′ ∈ Rw and ω(n′) = k is of size

x
log y

(log2 y − log2 w)k

k!
,

and we obtain a heuristic estimate for H(x, y, 2y;Rw) of order

x

log2 y

∑
k6k0

(2 log2 y − 2 log2 w)k

k!
+ (log y)

∑
k>k0

(log2 y − log2 w)k

k!

 .
The first sum always dominates, since the second sum is dominated by the first
summand (k0 is always much larger than log2 y − log2 w). The behavior of the
first sum over k depends on the relative sizes of k0 and 2 log2 y − 2 log2 w. If
k0 > 2 log2 y − 2 log2 w, that is, log w > (log y)1−1/log 4, the first contains the ‘peak’ and

H(x, y, 2y;Rw) ≈
x

log2 y
e2 log2 y−2 log2 w =

x

log2 w
.

For smaller w, we are summing the left tail of the Poisson distribution and standard
bounds (see, for example, Lemma 2.4 below) yield

H(x, y, 2y;Rw) ≈ xB(y,w)(log y)−E+((log(1−δ))/log 2).

This latter expression is too large by a factor 1/δ, and this stems from the uniformity
assumption about D(n′), which turns out to be false for all but a proportion δ of these
integers. Fluctuations in the distribution of the prime factors of n′ lead to clustering
of the divisors; more details can be found in [5, 6]. As in [5, 6], we really should be
considering those n′, which have nicely distributed divisors, and a useful measure of
how nicely distributed the divisors are is the function

L(a) = meas L (a), L (a) =
⋃
d|a

[−log 2 + log d, log d).

Adjusting our heuristic, we see that the probability that τ(n′, y, 2y) > 1 should be about
L(n′)/log y, which is�1/log y on a set of n′ of density δ.
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2. Preliminaries
Lemma 2.1 [6, Lemma 3.1].

(i) L(a) 6 min(τ(a) log 2, log 2 + log a);
(ii) if (a, b) = 1, then L(ab) 6 τ(b)L(a);
(iii) if p1 < · · · < pk, then

L(p1 · · · pk) 6 min
06 j6k

2k− j(log(p1 · · · p j) + log 2).

Let P(a, b) be the set of all squarefree positive integers composed only of primes
in (a, b]. We adopt the convention that 1 ∈P(a, b) for any a, b.

Lemma 2.2.

(a) For t > w > 2 and k > 0,∑
a∈P(w,t)
ω(a)=k

1
a
6

(log2 t − log2 w + O(1))k

k!
.

(b) For t > w > 2 and k > 1,∑
a∈P(w,t)
ω(a)=k

log a
a
� (1 + log(t/w))

(log2 t − log2 w + O(1))k−1

(k − 1)!
.

(c) For 2 6 w 6 s 6 t, ∑
a∈P(w,t)

L(a)
a
�

( log t
log s

)2 ∑
a∈P(w,s)

L(a)
a

.

Proof. Item (a) is immediate from∑
a∈P(w,t)
ω(a)=k

1
a
6

1
k!

( ∑
w<p6t

1
p

)k

and Mertens’ estimates. For item (b),∑
a∈P(w,t)
ω(a)=k

log a
a

=
∑

a∈P(w,t)
ω(a)=k

1
a

∑
p|a

log p 6
∑

w<p6t

log p
p

∑
a∈P(w,t)
ω(a)=k−1

1
a
.

The desired inequality follows from part (a) and Mertens’ estimates. For part (c),
we factor each a ∈P(w, t) uniquely as a = a1a2 with a1 ∈P(w, s) and a2 ∈P(s, t).
Then, using Lemma 2.1(ii) we deduce that∑

a∈P(w,t)

L(a)
a
6

∑
a1∈P(w,s)

L(a1)
a1

∑
a2∈P(s,t)

τ(a2)
a2

=
∏

s<p6t

(
1 +

2
p

) ∑
a1∈P(w,s)

L(a1)
a1

.

The desired inequality follows from Mertens’ estimates. �
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The following is a standard sieve bound, see, for example, [8].

Lemma 2.3. (a) Uniformly for x > 2z > 4,

|{x/2 < n 6 x : P−(n) > z}| �
x

log z
.

Uniformly for x > z > 2,

|{n 6 x : P−(n) > z}| �
x

log z
.

Finally, we quote standard bounds on the Poisson distribution, see, for example, the
results in [11, Section 4].

Lemma 2.4. Uniformly for h 6 m 6 x,∑
h6k6m

xk

k!
� min

(√
x,

x
x − m

,m − h + 1
) xm

m!
.

3. Local-to-global estimates

Following a kind of local-to-global principle first utilized in [5], we bound
H(x, y, 2y;Rw) in terms of the function L(a). This justifies the heuristic presented
in Section 1.2.

Lemma 3.1. If w 6 y1/15 and y 6
√

x, then

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 y

∑
a∈P(w,y)

L(a)
a

.

If w 6 y 6
√

x and w 6 y1/10, then

H(x, y, 2y;Rw)�
x

log2 y

∑
a∈P(w,y)

L(a)
a

.

Proof. We begin with the lower bound. We may assume without loss of generality
that y > y0, where y0 is a sufficiently large constant, because in the case y < y0, for any
prime p ∈ (y, 2y] (such p exists by Bertrand’s postulate) and we see that

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)� x/p�y0 x.

Consider integers n = ap1 p2b ∈ (x/2, x] with P−(a) > w, p1 and p2 prime, satisfying
the inequalities

a 6 y1/5 < p1 < p2 6
1
4 y4/5 < P−(b),

and with log(y/p1 p2) ∈L (a). The last condition implies that

τ(ap1 p2, y, 2y) > 1,

https://doi.org/10.1017/S1446788719000442 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000442


24 K. Ford [8]

and we also have that P−(n) > w. Since y4/5 6 y/a < p1 p2 6 2y, we have x/ap1 p2 >
x/(2y6/5) > 1

2 y4/5. Thus, by Lemma 2.3, for each triple (a, p1, p2), the number of
possible b is�x/(ap1 p2 log y). Now L (a) is the disjoint union of intervals of length
> log 2 contained in [−log 2, log a]. For each such interval [u, v), Mertens’ estimate
implies that ∑

u6log(y/p1 p2)<v
y1/5<p1<p2<

1
4 y4/5

1
p1 p2

>
∑

8y1/5<p1<y2/5

1
p1

∑
ye−v/p1<p26ye−u/p1

1
p2
�

v − u
log y

.

Here we made use of the estimate v 6 log a 6 1
5 log y, which implies that ye−v/p1 >

y2/5 > p1. Thus, with a fixed, the sum of 1/(p1 p2) is�(L(a))/log y and

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 y

∑
a6y1/5

P−(a)>w

L(a)
a

.

We replace the sum over a with an unbounded set, which is multiplicatively more
convenient, starting with∑

a6y1/5

P−(a)>w

L(a)
a
>

∑
a6y1/5

a∈P(w,y1/15)

L(a)
a
>

∑
a∈P(w,y1/15)

L(a)
a

(
1 −

log a
log(y1/5)

)
.

Break this into two sums, the first being what we want and the second involving∑
a∈P(w,y1/15)

L(a) log a
a

=
∑

a∈P(w,y1/15)

L(a)
a

∑
p|a

log p

=
∑

w<p6y1/15

log p
p

∑
b∈P(w,y1/15)

p-b

L(pb)
b

.

Using the trivial relation L(pb) 6 2L(b), which comes from Lemma 2.1(ii), and
Mertens’ estimate,∑

a6y1/5

P−(a)>w

L(a)
a
>

∑
a∈P(w,y1/15)

L(a)
a

(
1 −

2 log(y1/15) + O(1)
log(y1/5)

)

�
∑

a∈P(w,y1/15)

L(a)
a

.

An application of Lemma 2.2(c) concludes the proof of the lower bound.
For the upper bound, we first relate H(x, y, 2y;Rw) to H∗(x, y, 2y;Rw), the number

of squarefree integers n 6 x with P−(n) > w and τ(n, y, z) > 1. Write n = n′n′′, where n′

is squarefree, n′′ is squarefull and (n′, n′′) = 1. The number of n 6 x with n′′ > log10 y
is

6 x
∑

n′′>log10 y

1
n′′
�

x

log5 y
.
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If n′′ 6 log10 y, then for some f | n′′, n′ has a divisor in (y/ f , 2y/ f ], hence

H(x, y, 2y;Rw) 6
∑

n′′6log10 y
P−(n)>w

∑
f |n′′

H∗
( x
n′′
,

y
f
,

2y
f

;Rw

)
+ O

( x

log5 y

)
. (3-1)

Let w0 be a sufficiently large absolute constant. It suffices to prove the upper bound
for w > w0, for the case w < w0 follows from the case w = w0. In the sum,

y/ f 6 y 6 (x/n′′)1/2 log5 y 6 (x/n′′)5/9

for large enough w0. We will show that for w0 6 y1 6 x5/9
1 ,

H∗(x1, y1, 2y1;Rw)� x1 max
t>y3/4

1

1
log2 t

∑
a∈P(w,t)

L(a)
a

. (3-2)

It follows from (3-2) and (3-1) that

H(x, y, 2y;Rw)�
∑

n′′6log10 y
P−(n)>w

x
n′′

∑
f |n′′

max
t>(y/ f )3/4

1
log2 t

∑
a∈P(w,t)

L(a)
a

� x max
t>y2/3

1
log2 t

∑
a∈P(w,t)

L(a)
a

∑
n′′6log10 y
P−(n)>w

τ(n′′)
n′′

.

The lemma follows by noting that the inner sum over squarefull n′′ is O(1), using the
relative estimate in Lemma 2.2(c) with s = y2/3, and finally noting that P(w, y2/3) ⊆
P(w, y).

It remains to prove (3-2). The right side is �x1/log2y1 since L(1) = log 2, and
hence it suffices to count those n ∈ (x1/log2y1, x1]. We will count separately those
n ∈ (x1/2r+1, x1/2r] for some integer r, 0 6 r 6 5 log2 y1. Let A be the set of squarefree
integers n ∈ (x1/2r+1, x1/2r] with a divisor in (y1, 2y1]. Put z1 = 2y1, y2 = x1/(2r+2y1),
z2 = x1/(2ry1). If n ∈A , then n = m1m2 with yi < mi 6 zi (i = 1, 2). For some j ∈ {1, 2}
we have p = P+(m j) < P+(m3− j); in particular, p is not the largest prime factor of
n. Fixing j, we may write n = abp, where P+(a) < p < P−(b) and b > p. Since
τ(ap, y j, z j) > 1, we have y j/a 6 p 6 z j. By Lemma 2.3 and the fact that b > p, given
a and p, the number of choices for b is

�
x1

2rap log p

6
x1

2rap log max(P+(a), y j/a)
.

Now a has a divisor in (y j/p, z j/p], and thus

log(y j/p) ∈L (a) or log(2y j/p) ∈L (a).
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Since L (a) is the disjoint union of intervals of length > log 2 with total measure L(a),
by repeated use of Mertens’ estimate∑

log(cy j/p)∈L (a)
p>P+(a)

1
p
�

L(a)
log max(P+(a), y j/a)

(c = 1, 2).

Since y j > y4/9
1 /2r+2 > y3/4

1 ,

H∗(x, y, 2y;Rw)�
∑

06r65 log2 y1

x1

2r

∑
t∈{4y1,4y2}

∑
a∈P(w,t)

L(a)
a log2(P+(a) + t

4a )
.

We have 4y j > y4/5
1 /2r > y3/4

1 for any j and any r. Also, by [10, Lemma 2.2],∑
a∈P(w,t)

L(a)
a log2(t/(4a) + P+(a))

�
1

log2 t

∑
a∈P(w,t)

L(a)
a

.

Summing over r, we deduce (3-2). �

4. Proof of Theorem 1.1: lower bounds

We first deal with simple cases. Let w0 be a sufficiently large constant and ε > 0
a sufficiently small constant. Firstly, if y 6 w0, then Bertrand’s postulate implies that
there is a prime p ∈ (y, 2y] and therefore

H(x, y, 2y;Rw) − Hz(x/2, y, 2y;Rw) > #{x/2 < n 6 x : p | n} � x.

Also, if w 6 w0 < y and w 6 y/8, then

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw) > H(x, y, 2y;Rw0 ) − H(x/2, y, 2y;Rw0 )

and the desired bound follows from the case w = w0. Thirdly, when y > w0 and
yε < w 6 y/8, we consider two cases: (a) y 6

√
x/8 and (b)

√
x/8 < y 6

√
x. In case (a),

consider n = pm where y < p 6 2y < P−(m). Since x/p > 4y for all such p, Lemma 2.3
implies

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw) >
∑

y<p62y

#
{ x

2p
< n 6

x
p

: P−(n) > 2y
}

�
∑

y<p62y

x
p log y

�
x

log2 w
.

In the case (b)
√

x/8 < y 6
√

x, consider n = pm where y < p 6 2y and P−(m) >
y/8. Such n have at most three prime factors larger than y, hence at most three
representations in this form. Since x/p > 2y/8, Lemma 2.3 similarly implies that

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw) >
1
3

∑
y<p62y

#
{ x

2p
< n 6

x
p

: P−(n) >
y
8

}
�

∑
y<p62y

x
p log y

�
x

log2 w
.
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[11] Rough integers with a divisor in a given interval 27

From now on, we assume
w0 < w 6 yε. (4-1)

We begin with the local-to-global estimate for H(x, y, 2y;Rw) given in Lemma 3.1,
and relate L(a) to counts of pairs of divisors, which are close together. Evidently,

L(a) > (log 2)#{d | a : τ(a, d, 2d) = 0} > (log 2)(τ(a) −W∗(a)), (4-2)

where
W∗(a) = #{d | a, d′ | a : d < d′ 6 2d}.

We will apply (4-2) with integers whose prime factors are localized. As in [6],
partition the primes into sets D1,D2, . . . , where each D j consists of the primes in an
interval (λ j−1, λ j], with λ j ≈ λ

2
j−1. More precisely, let λ0 = 1.9 and define inductively

λ j for j > 1 as the largest prime so that∑
λ j−1<p6λ j

1
p
6 log 2. (4-3)

For example, λ1 = 2 and λ2 = 7. By Mertens’ bounds,

log2 λ j − log2 λ j−1 = log 2 + O(1/logλ j−1),

and it follows that for some absolute constant K,

2 j−K 6 log λ j 6 2 j+K ( j > 0). (4-4)

For a vector b = (b1, . . . , bJ) of nonnegative integers, let A (b) be the set of squarefree
integers a composed of exactly b j prime factors from D j for each j.

Lemma 4.1. Assume b = (b1, . . . , bJ2 ), with b j = 0 for j < J1. Then∑
a∈A (b)

W∗(a)
a
�

(2 log 2)bJ1 +···+bJ2

bJ1 ! · · · bJ2 !

J2∑
j=J1

2− j+bJ1 +···+b j .

Proof. Identical to the proof of [6, Lemma 2.3], except that we remove the terms
corresponding to d = d′. �

We will only consider those intervals D j ⊆ (w, y], that is, only J1 6 j 6 J2, where

J1 := min{ j : λ j−1 > w}, J2 := max{ j : λ j 6 y}. (4-5)

By (4-4), ∣∣∣∣∣J1 −
log2 w
log 2

∣∣∣∣∣ 6 K + 2,
∣∣∣∣∣J2 −

log2 y
log 2

∣∣∣∣∣ 6 K + 1. (4-6)

Put
M =

log2 w0

200
, (4-7)

which is a sufficiently large constant because w0 is. Recalling (4-1) and (4-5), we may
choose ε such that

J1 > 100M, J2 − J1 > 100M. (4-8)
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28 K. Ford [12]

Let Bk be the set of vectors (bJ1 , . . . , bJ2 ) which satisfy the following:

(a) bJ1 + · · · + bJ2 = k;
(b)

∑J2
j=J1

2− j+bJ1 +···+b j 6 2−M;
(c) bJ1+i−1 6 M + i2 (i > 1);
(d) bJ2−i+1 6 M + i2 (i > 1).

Item (b) ensures that the sum on a in Lemma 4.1 is small, provided that w0 is
sufficiently large. From the definition of J2, whenever b ∈Bk and a ∈A (b), we have
a ∈P(w, y).

By Lemma 4.1, for any k and any b ∈Bk,∑
a∈A (b)

W∗(a)
a
6

1
10

(log 4)k

bJ1 ! · · · bJ2 !
. (4-9)

By (4-4), the fact that J1 is sufficiently large, and b j 6 ( j + 1 − J1)2 + M, for any k
and b ∈Bk we have by (4-3)∑

a∈A (b)

τ(a)
a

= 2k
J2∏

j=J1

1
b j!

( ∑
p1∈D j

1
p1

∑
p2∈D j
p2,p1

1
p2
· · ·

∑
pb j∈D j

pb j<{p1,...,pb j−1}

1
pb j

)

> 2k
J2∏

j=J1

1
b j!

(
log 2 −

b j

λ j−1

)b j

>
(log 4)k

2bJ1 ! · · · bJ2 !
. (4-10)

Combining Lemma 3.1, (4-2), (4-9), and (4-10), we arrive at

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 y

∑
k16k6k2

∑
b∈Bk

1
bJ1 ! · · · bJ2 !

(4-11)

for any k1 6 k2. We bound the sum on b using techniques from [5].
Following our heuristic, take

k2 =

⌊
min

( log2 y
log 2

, 2(log2 y − log2 w)
)
− 2M

⌋
. (4-12)

By (4-1), k2 > 100M and by (4-6),

k2 = min(J2, (log 4)(J2 − J1)) − 2M + θ, |θ| 6 (log 4)(2K + 3).

We will choose k1 to satisfy
10M 6 k1 6 k2. (4-13)

Also define
v = J2 − J1 + 1, s = J1 − 2 − M. (4-14)

Setting gi = bJ1+i−1 for i > 1,
v∑

i=1

2−i+g1+···+gi = 2J1−1 f (b) 6 2s+1.
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By (c) and (d) in the definition of Bk, gi 6 M + i2 and gv+1−i 6 M + i2 for every i > 1.
Applying the argument on the top of [5, page 419], it follows that for k1 6 k 6 k2∑

b∈Bk

(log 4)k

bJ1 ! · · · bJ2 !
� vkVol(Yk(s, v)), (4-15)

where Yk(s, v) is the set of ξ = (ξ1, . . . , ξk) ∈ Rk satisfying the following:

(i) 0 6 ξ1 6 · · · 6 ξk < 1;
(ii) For 1 6 i 6

√
k − M, ξM+i2 > i/v and ξk+1−(M+i2) < 1 − i/v;

(iii)
∑k

j=1 2 j−vξ j 6 2s.

We now invoke a result from [5] concerning the volume of Yk(s, v).

Lemma 4.2 [5, Lemma 4.9]. The following is true for all sufficiently large M.
Uniformly for v > 1, 10M 6 k 6 100(v − 1), s > M/2 + 1 and 0 6 k − v 6 s − M/3 − 1.
Then

Vol(Yk(s, v))�
k − v + 1
(k + 1)!

.

If w0 is large enough (implying that M is sufficiently large) and ε is sufficiently
small, then (4-5), (4-7), (4-12), (4-13), and (4-14) together imply that

v = J2 − J1 + 1 > 10,
10M 6 k1 6 k2 6 (log 4)(J2 − J1) = (log 4)(v − 1),

s > log2 w − M > M/2 + 1,
k2 − v − s 6 (J2 − 2M) − (J2 − 1 − M) = 1 − M 6 −M/3 − 1.

Thus, we see that the hypotheses of Lemma 4.2 are satisfied. Therefore, gathering
(4-11), (4-15) and invoking Lemma 4.2, we conclude that

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 y

k2∑
k=k1

(v log 4)k

k!

(k − v + 1
k + 1

)
. (4-16)

Consider three cases: I. δ > 1 − 1/log 4, II. 1
10 6 δ < 1 − 1/log 4, III. 0 < δ < 1

10 .

Case I. We have log2 w > (1 − 1/log 4)log2 y and thus, by (4-12) and (4-5),

k2 = b2(log2 y − log2 w) − 2Mc.

For an appropriate choice of parameters ε, M,w0 (subject to (4-7)), we have by (4-8)
the bound

v log 4 > k > J2 − J1 > 100M.

Now set k1 = k2/10, so that (4-13) is satisfied. With these choices and (4-14),

k − v + 1
k + 1

� 1 (k1 6 k 6 k2).
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Thus, apply Lemma 2.4 to the sum in (4-16),

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
x

log2 y
ev log 4 �

x

log2 w
,

as required in this case.

Case II. By (4-12),

k2 =

⌊ log2 y
log 2

− 2M
⌋
,

and take

k1 =
k2

2
.

In this case, we have J1 � log2 y � J2 − J1, and thus by (4-14),

k − v + 1
k + 1

� 1 � δ (k1 6 k 6 k2).

Hence, applying Lemma 2.4 with h = k1,m = k2, x = v log 4, we compute

min
(
x1/2,

x
x − m

,m − h + 1
)
� min

(
(log2 y)1/2,

v log 4
v log 4 − k2

)
� min

(
(log2 y)1/2,

1
1 − 1

log 4 − δ
+ O(1/log2 y)

)
� δ(log2 y)1/2B(w, y).

Recalling the definition of E, by Stirling’s formula,

(v log 4)k2

k2!
�

(e(1 − δ))k2√
log2 y

=
(log y)2−E+(log(1−δ))/(log 2)√

log2 y
.

Invoking Lemma 2.4 we see that the sum in (4-16) is

� δB(w, y)(log y)2−E+(log(1−δ))/(log 2),

and this gives the required lower bound in Theorem 1.1.

Case III. When δ < 1
10 , also

k2 =

⌊ log2 y
log 2

− 2M
⌋
,

but in this case,
k1 = k2,

as we are in the range where the summation in (4-16) is dominated by single summand.
Here

k2 − v + 1 � J1,
k − v + 1

k + 1
�

log2 w
log2 y

= δ.
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Applying Lemma 2.4 to the sum in (4-16),

H(x, y, 2y;Rw) − H(x/2, y, 2y;Rw)�
δx

log2 y

(v log 4)k2

k2!
.

Applying Stirling’s formula as in Case II and observing that B(w, y) = 1 in this case,
we conclude the desired upper bound.

This completes the proof of the lower bound in Theorem 1.1.

5. Proof of Theorem 1.1: upper bounds

In this section, we prove the upper bound in Theorem 1.1. We begin with simple
cases. If w0 is fixed and w 6 w0, then H(x, y, 2y;Rw) 6 H(x, y, 2y) and the required
bound follows from (1-1). Next, if log2 w > (1 − 1/log 4) log2 y, then by Lemma 2.3,

H(x, y, 2y;Rw) 6
∑

y<d62y
P−(d)>w

|{m 6 x/d : P−(m) > w}|

�
∑

y<d62y
P−(d)>w

x
d log w

�
x

log2 w
,

as required.
From now on, we assume that

log w 6 (log y)1−1/log 4, (5-1)

that is, δ 6 1 − 1/log 4. We apply Lemma 3.1 and use upper bounds for L(a) from
Lemma 2.1. As in [5], the sums involving L(a) are bounded in terms of multivariate
integrals, which were estimated accurately in [5, 6].

5.1. Case I. 1
10 6 δ 6 1 − 1/log 4. This case is very easy, as we expect no clustering

of divisors. Let

k0 =

⌊ log2 y
log 2

⌋
. (5-2)

Beginning with Lemma 3.1, we apply Lemma 2.1(i) to bound L(a) and then apply
Lemma 2.2 parts (a) and (b)

H(x, y, 2y;Rw) �
x

log2 y

[∑
k6k0

2k
∑

a∈P(w,y)
ω(a)=k

1
a

+
∑
k>k0

∑
a∈P(w,y)
ω(a)=k

log a
a

]

�
x

log2 y

[∑
k6k0

(2 log2 y − 2 log2 w)k

k!
+ (log y)

∑
k>k0

(log2 y − log2 w)k

k!

]
.
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Since k0 > 1.4(log2 y − log2 w), the second sum on the right side is dominated by the
single term k = k0 and thus, by Stirling’s formula,∑

k>k0

(log2 y − log2 w)k

k!
�

(log2 y − log2 w)k0

k0!

�
((e log 2)(1 − δ))k0

(log2 y)1/2

�
(log y)1−E+((log(1−δ))/log 2)

(log2 y)1/2 .

We have k0 6 2 log2 y − 2 log2 w in the first sum, for which we invoke Lemma 2.4 and
obtain, with α = log2 y − log2 w the bound∑

k6k0

(2 log2 y − 2 log2 w)k

k!

�
(2α)k0

k0!
min

(
α1/2,

α

α − k0

)
� (2e(log 2)(1 − δ))k0 min(1, (log2 y)−1/2((1 − δ) log 4 − 1)−1)
� (log y)−E+(log(1−δ)/log 2)B(w, y),

as required for Theorem 1.1.

5.2. Case II. δ 6 1
10 . This case is more delicate, because we expect that typically

there will be clustering of the divisors of a, and we must bound the probability of
nonclustering.

We cut up the sum in Lemma 3.1 according to ω(a). Let

Tk =
∑

a∈P(w,y)
ω(a)=k

L(a)
a

.

We bound Tk in terms of a multivariate integral, in a manner similar to that in [6].

Lemma 5.1. Suppose w is large, (5-1) holds, let

v =

⌊ log2 y − log2 w
log 2

⌋
, u =

⌊ log2 w
log 2

⌋
and assume that 1 6 k 6 10v. Then

Tk � (2 log2 y − 2 log2 w)kUk(v, u),

where

Uk(v, u) =

(
06ξ16···6ξk61

min
06 j6k

2− j(2vξ1+u + · · · + 2vξ j+u + 1) dξ.
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Proof. The proof is the same as the [6, proof of Lemma 3.5], except that we make
use of the fact that P−(a) > w. Recall the definition of the sets D j from Section 4. By
(4-4), any prime divisor of a lies in D j with u − K − 2 6 j 6 v + u + K + 3. Following
the proof of [6, Lemma 3.5], in particular using Lemma 2.1(iii),

Tk �
(2 log 2)k

k!

∫
[u−K−2,v+u+K+4]k

F(t) dt, (5-3)

where, letting s1 6 s2 6 · · · 6 sk be the increasing rearrangement of t1, . . . , tk,

F(t) = min
06 j6k

2− j(2s1 + · · · + 2s j + 1).

Observe that F(t) is symmetric in t1, . . . , tk. Making the change of variables

ti = u − K − 2 + (v + 2K + 6)ξi (1 6 i 6 k)

we see that 0 6 ξi 6 1 for each i. Utilizing the symmetry of F(t), we find that the
multiple integral on the right side of (5-3) equals

(v + 2K + 6)kk!
(

06ξ16···6ξk61

min
06 j6k

2− j(2(v+2K+6)ξ1+u + · · · + 2(v+2K+6)ξ j+u + 1) dξ.

We conclude that
Tk(y)� ((2 log 2)(v + 2K + 6))kUk(v, u).

Lastly, (v + 2K + 6)k � vk since k 6 10v, and the lemma follows. �

To bound Uk(u, v) we invoke the following estimate from [5, 6].

Lemma 5.2 ([5, Lemma 13.2], [6, Lemma 4.4]). Define

T (k, v, γ) = {ξ ∈ Rk : 0 6 ξ1 6 · · · 6 ξk 6 1,
2vξ1 + · · · + 2vξ j > 2 j−γ (1 6 j 6 k)}.

Suppose k, v, γ ∈ Z with 1 6 k 6 10v and γ > 0. Set b = k − v. Then

Vol(T (k, v, γ))�
Y

22b−γ (k + 1)!
,

where

Y =

b if b > γ + 5,
(γ + 5 − b)2(γ + 1) if b < γ + 5.

Lemma 5.3. Suppose k, u, v are integers satisfying 1 6 k 6 10v and u > 1. Then

Uk(v, u)�
u(1 + |k − v − u|2)

(k + 1)!(2k−v−u + 1)
.

Notice that the bound in Lemma 5.3 undergoes a change of behavior at k = v + u.
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Proof. Put b = k − v. For integers m > 0, consider ξ satisfying

2−m 6 min
06 j6k

2− j(2vξ1+u + · · · + 2vξ j+u + 1) < 21−m.

For 1 6 j 6 k,

2− j(2vξ1+u + · · · + 2vξ j+u) > max(2− j, 2−m−u − 2− j−u) > 2−m−u−1,

and thus ξ ∈ T (k, v,m + u + 1). Invoking Lemma 5.2,

Uk(v, u) 6
∑
m>0

21−m Vol(T (k, v,m + u + 1))

�
1

(k + 1)!

∑
m>0

2−mYm

22b−m−u−1 ,

Ym =

b if m + u 6 b − 6,
(m + u + 6 − b)2(m + u + 2) if m + u > b − 6.

Dividing the sum according to the two cases yields∑
m>0

2−mYm

22b−u−m−1 �
∑

06m<b−u−5

b
2m22b−m−u−1

+
∑

m>max(0,b−u−5)

(m + u + 6 − b)2(m + u + 2)
2m .

The proof is completed by noting that if b > 6 + u, each sum on the right side is
� b2u−b and if b 6 5 + u, the first sum is empty and the second is � (6 + u − b)2 �

1 + (b − u)2. �

Finally, we complete the upper bound in Theorem 1.1. Let

v =

⌊ log2 y − log2 w
log 2

⌋
, u =

⌊ log2 w
log 2

⌋
and define k0 by (5-2). Note that k0 = v + u + O(1). We now combine Lemmas 5.1
and 5.3. Since k0 > 1.4(log2 y − log2 w),∑

k06k610k0

Tk �
∑

k06k610k0

u(1 + (k − k0)2)
(k + 1)!2k−u−v (2 log2 y − 2 log2 w)k

� u2k0
∑
`>0

1 + `2

(k0 + 1 + `)!
(log2 y − log2 w)k0+`

� (log2 w)
(2 log2 y − 2 log2 w)k0

(k0 + 1)!
.
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Similarly, since k0 6 0.9(2 log2 y − 2 log2 w),∑
06k<k0

Tk � 1 +
∑

16k<k0

u(k0 − k)2(2 log2 y − 2 log2 w)k

(k + 1)!

� 1 + u
k0−1∑
`=1

u`2(2 log2 y − 2 log2 w)k0−`

(k0 + 1 − `)!

� (log2 w)
(2 log2 y − 2 log2 w)k0

(k0 + 1)!
.

For the large values of k we use the crude bound L(a)� τ(a) from Lemma 2.1(i),
followed by an application of Lemma 2.2(a). This gives∑

k>10k0

Tk 6
∑

k>10k0

∑
a∈P(w,y)
ω(a)=k

2k log 2
a
6

∑
k>10k0

(2 log2 y − 2 log2 w + O(1))k

k!

�
(2 log2 y − 2 log2 w + O(1))10k0

(10k0)!

�
(2 log2 y − 2 log2 w)k0

(k0 + 1)!
.

Combining these three bounds for sums of Tk with Lemma 3.1, Lemma 2.4, and
Stirling’s formula, we conclude that

H(x, y, 2y;Rw)�
x

log2 y
(log2 w)

(2 log2 y − 2 log2 w)k0

(k0 + 1)!

�
x log2 w

(log2 y)3/2 (log y)−E+((log(1−δ))/log 2).

The proof of the upper bound in Theorem 1.1 is complete.
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[2] P. Erdős, ‘Some remarks on number theory’, Riveon Lematematika 9 (1955), 45–48 (Hebrew.
English summary).
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