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We first investigate spectral properties of the Neumann—Poincaré (NP) operator for the Lamé
system of elasto-statics. We show that the elasto-static NP operator can be symmetrized
in the same way as that for the Laplace operator. We then show that even if elasto-static
NP operator is not compact even on smooth domains, it is polynomially compact and its
spectrum on two-dimensional smooth domains consists of eigenvalues that accumulate to
two different points determined by the Lamé constants. We then derive explicitly eigenvalues
and eigenfunctions on discs and ellipses. Using these resonances occurring at eigenvalues is
considered. We also show on ellipses that cloaking by anomalous localized resonance takes
place at accumulation points of eigenvalues.

Key words: Neumann-Poincaré operator, Lamé system, linear elasticity, spectrum, resonance,
cloaking by anomalous localized resonance.

1 Introduction

The Neumann—Poincaré (NP) operator for the Laplace operator is a boundary integral
operator that appears naturally when solving classical boundary value problems for the
Laplace equation using layer potentials. Recently, there is rapidly growing interest in
the spectral properties of the NP operator in relation to plasmonics and cloaking by
anomalous localized resonance (CALR). Plasmon resonance and anomalous localized
resonance occur at eigenvalues and at the accumulation point of eigenvalues, respectively
(see for example [1,17] and references therein). We emphasize that the spectral nature

1 This work is supported by the Korean Ministry of Education, Sciences and Technology through
NRF grants Nos. 2010-0017532 (to H.K) and 2012003224 (to S.Y).

https://doi.org/10.1017/50956792517000080 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792517000080

190 K. Ando et al.

of the NP operator differs depending on smoothness of the domain on which the NP
operator is defined. If the domain has a smooth boundary, C'* for some o« > 0 to be
precise, then the NP operator is compact on L> or H~!/? space. Since the NP operator
can be realized as a self-adjoint operator by introducing a new inner product (see [10,12]),
its spectrum consists of eigenvalues converging to 0. If the domain has a corner, the
corresponding NP operator may exhibit a continuous spectrum. For this and recent
development of spectral theory of the NP operator for the Laplace operator, we refer
to [9,11,21,22] and references therein.

The purpose of this paper is two-fold. We first extend the spectral theory of the NP
operator for the Laplace operator to that for the Lamé system of elasto-statics, and then
investigate resonance and CALR.

To describe results of this paper in a precise manner, we first introduce some notation.
Let Q be a bounded domain in IR? (d = 2,3) with the Lipschitz boundary, and let (4, y)
be the Lamé constants for Q satisfying the strong convexity condition

w>0 and dA+2u>0. (1.1)

The isotropic elasticity tensor C = (Cijkl)fj,k,lzl and the corresponding elastostatic system
L, are defined by
Cijki := 40ij0r + 1 (0 j1 + Sidj), (1.2)
and
L=V -CVu=pdu+(A+p)VV -u, (1.3)
where V denotes the symmetric gradient, namely,

Vu = % (Vu+Vu™).

Here, T indicates the transpose of a matrix. The corresponding conormal derivative on
0Q is defined to be

oyu == (CVwn = AV - un+ 2u(Vu)n on dQ, (1.4)

where n is the ogtward unit normal to 09Q.
LetI' = (I ii)ij=1 be the Kelvin matrix of fundamental solutions to the Lamé operator

L, ., namely,
_ﬂ@_ﬂx’xl‘, ifd=3,
_ dn x|  4r |x]3
rij(x) =4 4, oy XX (L.5)
—&;ln|x| - == ifd=2,
2n Y 27 |x|?
where
1/1 1 1/1 1
=-(-4+— = (-—=—]. 1.
“ z(u+zu+x) and 2 2(;4 2u+;u) (16)
The NP operator for the Lamé system is defined by
K[f](x) := p.v./ 0y, I'(x — y)f(y)da(y) ae. x€dQ. (1.7)
0Q
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Here, p.v. stands for the Cauchy principal value, and the conormal derivative 0, I" (x —y)
of the Kelvin matrix with respect to y-variables is defined by

0, I (x — y)b = 0, (I'(x — y)b) (18)

for any constant vector b.
The NP operator K is connected to the Lamé system £;, in the following way. The
Dirichlet boundary value problem for the Lamé system

L u=0 in Q, (19)
u=g on 0Q
can be solved using the double layer potential, namely, u = D[f] where
D[f](x) := / 0, '(x —yf(y)da(y), xe€ R\ 0Q (1.10)
00

for some potential f on 0Q. In fact, such u satisfies £;,u = 0 in Q. So, to solve (1.9),
the boundary condition should be fulfilled. It is known (see [6]) that the following jump
formula holds:

1
D[f]|+ = <:F21 —|—K) [f] a.e. on 0Q. (1.11)
Here and afterwards, the subscripts + and — indicate the limits (to 0Q) from outside
and inside Q, respectively. So, (1.9) is solved by finding the solution of the integral
equation

2

In this paper, we show that the NP operator K can be realized as a self-adjoint operator
on HY2(@Q)* (H'/? is a Sobolev space) by introducing a new inner product in a way
parallel to the case of the Laplace operator. But, there is a significant difference between
NP operators for the Laplace operator and the Lamé operator. The NP operator for
the Lamé operator is not compact even if the domain has a smooth boundary (this was
observed in [6] correcting an error in [15]), which means that we cannot infer directly
that the NP operator has point spectrum (eigenvalues). However, we are able to show in
this paper that the elasto-static NP operator on planar domains with C* boundaries has
only point spectrum. In fact, we show that on such domains

(11 +K) [f]=g ondQ. (1.12)

K> — ké] is compact, (1.13)
where
ko= —H (1.14)
2Qu+4)

It is worth mentioning that we are able to prove (1.13) only in two dimensions, and it
is not clear if it is true in three dimensions. Probably, there is a polynomial p such that
p(K) is compact. As an immediate consequence of (1.13), we show that the spectrum of
K consists of eigenvalues that accumulate at ko and —ko. We then explicitly compute
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eigenvalues of K on discs and ellipses. It turns out that kg and —k( are eigenvalues of
infinite multiplicities (there are two other eigenvalues of finite multiplicities) on discs,
while on ellipses kg and —k( are accumulation points of eigenvalues, but not eigenvalues,
and the rates of convergence to ko and —k( are exponential.

Using the spectral properties of the NP operator, we investigate resonance, especially
CALR. CALR on dielectric plasmonic material was first discovered in [18]. It is shown
that if we coat a dielectric material of circular shape by a plasmonic material of negative
dielectric constant (with a dissipation), then huge resonance occurs and the polarizable
dipole is cloaked when it is within the cloaking region. This result has been extended to
general sources other than polarizable dipole sources [1,14]. It is also shown in [3] that
CALR occurs not only on the coated structure, but also on ellipses.

In this paper, we show that CALR also occurs on elastic structures. We consider an
ellipse @ embedded in IR?, where the Lamé constants of the background are (/,u) and
those of Q are (¢ + i0)(4, u). Here, ¢ is a negative constant and ¢ is a loss parameter that
tends to 0. So, Q represents an elastic material with negative Lamé constants. Discussion
on the existence of such materials is beyond the scope of this paper. However, we refer
to [16] for existence (in composites) of negative stiffness material, and to [13] for effective
properties. We show that if ¢ satisfies

k(c) - c+1

= 2(67 1) =k0 or —k(), (1.15)

then CALR takes place as 6 — 0. See Section 4 for the precise description of CALR with
estimates. Here, we highlight a few points. In dielectric case, CALR occurs when k(c) =0

or ¢ = —1 since 0 is the accumulation point of eigenvalues. In the elasto-static case, (1.15)
is fulfilled if (and only if)

A4 3u At
_ _ _ 1.16
T Oxa N T T iTa (1.16)

It turns out that the cloaking region when k(c) = kg is different from that when k(c) = —kq.
We also mention that since 0 < ko < 1/2, (1.15) holds only if ¢ < 0. The inclusion Q
is assumed to be elliptic shape since eigenvalues and eigenfunctions of the NP operator
can be explicitly computed. We emphasize that anomalous localized resonance does not
occur on a disc since there kg and —kq are (isolated) eigenvalues of the corresponding NP
operator.

The rest of this paper is organized as follows. In Section 2, we show that the elasto-static
NP operator can be symmetrized by introducing a proper inner product on H'/?-space.
In Section 3, we prove (1.13), and as a consequence that the NP operator on a smooth
domain has eigenvalues accumulating to +ko. We also present eigenvalues of the NP
operator on discs and ellipses in Section 3, whose proofs are given in Appendix A.
Section 4 is to investigate the anomalous localized resonance whose detail is given in
Appendix B.
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2 Spectral properties of the NP operator
2.1 Layer potentials and the NP operator

Let Q be a bounded domain in R? (d = 2,3) with the Lipschitz boundary. Let H'/?(0Q)
denote the usual L?-Sobolev space of order 1/2, namely, the collection of all ¢ on 0Q

satisfying
/ / q’(dy | do(x)da(y) < oo, (2.1)
Ix —

and H~'/2(dQ) its dual space. Let H = H'/?(0Q)¢ and H* := H~'/?(0Q)%. The duality
pairing of H* and H is denoted by (-,-). Let ¥ be the set of all functions v = (vy,...,04)7
such that

ajl],‘-f-ail)j:() in Q, 1<l,]<d (22)

Observe that ¥ in two dimensions is spanned by

o B =

and in three dimensions, it is spanned by

1 0 0 y z 0
, 1, of, —x|, 01, z |. (2.4)
0 0 1 0 —-X -y

It is worth mentioning that if v € ¥, then v satisfies £,,v =0 in © and 0,v = 0 on 0,
and the converse holds.
Define

v ={oeH" : (p,f)=0forallf=vpe, ve ¥V} (2.5)

Since ¥ contains constant functions, we have, in particular, [, @do = 0 if ¢ € Hy,. We
emphasize that if £; ,u = 01in @, then 0,u € Hy,. In fact, if f = v|3o for some v € ¥, then

/avu~fdo=/ 6vu~fda—/ u-0,vde = 0.
0Q o) 00

In addition to double layer potentials in (1.10), the single layer potential on 0Q
associated with the Lamé parameter (4, ) is defined by

Slel(x) == /aQ T (x —y)e(y)da(y), xeR‘

for ¢ € H*, where I' is the Kelvin matrix defined in (1.5). Like (1.11), the single layer
potential enjoys the following jump relation:

0,S[ep]|+ = (i;l ~I—K*) [p] a.e. on 0Q, (2.6)
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where K* is the adjoint operator of K on L*(dQ)%, that is,

K*[p](x) := p.v. /asz 0, I'(x —y)o(y)do(y) ae. x€0Q. 2.7)

The operator K* is also called the (elasto-static) NP operator on 0Q.
The following lemma collects some facts to be used in the sequel, proofs of which can
be found in [5,6,19].

Lemma 2.1

(1) K is bounded on H, and K* is on H*.
(i1) The spectrum of K* on H* lies in (—1/2,1/2].
(iii) 1/2I —K* is invertible on H3,.
(iv) S as an operator defined on 0Q is bounded from H* into H.
)

(v) S :H* — H is invertible in three dimensions.

In two dimensions S may not be invertible. In fact, there may be a bounded domain
Q on which S[¢] = 0 on 0Q for some ¢ #* 0 (see the next subsection). It is worthwhile
mentioning that there is such a domain for the Laplace operator [23].

Lemma 2.2 YV is the eigenspace of K on ‘H corresponding to 1/2.

Proof Let f € ¥. Then, f = v|so where v satisfies £, ,v =0 in Q and 0,v =0 on 02Q. So,
we have for x € R\ Q

DIf](x) = /a 8T (x = (o)
- /a 0= Y = T x = Y)2,0(3)] dy) =0

So we infer from (1.11) that

K[f] = %f. (2.8)

Conversely, if (2.8) holds, then we have from (1.11) that D[f]|- = f and D[f](x) = 0
for x € RY\ Q. So 0,D[f]|_ = 8,D[f]|. = 0. It implies that f € ¥. This completes the

proof. U
Let Ny := %) which is the dimension of ¥. Let {f1}3, be a basis of ¥ such that
(0 £0y = 5, (2.9)

where 0;; is Kronecker’s delta. Since 0,S[f]| € Hj, and 1/2I — K* is invertible on Hy,
there is a unique ¢") € 3, such that

(;1 - K) [6”] =0,S[V]|- = <—;1 + K> [£0].
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Define o) := ¢ + f). Then, we have
Ko — Lol
[¢V] = 507 (2.10)
Moreover, we have
(@ AD) = @V 19) + (£, ) = 5, (2.11)
which, in particular, implies that ¢/)’s are linearly independent.
Let
W := span {(p(l), e (p(N")} , (2.12)
and let
Hw ={feH : (p.f)y=0forall p € W}. (2.13)
Lemma 2.3 The following hold.
(1) Each @ € H* is uniquely decomposed as
Ng
0=¢ +0¢" =¢ +Z<(p’f(j)>(p(j)’ (2.14)
j=1
and @' € Hy.
(i1) Each f € H is uniquely decomposed as
f=f+f" =+ Z U £)ED), (2.15)

and f' € Hy.
(i) S maps W into ¥, and Hy into Hy .
(iv) W is the eigenspace of K* corresponding to the eigenvalue 1/2.

Proof For ¢ € H*, and let ¢” be as in (2.14). Then, one can immediately see from (2.11)
that (¢/,f)) = 0 for all j, and hence ¢’ € H3,. Uniqueness of the decomposition can be
proved easily. (ii) can be proved similarly.

Thanks to (2.10), we have 9,S[@"']|_ = 0, and so S[p]|sq € ¥. If ¢ € Hi,, then

(0. S[e]) = (0,S[e"]) =0

for all j. So, S maps Hy, into Hy. This proves (iii).

Suppose that K*[¢] = 1/2¢ and that ¢ admits the decomposition (2.14). Then, K*[¢'] =
1/2¢’. So we have from (iii) that S[¢'] € ¥, and hence (¢’, S[¢']) = 0. Since fag ¢'do =0,
we have from (2.6)

—(¢'.Sle']) = (0,S[¢’]|-.Sle']) — <GS 1+ Sle'])
:HV (911170 +||VS w0 (2.16)
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So S[¢’] = const. in RY. Thus, we have ¢’ = 0,S[¢’]|+ —0,S[¢']|- =0, and hence ¢ € W.
Thus, (iv) is proved. This completes the proof. O

2.2 Symmetrization of the NP operator

In this section, we introduce a new inner product on H* (and H) that makes the NP
operator K* self-adjoint.

In three dimensions, S[e](x) = O(|x|~!) as |x| — co. Using this fact, one can show that
—S is positive-definite. In fact, similarly to (2.16), we obtain

—(@.Slel) 2 [VSIoll120) + IVSIQlI 2 0) = O- (2.17)

If (¢,S[e]) = 0, then S[¢] is constant in R?. Thus, we have ¢ = 0,S[¢]|, — 0,S[e]|_ = 0.
So, if we define

(@ %) == —(9,S[e]), (2.18)

it is an inner product on H*.

In two dimensions, the same argument shows that —S is positive-definite on Hj. In
fact, if ¢ € H3,, then S[e](x) = O(]x|~!) as |x| — oo, and hence we can apply the same
argument as in three dimensions. However, —S may fail to be positive on W: if Q is the
disc of radius r (centred at 0), then we have

S[e](x) = [alrlnr - %] ¢ forxeQ (2.19)

for any constant vector ¢ = (c,c2)T. It shows that —S can be positive or negative
depending on r. To see (2.19), we note that

S[eli(x) = A< / In|x — y|do(y) — Z / Mlz”fdo—(y)
= a1e:S[1)(x) — 2 (xie - VS[1x) - ¢ VSl (x)),

where S is the electro-static single layer potential, namely,

1
SIfIx) = 5 /m In|x —y[f(y)da(y). (2.20)

It is known (see [1]) that S[1](x) = rInr and S[y;](x) = —5* for x € Q. So we have (2.19).
We introduce a variance of S in two dimensions. For ¢ € H*, define using the
decomposition (2.14)

3
S[e] 1= (@ )0, (2.21)

j=1
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We emphasize that S[p] = S[¢] for all ¢ € H;, and S[p\)] = fU), j = 1,2,3. In view of
(2.11) and Lemma 2.3 (iii), we have

3
—(¢.Slo]) = —(¢'.Sle]) Z (. 1) (222)

So, —S is positive-definite on H*. In fact, since —(¢’, S[¢']) = 0, we have —(¢,S[e]) = 0. If
—(¢.S[p]) =0, then —(¢",S[¢']) = 0 and 3"}, [(¢,fV)]> = 0. So, ¢/ = 0 and (¢, f") =0
for all j, and hence ¢ = 0.

Let us also denote S in three dimensions by S for convenience. Define

(@.¥). == —(0,SY1), ¢, ¥ € H*. (2.23)

Proposition 2.4 (-,-). is an inner product on H*. The norm induced by (-,-)., denoted by
| - |l is equivalent to || - ||y 2.

Proof Positive-definiteness of —S implies that S:H* > His bijective. So, we have

||‘P||71/2 ~ ||S[<P]||1/2~

Here and throughout this paper, A < B means that there is a constant C such that
< CB,and A ~ Bmeans 4 < B and B < A. It then follows from the definition (2.23)
that
(@, 9)<| < ll@ll -1 2[IS[@1ll12 S @]l )5
We have from the Cauchy Schwarz inequality

(0. S| = [0 9):] <l < llpll IS 12

So we have

_ Lo S| _
lepll-1/2 iﬁnﬂmmp“”w*

This completes the proof. O

We may define a new inner product on H by

(f,g) == (ST, '[g]). = —(S'[fl.g), f.ge™. (2.24)

Proposition 2.5 (-,-) is an inner product on H. The norm induced by (-,-), denoted by || - ||,
is equivalent to || - ||1/2. Moreover, S is an isometry between H* and H.

As shown in [12], the NP operator K* can be realized as a self-adjoint operator on H*
using Plemelj’s symmetrization principle that states for the Lamé system:

SK* = KS. (2.25)
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This relation is a consequence of Green’s formula. In fact, if £; ,u = 0 in , then we have
for x e R\ Q:

S [0,u_] (x) — D[u|_](x) = 0.

Substituting u(x) = S[¢](x) for some ¢ € H* into the above relation yields

S (-éz + K) [p](x) = DS[p](x), xe R\ Q.

Letting x approach to 0Q, we have from (1.11)

S <;1 + K) [p](x) = (;1 + K) Slel(x), x€0Q.

So we have (2.25). N
The relation (2.25) holds with S replaced by S, namely,

SK* = KS. (2.26)
In fact, if @ € W, then K*[p] = 1/2¢ and g[(p] € ¥. So, we have
SK*[¢] = KS[g].

This proves (2.26).

Proposition 2.6 The NP operators K* and K are self-adjoint with respect to (-,-). and (-,-),
respectively.

Proof According to (2.26), we have

(¢, K*[¥]). = —(0,SK*[¥]) = — (0, KS[y])
= —(K*[¢],S[¥]) = (K*[@],)..

So K* is self-adjoint. That K is self-adjoint can be proved similarly. ]

3 Spectrum of NP operators on smooth planar domains

In this section, we prove (1.13) when 0Q is C* for some o > 0. For that purpose, we
look into K in more explicit form. The definition (1.8) and straightforward computations

show that
0, I(x—y) = zﬂ’i SKi(x.y) — Ka(x.¥), (3.1)
where
T (v — vnT
Kifny) = B I (32)
KQ(X,y) — 1% (Xiy) ‘nyI 2(/1"‘&) (Xiy) 'ny (X—y)(X—y)T, (33)

2u+ 2 wgx —yl? 2p+ 7 wglx -yt
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where wy; is 2n if d =2 and 4w if d = 3, and I is the d x d identity matrix. Let

T,[0](x) == pv. / Kj(Yply)doly). x €02, j=1.2 (3.4)
o
so that
o
K=3loT-T (3.5)

Note that each term of K, has the term (x —y) - ny. Since 0€2 is C'* we have
(x = ¥)my| < Clx = y|'*

for some constant C because of orthogonality of x —y and ny. So we have
Ka(x,y)| < Clx —y[ =1+

So T, is compact on H (see, for example, [8]), and T; is responsible for non-compactness

of K.

3.1 Compactness of K> — k2l and spectrum

Proposition 3.1 Let Q be a bounded C'* domain in R?* for some o > 0. Then, K> — k21 is
compact on H.

Proof In view of (3.5), it suffices to show that T — %I is compact.
In two dimensions, we have

_ 1 0 K(x,y)
KoY = o= LK(x,y) 0o ]
where
K(x,y) = —nm(y)(x1 — y1) + ni(y)(x2 — y2).
Let

RIpI(X) = —pv. /a ) Kix, y|) o(¥) do(y) (3.6)

2n [x — y|?

Then, we have

(3.7)

Ti[e] = [ Rlp2] ] .

—Rlo1]

For x € 0Q, set Q. := Q \ B.(x) where B.(x) is the disc of radius e centred at x. For
@ € H'2(0Q), let u be the solution to Au =0 in Q with u = ¢ on 0Q. Since

X—y

rot———
x —y|?

=0, xX#Y,
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we obtain from Stokes’ formula

e b —(x1 — yona(y) + (xa — y2)m(y)

Rlol) = tim o= | = o) do(y)
TS —(x1 — y1)0ouly) + (x2 — y2)01u(y)
_1133)%/9 |x — y|? dy.

Let v be a harmonic conjugate of u in Q and y = v|se so that

v =Tlg], (3.8)
where 7 is the Hilbert transformation on 0Q2. Then, we have from divergence theorem

1 (x1 — y1)01o(y) + (x2 — ¥2)020(y)
/ iy

e—0 27 Ix —y|?
— 1133)%/ (x=y)n - ———=p(y)da(y).
Observe that
32 |, S e det

is the electro-static double layer potential of y, and x ¢ Q.. So by the jump formula of
the double layer potential (see [8]), we have

1 (x—y)- 1
lim o Ty e = v+ Klpl(x)
where
1
Klpl(x) = — (x—y)-n (y)da(y), x € 0Q. (3.9)

711)
2 Joo Ix—yP
It is worth to mention that K is the electro-static NP operator.
So far we have shown that

Rigl = 1 Tlo) + KTll (3.10)

Since 7 is bounded and K is compact on H'/2(0Q), we have

1
R = 757 + compact operator. (3.11)
Since 72 = —I, we infer that R? + 1I is compact, and so is T? — 1I. This completes the
proof. O

Since K? — kI is compact and self-adjoint, it has eigenvalues converging to 0. The
proof of Proposition 3.1 shows that neither K — koI nor K + koI is compact, so we obtain
the following theorem.
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Theorem 3.2 Let Q be a bounded domain in R? with C'* boundary for some o > 0.

(1) The spectrum of K on H consists of eigenvalues accumulating at ko and —kg, and their
multiplicities are finite if they are not equal to ko or —kg.
(ii) The spectrum of K* on ‘H* is the same as that of K on H.
(ii1) The set of linearly independent eigenfunctions of K makes a complete orthogonal system
of H.
(iv) @ is an eigenfunction of K* on H* if and only ifg[(p] is an eigenfunction of K on H.

3.2 Spectral expansion of the fundamental solution

Let {§;} be a complete orthonormal (with respect to the inner product (-,-).) system of
i consisting of eigenfunctions of K* on 0Q in two dimensions. Then, they, together
with @), j = 1,2,3, defined in Section 2, make an orthonormal system of #*. Then, by
Theorem 3.2 (iv) {S[y;]} together with f @ is a complete orthonormal system of H with
respect to the inner product (-, -).
Let I'(x —y) be the Kelvin matrix defined in (1.5). If x € R?>\ Q and y € 0%, then there

are (column) vector-valued functions a; and b; such that

) 3
Fx—y)=> a,xSH,1m" +>_ bix)fy)". (3.12)
i=1

j=1

It then follows that

[QF( v, (y) do(y Zaj(x (¥, S[ +Zb ), £
> ) +Zb o). = —ay(x).
=1

In other words, we obtain a;(x) = —S[,](x). Likewise, one can show b;(x) = S[e"](x).
So, we obtain

3

st/, S AWT +>_Sle"xf(y)", xeR*\ 2, y € Q.

i=1

Since both sides of above are solutions of the Lamé equation in y for a fixed x, we obtain
the following theorem from the uniqueness of the solution to the Dirichlet boundary value
problem.

Theorem 3.3 (expansion in 2D) Let Q be a bounded domain in R?> with C'* boundary for
some o > 0 and let {y;} be a complete orthonormal system of My, consisting of eigenfunc-
tions of K*. Let I'(x —y) be the Kelvin matrix of the fundamental solution to the Lamé
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system. It holds that

3

st/] SWAW™ +>_SleM®fy)", xeR*\Q, ye Q. (3.13)

i=1

In three dimensions, one can prove the following theorem similarly. We emphasize that
it has not been proved that the NP operator on smooth domain has a discrete spectrum.

Theorem 3.4 (expansion in 3D) Let Q be a bounded domain in IR3. Suppose that the NP

operator K* admits eigenfunctions {;} that is a complete orthonormal system of H*. It
holds that

r(x-—y) Zs YISy ly)", xeR\Q, yeQ. (3.14)

The expansion formula, sometimes called an addition formula, for the fundamental
solution to the Laplace operator on discs, balls, ellipses, and ellipsoids is classical and
well-known. That on ellipsoids is attributed to Heine (see [7]). The formulas describe
expansions of the fundamental solution to the Laplace operator in terms of spherical
harmonics (balls) and ellipsoidal harmonics (ellipses). General addition formula of the
fundamental solution to the Laplace operator as in Theorems 3.3 and 3.4 was found in [3].
It shows that the addition formula is a spectral expansion by eigenfunctions of the NP
operator. Above theorems extend the formula to the Kelvin matrix of the fundamental
solution to the Lamé system. Using explicit forms of eigenfunctions to be derived in the
next subsection, one can compute the expansion formula on discs and ellipses explicitly,
even though we will not write down the formulas since they are too long.

3.3 Spectrum of the NP operator on discs and ellipses

In this section, we write down spectrum of the NP operator on discs and ellipses. Detailed
derivation of the spectrum is presented in Appendix A.

Suppose that Q is a disc. The spectrum of K* is as follows:
Eigenvalues :
1 A
27 2Qu+A)
It is worth mentioning that the second eigenvalue above is less than 1/2 in an absolute
value because of the strong convexity condition (1.1).

ko (3.15)

Eigenfunctions :
() 1/2:
(Lo?, ©o,nT, (y,—x)T, (3.16)
(ii) —m:
.7, (3.17)
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(iii) ko:
cos mb — sinmf
Linm()] ’ { cosmb } » M=23 (3.13)
(iv) —ko:
cosmb sin m0
{— sin mﬂ} ’ [cos mﬂ} > m=12.... (3.19)

We emphasize that eigenfunctions are not normalized.

We now describe eigenvalues and eigenfunctions on ellipses. Suppose that  is an ellipse

of the form
X2 X2
a—;+b—§<1, a=>bh>0. (3.20)

Put R := v/a? — b2. Then, the elliptic coordinates (p, w) are defined by
x; = Rcoshpcosw, x; =Rsinhpsinw, p=0, 0<w<2n, (3.21)

in which the ellipse @ is given by 0Q = {(p,w) : p = po}, where po is defined to be
a = Rcosh pg and b = Rsinh pg. Define

ho(w) := Ry/sinh? py + sin® . (3.22)

To make expressions short, we set
q = (A + p)sinh 2py, (3.23)

and

yE = et 2 + ()4 p)(A + 3p) + ng(£2e2opu + ng). (3.24)

The spectrum of K* is as follows:

Eigenvalues
kin, j=1,...,4, (3.25)

where

(3.26)
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Eigenfunctions :

(i) 1/2:

1 {1] 1 {0] 1 [((}u + we™ — (A +3p)) sinw
’ " ho(w)

(i) kjn j=1,2,3,4:

= > 17
Pin wl,n k + kl B ¢3 n» n
n = !ﬁz,n k + k2 " '/’4n> n > 2’
ko + ks,
(P3Jl s > ‘//1n+'/’3m nz la
Dn
kO +k4n
(p4," Pn '//2n + l/’4na nz 1,
where
1
and

Vo) = 1 [cgsnw}’ Yan() = 1 {—sinnw}’

ho(w) | sinnw ho(w) | cosnw
1 COSs nw 1 sin nw
V(o) = ho(w) [— sin nw] » Yan@) = ho(w) [cos nw} '

A remark on ky; in (3.26) is in order. It is given by

where

7= Ve 2 + (4 w0+ 30 + g(2e0p + q).

Since

=

e + (24 )2+ 30) + g2+ q) =
we have k| = % and the corresponding eigenfunction is

(2 + we=20 — (2 +3p)) sinw

_ -1
¢ =hy (0) ((/1 + e + (A + 3;1)) cosw|’

So it is listed as an eigenfunction for 1/2.
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Let us now look into the asymptotic behaviour of eigenvalues as n — oo. One can
easily see from the definition (3.24) that

(4 + w4+ 3u)q

—2npo + e—2np00(1)
2u? ’

o = e £ qn ¥

where O(1) indicates constants bounded independently of n. So one infer from (3.26) that

kin=ko— 7 + o ne=2"0 4 P4 (1),

Ky, = ko + - + o ne= 2P0 4 pZe=4m0 (1),

Ky = —ko — % 40 4 g mo(1), (3.31)
kan = —ko + %n(““m +e 4 0(1),

as n — oo. In particular, we see that k;, and ky, converge to ko, while k3, and kg4, to —ko
as n — co. We emphasize that the convergence rates are exponential.

4 Anomalous localized resonance and cloaking
4.1 Resonance estimates

Let Q be a bounded domain in IR? with C* boundary. Let (4, 1) be the Lameé constants
of R?\ Q satisfying the strong convexity condition (1.1). Let (4, 1) be Lamé constants of
Q. We assume that (4, i) is of the form

(L T0) = (c +i8)(4 p), (4.1)

where ¢ < 0 and 6 > 0. Let C be the isotropic elasticity tensor corresponding to (1 ),
namely, C = (Cijkz)%j,kJ:l where

Cijut = 700k + TL(0wdj1 + 0ud ), (4.2)

and let L5 and 0y be corresponding Lamé operator and conormal derivative, respectively.
Then, we have £)~ = (c+i6)L;, and Oy = (c 4 i0)0,.
Let Cq be the elast1c1ty tensor in presence of inclusion Q so that

Co=Cro+ Crro\o

where y denotes the characteristic function. We consider the following transmission

problem:
V- CoVu=f in R?,
eV . (4.3)
u(x) = O(|x|7")  as x| — oo,
where f is a function compactly supported in IR? \ Q and satisfies
fdx = 0. (4.4)

R2
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This condition is necessary for a solution to (4.3) to exist. The problem (4.3) can be
rephrased as

Ei,uu =0 in Q,
,C/Wll =f in IR2 \ﬁ, (4.5)
ul_ =ul; on 0Q,
(¢ +i0)0,u|_ = 0,uly on 0Q.
Let
F(x) := / I'(x—y)f(y)dy, xeR>% (4.6)
]RZ
We seek the solution us to (4.5) in the form

u;(x) = F(x) + S[p;](x), x € R’ (4.7)

where ¢ is to be determined. Since S[¢;](x) is continuous across 0€2, the continuity of
displacement (the third condition in (4.5)) is automatically satisfied. The continuity of the
traction (the fourth condition in (4.5)) leads us to

(c+i6) (0,F +0,S[p;]|-) = 0,F +0,S[p;]];+ on 0Q.

Therefore, using the jump formula (2.6), we have

(ks() —K*) ;] = O,F, (438)
where
L. ctl+id

Let k;, j = 1,2,..., be the eigenvalues (other than 1/2) of K* counting multiplicities,
and let {¢;} be corresponding normalized eigenfunctions. Then, {y;, o'V, 9'?, ")} is an
orthonormal system of H* and the solution to (4.8) is given by

(!/l],a F (p a F (l)
P07 L Z ks(c)—1/2%2 -

Since f is supported in R? \ Q, L;,F=0in Q, and hence 8,F € Hy. So we have

n//j,a‘,F
Z Tole) = (4.10)
Let
E(u) := / Vu : CVudx. (4.11)
Q

Here, A : B =}, a;b;; for two matrices A = (a;;) and B = (b;;). We are particularly
interested in estimating d E(uy) since CALR is characterized by the condition 0 E(us) — oo
as & — 0. It is worth mentioning that 0 E(uy) is the imaginary part of f]Rz @ug : CQ@“& dx,
which represents the elastic energy of the solution.
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To present results of this section, let us introduce a notation. For two quantities A5 and
Bs depending on 9, 45 ~ Bs means that there are constants C; and C, independent of
0 < dy for some oy such that

As

<4 <G
1S B, 2

Proposition 4.1 Let us be the solution to (4.5). It holds that

(W, 0,F).[?
Z |k(>jc) e (4.12)

Proof Using Green’s formula for Lamé operator and the jump formula (2.6), we have

E(us — F) = E(S[py]) = /Q TSles] : CVS[ps] dx

/a S[p,] - 0,Slps] do

Q

<(—;I +K*)[(P5],S[(P5]> = ((;1 —K*)[tp,s],%) :

*

It then follows from (4.10) that

o] 2
(1/2 — k)| ;,0,F).|
E(us — F) = - J .
( 0 ) jz:; |k§(())—kj‘2

Since k;, accumulates at ko or —ko and —1/2 < k;, < 1/2, there is a constant C > 0 such

that
1
C<\§—kj|<l (4.13)

for all j. So we have (4.12). O

Note that ks(c) — k(c) as 6 — 0, where k(c) be the number defined in (1.15). More
precisely, we have

|ks(c) — k(c)| ~ 6. (4.14)
So we obtain the following theorem from Proposition 4.1, which shows that resonance
occurs at the eigenvalue as 6 — 0 at the rate of 62

Theorem 4.2 Let ¢ be such that k(c) = kj for some j and suppose that (y;,0,F). # 0.
Then, we have

E(us) ~ 072, (4.15)

as 6 — 0.

Proof We have from (4.12)
E(us —F) 2672
Since E(F) is finite, we obtain (4.15). O
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4.2 Anomalous localized resonance on ellipses

Anomalous localized resonance occurs at the accumulation points of eigenvalues of the
NP operator (if the accumulation points are not eigenvalues). So, we assume

k(c)=ko or — ko. (4.16)

For the analysis of anomalous localized resonance, we need the explicit form of eigenvalues
and eigenfunctions. So we assume Q is an ellipse of the form (3.20) so that Q = {p < po}
in elliptic coordinates. We emphasize that anomalous localized resonance does not occur
on discs since +k( are eigenvalues.

We further assume that the source function f is a polarizable dipole, namely,

where a; and a, are the constant vectors, A = (a; a5)7, and z € R? \ Q. In this case, the
function F defined by (4.6) is given by

F(x) = F,(x) = (AVy)  I'(x - 2))" . (4.17)
Let (p,, ;) be the elliptic coordinates of z, and let U(0) be the rotation by the angle 0,
namely,
cos) —sind
U(o) = [sin@ cos 0 } ' (4.18)

We obtain the following theorems, when k(c) = k.

Theorem 4.3 Assume k(c) = ko. Let us be the solution to (4.5). If a; # U(—=n/2)a,, then
we have

(4.19)

llog 6 6=3*P/p0if py < p, < 3po,
E(us) ~ i
1 if p2 > 3po,

as 6 — 0.

Theorem 4.4 Assume k(c) = ko. Let x = (p,®) in the elliptic coordinates. Then, it holds for
all x satisfying p + p, — 4po > 0 that

e~ p+p—4po)

us (x) — Fu(x)| € ) — (4.20)
n=1

In particular, for any p > 4py — p, there exists some C = C5 > 0 such that

sup |us(x) — F,(x)| < C. (4.21)
p=p
We also obtain the following theorems when k(c) = —ko.
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Theorem 4.5 Assume that k(c) = —ko. If a; % U(—n/2)a,, then we have
log 6|36 —3/%+p:/2r0 if po < pz < 5po,
E(ug) ~ [ log d if po<p Po (4.22)
1 if pz > 5po,

as 6 — 0.

Theorem 4.6 Assume k(c) = —ko. Let x = (p,w) € R? in the elliptic coordinates. Then, it
holds for all x satisfying p + p, — 6po > 0 that

[us(x) — Fy(x)| S > ne™"0Hr=600), (4.23)

n=1

In particular, for any p > 6pg — p, there exists some C = C; > 0 such that

sup Jus(x) — Fy(x)| < C. (4.24)
p=p

Theorems 4.3 and 4.4 show that CALR occurs when k(c) = k¢. In fact, (4.19) shows
that E(us) — oo if p, < 2pg and JE(us) — 0 if p, > 2pg. On the other hand, (4.21) shows
that us bounded if p > 4py — p,. So, if we normalize the solution by v; := (JE(us))~'/?u;
so that E(vs) = 1, then vs — 0 in p > 4py — p, provided that p, < 2py. So, CALR occurs
and the cloaking region is pg < p, < 2po. It is worth mentioning that this cloaking region
coincides with that for the dielectric case (Laplace equation) obtained in [3].

Theorems 4.5 and 4.6 show that CALR occurs when k(c) = —ko, and in this case the
cloaking region is pg < p, < 3po. It is interesting to observe that the cloaking region is
different from that for the case k(c) = k.

Proofs of above theorems are given in Appendix B.
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Appendix A Derivation of spectrum on discs and ellipses

The purpose of this section is to derive spectrum of the NP operator on discs and ellipses
presented in Section 3.3. We use complex representations of the displacement vector and
traction. So, we identify y = y; + i, € € with the vector ¥ = (1, y2)7, and denote

S[y] = (S[Y])i + i(S[¥])..

Suppose that Q is simply connected domain in R? (bounded or unbounded), and let

w:

p1 + iy, € H-/2(0Q). It is known (see [2,20]) that there are holomorphic functions
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f and g in Q (or in €\ Q) such that

2SlI(z) = 1 (2) ~ ) — @, = S (A1)
u

in Q (orin €\ Q), and the conormal derivative 0,u is represented as
8,S[ylldo = (@Sy]); +i(@Skp])y) [+do = —id[f(z) + ) +8E)], (A2)
where do is the line element of 022 and d is the exterior derivative, namely, d = (0/0z)dz +

(0/0z)dz. Here, 0Q is positively oriented and f’(z) = 0f(z)/0z. Moreover, it is shown that
f and g are obtained by

o) = b2 /a intz ~ Op(E)doC) (A3)
o) = [ i — 0p@do©) - 22 [ P g0y, (Ad)
21 Js0 2 00z —C

It is worth mentioning that above integrals are well defined for y satisfying fag wdo = 0.
If v is constant, then we take a proper branch cut of log(z — () for z € C\ Q.

Let
1
£ = 52 [ InGz = O(Eao(d) (A3)
so that
f2) = o Llyl(z),  g(z) = —ua LIP)(z) — poaL[Lp] (). (A6)

So, (A 1) can be rewritten as

2S[p)(z) = ken Lyl(z) — a2 LT () + en Lp1(2) + L ITp] (). (A7)
Observe that
d [f(z) ) + @} = (f'(2) + F(@)dz + (zT7(2) + g (2))dz.
So we define

Clyle) = L1 (:) = 57 [ L) (A8)

then we have
8,Slyl|+do = —iuz; [Cly] + CTpl] dz + i | uon Tl — iz (2CWT - CLyl') | dz. (A9)
We shall compute S[y] and 0,S[y]|+ for proper basis functions .
A.1 Discs

Since the spectrum of the NP operator is invariant under translation and scaling (and
rotation), we may assume that Q be a unit disc. Let p = (y1,12)7 be one of the following
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functions:
cosnf sin n
+sinn0|’ |£cosnl

or equivalently (after identifying with v = y; + ;)

}, n=0,1,2,..., (A 10)

e n=0,+£1,42,..., (A11)

where f is either 1 or i.
One can see from (2.19) and (2.6) that

K*[c] = %c (A12)

for any constant vector c.
If v = Be with n # 0, then one can easily see that for |z| > 1

0 forn>1,
Clyl(z) = A13
1) { b el (A13)
Since {" = { 7" for |{| = 1, we have
. fz ! forn>1,
C z) = Al4
[7l(z) {0 A (A 14)
One can also see that
_ 0 forn=>2,
C z) = A1l5
Lwl(z) {[32"2 forn=1 or n<-—1. (A 15)

Using (A 13)—(A 15), we can show that the NP eigenvalues on the disc are given by
(3.15) and corresponding eigenfunctions by (3.16)—(3.19). In fact, one can see from (A9)
and (A 13)—(A 15) that

pou By, if n>2,
((avs[ﬂq)n])l + i(avs[ﬁWn])z) = q poy fypg — ,ufxzﬁlpl ifn=1,
uo B, ifn<<—1,
where y,({) = {". Therefore, we have
(po — 1/2)Bpn ifn>2,
K [Byul = § (uor — 1/2)Byy — poafypr - if n=1, (A 16)
(,MOQ* 1/2)ﬁwn 1fn< —1.

Since uoy —1/2 = ko and pon — 1/2 = —kg, (A 16) shows that the spectrum is as presented
in Section 3.3. It is helpful to mention that f = 1 and n = 1 in (A 16) yield the second
eigenvalue in (3.15) and corresponding eigenfunction.
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A.2 Ellipses
Suppose that Q = {(p,w) : p < po} in elliptic coordinates as in Section 3.3. Let (p,7) be
the elliptic coordinate of z € €\ Q and (pg, w) that of { € 3Q so that
z = Rcosh(p +in), { = Rcosh(py+ iw), (A17)

where R = v/a? — b2. It is known (see, for example, [3]) that

1 =1 : . .
—Injz-{|=- Z — (coshmpg cos mwe™"" cos mn + sinh mpg sinmwe™"* sin mn)
2n mm

m=1

—}-i +In B for pg <
m p ) ) pPo < p.

It is convenient to write & = p + iy so that

Inz =) ==Y % coshm(pg + iw)e™"™ + - (5 +0) (A 18)

m=1

S
2n

for some constant C whose real part is In(R/2).
Let ¢, , be functions defined in (3.30). After complexification, they can be written as

p = Bho(0)~pa(w),

where f is either 1 or i, and y,(w) = ", In fact, we have

=y, and p =y;, if f=1and n>1,
Y= ¢3,7n and Y= l/’l,fn if ﬁ =land n< — 1, (A 19)
Y =y,,and P = -y, 1fﬂ=landn>1,
Y=v,_,andp=—¢,_, iff=iand n< —
Let us compute L[hy Lpn]. Since da(w) = hy(w)dw on dQ, we have
1 2n
L0 ) = 5 [ InGz = Dptordo
T 0
—mg 2n ) 1 ' '
= — Z / COShm(pO + iw)emwdw 4+ — (5 + C)/ e do.
m=1 mn 0 2n 0
Thus, we have for n # 0
1 ef‘”|§v*n,00
Llhy pnl(z) = T (A 20)
We also obtain
. e~ Inlé+npo
Lhy pal(z) = B (A21)
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Since 0z/0¢ = Rsinh &, we have

e_ln‘é_”l’o

-1 _ —1 / —
Clhy wll) = Ll "l (2) = e (A22)
and
Cl ) = Ll () = S A23
(g " Pul(z) = Llhy $al'(2) = m ( )
Since { = Rcosh(py + iw) on 0Q, we have
_ R B
Con) =5 [eypy_1(®) + e P pupi(w)],
and hence
“1—1 R 00 —1 R —Po —1
LIChy wal(z) = S Llhg pa1](2) + 5 e LIRg put1](2).
It then follows from (A 22) and (A 23) that
—|n—1]&—(n—2)po —|n+1[&=(n+2)po
711 _ prrp—1 oy € +e
CIThy pnl(z) = LIk "l () = Tonh 2
e—&+po) cosh(& 4 2py) fn>1
sinh & -
n(E—po) _ (A24)
M cosh(E —2p0) o
sinh ¢

Let p = ﬁhglwn where n # 0 and f = 1,i. According to (A7), we have

2S[p1(2) = BreonLlhy "l @) + Boo (LI "l ) = 2L "l (2)) + fas Llg ) (2).
In view of (A 22) and (A 24), we have

e~ (&) [cosh(E + 2pg) — cosh €]

—— . on>1,
LITh Y ]'(2) — zLIh ] (z) = B sinh &
[Chy wal’(z) — zLThy "ypal'(2) e"E=r)[cosh(E — 2pg) — cosh ] .
Sil’lhz > S
Thus, we obtain
B(rcoze™"EHP0) 4 gy o= nE=p0))
_n
Boye~MEFpPo) z _
e [COS}_I(fj' 2pg) — cosh 5]’ o
2S[yl(z) = sinh & .

B(rconeE=r0) 4 g en(EHpo)y

n _
+E(x2e"(5*f’°)[cosh(§ — 2pg) — cosh &]
sinh &

hy(w) = h(p, ) := Ry/ sinh? p + sin® w. (A 26)

, n<—1

Let

https://doi.org/10.1017/50956792517000080 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792517000080

Spectral properties of the Neumann—Poincaré operator and cloaking
Using the identity
h2
sinh(p — in) sinh(p + i) = sinh? p + sin® = R

we obtain the following lemma.

215

Lemma A.1 The single layer potentials outside the ellipse, p = pg, are computed as follows:

or B=1oriand py(w)=e", n=12,...,
Sor B )

S[ﬁh61WI1] (z2) = —2£ [Kaze_”(p+p0)g_i”’7 + ale—n(ﬂ—ﬂo)einq]
n

e—2p0 _ p2p e3P — p2po

BoaR® o [ i o i(n+2)n itn—2)|
+ i ¢ " sinh 2(p + po) + 7 e + e ,
o L i
SIBhy w-l(2) = Afézf[Kaze*”p‘pwe‘*m'+—a1e*”“*ﬁ“em”]
n
R2 ro 200 _ 20 —2p _ p,—2p0 . 1
LB Z;ﬂ e op0) " sinh 2(p — po) + %e"”“’" + 2 5 ¢ e’("*””_ :

where z = Rcosh(p + in).

As an immediate consequence of above lemma, we see that there is a constant C such

that
eno=p0)
’S['p],n](z)| < CTa J= 1725
and
[SWul()] < Cemmm), - j =34,
for all n.

If z € 0Q, namely, p = po, then we have
cosh ¢ = cosh(& — 2py).
Thus, we obtain for z € 0Q

Koye 2o

—i o1 - . _ i .
—p—————e ™ — ™ 4 g, sinh 2pge 2P0 M ifn>=1

25[1,0](2) = n 2n,
ﬁKOQ inn +ﬂ061e I’O

—inn

ifn<

which can be rephrased as

—2npo
ﬁmﬂw<mﬁmﬁmﬂmemvw i1
n

_ B n
w'stp) =3 B N
Lacy 4 7 ifn<—1.
n p n

So we obtain the following lemma from (A 19).
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Lemma A.2 It holds that

_ o . o Kope 2o

5 @S, (@) = — (55 — asinh 20002 ) gy, — 25—y
_ o . o Kope 2o

5 @S, )(@) = — (55 + 2 sinh 20067 ) vy, = 2,

e 2o Koty

5 (@)SW3,)(0) = =25, — S,

e~ 2o Koty

5 (@)SWa,)(@) = =25, = T,

Now we compute 0,S[i]|+(w) using (A 9). We obtain from (A 22)

B e~ I"€=n00(|n| sinh & + cosh &)

C[ho_llpn]’(z) = R sinh ¢ . (A 30)
We also obtain from (A 24)
e ") [ncosh( + 2po) sinh & 4 cosh 2p0] Lo,
C P )= 3 e meosh(E ey inh & -+ cosh 2] e
Rsinh® ¢ ’ b

Let vy = ﬁhglwn. Since dao(z) = ho()dy, dz = iRsinh édy, and dZ = —iRsinh &dy on
0, we have from (A 9) that

ho(1)2,S[]l+ = R sinh & [CLyp] +CTp]] + Rsinh € [ Clp] — oy (2CpV — CLwY') |

We then obtain from (A 22), (A 23), (A 30), and (A 31) (after tedious computations which
we omit) that

0,S[yl|+(n) = [po1 B — 2npef sinh 2poe™ "] hy ' ypu(n) + peafe™>""hy ' p_u(n),
for n = 1. It is helpful to mention that the following identities are used:
cosh & cosh & — cosh2py = —sinh £sinh &, cosh & = cosh(& — 2po).
It then follows from (2.6) that
Kl = | (1o = 3 ) = 2o 206 5 )
+ e hy (). (A32)
Similarly, one can see for n < —1 that

0SIBhy 'wall+(n) = pou e hy () + pea By (),
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and hence
K*[Bhg "wal(n) = poy Be™ 2" hg (i) + (Wz - ) Bhy "ya(n).

Note that uoy — % = ko. We then obtain from (A 19) that

K*[Y1,](w) = (ko — 2npon sinh 2pge™ "), + pone 2"y,
K*[Y5,)(0) = pore™ ", — kows, (A33)

with f =1, and

K* [, )(@) = [ko + 2nps sinh 2ppe =" |y, + pone™ "4y,

K* [y, )(0) = pere ™"y, — ks s (A 34)
with f =i.
We see from (A 33) that for each n K* acts on the space spanned by ¥, and ¥, like
the matrix
ko — 2npo sinh 2pge ™20 poye 2100
/10(16_2”/)0 —ko

So by finding the eigenvalues and eigenvectors of this matrix, one can see that k;, and
ks, in (3.26) are eigenvalues and ¢, , and @5, in (3.28) are corresponding eigenfunctions.
One can also see from (A 34) that k,, and k4, are eigenvalues and ¢,, and ¢,, are
corresponding eigenfunctions.

Appendix B Proofs of CALR

Letkj, (j=1,....,4, n=1,...) be eigenvalues of the NP operator given in (3.26) and ¢;,
be corresponding eigenfunctions given in (3.28). Put ¢;, = (pj,,,/||(pj,,,||* and

aj,l’l(z) = (¢j,n’ asz)*-

Then, we have from (4.7) and (4.10) that

us(x) - ZZ ka(‘i’)” Sl )(%). (B1)

] n

and from (4.12) that

|otjn(z)|?
Z 2 @ — kP (B2)

|2
jn

We obtain from Green’s formula and the jump relation (2.6) that

OCj’n(Z) = _<¢j,n’s[a\’FZ]> = _<a\’s[¢j,n]—9F > ( k]” + > <¢]n’ >
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So we have from (4.17) that

1
252(0) = = (K5 = 3 ) (AT S )
Thanks to (4.13), we have

(AV)" S[g;,1(2)|

(B3)
10711+

|°‘j,n(z)‘ ~

We now estimate (AV)" S[g;,](z). Let us compute ||¢; ||, first. From (3.30) and Lemma
A.2, one can easily see that

H'/’l,n

»2« == <!/l1,nﬁs[‘/11,n]> =N (% - 20{2 sinh 2p0e_2"p0) .
We can also see that
H‘/’Z,nH2 =7 (ﬂ + 2me” 2" sinh 2p0> ,

Wall? = Waalls = =2

In addition, we have

To e 2o

(ll’l,nv !/13,n> . ('pZ,na '//4,n> .

n

It then follows from (3.28) and (3.29) that

||(pl,n||i = <¢1,n k +k 'pB n> [llll,n] k +k1n [¢3n]>

2 n
e e e S )

=T 21, (B4)

In the same way, we also obtain

02,0 2 = % +e 2" 0(1), (B5)
los,ll> = =52 4 ne~*mo0(1), (B6)
lan]> = T2 4 ne~*00(1). (B7)

Let us introduce two notations to make expressions short. Let (p,w) be the elliptic
coordinates of z and let

b(z) = [ (B8)

cosw sinh p
sinwcoshp|’
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and
I~J(z) - (62(/)—/)0) _ 6—2(0—00))1 + (e2ﬂo _ e2P)U(_2w) + (e—Zp _ e—2ﬂo)U(2w)’

where U(0) is the rotation by the angle 0.
Lemma B.1 The matrix I~J(z) is non-singular for any 0 < w < n/2 and p > py.

Proof Put 5 := p — py. Then, we have

U(p,0) = (€% — e T — & (71 — 1) U(=20w) — e~ (1 — e™1) UQ2w).

Assume that 0 < w < /2. Since 5 > 0, we have
e (e —1) > e (1—e ) > 0.
It means that

e (e — 1) U(—2w)a+ e > (1 — e ) U(2w)a # ca

219

(B9)

for any real number ¢ and constant vector a, which implies that ﬁ(p,w)a = 0, and hence

ﬁ(p,w) is non-singular.
If w =0, one can easily show that

M o= _ 2P0 (6211 _ 1) _ e*2ﬂ0(1 _ 67271) £0

for any #, po > 0, and hence I~J(p, 0) is non-singular. Similarly one can see that I~J(p, n/2)

is non-singular.

O

Through long but straightforward computations, which will be presented at the end of

this subsection, we see that

T Rocle_"(p_pO)
(AV) Sl 0(0) =31 (an + Ut/ 2a) - Ul b,
—n(p—po)
AVYTS[2,1(0) =22 ™ (G r/2)a; + 22) - Unobia),

2h(p, w)?

modulo ne~™P*r)Q(1), and

3p—n(p—po)
(AV)T S, ) = = "2 [Dlpolan + U (/2) )] - Ul b,
3p—np—po) -
(AV)T S, ) =" [p.0) (U201 + 02) | - Ul b,

modulo e=P=r)0(1).
We have from (3.28) that

Dn
kO + kl,n

(AV)" S[p,1(z) = (AV)" S[¥,](2) + (AV) S[Y3,](2).
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One can see from (3.29) and (B 12) that

Dn T —n(p+po)
A < prpol,
o AV Sl )(2) < e

So, we have from (B 10) that

Rocle_”(”_f’ﬂ)

(AV)" S[g,,](z) = 2h(p, w)?

(ar + U(n/2)ay) - U(nw)b(z) (B14)

modulo ne~"*+r0)Q(1). Similarly, one can show using (B 11) and (B 13) that

Rale*n(l)*po)

(AV)"S[p,,](z) = 2h(p, w)?

(U(=n/2)a; + a3) - U(nw)b(z), (B15)

modulo ne=PP)Q(1).
Observe that

(a1 + U(r/2)a2) - Uno)b(@)|* + | (U(=n/2)a; + a2) - Uno)b(z)|’
= |a; + U(n/2)a:|* |b(z) >

It then follows from (B 14) and (B 15) that

2 R2 2 —2np P0)
"=—1———a; + U(n/2) a|* [b(z)|%,

(AV) Slpy, 10| + [(AV)S[ps,)(2) oo
modulo n?e=2"P)O(1). We choose constant vectors a; and a, so that
a; + U(n/2)a, # 0. (B16)
Then, we have
(V)T Slp, )@ + [(AV)Slg, 1 2)] ~ e,
which, together with (B4) and (B 5), shows
ot n(2)) + |otan(Z)]> = ne=2"P=P0) 4 22 O(1). (B17)
Similarly, one can show that
03D + lean(@]? 7 me™ 20 4200 (1), (B18)
Proof of Theorem 4.3. In this proof (p, w) denotes the elliptic coordinates of z. Since
Jes () = Kyl 2 0 + [k(e) — Kjal?, (B19)

it follows from (B 2) that

|otj.n(2)
E(us — F ZZazﬂk(q 5. (B 20)

kil
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Since k(c) = ko, we see from (3.31) that
[k(c) = kjn| = cone™ " +n*2e=0(1),  j=1,2,

where
q
A42u

Co =
We also see from (3.31) that
lk(c) = kju| = C

221

(B21)

(B22)

for some constant C independent of n for j = 3,4. It then follows from (B 17) and (B 18)

that
ne—2mp—po)

Z o2 + 5 n2 —dnpo *

n=1

E(ll5 -

(B23)

For 0 < 6 < 1, let N > 1 be the first integer such that 5 > coNe 2N?. Then, we have

SUN ~ c(l)/NNl/Ne_Z”O = e 2 4 o(1),

that is,
N L10 0
2po 8o

We then write

n(p—po)
=:1 11
252_1_0”2 —4npg Z+Z N+ N-
n=1 n<N  n>N
For the first term, we have
—2n( ) 2n(3po—p) N
ne p Po . e PO—P 2(3p07ﬂ)5 ds
IN ~ = ~ e —.
n2 —4npo n 1 s
n<N n<N

If pg < p < 3po, then one sees using an integration by parts that

d
S
/ e2Bpo—p)s 22 N —1,2NGpo p),
1 S

(B24)

as N — oo. It is easy to see that f 2= ds  Jog N if p = 3po, and f Wpo=pisds 1

if p > 3po. So we obtain that

=1 §—(3—p/po) i
1230—0) llogd| ™ & . if po < p < 3po,

2o ™ ) log llog 6], if p = 3po,

nsN 1, if p > 3py.

On the other hand, we have

1
Iy ~ 5 Z ne = 2Mp—po) llog 4| §P/Po=3.

n>N
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So, we have from (B 23) and (B 24)

logd|6=3tP/0 if py < 3p0,
E(us — F.) ~ |logé| it po < p < 3po
1 if p > 3po.
Since E(F,) < oo, we have (4.19), and the proof is complete. m|

Proof of Theorem 4.4. Here, we denote by (p,w) the elliptic coordinates of x and by
(02, ;) those of z. It follows from (B 1) and (B 19) that

; |t (2))|
- '\Z%%M% ) Dl St

We then have from (B21) and (B22) that

s — z<x>l<ZZe'2if£(f,, Sl |+ZZ'°"” S

I ,nll

It then follows from (B4)—-(B7), (A 27), (A28), (B17), and (B 18) that

—n(pz—po) p—n(p—po)

|U5(X) | S Z Z ne—2np0n—l/2 n + Z Z _1/2 7n(pip0)
X p—np+p2—4po)
Z e

n=1

This completes the proof. o

Proof of Theorem 4.5. Since k(c) = —ko, we obtain from (3.31)

‘k(c) - kj,n‘ ~ 1’ .]: 1529 (B25)
and
2
q 2 —dn —4n .
k(c) — ki, = ———=n"e”"° 4+ ne="0(1), = 3,4. B26
[k(c) — kjal 1G4 20 (1, j (B26)
The rest of the proof is similar to that of Theorem 4.3. a

Theorem 4.6 can be proved in the same way as Theorem 4.4 using (B25) and (B 26).
Let us prove (B 10)—(B 13). We prove only (B 12) that is most involved and the rest can
be proved similarly. Let

e2p—=po) _ o=2(p—po) o ) 2o _ o2 s ) e~ — =20
ooy PP T e BT T e

hi(p, w) =
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where h(p, w) is defined in (A 26), and let

_ [fulpo)| _ Cn(p—po) |COS O
filp. ) = fi2(p, )] hip, w)e | sin na)} '

_ le(p,w)_ o) [cos(n +2)w
felpr ) = ap,o)] = holp,@)e™7 | sin(n + 2)@}

_ [falpo)] _ Cnlp—po) [COS(M = 2)
bip o) = fa(p.w)] halp, w)e ™ sin(n — 2)w }

Then, one can see Lemma A.1 that

2
S[3,1(0 ) = 28 [fi(p, ) + Da(p, ) + B, 0)] + 1l MO(), (B27)

Straightforward computations yield

dpf11 = (Oph1 — nhy) e~ cos no,

Opfi1=ce —p=0) (3, hy cos nw — nhy sinnw),

which can be rewritten as

e e LRl v B

Recall the following chain rule:

V= Ko [ }

where

Clp,w) = [
It then follows from (B 28) that

coswsinhp —sinwcoshp
sinwcoshp  coswsinhp

R
Vi = e "e=r) [(Vh ) cos nw — —=nhiC(p, ) {Cés nw” )

h sin nw

Observe that
COS W

C(p, ») Lin nw} = U(nw)b(p, »),
where b(p, w) is defined in (B 8). So, we have
R
Vi = e "p=r0) [(Vh )cosnw — hznhlU(nw)b(p,w)] . (B29)

Likewise, one can show that

Vi = e "p=r0) [(Vhl) sin nw + = nhlU(n/2 w)b(p, ® )} . (B 30)
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It follows that

(AV){ =a; - V(F); +a,- V(Fi)

R
= ¢~ p=r0) [(a1 - Vhy)cosnw — nh2hl a; - U(nw)b(p, w)

nRh1
h2

+ (a2 - Vhy) sinno + ——a, - U(n/2)U(no)b(p, w)} .

Note that 0%hj, |of < 1, o € N2, j = 1,2,3, is uniformly bounded as n — oc. Thus, we
have

nRe—ﬂ(p—po)hl

Av)] = "R oy UG )bip,0) + a2 - Ut/ 2 UG0)bip, )]
—n(p—po)
= MREET fay 4 UG/2)m0] - Ulno b, ), (B31)

where the equalities hold modulo e="?=P)O(1) terms.
Similarly, one can show that

Vi = e Me=r0) [(th) cos(n + 2)o

- %{nU(Zw)U(nw) + 2sin(n + 2)wU(n/2)}b} ,
Yy = e o) [(th) sin(n + 2)o
_ Rh—}zle(—n/Z){nU(Zw)U(nw) + 2cos(n + 2)(3]}[)} ,

and
Vs = o= [(th)cos(n D

. %{nU(_zw)U(nw) -2 sin(n - Z)COU(TC/2)}b:|:

V3 = e o) [(vm) sin(n — 2)o
—’%gilﬁ—ﬁ/zﬁnlﬁ—laﬂlﬂnw)4—200“n——Zmﬂ}q.

So, we have

nRefn(pfpo)hz

(AV)] = —"——5——U(=20) [a1 + U(r/2)a;] - UGno)bip,w),  (B32)
—n(p—po)
AV)f = f”khizp’”lj(zw) a1 + U(r/2)ay] - U(no)b(p, o). (B33)

Note that

I+ hyU(=20) + hsUQw) = K*U.
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Since

2
(AV)"S[Y;,] = % (AV){ + (AV)L +(AV){) +nte "0 =mO(1),

we obtain (B 12) from (B 31)—(B 33).

https://doi.org/10.1017/50956792517000080 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792517000080

