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Reverse Marangoni surfing
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We theoretically study the surfing motion of chemically and thermally active particles
located at a flat liquid–gas interface that sits above a liquid layer of finite depth. The
particles’ activity creates and maintains a surface tension gradient resulting in the auto-
surfing. It is intuitively perceived that Marangoni surfers propel towards the direction
with a higher surface tension. Remarkably, we find that the surfers may propel in
the lower surface tension direction depending on their geometry and proximity to
the bottom of the liquid layer. In particular, our analytical calculations for Stokes
flow and diffusion-dominated scalar fields (i.e. chemical concentration and temperature
fields) indicate that spherical particles undergo reverse Marangoni propulsion under
confinement whereas disk-shaped surfers always move in the expected direction. We
extend our results by proposing an approximate formula for the propulsion speed of
oblate spheroidal particles based on the speeds of spheres and disks.

Key words: interfacial flows (free surface), low-Reynolds-number flows, Marangoni convection

1. Introduction
Self-propelled microdevices powered by converting chemical energy into mechanical

work bring to bear functionalities that resemble those of microorganisms. These
miniature robots are thus promising candidates for targeted drug delivery, microsurgery,
self-assembly and microfluidic manipulation (Sitti 2009; Sitti et al. 2015). Thanks to
the recent advances in micro/nano technology, researchers have designed and tested
a wide variety of swimming microrobots, many of them biomimetic, to carry out
prescribed tasks in microfluidic systems (Dreyfus et al. 2005; Masoud & Alexeev
2010; Masoud, Bingham & Alexeev 2012; Wang et al. 2013; Cheang et al. 2014;
Duan et al. 2015; Maggi et al. 2015; Sánchez, Soler & Katuri 2015; Dey et al.
2016; Domínguez et al. 2016). However, despite recent notable progress in creating
microswimmers, the development of microscopic machines capable of surfing on
fluidic interfaces is still in its infancy. These tiny surfing robots can potentially
execute missions that are currently very difficult, or even impossible, to accomplish.

The motion of a microsurfer is typically driven by a gradient of surface tension,
which is prompted by a form of activity taking place at the surface of the surfer
(Rayleigh 1889; Nakata et al. 1997; Lauga & Davis 2012; Zhao & Pumera 2012;
Zhang et al. 2013; Masoud & Shelley 2014; Masoud & Stone 2014; Pimienta &
Antoine 2014; Würger 2014; Girot et al. 2016; Malgaretti, Popescu & Dietrich
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2016). This so-called Marangoni propulsion (Bush & Hu 2006; Lauga & Davis
2012; Masoud & Stone 2014) appears in biological systems as well. For instance,
there are water-walking insects that secrete surface-active materials to boost their
walking speed in emergency situations (Bush & Hu 2006). A major step towards
designing advanced Marangoni-driven microrobots is to establish the relation between
the prescribed surface activity and the propulsion velocity in various configurations.
A configuration of practical interest involves surfing in the presence of a confining
solid boundary.

Here, we theoretically examine the surfing motion of particles located at a flat
liquid–gas interface atop a layer of fluid, which is bounded by an impermeable solid
wall. We consider chemically and thermally active particles that are, respectively,
sources of an insoluble chemical species and heat. The self-induced scalar fields (i.e.
concentration of species and temperature fields) locally change the surface tension
and the consequent gradients in the surface tension lead to the propulsion of the
particle. It is natural to surmise that Marangoni surfers are pulled towards the higher
surface tension direction. Contrary to this common instinct, we find that the surfers
may propel in the lower surface tension direction depending on their geometry and
proximity to the solid wall. Specifically, we show that spherical particles propel in the
reverse direction under the confinement whereas disk-shaped surfers always move in
the anticipated direction. We rationalize these behaviours in terms of the competition
between the effects of the asymmetric surface tension acting along the three-phase
contact line and the Marangoni flow engendered by the surface tension gradients. In
the following, we first derive closed-form expressions for the translational velocity of
spheres and disks. We then extend the results by presenting an approximate expression
for the propulsion speed of oblate spheroidal particles based on the speeds of spheres
and disks. Overall, our findings pave the way for designing microsurfers capable of
operating in bounded environments.

2. Problem formulation and solution

Consider a solid particle located at a flat surface, at z= 0, sitting above a layer of
Newtonian fluid, with constant viscosity µ, that is bounded by an impermeable solid
wall at z = −H (see figure 1). The particle translates with the velocity U = Ue due
to a non-uniformity in the surface tension γ arising either from the discharge of an
insoluble agent (e.g. surfactant) or from the release of heat by the particle. Here, e is
the unit vector in the direction of motion.

To reduce the complexity of the analyses, the following (justifiable) assumptions are
made: (i) the liquid–gas interface remains flat over distances much greater than the
size of the particle, (ii) the three-phase contact line is pinned at a 90◦ contact angle,
(iii) the two-dimensional transport of chemical species and the three-dimensional
transport of heat are both dominated by diffusion, (iv) gravitational and inertial
effects are negligible, (v) the relevant scalars (i.e. concentration of species and
temperature) have linear relations with the surface tension and (vi) the release of the
chemical agent and heat are symmetric about the direction of motion, which ensures
that the motion of the particle is restricted to translation.

A typical experimental set-up for which the assumptions are valid is an aqueous
system with particles of diameter D∼ 1 µm and propulsion speed U ∼ 1 µm s−1 that
produce a chemical species with a diffusion constant D∼ 10−10 m2 s−1. The capillary,
Péclet and Reynolds numbers of this system are, respectively, Ca = µU/γ0 ∼ 10−8,
Pe = DU/D ∼ 10−2 and Re = ρDU/µ ∼ 10−6. The assumptions are similarly valid
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FIGURE 1. (Colour online) Marangoni propulsion of (a) spherical and (b) disk-shaped
particles at a flat interface above a liquid layer of finite depth. The colour maps at the
interfaces represent the surface tension distribution stemming either from the discharge of
an insoluble agent or from the release of heat by the particle. Si and lp denote, respectively,
the liquid–gas interface and three-phase contact line pinned to the particle at a 90◦ contact
angle. The translation towards the higher surface tension direction is regarded as the
forward propulsion.

for an aqueous system with optically heated particles of diameter D ∼ 10 µm
whose propulsion speed is U ∼ 10 µm s−1. Here, the corresponding dimensionless
numbers are Ca ∼ 10−7, Pe = DU/α ∼ 10−3, and Re ∼ 10−4. The non-dimensional
numbers are calculated based on the water properties at room condition (i.e. density
ρ = 997.0479 kg m−3, viscosity µ = 8.90 × 10−4 N s m−2, thermal diffusivity
α = 0.143 × 10−6 m2 s−1 and surface tension γ0 = 71.97 × 10−3 N m−1). In both
set-ups, the surface tension is strong enough to keep the interface flat (Ca� 1), the
primary mode of heat and mass transfer is diffusion (Pe� 1) and the flow is creeping
(Re� 1).

Suppose u and σ are, respectively, the velocity and stress fields, in z 6 0,
corresponding to the Marangoni-driven motion of the particle. Let û and σ̂ denote,
respectively, the velocity and stress fields corresponding to the translation with the
velocity Û = Ûe of an identical particle at an interface with no surface tension
gradients. These fields are free of contact-line singularities, as the particle motion is
limited to pure translation (O’Neill, Ranger & Brenner 1986; Pozrikidis 2007). Hence,
according to the Lorentz reciprocal theorem (see Happel & Brenner 1983),∫

Sp

(n · σ ) · û dS+
∫

Si

(n · σ ) · û dS=
∫

Sp

(n · σ̂ ) · u dS+
∫

Si

(n · σ̂ ) · u dS, (2.1)

where Sp is the wetted area of the particle, Si represents the liquid–gas interface (see
figure 1) and n is the unit vector outward normal to Sp and Si (see also Masoud
& Stone 2014). Integrals over bounding surfaces at infinity are zero since velocities
decay at least as fast as the inverse distance in the far field. Integrals over the solid
walls also vanish due to the zero-velocity boundary condition.

Owing to the no-slip condition, u = Ue and û = Ûe on Sp. Also, the components
of u and û normal to the interface are zero as no fluid exchange takes place there.
The balance of shear stress at the interface requires (n · σ ) · û = −∇sγ · û and
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(n · σ̂ ) · u= 0 on Si, where ∇s is the surface gradient operator. Since no net external
force is applied on the particle, the viscous force

∫
Sp

n ·σ dS exerted on Sp is balanced
by the surface tension force Fste=

∫
`p
γ t d` acting along the three-phase contact line

`p, where t is the unit vector tangent to Si and normal to `p. Taking the above
relations into account, (2.1) reduces to

U = Û

F̂d

(Fst + FM), (2.2)

where −F̂de = ∫Sp
n · σ̂ dS is the fluid drag that the translating particle would have

experienced in response to its motion at the interface had there been no Marangoni
effect and FM =

∫
Si
(û/Û) · ∇sγ dS is the contribution of the Marangoni flow.

In the conventional approach, calculating U entails solving the Stokes flow
equations for u subject to the no-slip and Marangoni stress boundary conditions
(e.g. Lauga & Davis 2012; Würger 2014). The use of the reciprocal theorem, instead,
allows us to obtain U by just having û (see (2.2)), which is analytically easier to
calculate. Conveniently, û is already derived for the creeping motion of spherical and
disk-shaped particles between parallel plates (Ganatos, Pfeffer & Weinbaum 1980;
Davis 1991). Note that when the particle is located at an equal distance from the
walls, due to the symmetry, the velocity fields obtained by Ganatos et al. (1980)
and Davis (1991) are identical to those generated by the translation of the same
particle along a flat liquid–gas interface sitting above a liquid layer bounded by a
solid boundary. This argument holds when the capillary number is very low, which
indicates that the deflection of the interface due to the pressure distribution along the
free surface can be ignored. The Ca� 1 condition is a stronger constraint when the
fluid layer is shallow.

Without loss of generality, hereafter, we set the direction of motion to e= ex (see
figure 1). Hence, following the solution of Ganatos et al. (1980) for spheres of radius
R, the in-plane components of velocity û in the spherical coordinates (r, θ, φ) at the
interface (θ = 0) are

ûr

Û
= cos φ

∞∑
m=1

3∑
n=1

Am,n(H/R)Fm,n(r/R,H/R), (2.3a)

ûφ
Û
= sin φ

∞∑
m=1

3∑
n=1

Am,n(H/R)Gm,n(r/R,H/R), (2.3b)

where {Am,n} are functions of H/R obtained via a collocation technique and {Fm,n} and
{Gm,n} are functions of r/R and H/R (see equations (2.6), (2.10), (2.24) and appendix
C of Ganatos et al. (1980)). Also, according to Davis (1991), the velocity components
at z= 0 in the cylindrical coordinates (r, φ, z) for disks of zero thickness and the same
radius R are

ûr

Û
= R2 cos φ

[
∂

∂r

(
Φz,0

r

)
+ Γ0

r2

]
, (2.4a)

ûφ
Û
= R2 sin φ

[
−Φz,0

r2
− ∂

∂r

(
Γ0

r

)]
, (2.4b)
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where Φ and Γ are functions of r/R, z/R and H/R with Γ0 = Γ |z=0 and Φz,0 =
R ∂Φ/∂z|z=0 (see equations (4.7), (4.18), (4.19), (4.22) and (4.23) of Davis (1991)).

Following our assumption, the surface tension changes linearly with the concentra-
tion of the surface-active agent and the interface temperature as

γ = γ0 +KCC+KTT|z=0, (2.5)

where γ0, KC and KT are constants (Acree 1984; Adamson 1990). Here, C and T
denote the quasi-steady average-subtracted concentration and temperature fields that
satisfy ∇2

s C= 0 and ∇2T = 0, respectively. This is true when the dominant mechanism
of transport is diffusion (i.e. Pe� 1). Otherwise, advection–diffusion equations for the
concentration and temperature fields must be solved simultaneously along with the
Stokes equations for the velocity field u, in which case the reciprocal theorem no
longer provides a shortcut solution.

Inspection of (2.3) and (2.4) reveals that only the first harmonic modes of φ
appear in û. This, in conjunction with (2.5), indicates that just the dipolar terms
of C and T contribute to the integral in (2.2). Retaining the dipolar parts of their
multipole expansions, we can write the concentration and temperature distributions at
the interface as

C= 2BC
R cos φ

r
+ · · · , (2.6a)

T = 2BT

∞∑
n=−∞

r cos φ

R
[
(r/R)2 + (2nH/R)2

]3/2 + · · · , (2.6b)

where BC and BT are constants. Equation (2.6b) is derived using the method of images
assuming that both the interface and the solid wall are adiabatic. In case the particles’
activity is triggered by a single source point, the value of the dipolar moment is
directly related to the off-centre position of the active spot (see e.g. Würger 2014).
Remember that since the chemical agent is insoluble in the bulk its concentration C
does not depend on the location of the solid wall H.

3. Exact results for spheres and disks
Substituting (2.3)–(2.6) into (2.2), we obtain the propulsion speed for chemically

and thermally active spheres and disks. We normalize U by its corresponding value
for a semi-infinite fluid layer U∞ and plot the results as a function of H/R (see
figure 2). When the fluid layer is very deep (H/R > 100) the speed is within 2 %
of its asymptotic value for all four cases considered, among which chemically and
thermally active spheres have, respectively, the slowest and fastest approach rates to
U∞. On the other hand, when the fluid layer is shallow (H/R< 1.5), we see distinctly
different behaviours for spheres and disks. Notably, we find that spheres come into a
halt at a certain distance from the wall (H/R' 1.25), closer than which they propel in
the lower surface tension direction (see figure 2a). This contradicts the default notion
that Marangoni surfers self-propel towards the direction with a higher surface tension.

According to (2.2), the sign of U is set by the competition between two opposing
influences, namely the net surface tension force acting along the three-phase contact
line and the Marangoni flow induced by the surface tension gradients that are
represented by Fst and FM, respectively. Note that F̂d/Û is always positive (see insets
in figure 2). Thus, if the contribution of FM is neglected, U always has the same sign
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FIGURE 2. (Colour online) The normalized propulsion speed U/U∞ as a function of
the thickness of the fluid layer H/R for (a) spherical and (b) disk-shaped particles. The
squares and circles represent the results for chemically and thermally active particles,
respectively. The insets in (a) and (b) show the variation of F̂d/F̂d,∞ (normalized Stokes
drag experienced by the particle translating at an interface with no surface tension
gradients) versus H/R obtained from the solutions of Ganatos et al. (1980) and Davis
(1991). Here, the speed and drag corresponding to a semi-infinite fluid layer (H/R→∞)
are denoted, respectively, by U∞ and F̂d,∞, whose values for spheres and disks are shown
in figure 3. Also, the thin solid line in (a) corresponds to U = 0.

as Fst, meaning that the particles are always pulled towards the higher surface tension
direction. This could be the origin of the common perception about the direction of
the Marangoni propulsion.

The effect of the confinement on the propulsion speed of disks is also noteworthy.
Figure 2(b) shows that U for chemically active disks approaches zero as H/R →
0, whereas, in the same limit, the speed of thermally active disks increases
logarithmically. The decay of U in the former can be attributed to the linear rise
of F̂d due to the confinement (see inset in figure 2b). The speed surge in the latter
however stems from the fact that the solid wall is insulated. The combination of
adiabatic condition and narrow layer results in steeper temperature gradients, which
further augment Fst over FM. Ultimately, the overall gain of (Fst + FM) outweighs the
increase of F̂d (see figure 2b and (2.2)).

Thanks to the reciprocal theorem, we have so far analytically calculated U for
spheres and disks. Obtaining U in a similar manner for general oblate spheroids
requires a closed-form expression for û, which is not readily available. In what
follows, we propose an approximate method for calculating the propulsion speed of
oblate spheroids based on our results for spheres and disks.

4. Approximate results for oblate spheroids
Consider an oblate spheroid translating at an interface above a semi-infinite layer

of fluid (H/R→∞). If we plot the analytically known drag F̂d,∞ as a function of
the particle aspect ratio ε (see figure 3a), we observe that the drag changes almost
linearly with the aspect ratio (see also the Appendix of Stone & Masoud (2015)). In
fact, the curve can be approximated extremely well by

F̂D
d,∞ + ε(F̂S

d,∞ − F̂D
d,∞), (4.1)

where the superscripts S and D denote the values for sphere (ε = 1) and disk (ε =
0), respectively. The inset in figure 3(a) shows that the maximum relative error is
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FIGURE 3. (Colour online) Comparison between the exact and approximate results for
oblate spheroidal particles translating at an interface above a semi-infinite layer of fluid
(H/R→∞). (a) The variation of non-dimensional drag F̂d,∞/µÛR versus the particle
aspect ratio ε. The dimensionless propulsion speed of (b) chemically and (c) thermally
active spheroids (respectively, U∞µ/KCBC and U∞µ/KTBT) as a function of ε. The solid
lines represent exact analytical results whereas square symbols depict approximate values
obtained via interpolations between the results for spheres and disks. The insets show the
relative error of the approximations.

1.3 % belonging to ε = 0.4. That the particle resistance varies quasi-linearly with the
aspect ratio suggests that the particle mobility (e.g. U) changes inverse linearly with
ε. Remarkably, we find that the curves of U∞ versus ε for chemically and thermally
active spheroids are closely represented by (see figures 3b and 3c)[

1
UD∞
+ ε

(
1

US∞
− 1

UD∞

)]−1

. (4.2)

Again, the maximum error occurs at ε = 0.4 and its magnitude is 1.1 % and 12.5 %
for chemically and thermally active particles, respectively (see insets of figures 3b
and 3c).

These observations strongly recommend employing the same type of interpolations
used in (4.1) and (4.2) for approximating the drag F̂d and propulsion speed U of
oblate spheroidal particles in the presence of the confining solid boundary. To test
the validity of such estimations, we numerically calculate F̂d and U for ε = 0.4 and
compare the results with those obtained by interpolating between the data presented
in figure 2. Our numerical approach integrates a boundary singularity method with
the (infinite) image technique (Blake 1971). Also, we choose ε = 0.4 because, very
likely, the error is maximum at this aspect ratio (see insets of figure 3). Indeed, we
find that the approximations for U are reasonably accurate, particularly for H/R > 4
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FIGURE 4. (Colour online) Comparison between the numerical and approximate results
for oblate spheroidal particles of aspect ratio ε= 0.4. The squares and circles, respectively,
represent the relative approximation error eU for the propulsion speed of chemically and
thermally active particles at different distances from the wall H/R. The inset shows the
relative error for the drag eF̂ as a function of H/R.

(see figure 4). The interpolation performs even better for F̂d, where the error is below
5 % for H/R > 2.

5. Conclusions
We theoretically examined the effect of confinement on the Marangoni propulsion

of oblate spheroidal particles. We demonstrated that, depending on the geometry
and degree of confinement, the surfing particles may propel forward in the higher
surface tension direction or propel backward in the reverse direction. Knowing that
the direction of propulsion is altered by a change in the surrounding boundary can
be harnessed for designing smart surfing robots capable of sensing their environment.

In this work, we only considered particles with a 90◦ contact angle (i.e. half-
submerged). However, the propulsion speed of a particle with a contact angle other
than 90◦ can be estimated by calculating the speed of a half-submerged oblate
spheroid with the same protrusion length to the liquid phase and the same contact-line
radius. It has been shown that the fluid drags experienced by the two particles are
closely comparable (see e.g. Stone & Masoud 2015).

Lastly, while our findings shed new light on the geometry–speed relation for
Marangoni surfers, they also open up new questions such as how does the competition
between the net surface tension force and the Marangoni flow generated by the surface
tension gradients play itself out when the inertia is important, when the transport
of the scalars is no longer dominated by diffusion or when the interface is curved?
Answering these and other relevant questions will be the subject of future studies. It
will also be interesting to see whether there exist examples of the reverse Marangoni
propulsion in natural or biological systems.

Acknowledgements
We thank H. A. Stone for stimulating discussions. Partial support from the Nevada

Advanced Autonomous Systems Innovation Center (NAASIC) is also acknowledged.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.695


620 V. Vandadi, S. J. Kang and H. Masoud

REFERENCES

ACREE, W. E. 1984 Empirical expression for predicting surface-tension of liquid-mixtures. J. Colloid
Interface Sci. 101, 575–576.

ADAMSON, A. W. 1990 Physical Chemistry of Surfaces. Wiley.
BLAKE, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc.

Cambridge 70 (02), 303–310.
BUSH, J. W. M. & HU, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev.

Fluid Mech. 38, 339–369.
CHEANG, U. K., MESHKATI, F., KIM, D., KIM, M. J. & FU, H. C. 2014 Minimal geometric

requirements for micropropulsion via magnetic rotation. Phys. Rev. E 90 (3), 033007.
DAVIS, A. M. J. 1991 Slow viscous flow due to motion of an annular disk; pressure-driven extrusion

through an annular hole in a wall. J. Fluid Mech. 231, 51–71.
DEY, K. K., WONG, F., ALTEMOSE, A. & SEN, A. 2016 Catalytic motors–Quo Vadimus? Curr. Opin.

Colloid Interface Sci. 21, 4–13.
DOMÍNGUEZ, A., MALGARETTI, P., POPESCU, M. N. & DIETRICH, S. 2016 Effective interaction

between active colloids and fluid interfaces induced by Marangoni flows. Phys. Rev. Lett. 116,
078301.

DREYFUS, R., BAUDRY, J., ROPER, M. L., FERMIGIER, M., STONE, H. A. & BIBETTE, J. 2005
Microscopic artificial swimmers. Nature 437 (7060), 862–865.

DUAN, W., WANG, W., DAS, S., YADAV, V., MALLOUK, T. E. & SEN, A. 2015 Synthetic nano-and
micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation.
Annu. Rev. Anal. Chem. 8, 311–333.

GANATOS, P., PFEFFER, R. & WEINBAUM, S. 1980 A strong interaction theory for the creeping
motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech.
99 (04), 755–783.

GIROT, A., DANNÉ, N., WÜRGER, A., BICKEL, T., REN, F., LOUDET, J. C. & POULIGNY, B. 2016
Motion of optically heated spheres at the water-air interface. Langmuir 32 (11), 2687–2697.

HAPPEL, J. & BRENNER, H. 1983 Low Reynolds Number Hydrodynamics, with Special Applications
to Particulate Media. Prentice-Hall.

LAUGA, E. & DAVIS, A. M. J. 2012 Viscous Marangoni propulsion. J. Fluid Mech. 705, 120–133.
MAGGI, C., SAGLIMBENI, F., DIPALO, M., DE ANGELIS, F. & DI LEONARDO, R. 2015 Micromotors

with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat.
Commun. 6, 7855.

MALGARETTI, P., POPESCU, M. N. & DIETRICH, S. 2016 Active colloids at fluid interfaces. Soft
Matt. 12, 4007–4023.

MASOUD, H. & ALEXEEV, A. 2010 Modeling magnetic microcapsules that crawl in microchannels.
Soft Matt. 6 (4), 794–799.

MASOUD, H., BINGHAM, B. I. & ALEXEEV, A. 2012 Designing maneuverable micro-swimmers
actuated by responsive gel. Soft Matt. 8 (34), 8944–8951.

MASOUD, H. & SHELLEY, M. J. 2014 Collective surfing of chemically active particles. Phys. Rev.
Lett. 112, 128304.

MASOUD, H. & STONE, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech.
741, R4.

NAKATA, S., IGUCHI, Y., OSE, S., KUBOYAMA, M., ISHII, T. & YOSHIKAWA, K. 1997 Self-rotation of
a camphor scraping on water: new insight into the old problem. Langmuir 13 (16), 4454–4458.

O’NEILL, M. E., RANGER, K. B. & BRENNER, H. 1986 Slip at the surface of a translating–rotating
sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the
contact-line singularity. Phys. Fluids 29 (4), 913–924.

PIMIENTA, V. & ANTOINE, C. 2014 Self-propulsion on liquid surfaces. Curr. Opin. Colloid Interface
Sci. 19 (4), 290–299.

POZRIKIDIS, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333–357.
RAYLEIGH, LORD 1889 Measurements of the amount of oil necessary in order to check the motions

of camphor upon water. Proc. R. Soc. Lond. 47 (286–291), 364–367.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.695


Reverse Marangoni surfing 621

SÁNCHEZ, S., SOLER, L. & KATURI, J. 2015 Chemically powered micro-and nanomotors. Angew.
Chem. Intl Ed. Engl. 54 (5), 1414–1444.

SITTI, M. 2009 Miniature devices: voyage of the microrobots. Nature 458 (7242), 1121–1122.
SITTI, M., CEYLAN, H., HU, W., GILTINAN, J., TURAN, M., YIM, S. & DILLER, E. 2015 Biomedical

applications of untethered mobile milli/microrobots. Proc. IEEE 103 (2), 205–224.
STONE, H. A. & MASOUD, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781,

494–505.
WANG, W., DUAN, W., AHMED, S., MALLOUK, T. E. & SEN, A. 2013 Small power: autonomous

nano-and micromotors propelled by self-generated gradients. Nano Today 8 (5), 531–554.
WÜRGER, A. 2014 Thermally driven Marangoni surfers. J. Fluid Mech. 752, 589–601.
ZHANG, H., DUAN, W., LIU, L. & SEN, A. 2013 Depolymerization-powered autonomous motors

using biocompatible fuel. J. Am. Chem. Soc. 135 (42), 15734–15737.
ZHAO, G. & PUMERA, M. 2012 Liquid–liquid interface motion of a capsule motor powered by the

interlayer Marangoni effect. J. Phys. Chem. B 116 (35), 10960–10963.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.695

	Reverse Marangoni surfing
	Introduction
	Problem formulation and solution
	Exact results for spheres and disks
	Approximate results for oblate spheroids
	Conclusions
	Acknowledgements
	References




