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We first investigate spectral properties of the Neumann–Poincaré (NP) operator for the Lamé

system of elasto-statics. We show that the elasto-static NP operator can be symmetrized

in the same way as that for the Laplace operator. We then show that even if elasto-static

NP operator is not compact even on smooth domains, it is polynomially compact and its

spectrum on two-dimensional smooth domains consists of eigenvalues that accumulate to

two different points determined by the Lamé constants. We then derive explicitly eigenvalues

and eigenfunctions on discs and ellipses. Using these resonances occurring at eigenvalues is

considered. We also show on ellipses that cloaking by anomalous localized resonance takes

place at accumulation points of eigenvalues.

Key words: Neumann-Poincaré operator, Lamé system, linear elasticity, spectrum, resonance,

cloaking by anomalous localized resonance.

1 Introduction

The Neumann–Poincaré (NP) operator for the Laplace operator is a boundary integral

operator that appears naturally when solving classical boundary value problems for the

Laplace equation using layer potentials. Recently, there is rapidly growing interest in

the spectral properties of the NP operator in relation to plasmonics and cloaking by

anomalous localized resonance (CALR). Plasmon resonance and anomalous localized

resonance occur at eigenvalues and at the accumulation point of eigenvalues, respectively

(see for example [1, 17] and references therein). We emphasize that the spectral nature

† This work is supported by the Korean Ministry of Education, Sciences and Technology through

NRF grants Nos. 2010-0017532 (to H.K) and 2012003224 (to S.Y).

https://doi.org/10.1017/S0956792517000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000080


190 K. Ando et al.

of the NP operator differs depending on smoothness of the domain on which the NP

operator is defined. If the domain has a smooth boundary, C1,α for some α > 0 to be

precise, then the NP operator is compact on L2 or H−1/2 space. Since the NP operator

can be realized as a self-adjoint operator by introducing a new inner product (see [10,12]),

its spectrum consists of eigenvalues converging to 0. If the domain has a corner, the

corresponding NP operator may exhibit a continuous spectrum. For this and recent

development of spectral theory of the NP operator for the Laplace operator, we refer

to [9, 11, 21, 22] and references therein.

The purpose of this paper is two-fold. We first extend the spectral theory of the NP

operator for the Laplace operator to that for the Lamé system of elasto-statics, and then

investigate resonance and CALR.

To describe results of this paper in a precise manner, we first introduce some notation.

Let Ω be a bounded domain in �d (d = 2, 3) with the Lipschitz boundary, and let (λ, μ)

be the Lamé constants for Ω satisfying the strong convexity condition

μ > 0 and dλ+ 2μ > 0. (1.1)

The isotropic elasticity tensor � = (Cijkl)
d
i,j,k,l=1 and the corresponding elastostatic system

Lλ,μ are defined by

Cijkl := λ δijδkl + μ (δikδjl + δilδjk), (1.2)

and

Lλ,μu := ∇ · �∇̂u = μΔu + (λ+ μ)∇∇ · u, (1.3)

where ∇̂ denotes the symmetric gradient, namely,

∇̂u :=
1

2

(
∇u + ∇uT

)
.

Here, T indicates the transpose of a matrix. The corresponding conormal derivative on

∂Ω is defined to be

∂νu := (�∇̂u)n = λ(∇ · u)n + 2μ(∇̂u)n on ∂Ω, (1.4)

where n is the outward unit normal to ∂Ω.

Let Γ =
(
Γij
)d
i,j=1

be the Kelvin matrix of fundamental solutions to the Lamé operator

Lλ,μ, namely,

Γij(x) =

⎧⎪⎨⎪⎩
− α1

4π

δij

|x| −
α2

4π

xixj

|x|3 , if d = 3,

α1

2π
δij ln |x| − α2

2π

xixj

|x|2 , if d = 2,
(1.5)

where

α1 =
1

2

(
1

μ
+

1

2μ+ λ

)
and α2 =

1

2

(
1

μ
− 1

2μ+ λ

)
. (1.6)

The NP operator for the Lamé system is defined by

K[f ](x) := p.v.

∫
∂Ω

∂νyΓ (x − y)f (y)dσ(y) a.e. x ∈ ∂Ω. (1.7)
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Here, p.v. stands for the Cauchy principal value, and the conormal derivative ∂νyΓ (x− y)

of the Kelvin matrix with respect to y-variables is defined by

∂νyΓ (x − y)b = ∂νy (Γ (x − y)b) (1.8)

for any constant vector b.

The NP operator K is connected to the Lamé system Lλ,μ in the following way. The

Dirichlet boundary value problem for the Lamé system{
Lλ,μu = 0 in Ω,

u = g on ∂Ω
(1.9)

can be solved using the double layer potential, namely, u = D[f ] where

D[f ](x) :=

∫
∂Ω

∂νyΓ (x − y)f (y)dσ(y), x ∈ �d \ ∂Ω (1.10)

for some potential f on ∂Ω. In fact, such u satisfies Lλ,μu = 0 in Ω. So, to solve (1.9),

the boundary condition should be fulfilled. It is known (see [6]) that the following jump

formula holds:

D[f ]|± =

(
∓1

2
I + K

)
[f ] a.e. on ∂Ω. (1.11)

Here and afterwards, the subscripts + and − indicate the limits (to ∂Ω) from outside

and inside Ω, respectively. So, (1.9) is solved by finding the solution of the integral

equation (
1

2
I + K

)
[f ] = g on ∂Ω. (1.12)

In this paper, we show that the NP operator K can be realized as a self-adjoint operator

on H1/2(∂Ω)d (H1/2 is a Sobolev space) by introducing a new inner product in a way

parallel to the case of the Laplace operator. But, there is a significant difference between

NP operators for the Laplace operator and the Lamé operator. The NP operator for

the Lamé operator is not compact even if the domain has a smooth boundary (this was

observed in [6] correcting an error in [15]), which means that we cannot infer directly

that the NP operator has point spectrum (eigenvalues). However, we are able to show in

this paper that the elasto-static NP operator on planar domains with C1,α boundaries has

only point spectrum. In fact, we show that on such domains

K2 − k2
0I is compact, (1.13)

where

k0 =
μ

2(2μ+ λ)
. (1.14)

It is worth mentioning that we are able to prove (1.13) only in two dimensions, and it

is not clear if it is true in three dimensions. Probably, there is a polynomial p such that

p(K) is compact. As an immediate consequence of (1.13), we show that the spectrum of

K consists of eigenvalues that accumulate at k0 and −k0. We then explicitly compute
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eigenvalues of K on discs and ellipses. It turns out that k0 and −k0 are eigenvalues of

infinite multiplicities (there are two other eigenvalues of finite multiplicities) on discs,

while on ellipses k0 and −k0 are accumulation points of eigenvalues, but not eigenvalues,

and the rates of convergence to k0 and −k0 are exponential.

Using the spectral properties of the NP operator, we investigate resonance, especially

CALR. CALR on dielectric plasmonic material was first discovered in [18]. It is shown

that if we coat a dielectric material of circular shape by a plasmonic material of negative

dielectric constant (with a dissipation), then huge resonance occurs and the polarizable

dipole is cloaked when it is within the cloaking region. This result has been extended to

general sources other than polarizable dipole sources [1, 14]. It is also shown in [3] that

CALR occurs not only on the coated structure, but also on ellipses.

In this paper, we show that CALR also occurs on elastic structures. We consider an

ellipse Ω embedded in �2, where the Lamé constants of the background are (λ, μ) and

those of Ω are (c+ iδ)(λ, μ). Here, c is a negative constant and δ is a loss parameter that

tends to 0. So, Ω represents an elastic material with negative Lamé constants. Discussion

on the existence of such materials is beyond the scope of this paper. However, we refer

to [16] for existence (in composites) of negative stiffness material, and to [13] for effective

properties. We show that if c satisfies

k(c) :=
c+ 1

2(c− 1)
= k0 or − k0, (1.15)

then CALR takes place as δ → 0. See Section 4 for the precise description of CALR with

estimates. Here, we highlight a few points. In dielectric case, CALR occurs when k(c) = 0

or c = −1 since 0 is the accumulation point of eigenvalues. In the elasto-static case, (1.15)

is fulfilled if (and only if)

c = −λ+ 3μ

λ+ μ
or c = − λ+ μ

λ+ 3μ
. (1.16)

It turns out that the cloaking region when k(c) = k0 is different from that when k(c) = −k0.

We also mention that since 0 < k0 < 1/2, (1.15) holds only if c < 0. The inclusion Ω

is assumed to be elliptic shape since eigenvalues and eigenfunctions of the NP operator

can be explicitly computed. We emphasize that anomalous localized resonance does not

occur on a disc since there k0 and −k0 are (isolated) eigenvalues of the corresponding NP

operator.

The rest of this paper is organized as follows. In Section 2, we show that the elasto-static

NP operator can be symmetrized by introducing a proper inner product on H1/2-space.

In Section 3, we prove (1.13), and as a consequence that the NP operator on a smooth

domain has eigenvalues accumulating to ±k0. We also present eigenvalues of the NP

operator on discs and ellipses in Section 3, whose proofs are given in Appendix A.

Section 4 is to investigate the anomalous localized resonance whose detail is given in

Appendix B.
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2 Spectral properties of the NP operator

2.1 Layer potentials and the NP operator

Let Ω be a bounded domain in �d (d = 2, 3) with the Lipschitz boundary. Let H1/2(∂Ω)

denote the usual L2-Sobolev space of order 1/2, namely, the collection of all ϕ on ∂Ω

satisfying ∫
∂Ω

∫
∂Ω

|ϕ(x) − ϕ(y)|2
|x− y|d dσ(x)dσ(y) <∞, (2.1)

and H−1/2(∂Ω) its dual space. Let H := H1/2(∂Ω)d and H∗ := H−1/2(∂Ω)d. The duality

pairing of H∗ and H is denoted by 〈·, ·〉. Let Ψ be the set of all functions v = (v1, . . . , vd)
T

such that

∂jvi + ∂ivj = 0 in Ω, 1 � i, j � d. (2.2)

Observe that Ψ in two dimensions is spanned by[
1

0

]
,

[
0

1

]
,

[
y

−x

]
, (2.3)

and in three dimensions, it is spanned by⎡⎣1

0

0

⎤⎦ ,
⎡⎣0

1

0

⎤⎦ ,
⎡⎣0

0

1

⎤⎦ ,
⎡⎣ y−x

0

⎤⎦ ,
⎡⎣ z

0

−x

⎤⎦ ,
⎡⎣ 0

z

−y

⎤⎦ . (2.4)

It is worth mentioning that if v ∈ Ψ , then v satisfies Lλ,μv = 0 in Ω and ∂νv = 0 on ∂Ω,

and the converse holds.

Define

H∗
Ψ := {ϕ ∈ H∗ : 〈ϕ, f〉 = 0 for all f = v|∂Ω, v ∈ Ψ}. (2.5)

Since Ψ contains constant functions, we have, in particular,
∫

∂D
ϕdσ = 0 if ϕ ∈ H∗

Ψ . We

emphasize that if Lλ,μu = 0 in Ω, then ∂νu ∈ H∗
Ψ . In fact, if f = v|∂Ω for some v ∈ Ψ , then∫

∂Ω

∂νu · fdσ =

∫
∂Ω

∂νu · fdσ −
∫

∂Ω

u · ∂νvdσ = 0.

In addition to double layer potentials in (1.10), the single layer potential on ∂Ω

associated with the Lamé parameter (λ, μ) is defined by

S[ϕ](x) :=

∫
∂Ω

Γ (x − y)ϕ(y)dσ(y), x ∈ �d

for ϕ ∈ H∗, where Γ is the Kelvin matrix defined in (1.5). Like (1.11), the single layer

potential enjoys the following jump relation:

∂νS[ϕ]|± =

(
±1

2
I + K∗

)
[ϕ] a.e. on ∂Ω, (2.6)
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where K∗ is the adjoint operator of K on L2(∂Ω)d, that is,

K∗[ϕ](x) := p.v.

∫
∂Ω

∂νxΓ (x − y)ϕ(y)dσ(y) a.e. x ∈ ∂Ω. (2.7)

The operator K∗ is also called the (elasto-static) NP operator on ∂Ω.

The following lemma collects some facts to be used in the sequel, proofs of which can

be found in [5, 6, 19].

Lemma 2.1

(i) K is bounded on H, and K∗ is on H∗.

(ii) The spectrum of K∗ on H∗ lies in (−1/2, 1/2].

(iii) 1/2I − K∗ is invertible on H∗
Ψ .

(iv) S as an operator defined on ∂Ω is bounded from H∗ into H.

(v) S : H∗ → H is invertible in three dimensions.

In two dimensions S may not be invertible. In fact, there may be a bounded domain

Ω on which S[ϕ] = 0 on ∂Ω for some ϕ 	= 0 (see the next subsection). It is worthwhile

mentioning that there is such a domain for the Laplace operator [23].

Lemma 2.2 Ψ is the eigenspace of K on H corresponding to 1/2.

Proof Let f ∈ Ψ . Then, f = v|∂Ω where v satisfies Lλ,μv = 0 in Ω and ∂νv = 0 on ∂Ω. So,

we have for x ∈ �d \ Ω

D[f ](x) =

∫
∂Ω

∂νyΓ (x − y)f (y)dσ(y)

=

∫
∂Ω

[
∂νyΓ (x − y)v(y) − Γ (x − y)∂νv(y)

]
dσ(y) = 0.

So we infer from (1.11) that

K[f ] =
1

2
f . (2.8)

Conversely, if (2.8) holds, then we have from (1.11) that D[f ]|− = f and D[f ](x) = 0

for x ∈ �d \ Ω. So ∂νD[f ]|− = ∂νD[f ]|+ = 0. It implies that f ∈ Ψ . This completes the

proof. �

Let Nd := d(d+1)
2

, which is the dimension of Ψ . Let {f (j)}Nd

j=1 be a basis of Ψ such that

〈f (i), f (j)〉 = δij , (2.9)

where δij is Kronecker’s delta. Since ∂νS[f (j)]|− ∈ H∗
Ψ and 1/2I −K∗ is invertible on H∗

Ψ ,

there is a unique ϕ̃(j) ∈ H∗
Ψ such that(

1

2
I − K∗

)
[ϕ̃(j)] = ∂νS[f (j)]|− =

(
−1

2
I + K∗

)
[f (j)].
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Define ϕ(j) := ϕ̃
(j) + f (j). Then, we have

K∗[ϕ(j)] =
1

2
ϕ(j). (2.10)

Moreover, we have

〈ϕ(j), f (i)〉 = 〈ϕ̃(j)
, f (i)〉 + 〈f (j), f (i)〉 = δij , (2.11)

which, in particular, implies that ϕ(j)’s are linearly independent.

Let

W := span
{
ϕ(1), . . . ,ϕ(Nd)

}
, (2.12)

and let

HW := {f ∈ H : 〈ϕ, f〉 = 0 for all ϕ ∈W}. (2.13)

Lemma 2.3 The following hold.

(i) Each ϕ ∈ H∗ is uniquely decomposed as

ϕ = ϕ′ + ϕ′′ := ϕ′ +
Nd∑
j=1

〈ϕ, f (j)〉ϕ(j), (2.14)

and ϕ′ ∈ H∗
Ψ .

(ii) Each f ∈ H is uniquely decomposed as

f = f ′ + f ′′ := f ′ +
Nd∑
j=1

〈ϕ(j), f〉f (j), (2.15)

and f ′ ∈ HW .

(iii) S maps W into Ψ , and H∗
Ψ into HW .

(iv) W is the eigenspace of K∗ corresponding to the eigenvalue 1/2.

Proof For ϕ ∈ H∗, and let ϕ′′ be as in (2.14). Then, one can immediately see from (2.11)

that 〈ϕ′, f (j)〉 = 0 for all j, and hence ϕ′ ∈ H∗
Ψ . Uniqueness of the decomposition can be

proved easily. (ii) can be proved similarly.

Thanks to (2.10), we have ∂νS[ϕ(j)]|− = 0, and so S[ϕ(j)]|∂Ω ∈ Ψ . If ϕ ∈ H∗
Ψ , then

〈ϕ(j), S[ϕ]〉 = 〈ϕ, S[ϕ(j)]〉 = 0

for all j. So, S maps H∗
Ψ into HW . This proves (iii).

Suppose that K∗[ϕ] = 1/2ϕ and that ϕ admits the decomposition (2.14). Then, K∗[ϕ′] =

1/2ϕ′. So we have from (iii) that S[ϕ′] ∈ Ψ , and hence 〈ϕ′, S[ϕ′]〉 = 0. Since
∫

∂Ω
ϕ′dσ = 0,

we have from (2.6)

−〈ϕ′, S[ϕ′]〉 = 〈∂νS[ϕ′]|−, S[ϕ′]〉 − 〈∂νS[ϕ′]|+, S[ϕ′]〉
= ‖∇S[ϕ′]‖2

L2(Ω) + ‖∇S[ϕ′]‖2
L2(�d\Ω). (2.16)
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So S[ϕ′] = const. in �d. Thus, we have ϕ′ = ∂νS[ϕ′]|+−∂νS[ϕ′]|− = 0, and hence ϕ ∈W .

Thus, (iv) is proved. This completes the proof. �

2.2 Symmetrization of the NP operator

In this section, we introduce a new inner product on H∗ (and H) that makes the NP

operator K∗ self-adjoint.

In three dimensions, S[ϕ](x) = O(|x|−1) as |x| → ∞. Using this fact, one can show that

−S is positive-definite. In fact, similarly to (2.16), we obtain

−〈ϕ, S[ϕ]〉 � ‖∇S[ϕ]‖2
L2(Ω) + ‖∇S[ϕ]‖2

L2(�d\Ω) � 0. (2.17)

If 〈ϕ, S[ϕ]〉 = 0, then S[ϕ] is constant in �3. Thus, we have ϕ = ∂νS[ϕ]|+ − ∂νS[ϕ]|− = 0.

So, if we define

(ϕ,ψ)∗ := −〈ϕ, S[ϕ]〉, (2.18)

it is an inner product on H∗.

In two dimensions, the same argument shows that −S is positive-definite on H∗
Ψ . In

fact, if ϕ ∈ H∗
Ψ , then S[ϕ](x) = O(|x|−1) as |x| → ∞, and hence we can apply the same

argument as in three dimensions. However, −S may fail to be positive on W : if Ω is the

disc of radius r (centred at 0), then we have

S[c](x) =
[
α1r ln r −

α2r

2

]
c for x ∈ Ω (2.19)

for any constant vector c = (c1, c2)
T . It shows that −S can be positive or negative

depending on r. To see (2.19), we note that

S[c]i(x) =
α1ci

2π

∫
∂Ω

ln |x − y|dσ(y) − α2

2π

2∑
j=1

cj

∫
∂Ω

(x − y)i(x − y)j
|x − y|2 dσ(y)

= α1ciS[1](x) − α2

(
xic · ∇S[1](x) − c · ∇S[yi](x)

)
,

where S is the electro-static single layer potential, namely,

S[f](x) =
1

2π

∫
∂Ω

ln |x − y|f(y) dσ(y). (2.20)

It is known (see [1]) that S[1](x) = r ln r and S[yi](x) = − rxi
2

for x ∈ Ω. So we have (2.19).

We introduce a variance of S in two dimensions. For ϕ ∈ H∗, define using the

decomposition (2.14)

S̃[ϕ] := S[ϕ′] −
3∑
j=1

〈ϕ, f (j)〉f (j). (2.21)
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We emphasize that S̃[ϕ] = S[ϕ] for all ϕ ∈ H∗
Ψ and S̃[ϕ(j)] = f (j), j = 1, 2, 3. In view of

(2.11) and Lemma 2.3 (iii), we have

−〈ϕ, S̃[ϕ]〉 = −〈ϕ′, S[ϕ′]〉 +

3∑
j=1

|〈ϕ, f (j)〉|2. (2.22)

So, −S̃ is positive-definite on H∗. In fact, since −〈ϕ′, S[ϕ′]〉 � 0, we have −〈ϕ, S̃[ϕ]〉 � 0. If

−〈ϕ, S̃[ϕ]〉 = 0, then −〈ϕ′, S[ϕ′]〉 = 0 and
∑3

j=1 |〈ϕ, f (j)〉|2 = 0. So, ϕ′ = 0 and 〈ϕ, f (j)〉 = 0

for all j, and hence ϕ = 0.

Let us also denote S in three dimensions by S̃ for convenience. Define

(ϕ,ψ)∗ := −〈ϕ, S̃[ψ]〉, ϕ,ψ ∈ H∗. (2.23)

Proposition 2.4 (·, ·)∗ is an inner product on H∗. The norm induced by (·, ·)∗, denoted by

‖ · ‖∗, is equivalent to ‖ · ‖−1/2.

Proof Positive-definiteness of −S̃ implies that S̃ : H∗ → H is bijective. So, we have

‖ϕ‖−1/2 ≈ ‖S̃[ϕ]‖1/2.

Here and throughout this paper, A � B means that there is a constant C such that

A � CB, and A ≈ B means A � B and B � A. It then follows from the definition (2.23)

that

|(ϕ,ϕ)∗| � ‖ϕ‖−1/2‖S̃[ϕ]‖1/2 � ‖ϕ‖2
−1/2.

We have from the Cauchy Schwarz inequality

|〈ϕ, S̃[ψ]〉| = |(ϕ,ψ)∗| � ‖ϕ‖∗‖ψ‖∗ � ‖ϕ‖∗‖S̃[ψ]‖1/2.

So we have

‖ϕ‖−1/2 = sup
ψ �=0

|〈ϕ, S̃[ψ]〉|
‖S̃[ψ]‖1/2

� ‖ϕ‖∗.

This completes the proof. �

We may define a new inner product on H by

(f , g) := (S̃−1[f ], S̃−1[g])∗ = −〈S̃−1[f ], g〉, f , g ∈ H. (2.24)

Proposition 2.5 (·, ·) is an inner product on H. The norm induced by (·, ·), denoted by ‖ · ‖,
is equivalent to ‖ · ‖1/2. Moreover, S̃ is an isometry between H∗ and H.

As shown in [12], the NP operator K∗ can be realized as a self-adjoint operator on H∗

using Plemelj’s symmetrization principle that states for the Lamé system:

SK∗ = KS. (2.25)
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This relation is a consequence of Green’s formula. In fact, if Lλ,μu = 0 in Ω, then we have

for x ∈ �d \ Ω:

S
[
∂νu|−

]
(x) − D[u|−](x) = 0.

Substituting u(x) = S[ϕ](x) for some ϕ ∈ H∗ into the above relation yields

S

(
−1

2
I + K∗

)
[ϕ](x) = DS[ϕ](x), x ∈ �d \ Ω.

Letting x approach to ∂Ω, we have from (1.11)

S

(
−1

2
I + K∗

)
[ϕ](x) =

(
−1

2
I + K

)
S[ϕ](x), x ∈ ∂Ω.

So we have (2.25).

The relation (2.25) holds with S replaced by S̃, namely,

S̃K∗ = KS̃. (2.26)

In fact, if ϕ ∈W , then K∗[ϕ] = 1/2ϕ and S̃[ϕ] ∈ Ψ . So, we have

S̃K∗[ϕ] = KS̃[ϕ].

This proves (2.26).

Proposition 2.6 The NP operators K∗ and K are self-adjoint with respect to (·, ·)∗ and (·, ·),
respectively.

Proof According to (2.26), we have

(ϕ,K∗[ψ])∗ = −〈ϕ, S̃K∗[ψ]〉 = −〈ϕ,KS̃[ψ]〉
= −〈K∗[ϕ], S̃[ψ]〉 = (K∗[ϕ],ψ)∗.

So K∗ is self-adjoint. That K is self-adjoint can be proved similarly. �

3 Spectrum of NP operators on smooth planar domains

In this section, we prove (1.13) when ∂Ω is C1,α for some α > 0. For that purpose, we

look into K in more explicit form. The definition (1.8) and straightforward computations

show that

∂νyΓ (x − y) =
μ

2μ+ λ
K1(x, y) − K2(x, y), (3.1)

where

K1(x, y) =
ny(x − y)T − (x − y)nTy

ωd|x − y|d , (3.2)

K2(x, y) =
μ

2μ+ λ

(x − y) · ny

ωd|x − y|d I +
2(μ+ λ)

2μ+ λ

(x − y) · ny

ωd|x − y|d+2
(x − y)(x − y)T , (3.3)
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where ωd is 2π if d = 2 and 4π if d = 3, and I is the d× d identity matrix. Let

Tj[ϕ](x) := p.v.

∫
∂Ω

Kj(x, y)ϕ(y) dσ(y), x ∈ ∂Ω, j = 1, 2, (3.4)

so that

K =
μ

2μ+ λ
T1 − T2. (3.5)

Note that each term of K2 has the term (x − y) · ny. Since ∂Ω is C1,α, we have

|(x − y) · ny| � C|x − y|1+α

for some constant C because of orthogonality of x − y and ny. So we have

|K2(x, y)| � C|x − y|−d+1+α.

So T2 is compact on H (see, for example, [8]), and T1 is responsible for non-compactness

of K.

3.1 Compactness of K2 − k2
0I and spectrum

Proposition 3.1 Let Ω be a bounded C1,α domain in �2 for some α > 0. Then, K2 − k2
0I is

compact on H.

Proof In view of (3.5), it suffices to show that T2
1 − 1

4
I is compact.

In two dimensions, we have

K1(x, y) =
1

2π|x − y|2
[

0 K(x, y)

−K(x, y) 0

]
,

where

K(x, y) := −n2(y)(x1 − y1) + n1(y)(x2 − y2).

Let

R[ϕ](x) =
1

2π
p.v.

∫
∂Ω

K(x, y)

|x − y|2ϕ(y) dσ(y). (3.6)

Then, we have

T1[ϕ] =

[
R[ϕ2]

−R[ϕ1]

]
. (3.7)

For x ∈ ∂Ω, set Ωε := Ω \ Bε(x) where Bε(x) is the disc of radius ε centred at x. For

ϕ ∈ H1/2(∂Ω), let u be the solution to Δu = 0 in Ω with u = ϕ on ∂Ω. Since

rot
x − y

|x − y|2 = 0, x 	= y,
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we obtain from Stokes’ formula

R[ϕ](x) = lim
ε→0

1

2π

∫
∂Ωε

−(x1 − y1)n2(y) + (x2 − y2)n1(y)

|x − y|2 ϕ(y) dσ(y)

= lim
ε→0

1

2π

∫
Ωε

−(x1 − y1)∂2u(y) + (x2 − y2)∂1u(y)

|x − y|2 dy.

Let v be a harmonic conjugate of u in Ω and ψ := v|∂Ω so that

ψ = T [ϕ], (3.8)

where T is the Hilbert transformation on ∂Ω. Then, we have from divergence theorem

R[ϕ](x) = lim
ε→0

1

2π

∫
Ωε

(x1 − y1)∂1v(y) + (x2 − y2)∂2v(y)

|x − y|2 dy

= lim
ε→0

1

2π

∫
∂Ωε

(x − y) · ny

|x − y|2 ψ(y) dσ(y).

Observe that

1

2π

∫
∂Ωε

(x − y) · ny

|x − y|2 ψ(y) dσ(y)

is the electro-static double layer potential of ψ, and x � Ωε. So by the jump formula of

the double layer potential (see [8]), we have

lim
ε→0

1

2π

∫
∂Ωε

(x − y) · ny

|x − y|2 ψ(y) dσ(y) = −1

2
ψ(x) + K[ψ](x),

where

K[ψ](x) :=
1

2π

∫
∂Ω

(x − y) · ny

|x − y|2 ψ(y) dσ(y), x ∈ ∂Ω. (3.9)

It is worth to mention that K is the electro-static NP operator.

So far we have shown that

R[ϕ] = −1

2
T [ϕ] + KT [ϕ]. (3.10)

Since T is bounded and K is compact on H1/2(∂Ω), we have

R = −1

2
T + compact operator. (3.11)

Since T 2 = −I , we infer that R2 + 1
4
I is compact, and so is T2

1 − 1
4
I . This completes the

proof. �

Since K2 − k2
0I is compact and self-adjoint, it has eigenvalues converging to 0. The

proof of Proposition 3.1 shows that neither K− k0I nor K + k0I is compact, so we obtain

the following theorem.
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Theorem 3.2 Let Ω be a bounded domain in �2 with C1,α boundary for some α > 0.

(i) The spectrum of K on H consists of eigenvalues accumulating at k0 and −k0, and their

multiplicities are finite if they are not equal to k0 or −k0.

(ii) The spectrum of K∗ on H∗ is the same as that of K on H.

(iii) The set of linearly independent eigenfunctions of K makes a complete orthogonal system

of H.

(iv) ϕ is an eigenfunction of K∗ on H∗ if and only if S̃[ϕ] is an eigenfunction of K on H.

3.2 Spectral expansion of the fundamental solution

Let {ψj} be a complete orthonormal (with respect to the inner product (·, ·)∗) system of

H∗
Ψ consisting of eigenfunctions of K∗ on ∂Ω in two dimensions. Then, they, together

with ϕ(j), j = 1, 2, 3, defined in Section 2, make an orthonormal system of H∗. Then, by

Theorem 3.2 (iv) {S[ψj]} together with f (i) is a complete orthonormal system of H with

respect to the inner product (·, ·).
Let Γ (x− y) be the Kelvin matrix defined in (1.5). If x ∈ �2 \Ω and y ∈ ∂Ω, then there

are (column) vector-valued functions aj and bi such that

Γ (x − y) =

∞∑
j=1

aj(x)S[ψj](y)T +

3∑
i=1

bi(x)f (i)(y)T . (3.12)

It then follows that

∫
∂Ω

Γ (x − y)ψl(y) dσ(y) =

∞∑
j=1

aj(x)〈ψl , S[ψj]〉 +

3∑
i=1

bi(x)〈ψl , f (i)〉

= −
∞∑
j=1

aj(x)(ψj ,ψl)∗ +

3∑
i=1

bi(x)(ϕ(i),ψl)∗ = −al(x).

In other words, we obtain al(x) = −S[ψl](x). Likewise, one can show bi(x) = S̃[ϕ(i)](x).

So, we obtain

Γ (x − y) = −
∞∑
j=1

S[ψj](x)S[ψj](y)T +

3∑
i=1

S̃[ϕ(i)](x)f (i)(y)T , x ∈ �2 \ Ω, y ∈ ∂Ω.

Since both sides of above are solutions of the Lamé equation in y for a fixed x, we obtain

the following theorem from the uniqueness of the solution to the Dirichlet boundary value

problem.

Theorem 3.3 (expansion in 2D) Let Ω be a bounded domain in �2 with C1,α boundary for

some α > 0 and let {ψj} be a complete orthonormal system of H∗
Ψ consisting of eigenfunc-

tions of K∗. Let Γ (x − y) be the Kelvin matrix of the fundamental solution to the Lamé
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system. It holds that

Γ (x − y) = −
∞∑
j=1

S[ψj](x)S[ψj](y)T +

3∑
i=1

S̃[ϕ(i)](x)f (i)(y)T , x ∈ �2 \ Ω, y ∈ Ω. (3.13)

In three dimensions, one can prove the following theorem similarly. We emphasize that

it has not been proved that the NP operator on smooth domain has a discrete spectrum.

Theorem 3.4 (expansion in 3D) Let Ω be a bounded domain in �3. Suppose that the NP

operator K∗ admits eigenfunctions {ψj} that is a complete orthonormal system of H∗. It

holds that

Γ (x − y) = −
∞∑
j=1

S[ψj](x)S[ψj](y)T , x ∈ �3 \ Ω, y ∈ Ω. (3.14)

The expansion formula, sometimes called an addition formula, for the fundamental

solution to the Laplace operator on discs, balls, ellipses, and ellipsoids is classical and

well-known. That on ellipsoids is attributed to Heine (see [7]). The formulas describe

expansions of the fundamental solution to the Laplace operator in terms of spherical

harmonics (balls) and ellipsoidal harmonics (ellipses). General addition formula of the

fundamental solution to the Laplace operator as in Theorems 3.3 and 3.4 was found in [3].

It shows that the addition formula is a spectral expansion by eigenfunctions of the NP

operator. Above theorems extend the formula to the Kelvin matrix of the fundamental

solution to the Lamé system. Using explicit forms of eigenfunctions to be derived in the

next subsection, one can compute the expansion formula on discs and ellipses explicitly,

even though we will not write down the formulas since they are too long.

3.3 Spectrum of the NP operator on discs and ellipses

In this section, we write down spectrum of the NP operator on discs and ellipses. Detailed

derivation of the spectrum is presented in Appendix A.

Suppose that Ω is a disc. The spectrum of K∗ is as follows:

Eigenvalues:

1

2
, − λ

2(2μ+ λ)
, ±k0. (3.15)

It is worth mentioning that the second eigenvalue above is less than 1/2 in an absolute

value because of the strong convexity condition (1.1).

Eigenfunctions:

(i) 1/2:

(1, 0)T , (0, 1)T , (y,−x)T , (3.16)

(ii) − λ
2(2μ+λ)

:

(x, y)T , (3.17)
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(iii) k0: [
cosmθ

sinmθ

]
,

[
− sinmθ

cosmθ

]
, m = 2, 3, . . . , (3.18)

(iv) −k0: [
cosmθ

− sinmθ

]
,

[
sinmθ

cosmθ

]
, m = 1, 2, . . . . (3.19)

We emphasize that eigenfunctions are not normalized.

We now describe eigenvalues and eigenfunctions on ellipses. Suppose that Ω is an ellipse

of the form

x2
1

a2
+
x2

2

b2
< 1, a � b > 0. (3.20)

Put R :=
√
a2 − b2. Then, the elliptic coordinates (ρ, ω) are defined by

x1 = R cosh ρ cosω, x2 = R sinh ρ sinω, ρ � 0, 0 � ω � 2π, (3.21)

in which the ellipse Ω is given by ∂Ω = {(ρ, ω) : ρ = ρ0}, where ρ0 is defined to be

a = R coshρ0 and b = R sinh ρ0. Define

h0(ω) := R

√
sinh2 ρ0 + sin2 ω. (3.22)

To make expressions short, we set

q := (λ+ μ) sinh 2ρ0, (3.23)

and

γ±n :=
√
e4nρ0μ2 + (λ+ μ)(λ+ 3μ) + nq(±2e2nρ0μ+ nq). (3.24)

The spectrum of K∗ is as follows:

Eigenvalues:

1

2
, kj,n, j = 1, . . . , 4, (3.25)

where

k1,n =
e−2nρ0

2(λ+ 2μ)
(−qn+ γ−n ), n � 1,

k2,n =
e−2nρ0

2(λ+ 2μ)
(qn+ γ+

n ), n � 2,

k3,n =
e−2nρ0

2(λ+ 2μ)
(−qn− γ−n ), n � 1,

k4,n =
e−2nρ0

2(λ+ 2μ)
(qn− γ+

n ), n � 1.

(3.26)
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Eigenfunctions:

(i) 1/2:

1

h0(ω)

[
1

0

]
,

1

h0(ω)

[
0

1

]
,

1

h0(ω)

[(
(λ+ μ)e−2ρ0 − (λ+ 3μ)

)
sinω(

(λ+ μ)e−2ρ0 + (λ+ 3μ)
)
cosω

]
, (3.27)

(ii) kj,n, j = 1, 2, 3, 4:

ϕ1,n = ψ1,n +
pn

k0 + k1,n
ψ3,n, n � 1,

ϕ2,n = ψ2,n +
pn

k0 + k2,n
ψ4,n, n � 2,

ϕ3,n =
k0 + k3,n

pn
ψ1,n + ψ3,n, n � 1,

ϕ4,n =
k0 + k4,n

pn
ψ2,n + ψ4,n, n � 1,

(3.28)

where

pn =

(
1

2
− k0

)
e−2nρ0 , (3.29)

and

ψ1,n(ω) =
1

h0(ω)

[
cos nω

sin nω

]
, ψ2,n(ω) =

1

h0(ω)

[
− sin nω

cos nω

]
,

ψ3,n(ω) =
1

h0(ω)

[
cos nω

− sin nω

]
, ψ4,n(ω) =

1

h0(ω)

[
sin nω

cos nω

]
.

(3.30)

A remark on k2,1 in (3.26) is in order. It is given by

k2,1 =
e−2ρ0

2(λ+ 2μ)
(q + γ+

1 ),

where

γ+
1 :=

√
e4ρ0μ2 + (λ+ μ)(λ+ 3μ) + q(2e2ρ0μ+ q).

Since

μ2e4ρ0 + (λ+ μ)(λ+ 3μ) + q(2e2ρ0μ+ q) =
1

4

[
(λ+ 3μ)e2ρ0 + (λ+ μ)e−2ρ0

]2
,

we have k2,1 = 1
2

and the corresponding eigenfunction is

ϕ2,1 = h−1
0 (ω)

[(
(λ+ μ)e−2ρ0 − (λ+ 3μ)

)
sinω(

(λ+ μ)e−2ρ0 + (λ+ 3μ)
)
cosω

]
.

So it is listed as an eigenfunction for 1/2.
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Let us now look into the asymptotic behaviour of eigenvalues as n → ∞. One can

easily see from the definition (3.24) that

γ±n = μe2nρ0 ± qn∓ (λ+ μ)(λ+ 3μ)q

2μ2
ne−2nρ0 + e−2nρ0O(1),

where O(1) indicates constants bounded independently of n. So one infer from (3.26) that

k1,n = k0 −
q

λ+ 2μ
ne−2nρ0 + n2e−4nρ0O(1),

k2,n = k0 +
q

λ+ 2μ
ne−2nρ0 + n2e−4nρ0O(1),

k3,n = −k0 −
(λ+ μ)(λ+ 3μ)q

4μ2 (λ+ 2μ)
ne−4nρ0 + e−4nρ0O(1),

k4,n = −k0 +
(λ+ μ)(λ+ 3μ)q

4μ2 (λ+ 2μ)
ne−4nρ0 + e−4nρ0O(1),

(3.31)

as n→ ∞. In particular, we see that k1,n and k2,n converge to k0, while k3,n and k4,n to −k0

as n→ ∞. We emphasize that the convergence rates are exponential.

4 Anomalous localized resonance and cloaking

4.1 Resonance estimates

Let Ω be a bounded domain in �2 with C1,α boundary. Let (λ, μ) be the Lamé constants

of �2 \ Ω satisfying the strong convexity condition (1.1). Let (λ̃, μ̃) be Lamé constants of

Ω. We assume that (λ̃, μ̃) is of the form

(λ̃, μ̃) := (c+ iδ)(λ, μ), (4.1)

where c < 0 and δ > 0. Let �̃ be the isotropic elasticity tensor corresponding to (λ̃, μ̃),

namely, �̃ = (C̃ijkl)
2
i,j,k,l=1 where

C̃ijkl := λ̃ δijδkl + μ̃ (δikδjl + δilδjk), (4.2)

and let L
λ̃,μ̃

and ∂ν̃ be corresponding Lamé operator and conormal derivative, respectively.

Then, we have L
λ̃,μ̃

= (c+ iδ)Lλ,μ and ∂ν̃ = (c+ iδ)∂ν .

Let �Ω be the elasticity tensor in presence of inclusion Ω so that

�Ω = �̃χΩ + �χ�2\Ω,

where χ denotes the characteristic function. We consider the following transmission

problem: {
∇ · �Ω∇̂u = f in �2,

u(x) = O(|x|−1) as |x| → ∞,
(4.3)

where f is a function compactly supported in �2 \ Ω and satisfies∫
�2

fdx = 0. (4.4)
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This condition is necessary for a solution to (4.3) to exist. The problem (4.3) can be

rephrased as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lλ,μu = 0 in Ω,

Lλ,μu = f in �2 \ Ω,
u|− = u|+ on ∂Ω,

(c+ iδ)∂νu|− = ∂νu|+ on ∂Ω.

(4.5)

Let

F(x) :=

∫
�2

Γ (x − y)f (y)dy, x ∈ �2. (4.6)

We seek the solution uδ to (4.5) in the form

uδ(x) = F(x) + S[ϕδ](x), x ∈ �2, (4.7)

where ϕδ is to be determined. Since S[ϕδ](x) is continuous across ∂Ω, the continuity of

displacement (the third condition in (4.5)) is automatically satisfied. The continuity of the

traction (the fourth condition in (4.5)) leads us to

(c+ iδ)
(
∂νF + ∂νS[ϕδ]|−

)
= ∂νF + ∂νS[ϕδ]|+ on ∂Ω.

Therefore, using the jump formula (2.6), we have(
kδ(c)I − K∗) [ϕδ] = ∂νF, (4.8)

where

kδ(c) :=
c+ 1 + iδ

2 (c− 1 + iδ)
. (4.9)

Let kj , j = 1, 2, . . ., be the eigenvalues (other than 1/2) of K∗ counting multiplicities,

and let {ψj} be corresponding normalized eigenfunctions. Then, {ψj ,ϕ(1),ϕ(2),ϕ(3)} is an

orthonormal system of H∗ and the solution to (4.8) is given by

ϕδ =

∞∑
j=1

(ψj , ∂νF)∗

kδ(c) − kj
ψj +

3∑
i=1

(ϕ(i), ∂νF)∗
kδ(c) − 1/2

ϕ(i).

Since f is supported in �2 \ Ω, Lλ,μF = 0 in Ω, and hence ∂νF ∈ H∗
Ψ . So we have

ϕδ =

∞∑
j=1

(ψj , ∂νF)∗

kδ(c) − kj
ψj . (4.10)

Let

E(u) :=

∫
Ω

∇̂u : �∇̂u dx. (4.11)

Here, A : B =
∑

i,j aijbij for two matrices A = (aij) and B = (bij). We are particularly

interested in estimating δE(uδ) since CALR is characterized by the condition δE(uδ) → ∞
as δ → 0. It is worth mentioning that δE(uδ) is the imaginary part of

∫
�2 ∇̂uδ : �Ω∇̂uδ dx,

which represents the elastic energy of the solution.
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To present results of this section, let us introduce a notation. For two quantities Aδ and

Bδ depending on δ, Aδ ∼ Bδ means that there are constants C1 and C2 independent of

δ � δ0 for some δ0 such that

C1 �
Aδ

Bδ
� C2.

Proposition 4.1 Let uδ be the solution to (4.5). It holds that

E(uδ − F) ∼
∞∑
j=1

|(ψj , ∂νF)∗|2
|kδ(c) − kj |2

. (4.12)

Proof Using Green’s formula for Lamé operator and the jump formula (2.6), we have

E(uδ − F) = E(S[ϕδ]) =

∫
Ω

∇̂S[ϕδ] : �∇̂S[ϕδ] dx

=

∫
∂Ω

S[ϕδ] · ∂νS[ϕδ] dσ

=

〈
(−1

2
I + K∗)[ϕδ], S[ϕδ]

〉
=

(
(
1

2
I − K∗)[ϕδ],ϕδ

)
∗
.

It then follows from (4.10) that

E(uδ − F) =

∞∑
j=1

(1/2 − kj)|(ψj , ∂νF)∗|2
|kδ(c) − kj |2

.

Since kj,n accumulates at k0 or −k0 and −1/2 < kj,n < 1/2, there is a constant C > 0 such

that

C � |1
2
− kj | < 1 (4.13)

for all j. So we have (4.12). �

Note that kδ(c) → k(c) as δ → 0, where k(c) be the number defined in (1.15). More

precisely, we have

|kδ(c) − k(c)| ∼ δ. (4.14)

So we obtain the following theorem from Proposition 4.1, which shows that resonance

occurs at the eigenvalue as δ → 0 at the rate of δ−2.

Theorem 4.2 Let c be such that k(c) = kj for some j and suppose that (ψj , ∂νF)∗ 	= 0.

Then, we have

E(uδ) ∼ δ−2, (4.15)

as δ → 0.

Proof We have from (4.12)

E(uδ − F) � δ−2.

Since E(F) is finite, we obtain (4.15). �
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4.2 Anomalous localized resonance on ellipses

Anomalous localized resonance occurs at the accumulation points of eigenvalues of the

NP operator (if the accumulation points are not eigenvalues). So, we assume

k(c) = k0 or − k0. (4.16)

For the analysis of anomalous localized resonance, we need the explicit form of eigenvalues

and eigenfunctions. So we assume Ω is an ellipse of the form (3.20) so that Ω = {ρ < ρ0}
in elliptic coordinates. We emphasize that anomalous localized resonance does not occur

on discs since ±k0 are eigenvalues.

We further assume that the source function f is a polarizable dipole, namely,

f = A∇δz =

[
a1 · ∇δz

a2 · ∇δz

]
,

where a1 and a2 are the constant vectors, A = (a1 a2)
T , and z ∈ �2 \ Ω. In this case, the

function F defined by (4.6) is given by

F(x) = Fz(x) =
(
(A∇x)

T Γ (x − z)
)T
. (4.17)

Let (ρz, ωz) be the elliptic coordinates of z, and let U(θ) be the rotation by the angle θ,

namely,

U(θ) :=

[
cos θ − sin θ

sin θ cos θ

]
. (4.18)

We obtain the following theorems, when k(c) = k0.

Theorem 4.3 Assume k(c) = k0. Let uδ be the solution to (4.5). If a1 	= U(−π/2)a2, then

we have

E(uδ) ∼
{
|log δ| δ−3+ρz/ρ0 if ρ0 < ρz � 3ρ0,

1 if ρz > 3ρ0,
(4.19)

as δ → 0.

Theorem 4.4 Assume k(c) = k0. Let x = (ρ, ω) in the elliptic coordinates. Then, it holds for

all x satisfying ρ+ ρz − 4ρ0 > 0 that

|uδ(x) − Fz(x)| �
∞∑
n=1

e−n(ρ+ρz−4ρ0)

n
. (4.20)

In particular, for any ρ > 4ρ0 − ρz there exists some C = Cρ > 0 such that

sup
ρ�ρ

|uδ(x) − Fz(x)| < C. (4.21)

We also obtain the following theorems when k(c) = −k0.
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Theorem 4.5 Assume that k(c) = −k0. If a1 	= U(−π/2)a2, then we have

E(uδ) ∼
{
| log δ|3δ−5/2+ρz/2ρ0 if ρ0 < ρz � 5ρ0,

1 if ρz > 5ρ0,
(4.22)

as δ → 0.

Theorem 4.6 Assume k(c) = −k0. Let x = (ρ, ω) ∈ �2 in the elliptic coordinates. Then, it

holds for all x satisfying ρ+ ρz − 6ρ0 > 0 that

|uδ(x) − Fz(x)| �
∞∑
n=1

ne−n(ρ+ρz−6ρ0). (4.23)

In particular, for any ρ > 6ρ0 − ρz there exists some C = Cρ > 0 such that

sup
ρ�ρ

|uδ(x) − Fz(x)| < C. (4.24)

Theorems 4.3 and 4.4 show that CALR occurs when k(c) = k0. In fact, (4.19) shows

that δE(uδ) → ∞ if ρz � 2ρ0 and δE(uδ) → 0 if ρz > 2ρ0. On the other hand, (4.21) shows

that uδ bounded if ρ > 4ρ0 − ρz. So, if we normalize the solution by vδ := (δE(uδ))
−1/2uδ

so that δE(vδ) = 1, then vδ → 0 in ρ > 4ρ0 −ρz provided that ρz � 2ρ0. So, CALR occurs

and the cloaking region is ρ0 < ρz � 2ρ0. It is worth mentioning that this cloaking region

coincides with that for the dielectric case (Laplace equation) obtained in [3].

Theorems 4.5 and 4.6 show that CALR occurs when k(c) = −k0, and in this case the

cloaking region is ρ0 < ρz � 3ρ0. It is interesting to observe that the cloaking region is

different from that for the case k(c) = k0.

Proofs of above theorems are given in Appendix B.
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Appendix A Derivation of spectrum on discs and ellipses

The purpose of this section is to derive spectrum of the NP operator on discs and ellipses

presented in Section 3.3. We use complex representations of the displacement vector and

traction. So, we identify ψ = ψ1 + iψ2 ∈ � with the vector ψ = (ψ1, ψ2)
T , and denote

S[ψ] = (S[ψ])1 + i(S[ψ])2.

Suppose that Ω is simply connected domain in �2 (bounded or unbounded), and let

ψ = ψ1 + iψ2 ∈ H−1/2(∂Ω). It is known (see [2, 20]) that there are holomorphic functions
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f and g in Ω (or in � \ Ω) such that

2μS[ψ](z) = κf(z) − zf′(z) − g(z), κ =
λ+ 3μ

λ+ μ
(A 1)

in Ω (or in � \ Ω), and the conormal derivative ∂νu is represented as

∂νS[ψ]|+dσ =
(
(∂νS[ψ])1 + i (∂νS[ψ])2

)
|+dσ = −id

[
f(z) + zf′(z) + g(z)

]
, (A 2)

where dσ is the line element of ∂Ω and d is the exterior derivative, namely, d = (∂/∂z)dz+

(∂/∂z̄)dz̄. Here, ∂Ω is positively oriented and f′(z) = ∂f(z)/∂z. Moreover, it is shown that

f and g are obtained by

f(z) =
μα2

2π

∫
∂Ω

ln(z − ζ)ψ(ζ)dσ(ζ), (A 3)

g(z) = −μα1

2π

∫
∂Ω

ln(z − ζ)ψ(ζ)dσ(ζ) − μα2

2π

∫
∂Ω

ζψ(ζ)

z − ζ
dσ(ζ). (A 4)

It is worth mentioning that above integrals are well defined for ψ satisfying
∫

∂Ω
ψdσ = 0.

If ψ is constant, then we take a proper branch cut of log(z − ζ) for z ∈ � \ Ω.

Let

L[ψ](z) :=
1

2π

∫
∂Ω

ln(z − ζ)ψ(ζ)dσ(ζ) (A 5)

so that

f(z) = μα2L[ψ](z), g(z) = −μα1L[ψ](z) − μα2L[ζψ]′(z). (A 6)

So, (A 1) can be rewritten as

2S[ψ](z) = κα2L[ψ](z) − α2zL[ψ]′(z) + α1L[ψ](z) + α2L[ζψ]′(z). (A 7)

Observe that

d
[
f(z) + zf′(z) + g(z)

]
= (f′(z) + f′(z))dz + (zf′′(z) + g′(z))dz̄.

So we define

C[ψ](z) := L[ψ]′(z) =
1

2π

∫
∂Ω

ψ(ζ)

z − ζ
dσ(ζ), (A 8)

then we have

∂νS[ψ]|+dσ = −iμα2

[
C[ψ] + C[ψ]

]
dz + i

[
μα1C[ψ] − μα2

(
zC[ψ]′ − C[ζψ]′

)]
dz̄. (A 9)

We shall compute S[ψ] and ∂νS[ψ]|+ for proper basis functions ψ.

A.1 Discs

Since the spectrum of the NP operator is invariant under translation and scaling (and

rotation), we may assume that Ω be a unit disc. Let ψ = (ψ1, ψ2)
T be one of the following
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functions: [
cos nθ

± sin nθ

]
,

[
sin nθ

± cos nθ

]
, n = 0, 1, 2, . . . , (A 10)

or equivalently (after identifying with ψ = ψ1 + iψ2)

βeinθ, n = 0,±1,±2, . . . , (A 11)

where β is either 1 or i.

One can see from (2.19) and (2.6) that

K∗[c] =
1

2
c (A 12)

for any constant vector c.

If ψ = βeinθ with n 	= 0, then one can easily see that for |z| > 1

C[ψ](z) =

{
0 for n � 1,

βzn−1 for n � −1.
(A 13)

Since ζn = ζ−n for |ζ| = 1, we have

C[ψ](z) =

{
βz−n−1 for n � 1,

0 for n � −1.
(A 14)

One can also see that

C[ζψ](z) =

{
0 for n � 2,

βzn−2 for n = 1 or n � −1.
(A 15)

Using (A 13)–(A 15), we can show that the NP eigenvalues on the disc are given by

(3.15) and corresponding eigenfunctions by (3.16)–(3.19). In fact, one can see from (A9)

and (A 13)–(A 15) that

(
(∂νS[βψn])1 + i (∂νS[βψn])2

)
=

⎧⎪⎪⎨⎪⎪⎩
μα1βψn if n � 2,

μα1βψ1 − μα2βψ1 if n = 1,

μα2βψn if n � −1,

where ψn(ζ) = ζn. Therefore, we have

K∗[βψn] =

⎧⎪⎪⎨⎪⎪⎩
(μα1 − 1/2)βψn if n � 2,

(μα1 − 1/2)βψ1 − μα2βψ1 if n = 1,

(μα2 − 1/2)βψn if n � −1.

(A 16)

Since μα1 − 1/2 = k0 and μα2 − 1/2 = −k0, (A 16) shows that the spectrum is as presented

in Section 3.3. It is helpful to mention that β = 1 and n = 1 in (A 16) yield the second

eigenvalue in (3.15) and corresponding eigenfunction.
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A.2 Ellipses

Suppose that Ω = {(ρ, ω) : ρ < ρ0} in elliptic coordinates as in Section 3.3. Let (ρ, η) be

the elliptic coordinate of z ∈ � \ Ω and (ρ0, ω) that of ζ ∈ ∂Ω so that

z = R cosh(ρ+ iη), ζ = R cosh(ρ0 + iω), (A 17)

where R =
√
a2 − b2. It is known (see, for example, [3]) that

1

2π
ln |z − ζ| = −

∞∑
m=1

1

mπ
(coshmρ0 cosmωe−mρ cosmη + sinhmρ0 sinmωe−mρ sinmη)

+
1

2π

(
ρ+ ln

(
R

2

))
, for ρ0 < ρ.

It is convenient to write ξ = ρ+ iη so that

1

2π
ln(z − ζ) = −

∞∑
m=1

1

mπ
coshm(ρ0 + iω)e−mξ +

1

2π
(ξ + C) (A 18)

for some constant C whose real part is ln(R/2).

Let ψj,n be functions defined in (3.30). After complexification, they can be written as

ψ = βh0(ω)−1ψn(ω),

where β is either 1 or i, and ψn(ω) = einω . In fact, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ = ψ1,n and ψ = ψ3,n if β = 1 and n � 1,

ψ = ψ3,−n and ψ = ψ1,−n if β = 1 and n � −1,

ψ = ψ2,n and ψ = −ψ4,n if β = i and n � 1,

ψ = ψ4,−n and ψ = −ψ2,−n if β = i and n � −1.

(A 19)

Let us compute L[h−1
0 ψn]. Since dσ(ω) = h0(ω)dω on ∂Ω, we have

L[h−1
0 ψn](z) =

1

2π

∫ 2π

0

ln(z − ζ)ψn(ω)dω

= −
∞∑
m=1

e−mξ

mπ

∫ 2π

0

coshm(ρ0 + iω)einωdω +
1

2π
(ξ + C)

∫ 2π

0

einωdω.

Thus, we have for n 	= 0

L[h−1
0 ψn](z) = −e

−|n|ξ−nρ0

|n| . (A 20)

We also obtain

L[h−1
0 ψn](z) = −e

−|n|ξ+nρ0

|n| . (A 21)
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Since ∂z/∂ξ = R sinh ξ, we have

C[h−1
0 ψn](z) = L[h−1

0 ψn]
′(z) =

e−|n|ξ−nρ0

R sinh ξ
, (A 22)

and

C[h−1
0 ψn](z) = L[h−1

0 ψn]
′(z) =

e−|n|ξ+nρ0

R sinh ξ
. (A 23)

Since ζ = R cosh(ρ0 + iω) on ∂Ω, we have

ζψn(ζ) =
R

2

[
eρ0ψn−1(ω) + e−ρ0ψn+1(ω)

]
,

and hence

L[ζh−1
0 ψn](z) =

R

2
eρ0L[h−1

0 ψn−1](z) +
R

2
e−ρ0L[h−1

0 ψn+1](z).

It then follows from (A 22) and (A 23) that

C[ζh−1
0 ψn](z) = L[ζh−1

0 ψn]
′(z) =

e−|n−1|ξ−(n−2)ρ0 + e−|n+1|ξ−(n+2)ρ0

2 sinh ξ

=

⎧⎪⎪⎨⎪⎪⎩
e−n(ξ+ρ0) cosh(ξ + 2ρ0)

sinh ξ
if n � 1,

en(ξ−ρ0) cosh(ξ − 2ρ0)

sinh ξ
if n � −1.

(A 24)

Let ψ = βh−1
0 ψn where n 	= 0 and β = 1, i. According to (A 7), we have

2S[ψ](z) = βκα2L[h−1
0 ψn](z) + βα2

(
L[ζh−1

0 ψn]′(z) − zL[h−1
0 ψn]′(z)

)
+ βα1L[h−1

0 ψn](z).

In view of (A 22) and (A 24), we have

L[ζh−1
0 ψn]′(z) − zL[h−1

0 ψn]′(z) =

⎧⎪⎪⎨⎪⎪⎩
e−n(ξ+ρ0)[cosh(ξ + 2ρ0) − cosh ξ]

sinh ξ
, n � 1,

en(ξ−ρ0)[cosh(ξ − 2ρ0) − cosh ξ]

sinh ξ
, n � −1.

Thus, we obtain

2S[ψ](z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−β(κα2e
−n(ξ+ρ0) + α1e

−n(ξ−ρ0))

n

+
βα2e

−n(ξ+ρ0)[cosh(ξ + 2ρ0) − cosh ξ]

sinh ξ
, n � 1,

β(κα2e
n(ξ−ρ0) + α1e

n(ξ+ρ0))

n

+
βα2e

n(ξ−ρ0)[cosh(ξ − 2ρ0) − cosh ξ]

sinh ξ
, n � −1.

(A 25)

Let

hρ(ω) = h(ρ, ω) := R

√
sinh2 ρ+ sin2 ω. (A 26)
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Using the identity

sinh(ρ− iη) sinh(ρ+ iη) = sinh2 ρ+ sin2 η =
h2
ρ

R2
,

we obtain the following lemma.

Lemma A.1 The single layer potentials outside the ellipse, ρ � ρ0, are computed as follows:

for β = 1 or i and ψn(ω) = einω , n = 1, 2, . . .,

S[βh−1
0 ψn](z) = − β

2n

[
κα2e

−n(ρ+ρ0)e−inη + α1e
−n(ρ−ρ0)einη

]
+
βα2R

2

4h2
ρ

e−n(ρ+ρ0)

[
einη sinh 2(ρ+ ρ0) +

e−2ρ0 − e2ρ

2
ei(n+2)η +

e−2ρ − e2ρ0

2
ei(n−2)η

]
,

S[βh−1
0 ψ−n](z) = − β

2n

[
κα2e

−n(ρ−ρ0)e−inη + α1e
−n(ρ+ρ0)einη

]
+
βα2R

2

4h2
ρ

e−n(ρ−ρ0)

[
einη sinh 2(ρ− ρ0) +

e2ρ0 − e2ρ

2
ei(n+2)η +

e−2ρ − e−2ρ0

2
ei(n−2)η

]
,

where z = R cosh(ρ+ iη).

As an immediate consequence of above lemma, we see that there is a constant C such

that ∣∣S[ψj,n](z)
∣∣ � C

e−n(ρ−ρ0)

n
, j = 1, 2, (A 27)

and ∣∣S[ψj,n](z)
∣∣ � Ce−n(ρ−ρ0), j = 3, 4, (A 28)

for all n.

If z ∈ ∂Ω, namely, ρ = ρ0, then we have

cosh ξ = cosh(ξ − 2ρ0).

Thus, we obtain for z ∈ ∂Ω

2S[ψ](z) =

⎧⎪⎨⎪⎩
−β κα2e

−2nρ0

n
e−inη − β

α1

n
einη + β2α2 sinh 2ρ0e

−2nρ0einη if n � 1,

β
κα2

n
einη + β

α1e
2nρ0

n
e−inη if n � −1,

which can be rephrased as

2h−1
0 S[ψ] =

⎧⎪⎪⎨⎪⎪⎩
−β
β

κα2e
−2nρ0

n
ψ −
(
α1

n
− β

β
2α2 sinh 2ρ0e

−2nρ0

)
ψ if n � 1,

κα2

n
ψ +

β

β

α1e
2nρ0

n
ψ if n � −1.

(A 29)

So we obtain the following lemma from (A 19).
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Lemma A.2 It holds that

h−1
0 (ω)S[ψ1,n](ω) = −

( α1

2n
− α2 sinh 2ρ0e

−2nρ0

)
ψ1,n −

κα2e
−2nρ0

2n
ψ3,n,

h−1
0 (ω)S[ψ2,n](ω) = −

( α1

2n
+ α2 sinh 2ρ0e

−2nρ0

)
ψ2,n −

κα2e
−2nρ0

2n
ψ4,n,

h−1
0 (ω)S[ψ3,n](ω) = −α1e

−2nρ0

2n
ψ1,n −

κα2

2n
ψ3,n,

h−1
0 (ω)S[ψ4,n](ω) = −α1e

−2nρ0

2n
ψ2,n −

κα2

2n
ψ4,n.

Now we compute ∂νS[ψ]|+(ω) using (A 9). We obtain from (A 22)

C[h−1
0 ψn]

′(z) = −e
−|n|ξ−nρ0 (|n| sinh ξ + cosh ξ)

R2 sinh3 ξ
. (A 30)

We also obtain from (A 24)

C[ζh−1
0 ψn]

′(z) =

⎧⎪⎪⎨⎪⎪⎩
−e

−n(ξ+ρ0)[n cosh(ξ + 2ρ0) sinh ξ + cosh 2ρ0]

R sinh3 ξ
, n � 1,

−e
n(ξ−ρ0)[−n cosh(ξ − 2ρ0) sinh ξ + cosh 2ρ0]

R sinh3 ξ
, n � −1.

(A 31)

Let ψ = βh−1
0 ψn. Since dσ(z) = h0(η)dη, dz = iR sinh ξdη, and dz = −iR sinh ξdη on

∂Ω, we have from (A 9) that

h0(η)∂νS[ψ]|+ = Rμα2 sinh ξ
[
C[ψ] + C[ψ]

]
+ R sinh ξ

[
μα1C[ψ] − μα2

(
zC[ψ]′ − C[ζψ]′

)]
.

We then obtain from (A 22), (A 23), (A 30), and (A 31) (after tedious computations which

we omit) that

∂νS[ψ]|+(η) =
[
μα1β − 2nμα2β sinh 2ρ0e

−2nρ0
]
h−1

0 ψn(η) + μα2βe
−2nρ0h−1

0 ψ−n(η),

for n � 1. It is helpful to mention that the following identities are used:

cosh ξ cosh ξ − cosh 2ρ0 = − sinh ξ sinh ξ, cosh ξ = cosh(ξ − 2ρ0).

It then follows from (2.6) that

K∗[ψ](η) =

[(
μα1 −

1

2

)
β − 2nμα2β sinh 2ρ0e

−2nρ0

]
h−1

0 ψn(η)

+ μα2βe
−2nρ0h−1

0 ψ−n(η). (A 32)

Similarly, one can see for n � −1 that

∂νS[βh−1
0 ψn]|+(η) = μα1βe

2nρ0h−1
0 ψ−n(η) + μα2βh

−1
0 ψn(η),
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and hence

K∗[βh−1
0 ψn](η) = μα1βe

−2nρ0h−1
0 ψ−n(η) +

(
μα2 −

1

2

)
βh−1

0 ψn(η).

Note that μα1 − 1
2

= k0. We then obtain from (A 19) that

K∗[ψ1,n](ω) =
(
k0 − 2nμα2 sinh 2ρ0e

−2nρ0
)
ψ1,n + μα2e

−2nρ0ψ3,n,

K∗[ψ3,n](ω) = μα1e
−2nρ0ψ1,n − k0ψ3,n, (A 33)

with β = 1, and

K∗[ψ2,n](ω) =
[
k0 + 2nμα2 sinh 2ρ0e

−2nρ0
]
ψ2,n + μα2e

−2nρ0ψ4,n,

K∗[ψ4,n](ω) = μα1e
−2nρ0ψ2,n − k0ψ4,n, (A 34)

with β = i.

We see from (A 33) that for each n K∗ acts on the space spanned by ψ1,n and ψ3,n like

the matrix [
k0 − 2nμα2 sinh 2ρ0e

−2nρ0 μα2e
−2nρ0

μα1e
−2nρ0 −k0

]
.

So by finding the eigenvalues and eigenvectors of this matrix, one can see that k1,n and

k3,n in (3.26) are eigenvalues and ϕ1,n and ϕ3,n in (3.28) are corresponding eigenfunctions.

One can also see from (A34) that k2,n and k4,n are eigenvalues and ϕ2,n and ϕ4,n are

corresponding eigenfunctions.

Appendix B Proofs of CALR

Let kj,n (j = 1, . . . , 4, n = 1, . . .) be eigenvalues of the NP operator given in (3.26) and ϕj,n
be corresponding eigenfunctions given in (3.28). Put φj,n := ϕj,n/‖ϕj,n‖∗ and

αj,n(z) := (φj,n, ∂νFz)∗.

Then, we have from (4.7) and (4.10) that

uδ(x) − Fz(x) =

4∑
j=1

∑
n

αj,n(z)

kδ(c) − kj,n
S[φj,n](x), (B 1)

and from (4.12) that

E(uδ − Fz) ≈
4∑
j=1

∑
n

|αj,n(z)|2
|kδ(c) − kj,n|2

. (B 2)

We obtain from Green’s formula and the jump relation (2.6) that

αj,n(z) = −〈φj,n, S[∂νFz]〉 = −〈∂νS[φj,n]−,Fz〉 =

(
−kj,n +

1

2

)
〈φj,n,Fz〉.
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So we have from (4.17) that

αj,n(z) = −
(
kj,n −

1

2

)
(A∇)T S[φj,n](z).

Thanks to (4.13), we have

|αj,n(z)| ≈
∣∣(A∇)T S[ϕj,n](z)

∣∣
‖ϕj,n‖∗

. (B 3)

We now estimate (A∇)T S[ϕj,n](z). Let us compute
∥∥ϕj,n∥∥∗ first. From (3.30) and Lemma

A.2, one can easily see that∥∥ψ1,n

∥∥2

∗ = −
〈
ψ1,n, S[ψ1,n]

〉
= π
(α1

n
− 2α2 sinh 2ρ0e

−2nρ0

)
.

We can also see that ∥∥ψ2,n

∥∥2

∗ = π
(α1

n
+ 2α2e

−2nρ0 sinh 2ρ0

)
,∥∥ψ3,n

∥∥2

∗ =
∥∥ψ4,n

∥∥2

∗ =
πκα2

n
.

In addition, we have

(
ψ1,n,ψ3,n

)
∗ =
(
ψ2,n,ψ4,n

)
∗ =

πα1e
−2nρ0

n
.

It then follows from (3.28) and (3.29) that

∥∥ϕ1,n

∥∥2

∗ = −
〈
ψ1,n +

pn

k0 + k1,n
ψ3,n, S[ψ1,n] +

pn

k0 + k1,n
S[ψ3,n]

〉
=
∥∥ψ1,n

∥∥2

∗ +

(
pn

k0 + k1,n

)2 ∥∥ψ3,n

∥∥2

∗ +
2pn

k0 + k1,n

(
ψ1,n,ψ3,n

)
∗

=
πα1

n
+ e−2nρ0O(1). (B 4)

In the same way, we also obtain∥∥ϕ2,n

∥∥2

∗ =
πα1

n
+ e−2nρ0O(1), (B 5)∥∥ϕ3,n

∥∥2

∗ =
πκα2

n
+ ne−4nρ0O(1), (B 6)∥∥ϕ4,n

∥∥2

∗ =
πκα2

n
+ ne−4nρ0O(1). (B 7)

Let us introduce two notations to make expressions short. Let (ρ, ω) be the elliptic

coordinates of z and let

b(z) :=

[
cosω sinh ρ

sinω coshρ

]
, (B 8)
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and

Ũ(z) = (e2(ρ−ρ0) − e−2(ρ−ρ0))I + (e2ρ0 − e2ρ)U(−2ω) + (e−2ρ − e−2ρ0 )U(2ω), (B 9)

where U(θ) is the rotation by the angle θ.

Lemma B.1 The matrix Ũ(z) is non-singular for any 0 � ω � π/2 and ρ > ρ0.

Proof Put η := ρ− ρ0. Then, we have

Ũ(ρ, ω) =
(
e2η − e−2η

)
I − e2ρ0

(
e2η − 1

)
U(−2ω) − e−2ρ0

(
1 − e−2η

)
U(2ω).

Assume that 0 < ω < π/2. Since η > 0, we have

e2ρ0
(
e2η − 1

)
> e−2ρ0

(
1 − e−2η

)
> 0.

It means that

e2ρ0
(
e2η − 1

)
U(−2ω)a + e−2ρ0

(
1 − e−2η

)
U(2ω)a 	= ca

for any real number c and constant vector a, which implies that Ũ(ρ, ω)a 	= 0, and hence

Ũ(ρ, ω) is non-singular.

If ω = 0, one can easily show that

e2η − e−2η − e2ρ0
(
e2η − 1

)
− e−2ρ0 (1 − e−2η) 	= 0

for any η, ρ0 > 0, and hence Ũ(ρ, 0) is non-singular. Similarly one can see that Ũ(ρ, π/2)

is non-singular. �

Through long but straightforward computations, which will be presented at the end of

this subsection, we see that

(A∇)TS[ψ1,n](z) =
Rα1e

−n(ρ−ρ0)

2h(ρ, ω)2
(
a1 + U(π/2)a2

)
· U(nω)b(z), (B 10)

(A∇)TS[ψ2,n](z) =
Rα1e

−n(ρ−ρ0)

2h(ρ, ω)2
(
U(−π/2)a1 + a2

)
· U(nω)b(z), (B 11)

modulo ne−n(ρ+ρ0)O(1), and

(A∇)TS[ψ3,n](z) = − nα2R
3e−n(ρ−ρ0)

8h(ρ, ω)4

[
Ũ(ρ, ω)(a1 + U

(
π/2
)
a2)
]
· U(nω)b(z), (B 12)

(A∇)TS[ψ4,n](z) =
nα2R

3e−n(ρ−ρ0)

8h(ρ, ω)4

[
Ũ(ρ, ω)

(
U(−π/2)a1 + a2

)]
· U(nω)b(z), (B 13)

modulo e−n(ρ−ρ0)O(1).

We have from (3.28) that

(A∇)T S[ϕ1,n](z) = (A∇)T S[ψ1,n](z) +
pn

k0 + k1,n
(A∇)T S[ψ3,n](z).
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One can see from (3.29) and (B 12) that∣∣∣∣ pn

k0 + k1,n
(A∇)T S[ψ3,n](z)

∣∣∣∣ � ne−n(ρ+ρ0).

So, we have from (B 10) that

(A∇)T S[ϕ1,n](z) =
Rα1e

−n(ρ−ρ0)

2h(ρ, ω)2
(
a1 + U(π/2)a2

)
· U(nω)b(z) (B 14)

modulo ne−n(ρ+ρ0)O(1). Similarly, one can show using (B 11) and (B 13) that

(A∇)TS[ϕ2,n](z) =
Rα1e

−n(ρ−ρ0)

2h(ρ, ω)2
(
U(−π/2)a1 + a2

)
· U(nω)b(z), (B 15)

modulo ne−n(ρ+ρ0)O(1).

Observe that∣∣(a1 + U(π/2)a2

)
· U(nω)b(z)

∣∣2 +
∣∣(U(−π/2)a1 + a2

)
· U(nω)b(z)

∣∣2
= |a1 + U(π/2)a2|2 |b(z)|2.

It then follows from (B 14) and (B 15) that

∣∣(A∇)T S[ϕ1,n](z)
∣∣2 +
∣∣(A∇)TS[ϕ2,n](z)

∣∣2 =
R2α2

1e
−2n(ρ−ρ0)

4h(ρ, ω)4
|a1 + U(π/2)a2|2 |b(z)|2,

modulo n2e−2n(ρ+ρ0)O(1). We choose constant vectors a1 and a2 so that

a1 + U(π/2)a2 	= 0. (B 16)

Then, we have ∣∣(A∇)T S[ϕ1,n](z)
∣∣2 +
∣∣(A∇)TS[ϕ2,n](z)

∣∣2 ≈ e−2n(ρ−ρ0),

which, together with (B 4) and (B 5), shows

|α1,n(z)|2 + |α2,n(z)|2 ≈ ne−2n(ρ−ρ0) + n2e−2nρO(1). (B 17)

Similarly, one can show that

|α3,n(z)|2 + |α4,n(z)|2 ≈ n3e−2n(ρ−ρ0) + n2e−2n(ρ−ρ0)O(1). (B 18)

Proof of Theorem 4.3. In this proof (ρ, ω) denotes the elliptic coordinates of z. Since

|kδ(c) − kj,n|2 ≈ δ2 + |k(c) − kj,n|2, (B 19)

it follows from (B 2) that

E(uδ − Fz) ≈
4∑
j=1

∑
n

|αj,n(z)|2
δ2 + |k(c) − kj,n|2

. (B 20)
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Since k(c) = k0, we see from (3.31) that

|k(c) − kj,n| = c0ne
−2nρ0 + n3/2e−3nρ0O(1), j = 1, 2, (B 21)

where

c0 :=
q

λ+ 2μ
.

We also see from (3.31) that

|k(c) − kj,n| � C (B 22)

for some constant C independent of n for j = 3, 4. It then follows from (B 17) and (B 18)

that

E(uδ − Fz) ≈
∞∑
n=1

ne−2n(ρ−ρ0)

δ2 + c20n
2e−4nρ0

. (B 23)

For 0 < δ � 1, let N � 1 be the first integer such that δ > c0Ne
−2Nρ0 . Then, we have

δ1/N ∼ c
1/N
0 N1/Ne−2ρ0 = e−2ρ0 + o(1),

that is,

N ∼ − 1

2ρ0
log δ.

We then write
∞∑
n=1

ne−2n(ρ−ρ0)

δ2 + c20n
2e−4nρ0

=
∑
n�N

+
∑
n>N

=: IN + IIN. (B 24)

For the first term, we have

IN ∼
∑
n�N

ne−2n(ρ−ρ0)

n2e−4nρ0
=
∑
n�N

e2n(3ρ0−ρ)

n
∼
∫ N

1

e2(3ρ0−ρ)s ds

s
.

If ρ0 < ρ < 3ρ0, then one sees using an integration by parts that∫ N

1

e2(3ρ0−ρ)s ds

s
∼N−1e2N(3ρ0−ρ),

as N → ∞. It is easy to see that
∫ N

1
e2(3ρ0−ρ)s ds

s
∼ logN if ρ = 3ρ0, and

∫ N
1
e2(3ρ0−ρ)s ds

s
∼ 1

if ρ > 3ρ0. So we obtain that

∑
n�N

ne2n(3ρ0−ρ)

n2e−4nρ0
∼

⎧⎪⎪⎨⎪⎪⎩
|log δ|−1

δ−(3−ρ/ρ0), if ρ0 < ρ < 3ρ0,

log |log δ|, if ρ = 3ρ0,

1, if ρ > 3ρ0.

On the other hand, we have

IIN ∼ 1

δ2

∑
n>N

ne−2n(ρ−ρ0) ∼ |log δ| δρ/ρ0−3.
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So, we have from (B 23) and (B 24)

E(uδ − Fz) ∼
{
|log δ| δ−3+ρ/ρ0 if ρ0 < ρ � 3ρ0,

1 if ρ > 3ρ0.

Since E(Fz) <∞, we have (4.19), and the proof is complete. �

Proof of Theorem 4.4. Here, we denote by (ρ, ω) the elliptic coordinates of x and by

(ρz, ωz) those of z. It follows from (B 1) and (B 19) that

|uδ(x) − Fz(x)| �
4∑
j=1

∑
n

|αj,n(z)|
(δ + |k(c) − kj,n|)‖ϕj,n‖∗

∣∣S[ϕj,n](x)
∣∣ .

We then have from (B 21) and (B 22) that

|uδ(x) − Fz(x)| �
2∑
j=1

∑
n

|αj,n(z)|
ne−2nρ0‖ϕj,n‖∗

∣∣S[ϕj,n](x)
∣∣+ 4∑

j=3

∑
n

|αj,n(z)|
‖ϕj,n‖∗

∣∣S[ϕj,n](x)
∣∣ .

It then follows from (B 4)–(B 7), (A 27), (A 28), (B 17), and (B 18) that

|uδ(x) − Fz(x)| �
2∑
j=1

∑
n

n1/2e−n(ρz−ρ0)

ne−2nρ0n−1/2

e−n(ρ−ρ0)

n
+

4∑
j=3

∑
n

n3/2e−n(ρz−ρ0)

n−1/2
e−n(ρ−ρ0)

�
∞∑
n=1

e−n(ρ+ρz−4ρ0)

n
.

This completes the proof. �

Proof of Theorem 4.5. Since k(c) = −k0, we obtain from (3.31)

|k(c) − kj,n| ≈ 1, j = 1, 2, (B 25)

and

|k(c) − kj,n| =
q2

4μ (λ+ 2μ)2
n2e−4nρ0 + ne−4nρ0O(1), j = 3, 4. (B 26)

The rest of the proof is similar to that of Theorem 4.3. �

Theorem 4.6 can be proved in the same way as Theorem 4.4 using (B 25) and (B 26).

Let us prove (B 10)–(B 13). We prove only (B 12) that is most involved and the rest can

be proved similarly. Let

h1(ρ, ω) :=
e2(ρ−ρ0) − e−2(ρ−ρ0)

h(ρ, ω)2
, h2(ρ, ω) :=

e2ρ0 − e2ρ

h(ρ, ω)2
, h3(ρ, ω) :=

e−2ρ − e−2ρ0

h(ρ, ω)2
,
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where h(ρ, ω) is defined in (A 26), and let

f1(ρ, ω) =

[
f11(ρ, ω)

f12(ρ, ω)

]
:= h1(ρ, ω)e−n(ρ−ρ0)

[
cos nω

sin nω

]
,

f2(ρ, ω) =

[
f21(ρ, ω)

f22(ρ, ω)

]
:= h2(ρ, ω)e−n(ρ−ρ0)

[
cos(n+ 2)ω

sin(n+ 2)ω

]
,

f3(ρ, ω) =

[
f31(ρ, ω)

f32(ρ, ω)

]
:= h3(ρ, ω)e−n(ρ−ρ0)

[
cos(n− 2)ω

sin(n− 2)ω

]
.

Then, one can see Lemma A.1 that

S[ψ3,n](ρ, ω) =
α2R

2

8
[f1(ρ, ω) + f2(ρ, ω) + f3(ρ, ω)] + n−1e−n(ρ−ρ0)O(1). (B 27)

Straightforward computations yield

∂ρf11 =
(
∂ρh1 − nh1

)
e−n(ρ−ρ0) cos nω,

∂ωf11 = e−n(ρ−ρ0) (∂ωh1 cos nω − nh1 sin nω) ,

which can be rewritten as[
∂ρ
∂ω

]
f11 = e−n(ρ−ρ0)

(
cos nω

[
∂ρ
∂ω

]
h1 − nh1

[
cos nω

sin nω

])
. (B 28)

Recall the following chain rule:

∇ =
R

h2
C(ρ, ω)

[
∂ρ
∂ω

]
,

where

C(ρ, ω) =

[
cosω sinh ρ − sinω cosh ρ

sinω cosh ρ cosω sinh ρ

]
.

It then follows from (B 28) that

∇f11 = e−n(ρ−ρ0)

[
(∇h1) cos nω − R

h2
nh1C(ρ, ω)

[
cos nω

sin nω

]]
.

Observe that

C(ρ, ω)

[
cos nω

sin nω

]
= U(nω)b(ρ, ω),

where b(ρ, ω) is defined in (B 8). So, we have

∇f11 = e−n(ρ−ρ0)

[
(∇h1) cos nω − R

h2
nh1U(nω)b(ρ, ω)

]
. (B 29)

Likewise, one can show that

∇f12 = e−n(ρ−ρ0)

[
(∇h1) sin nω +

R

h2
nh1U(π/2)U(nω)b(ρ, ω)

]
. (B 30)
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It follows that

(A∇)Tf1 = a1 · ∇(F1)1 + a2 · ∇(F1)2

= e−n(ρ−ρ0)
[
(a1 · ∇h1) cos nω − nRh1

h2
a1 · U(nω)b(ρ, ω)

+ (a2 · ∇h1) sin nω +
nRh1

h2
a2 · U(π/2)U(nω)b(ρ, ω)

]
.

Note that ∂αhj , |α| � 1, α ∈ �2, j = 1, 2, 3, is uniformly bounded as n → ∞. Thus, we

have

(A∇)Tf1 =
nRe−n(ρ−ρ0)h1

h2

[
−a1 · U(nω)b(ρ, ω) + a2 · U(π/2)U(nω)b(ρ, ω)

]
= −nRe

−n(ρ−ρ0)h1

h2

[
a1 + U(π/2)a2

]
· U(nω)b(ρ, ω), (B 31)

where the equalities hold modulo e−n(ρ−ρ0)O(1) terms.

Similarly, one can show that

∇f21 = e−n(ρ−ρ0)
[
(∇h2) cos(n+ 2)ω

− Rh2

h2
{nU(2ω)U(nω) + 2 sin(n+ 2)ωU(π/2)}b

]
,

∇f22 = e−n(ρ−ρ0)
[
(∇h2) sin(n+ 2)ω

− Rh2

h2
U(−π/2){nU(2ω)U(nω) + 2 cos(n+ 2)ωI}b

]
,

and

∇f31 = e−n(ρ−ρ0)
[
(∇h3) cos(n− 2)ω

− Rh3

h2
{nU(−2ω)U(nω) − 2 sin(n− 2)ωU(π/2)}b

]
,

∇f32 = e−n(ρ−ρ0)
[
(∇h3) sin(n− 2)ω

− Rh3

h2
U(−π/2){nU(−2ω)U(nω) + 2 cos(n− 2)ωI}b

]
.

So, we have

(A∇)Tf2 = −nRe
−n(ρ−ρ0)h2

h2
U(−2ω)

[
a1 + U(π/2)a2

]
· U(nω)b(ρ, ω), (B 32)

(A∇)Tf3 = −nRe
−n(ρ−ρ0)h3

h2
U(2ω)

[
a1 + U(π/2)a2

]
· U(nω)b(ρ, ω). (B 33)

Note that

h1I + h2U(−2ω) + h3U(2ω) = h2Ũ.
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Since

(A∇)TS[ψ3,n] =
α2R

2

8

(
(A∇)Tf1 + (A∇)Tf2 + (A∇)Tf3

)
+ n−1e−n(ρ−ρ0)O(1),

we obtain (B 12) from (B 31)–(B 33).
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