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SUMMARY
Recently, autonomous field robots have been investigated as a labor-reducing means to scout through
commercial strawberry fields for disease detection or fruit harvesting. To achieve accurate over-bed
and cross-bed motions, it is preferred to design the motion controller based on a precise dynamic
model. Here, a dynamic model is developed for a custom-designed strawberry field robot consid-
ering terramechanic wheel–terrain interaction. Different from existing models, a torus geometry is
considered for the wheels. In order to obtain a control affine model, the longitudinal force is curve-
fitted using a polynomial function of the slip/skid ratio, while the lateral force is curve-fitted using
an exponential function of both the slip/skid ratio and slip angle. An extended Kalman filter (EKF)
is then developed to estimate the unknown parameters in the approximated model such that the state
variables propagated by such a model can match experimental data. The approximated model and
the EKF-based parameter estimation method are then validated in a commercial strawberry farm.

KEYWORDS: Wheel–terrain interaction model (WTIM); Wheeled mobile robot (WMR); Field
robot; Extended Kalman filter (EKF).

1. Introduction
Emerging robotic techniques in agriculture have recently become the focus of much attention.
Robotics can be used in agriculture to reduce labor costs and enhance farming efficiency, thus increas-
ing profitability. WinterGreen Research, a private research company, published a study entitled
“Agricultural Robots Market Shares, Worldwide, 2014 to 2020,” which predicted that the agricul-
tural robot market will expand from $817 million in 2013 to $16.3 billion by 2020.1 Furthermore,
WinterGreen Research predicted that while many unmanned aerial vehicles have been previously put
to use in agricultural research, autonomous wheeled mobile robots (WMRs) will ultimately be more
useful in this field.1 This expansion in the number of mobile robots used in agriculture is believed
to be a consequence of the increased size of modern commercial farms. It is no longer feasible for
human workers to cover an entire field by foot in a single 8-h work day. Furthermore, the structured
nature of many commercial agricultural fields makes them ideal for robotic scouts that can efficiently
work long hours over large distances. Autonomous robotics could enhance farm productivity in every
stage of crop cultivation from planting to harvesting.

∗ Corresponding author. E-mail: xl.kong@knights.ucf.edu

https://doi.org/10.1017/S0263574719000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000134
mailto:olbap323@gmail.com
mailto:yunjun.xu@ucf.edu
xl.kong@knights.ucf.edu
https://doi.org/10.1017/S0263574719000134


1546 Approx. control affine model for Ag. field robot

In recent years, many advances in robotics have closed the technological gaps required to make
agricultural mobile robots work efficiently in farms. For instance, low-cost ultrasonic range find-
ers were utilized in the design of a row guidance system for a white asparagus harvesting robot.2

Penetrometer devices were used with ground robot to analyze the soil compaction and create 3D
soil maps.3 Machine vision has been used in strawberry harvesting4 and corn’s nitrogen deficiency
detection.5 Spectroscopic imaging, a subfield of machine vision, has been widely used in rapid dis-
ease detection.6 Despite these advances, there are still problems that must be solved before fully
automated agriculture operations can be realized. One critical need in off-road robots is the dynamic
modeling of such robots in loose terrain. While there are several techniques available for modeling
a wheeled vehicle’s dynamic motion in loose terrain, they are computationally expensive and the
obtained models are not suitable for controller designs.

In the past, control and localization schemes for WMRs traveling on hard surfaces have been
accomplished for no-slip, non-holonomic wheel cases.7, 8 Researchers have been able to successfully
apply the no slip constraint to autonomous robots in agriculture,2 but these robots were not required
to do any radical maneuvers. In contrast, slipping and skidding will naturally occur when a robot
makes sharp turns. A navigation estimation scheme must then be designed, as traditional control
schemes based on the no-slip constraint are inappropriate for these maneuvers. In loose terrains,
wheel slip ratio and slip angle play critical roles in the dynamics of WMRs of all configurations.
In refs. [9, 10], the authors use a kinematic constraint for a four-wheel skid steer robot that is bor-
rowed from the design of treaded ground vehicles. This constraint uses data collected experimentally
to relate the slip/skid ratio to the yaw rate of the vehicle. While the authors have shown success in
experiments, such a constraint is purely empirical and has no physical foundation, making it unpre-
dictable for new terrain types. Furthermore, this kinematic constraint completely neglects the slip
angle.

The research conducted in this paper was carried out with a strawberry orchard scout robot in
mind. The realization of a robotic scout for disease detection in strawberry orchards has several con-
trol system design criteria that have not been addressed by previous works. Commercial strawberry
orchards are grown in organized plasticulture rows that can range in size and spacing. From the
authors’ experience in three commercial fields in Florida, the beds generally range in size from 52.42
to 100 cm and are spaced from 45.72 to 55.88 cm apart. These dimensions will require a tight turning
radius of approximately 81.28 cm during cross-bed motion maneuvers. Additionally, the three lead-
ing states for strawberry production, California, Florida, and Oregon,11 have different climates and
topologies. With this in mind, the paper presents an approximated wheel–terrain interaction model
(WTIM) suitable for controller designs under tight turns when slipping/skidding are at their highest,
and furthermore presents an estimation scheme for unknown parameters in the derived approximated
model. Here, “parameter estimation" refers to identifying a set of parameter values such that the
state variables propagated via the approximated model can match well with the experimental data,
adapting to new field environments.

We begin with the terramechanic WTIM, first developed in the 1950s by Bekker and later on by
Wong.12, 13 The terramechanic WTIM has become popular for off-road vehicle designs due to its
accuracy and reduced computational cost when compared with finite element methods. In terms of
controllability, however, terramechanic WTIMs are not analytical and thus cannot easily be imple-
mented in control or guidance designs. Here terramechanic WTIMs are utilized to gain a more
fundamental understanding of the dominant forces that can characterize a mobile robot’s dynam-
ics in off-road terrains. The main contributions of this study are as follows: (i) a torus-shaped wheel
is considered when deriving the WTIM; (ii) the full WTIM is curve fitted to achieve an approximated,
control affine model; and (iii) the unknown parameters in this approximated model are estimated via
an extended Kalman filter (EKF).

This paper is organized as follows. In Section 2, the rigid body dynamics model for an agricul-
tural field robot is shown. In Section 3, a terramechanic method for calculating the terrain reaction
forces on a torus-shaped wheel is presented. In Section 4, an approximated WTIM is derived via a
curve fitting method. In Section 5, an EKF is designed to estimate the unknown parameters in the
approximated WTIM. In Section 6, the parameter estimation scheme and the approximated model
are validated through a scouting motion experiment crossing three strawberry beds in a commercial
strawberry farm. Conclusions are given in Section 7.
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Fig. 1. View of robot displaying the inertial and body fixed coordinates.

2. Skid Steer Kinematics and Field Robot 2-D Dynamics

2.1. Reference frames
A diagram of the field robot is shown in Fig. 1. The robot is assumed to travel on a fixed horizontal
plane, thus the complete posture of the robot can be defined in an inertial reference frame �I by
two position coordinates (xI , yI ) and a heading angle ψR . Here the subscript I denotes the inertial
reference frame and the subscript R denotes the body fixed frame �B placed at the center of mass of
the robot. Accompanying �I and �B are four local wheel reference frames, (xi , yi ), i = 1, 2, 3, 4.
The local wheel reference frames �i are fixed in �B and share the same orientation. The distance
from the origin of �B to the origin of �i is denoted by the position vector ρi , i = 1, 2, 3, 4. W is
the distance from the robot center of mass to the wheel center of mass along the body fixed y-axis.
Likewise, L refers to the distance from the robot center of mass to the wheel center of mass along
the body fixed x-axis.

2.2. Skid-Steer kinematics
The wheels are grouped into the right and left wheel banks. For example, the right wheel bank shown
in Fig. 1 consists of wheels 1 and 3, whereas the left wheel bank consists of wheels 2 and 4. As
opposed to separate descriptions for each wheel, some of the wheel kinematics can be described in
terms of the wheel banks. For instance, the right and left wheel bank angular velocities are ωr =ω1 =
ω3 and ωl =ω2 =ω4, respectively. The longitudinal velocities of the right and left wheel banks can
be written in their respective local reference frames as

ẋr = ẋ1 = ẋ3 = ẋR − W ψ̇R

ẋl = ẋ2 = ẋ4 = ẋR + W ψ̇R
(1)

and the lateral velocities of the wheels are

ẏ1 = ẏ2 = ẏR + Lψ̇R

ẏ3 = ẏ4 = ẏR − Lψ̇R
(2)

2.3. Equations of motion
Let (ẍR, ÿR, ψ̈R) be the longitudinal, lateral, and yaw accelerations of the robot in the body fixed
frame �B . The equation of motion of the robot can be derived as

ẍR = ψ̇R ẏR +
∑

Fw,x/m

ÿR = −ψ̇R ẋR +
∑

Fw,y/m

ψ̈R =
∑

Mext/Iz,

(3)

where m is the mass of the robot, Iz is the moment of inertia about the z-axis,
∑

Fw,x ,
∑

Fw,y , and∑
Mext are the summations of forces and moments due to wheel–terrain interactions.
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Fig. 2. Side view and front view of a wheel with respect to loose terrain.

Assumption 2.1. For scouting in strawberry fields, high-speed maneuvering is not required; thus
constant wheel loads are assumed and aerodynamic forces are neglected in the model.

3. Individual WTIM

3.1. Terramechanics model for wheel–terrain interaction
Here the terrain reaction forces on an individual wheel are derived, mainly using the terramechanic
method.14 In the past, terramechanic models have been utilized in the design of terrestrial rovers,
which use wheels with a cylindrical shape.15 For a typical agricultural field robot, the wheel has a
torus or donut shape. The bulldozing forces are not needed for the torus-shaped wheels in contrast
with the cylindrical-shaped wheels.14, 15 However, two extra coordinate transformations need to be
included in the integrals when the terrain reaction forces are computed for torus-shaped wheels. This
section focuses on the WTIM for an individual wheel. Therefore for clarity and brevity, the subscript
associated with wheels 1, 2, 3, and 4 is omitted.

3.1.1. Torus geometry and sinkage depth. The surface of a torus is generated by revolving an ellipse
around an axis coplanar with the ellipse. As shown in Fig. 2, the wheel hub reference frame �H is
defined at the center of wheel hub O , where the xh-axis is parallel to the horizontal plane and points
towards the wheel movement and the zh-axis points vertically downward. For an arbitrary point P on
the interaction surface of the wheel, the wheel surface reference frame �S includes τt , τl , and σn as
the tangential, lateral, and normal directions, respectively.

In Fig. 2, ω is the individual wheel angular velocity. The entry and exit sinkage depths, hf and
hr , are defined as the distances a wheel penetrates the terrain, which affect the contact patch or the
region of the wheel surface that makes contact with the terrain. As will be seen in the derivation
of the terramechanic WTIM, it is convenient to describe the contact patch by four angles: the entry
angle θ f , the exit angle θr , the right bound angle ψr , and the left bound angle ψl . The right bound and
the left bound angles, ψr and ψl , are defined as the angles from the wheel rim depressed into the soil
at the center of the wheel to the right and left surfaces of the soil at the wheel sidewalls, respectively.
The computation of these angles is based on ref. [14], as listed in Appendix A. An arbitrary point P
on the torus surface can be expressed by the position vector r p from the wheel hub center16 as

r p =
⎡
⎣(c + a cosψ) sin θ

b sinψ
(c + a cosψ) cos θ

⎤
⎦, (4)

where c is the major radius, a is the minor radius, and b is half of the torus width. The angles of
revolution θ and ψ are shown in Fig. 2.

3.1.2. Wheel–terrain interaction forces. The force acting on a steadily rotating wheel, Fw =[
Fw,x , Fw,y, Fw,z

]T
, can be found by integrating the tangential, lateral, and normal stress components

along the wheel–terrain contact patch12, 13, 17 as
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Fig. 3. Longitudinal reaction force simulated using the full WTIM with a torus shape.

Fw,x =
∫ ψr

ψl

∫ θ f

θr

[(τt cos θ + τl sinψ cos θ + σn cosψ sin θ) d] dθdψ

Fw,y =
∫ ψr

ψl

∫ θ f

θr

[(τl cosψ − σn sinψ) d] dθdψ

Fw,z =
∫ ψr

ψl

∫ θ f

θr

[(−τt sin θ + τl sinψ cos θ + σn cosψ cos θ) d] dθdψ,

(5)

where d � (c + a cosψ)
√

a2sin2ψ + b2cos2ψ . The computation of τt , τl , and σn is based on refs.
[14, 17] and a brief derivation of these terms included is in Appendix A. It is worth mentioning that
for the planar motion in this study, the z-direction reaction force Fw,z is not shown in the dynamic
model.

3.1.3. Slip/Skid ratio and slip angle. The effects of wheel slip/skid ratio λ and slip angle β on
the longitudinal and lateral terrain reaction forces are investigated for a wheel under constant load
(Assumption 2.1). The wheel slip/skid ratio refs. [14, 17] is expressed as

λ=
{
(rω− ẋ) / (rω) , |ẋ | ≤ |rω|
(rω− ẋ) /ẋ, |ẋ |> |rω| , (6)

where ẋ is the wheel longitudinal velocity expressed in �H , and r is the radius of the individual
wheel. The numerator here is the difference between the ideal wheel velocity under a no-slipping or
-skidding condition and the actual wheel velocity ẋ .

The wheel slip angle refs. [14, 17] β is the angle between the longitudinal and lateral velocity
components of the wheel as

β = tan−1 (ẏ/ẋ) , (7)

in which ẏ is the lateral velocity components of an individual wheel.

3.1.4. Terramechanics WTIM simulation. The derived WTIM is simulated for single-wheel, linear
motion. The simulation results are used to analyze the relationships among slip/skid ratio, slip angle,
longitudinal force, and lateral force. The parameters related to off-road soils are taken from ref. [18]
as listed in Table A1 of Appendix A. The longitudinal and lateral forces are evaluated as the slip ratio
varies from −0.5 to 0.5 and the slip angle varies from 0◦ to 16◦ following refs. [14, 18].

As shown in Fig. 3, the longitudinal force Fw,x varies significantly with respect to the slip ratio
λ due to the changing shear deformation, while it maintains relatively stationary when the slip
angle β changes. It can be seen in Fig. 4 that the lateral force Fw,y depends not only on λ but
also on β. It is worth noting that the simulation results achieved here match well with the results
shown in ref. [14].
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Table I. Goodness of fit for the longitudinal force in the approximated WTIM.

Polynomial
Slip angle

β = 4◦ β= 8◦ β= 12◦ β= 16◦

Third order MAE 0.7366 0.6491 0.5311 0.4204
R-square 0.9887 0.9923 0.9956 0.9977

Fourth order MAE 0.5110 0.4433 0.3672 0.3174
R-square 0.9955 0.9970 0.9982 0.9989

Fifth order MAE 0.1575 0.1379 0.1452 0.1709
R-square 0.9994 0.9995 0.9996 0.9996

Sixth order MAE 0.1267 0.1394 0.1526 0.1748
R-square 0.9996 0.9996 0.9996 0.9996

Fig. 4. Lateral reaction force simulated using the full WTIM with a torus shape.

3.2. Approximated WTIM
While the terramechanic model shown in Section 3.1 allows for accurate simulation and analysis
of the wheel–terrain interaction forces in soft terrain, it does not have a control affine format10, 13, 19

and thus is not convenient for guidance, navigation, and control design. Also, the full WTIM is
computationally expensive. A large body of research has shown that λ and β are two critical elements
in off-road wheel–terrain interactions.9, 10, 14, 15, 17–21 Based on Fig. 3, a polynomial function is used
to approximate the longitudinal force Fw,x as

Fw,x =
k∑

i=0

ciλ
k, (8)

where ci , i = 0, 1, ..., k are the parameters of the polynomial function.
Observing the trend of lateral force in Fig. 4, Fw,y decreases when the slip ratio λ increases and

increases along β increases. Thus we approximate Fw,y as

Fw,y = −d1β
(
d2 + e−d3λ

)
, (9)

where d1, d2, and d3 are the parameters to be identified.
Two criteria are used to quantify the performance of the approximation: the mean absolute error

(MAE)24 and the R-square25 value. In Table I, it can be seen that the fourth-order polynomial’s MAE
value is the lowest, while the R-square value increases as the order of the polynomial fit increases.
However, it is worth mentioning that a higher order polynomial will have higher computational costs
and will introduce more parameters which must be identified. Therefore, a fourth-order polynomial
was chosen to approximate the longitudinal force in this study. Table II lists the performance of the
approximation for the lateral force. Here, the MAE values are below 0.15, while the R-square values
are all above 0.99 for each slip angle case. Thus, we can argue that the approximated WTIM longitu-
dinal force and lateral force can be used when controlling the field robot. Any approximation errors
can be handled by a well-tuned robust or adaptive controller. It is worth noting that the parameters
obtained off-line via the least squares approach can be used as initial guesses; the actual values can
vary with terrain conditions and should be identified online via the EKF, discussed in a later section.
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Table II. Goodness of fit for the lateral force in the approximated WTIM.

Evaluation
Slip angle

β= 4◦ β= 8◦ β= 12◦ β= 16◦

MAE 0.0213 0.0351 0.0585 0.1254
R-square 0.9999 0.9999 0.9998 0.9996

4. Approximated Control Affine Model
Based on the approximated longitudinal force in Eq. (8) and the lateral force in Eq. (9), the four-wheel
skip–skid robot can be modeled as the following nonlinear control affine model:

ẋ = f (x) + g(x)u, (10)

where x ∈ �11×1, u ∈ �2×1, f (x) ∈ �11×1, and g(x) ∈ �11×2 are the state vector, control variables,
state function, and control input matrix, respectively. Here x is chosen to be

x = [
ẋR, ẏR, ψ̇R, ωr , ωl, λr , λl, β1, β2, β3, β4

]T
, (11)

where ψ̇R is the yaw rate of the robot. The commands to the right and left wheel banks, ωc,r and ωc,l ,
are included in the control variables u ∈ �2×1 as

u = [
ωc,r , ωc,l

]T
(12)

Using Eqs. (3), (8), and (9), the motion of the field robot is governed by

ẍR = ψ̇R ẏR + 2
k∑

i=0

ci
(
λk

r + λk
l

)
/m

ÿR = −ψ̇R ẋR − d1 [kr (β1 + β3)+ kl (β2 + β4)] /m

ψ̈R =
{

2W
k∑

i=0

ci
(
λk

l − λk
r

)+ d1L
[
kr (β3 − β1)+ kl (β4 − β2)

]}
/I,

(13)

where kr � d2 + e−d3λr and kl � d2 + e−d3λl , respectively. The angular velocities of the wheel banks
are regulated by a well-tuned Proportional-Integral-Derivative (PID) controller and governed by the
following first-order ordinary differential equation

ω̇ j = kω
(
ωc, j −ω j

)
, j = r, l, (14)

where kω is a motor time constant that can be found experimentally. The state equations for the right
and left wheel slip/skid ratios are found by taking the time derivative of Eq. (6) as

λ̇ j = fλ, j + gλ, jωc, j , j = r, l, (15)

in which

fλ, j =
{−ω j r

(
kω ẋ j + ẍ j

)
/(r2ω2

j ), |ω j r | ≥ |ẋ j |
−ω j r

(
kω ẋ j + ẍ j

)
/ẋ2

j , |ω j r |< |ẋ j | j = r, l. (16)

and

gλ, j =
{

rkω ẋ j/(r2ω2
j ), |ω j r | ≥ |ẋ j |

rkω ẋ j/ẋ2
j , |ω j r |< |ẋ j | , j = r, l. (17)

Taking the time derivative of Eq. (7), the state equation for the slip angle can be derived as

β̇i = (ẋi ÿi − ẏi ẍi ) /
(
ẏ2

i + ẋ2
i

)
, i = 1, 2, 3, 4, (18)

where ẋi and ẏi can be found in Eqs. (1) and (2), respectively. The longitudinal and lateral
accelerations ẍi and ÿi of the ith wheel in the inertial frame �I can be obtained by
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ẍ1 = ẍ3 = ẍR − W ψ̈R

ẍ2 = ẍ4 = ẍR + W ψ̈R

ÿ1 = ÿ2 = ÿR + Lψ̈R

ÿ3 = ÿ4 = ÿR − Lψ̈R

(19)

Combining all the aforementioned equations, the state function f(x) is

f (x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̇R ẏR + 2
[∑k

i=0 ci
(
λk

r + λk
l

)]
/m

−ψ̇R ẋR − d1 [kr (β1 + β3)+ kl (β2 + β4)] /m{
2W

∑k
i=0 ci

(
λk

l − λk
r

)+ d1L [kr (β3 − β1)+ kl (β4 − β2)]
}
/I

−kωωr

−kωωl

fλ,r
fλ,l

(ẋ1 ÿ1 − ẏ1 ẍ1) /
(
ẏ2

1 + ẋ2
1

)
(ẋ2 ÿ2 − ẏ2 ẍ2) /

(
ẏ2

2 + ẋ2
2

)
(ẋ3 ÿ3 − ẏ3 ẍ3) /

(
ẏ2

3 + ẋ2
3

)
(ẋ4 ÿ4 − ẏ4 ẍ4) /

(
ẏ2

4 + ẋ2
4

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

and the control input matrix g(x) is

g(x)=
[

0 0 0 kω 0 gλ,r 0 0 0 0 0
0 0 0 0 kω 0 gλ,l 0 0 0 0

]T

(21)

In the obtained control-affine approximated model, the unknown parameters ci , i = 0, ..., 4 and
di , i = 1, 2, 3 will be estimated via an EKF.

5. States and Unknown Parameters’ Estimation
Directly measuring the unknown parameters ci , i = 0, 1, 2, 3, 4 and di , i = 1, 2, 3 in the derived
model is challenging. Furthermore, these parameters vary with different terrains, such as loamy
soils and sandy soils. To tackle these issues, a hybrid EKF is developed to estimate the unknown
parameters of the proposed approximated WTIM, such that the propagated state variables can match
experimental data.

The state variables and the unknown parameters to be simultaneously estimated are xext =[
ẋR, ẏR, ψ̇R, ωr , ωl, c0, c1, c2, c3, c4, d1, d2, d3

]T
. The measurements obtained from an inertial mea-

surement unit (IMU) and quadrature wheel encoders are yout = [
ẍR, ÿR, ψ̇R, ωr , ωl

]T
. According to

Eqs. (13) and (14), the process model and the measurement model can be expressed, respectively, as

fext (xext , u,w)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̇R ẏR + 2
[∑k

i=0 ci
(
λk

r + λk
l

)]
/m

ÿR

ψ̈R

−kωωr

−kωωl

0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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Fig. 5. DDAGR in front of a strawberry bed in a commercial strawberry orchard.

and

h(xext , v)=

⎡
⎢⎢⎢⎢⎢⎣

ψ̇R ẏR + 2
[∑k

i=0 ci
(
λk

r + λk
l

)]
/m

−ψ̇R ẋR − d1 [kr (β1 + β3)+ kl (β2 + β4)] /m
ψ̇R

ωr

ωl

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

v5

⎤
⎥⎥⎥⎦, (23)

where w = [wi ]i=1,...,13 and v = [vi ]i=1,...,5 are assumed to be zero mean white Gaussian noises with
covariances of Q and R, respectively. The yaw rate ψ̇R and the left and right wheel bank angular
velocities, ωr and ωl , in Eq. (23) can be directly ascertained from the state estimate. The detailed
steps in designing the hybrid EKF can be found in ref. [22].

6. Experiment Validation
A scouting experiment is conducted to validate the EKF algorithm in estimating the state variables
and the unknown parameters of the approximated, control affine model. Here, the Disease Detection
Agricultural Ground Robot (DDAGR), shown in Fig. 5, is used as the robot platform and is com-
manded to cover three strawberry rows in a commercial farm. Afterwards, the EKF is run off-line
using the data acquired in the experiment.

6.1. DDAGR description
The length of DDAGR is 91.7 cm and its width and height are adjustable to fit different strawberry
orchards with dimensions ranging between 146.8−196.8 cm and 82.6−107.6 cm, respectively. For
locomotion, DDAGR is equipped with two 24-Volt DC wheelchair motors; for navigation, DDAGR
is equipped with an array of onboard sensors including an InvenSense MPU 6050 and two US Digital
E3 optical quadrature encoders. The control system consists of an Arduino Mega 2560 in conjunction
with a SuperDroid Encoder Buffer and a Dimension Engineering Sabertooth 2×60 amp voltage
regulator. The software installed on the Arduino can accomplish three tasks: PID regulation of the
wheel shaft angular velocity, orientation estimation of the robot, and data acquisition for the control
system. The wheel shaft angular velocity control law and the orientation estimation scheme have a
1 kHz update rate, whereas the raw sensor samples are streamed from the data acquisition portion
of the software at 125 Hz. An IMU is placed at the robot center of mass and the optical encoders
are placed on the rotor shaft of the DC motors. The physical characteristics of DDAGR are listed in
Table III.

6.2. Experiment validation
Experiment is conducted in a sandy loam commercial strawberry farm. The strawberry bed size is
about 1 m and the spacing between beds is roughly 0.5 m. The scouting path consists of two phases
as shown in Fig. 6. Phase 1 is referred to as the over-bed motion. Here, the robot scouts over the bed
along the bed centerline with a constant speed. Phase 2 is referred to as the cross-bed motion, which
is further separated as three sections. First, a 90◦ in-site rotation is taken after the robot passes the
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Table III. DDAGR physical properties.

Parameter Value Unit Description

m 185 kg Robot mass
Iz 100 kg · m2 Moment of inertia about the z-axis
r 28 cm Wheel radius
W 75 cm Half of robot width
L 35 cm Half of robot length

Fig. 6. A scouting path covering three rows in a commercial strawberry farm.

headland of the current row (Phase 2.1). Second, a translation allows DDAGR to move towards the
next row (Phase 2.2). Finally, another 90◦ in-site rotation makes the robot align with the next row
(Phase 2.3). A PID controller and a sliding mode controller are applied to the over-bed motion and
the cross-bed motion, respectively.23 The wheel angular velocities are varied at the time instances as
listed in Table IV with a time step of 
t = 0.13s.

The initial error covariance matrix P0, the process covariance matrix Q, and the measurement
covariance matrix R used in the experiment, respectively, are

P0 = diag
{
[0.01 0.01 1 0.002 0.002 10 10 10 10 10 10 10 10]

}
(24)

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag
{
[10 10 600000 100 100 1 1 1 1 1 1 1 1] × 10−5

}
, 0 s ≤ t < 118.69 s

diag
{
[60000 15000 200000 100 100 1 1 1 1 1 1 1 1] × 10−5

}
, 118.69 s ≤ t < 134.16 s

diag
{
[40000 10000 10000 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 134.16 s ≤ t < 142.35 s

diag
{
[40000 40000 250000 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 142.35 s ≤ t < 157.3 s

diag
{
[40 10 2000 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 157.3 s ≤ t < 762.58 s

diag
{
[60000 15000 500000 1000 1000 1 1 1 1 1 1 1 1] × 10−5

}
, 762.58 s ≤ t < 777.66 s

diag
{
[40000 20000 250000 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 777.66 s ≤ t < 785.33 s

diag
{
[40000 20000 20000 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 785.33 s ≤ t < 800.41 s

diag
{
[20 1 200 10000 10000 1 1 1 1 1 1 1 1] × 10−5

}
, 800.41 s ≤ t < 918.19 s

(25)
and

R = diag
{[

0.015 0.1 0.015 10−5 10−5
]}

(26)

The estimated wheel angular velocities are shown in Fig. 7. It can be seen that the estimated
angular velocities track the measurements and match the commands listed in Table IV. Figure 8
shows the measured and estimated longitudinal velocity ẋR , lateral velocity ẏR , and yaw rate ψ̇R .
The results indicate that DDAGR starts with an over-bed motion scouting over the first strawberry
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Table IV. Wheel bank velocities used in the scouting motion experiment.

t (s) ωr(rad/s) ωl(rad/s)

0.00−118.69 0.82 0.82
118.69−134.16 0.32 −0.32
134.16−142.35 0.82 0.82
142.35−157.30 0.32 −0.32
157.30−762.58 0.82 0.82
762.58−777.66 −0.32 0.32
777.66−785.33 0.82 0.82
785.33−800.41 −0.32 0.32
800.41−918.19 0.82 0.82

0 100 200 300 400 500 600 700 800 900 1000
–0.01

0

0.01

0 100 200 300 400 500 600 700 800 900 1000
–0.01

0

0.01

(a)

(b)

Fig. 7. Measured and estimated wheel velocities of DDAGR in the scouting motion: (a) left wheel angular veloc-
ity and (b) right wheel angular velocity. The dotted and solid lines represent the measurement and estimation,
respectively.
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Fig. 8. Measured and estimated velocities of DDAGR in the scouting motion: (a) longitudinal velocity, (b)
lateral velocity, and (c) yaw rate, where the dotted and solid lines represent the measurement and estimation,
respectively.
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Fig. 9. Trace of the error covariance matrix of DDAGR in the scouting motion.
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Fig. 10. The estimated trajectory of DDAGR in the scouting motion.
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Fig. 11. Parameter estimation of DDAGR approximated WTIM in the scouting motion: ĉ0, ĉ1, ĉ2, ĉ3, and ĉ4

are the parameters in the longitudinal force model, while d̂1, d̂2, and d̂3 are the parameters in the lateral force
model.

bed with a longitudinal velocity about 0.23 m/s. At about 120 s, it turns and starts moving towards
the second bed. The turning yaw rate is about 0.15 rad/s, and the translation is with a longitudinal
velocity around 0.23 m/s. Beginning at 160 s, DDAGR scouts over the second bed with a constant
longitudinal velocity of 0.23 m/s. Once it reaches the headland of the second bed at around 790 s, a
cross-bed motion with a yaw rate of 0.15 rad/s and a longitudinal velocity of 0.23 m/s allows the robot
to move towards the third strawberry bed. From 800 to 920 s, the robot scouts the third strawberry
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bed with a longitudinal velocity of 0.23m/s. The trace value of the error covariance matrix is shown
in Fig. 9, indicating that the EKF is stable and works properly.

Figure 10 shows the estimated scouting motion trajectory. The estimated trajectory is obtained by
integrating the estimated velocities. Referring to Fig. 8, DDAGR moves forward along the centerline
of the first bed with a longitudinal velocity of 0.23 m/s. After traveling about 30 m, it reaches the
headland of the first bed. The robot moves from the first bed to the second bed between 120 and 160
s, and then starts scouting over the second bed for about 130 m. DDAGR moves towards the third
bed from 760 to 800 s, scouts 40 m in the third bed, and then stops.

Figure 11 shows the estimates of unknown parameters of the approximated WTIM ĉi , i =
0, 1, 2, 3, 4 and d̂i , i = 1, 2, 3. Due to varying terrain and motion conditions, the estimated parame-
ters are stabilized at different values for different sections and phases. However, all these estimated
parameters vary within a small range. Therefore, it is not a challenging task to design a proper
controller that is robust or adaptive with respect to such parametric uncertainties.

7. Conclusion
In this study, a control affine dynamic model is developed for a ground robot designed to scout
throughout commercial strawberry fields. The approximated terramechanic WTIM considers a torus
wheel geometry, and a least squares curve fit is applied to obtain a control affine force model. The
unknown parameters in the derived model vary depending on terrain conditions, and thus an EKF is
designed to estimate those parameters, such that the propagated state variables via the approximated
model can match experiment data. A scouting motion experiment covering three rows of straw-
berry beds in a commercial farm validated the proposed approximated WTIM and the EKF-based
parameter estimation method.
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Appendix A. Terramechanics

A.1. Integral bounds
For clarity and completeness of the study, a brief derivation of terramechanic pressure equations
adopted from refs. [13] and [14] are listed here.

The first relationships between the entry and exit angles, θ f and θr , to the entry depth h f are
established for a wheel rolling horizontally on a plane. The entry angle θ f can be computed using

θ f = cos−1
(
1 − [

h f / (c + a)
])

(A1)

and the exit angle θr is

θr = θ f λθ , (A2)

in which λθ is the terrain compressibility ratio. The right and left bound angle ψr and ψl are
computing using

ψl = cos−1
(
1 − h f /a

)
(A3)

and

ψr = −ψl (A4)

The sinkage depth h f in the above equations is solved for using the search algorithm shown in ref.
[22].

A.2. Normal stress
The normal stress equation used in the model is

σn(θ, ψ)=
(
kc/bψ + kφ

)
rn
ψ θ̄

n, (A5)

in which n is the exponential coefficient, kc is the cohesion factor, and kφ is the angle of cohesion
factor. The term rψ θ̄ represents the effective location along the wheel. The radius of a vertical wheel
slice rψ can be found using

rψ = c + a cosψ (A6)
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The modified angle θ̄ is defined as

θ̄ =
{

cos θ − cos θ f ,

cos
{
θ f − [

(θ − θr/θm − θr )
] (
θ f − θm

)}− cos θ f ,

θm ≤ θ < θ f

θr < θ ≤ θm
, (A7)

in which θm is the point with the maximum normal stress, specified by the terrain properties a0 and
a1 in the equation of

θm = (a0 + a1λ) θ f , (A8)

where λ is the wheel slip ratio. In Eq. (A5), bψ is the effective width of the tire at point on the surface
which can be found using

bψ = 2b sinψ (A9)

A.3. Shear stress
The shear stress along the contact patch is a function of the shear deformation j that the wheel has
done on the terrain and the normal stress σ that the wheel imparts on the terrain.

τ (σ, j)= τm
(
1 − e− j/K

)
, (A10)

where j is the magnitude of the shear deformation of the terrain along the contact patch, namely

j = | j | =
√

j2
l + j2

t . Note that jt is the tangential deformation, jl is the lateral deformation, and the
normal deformation jn is assumed to be zero. The lateral and shear deformations will be derived
later in this appendix. K is the shear modulus, a constant terrain property parameter, and τm is the
maximum shear stress which is a function of the normal stress and can be computed by

τm = cm + σ tan φ, (A11)

which is dictated by the terrain cohesion property cm and the terrain angle cohesion property φ.
The shear stress in Eq. (A10) is broken into the lateral and tangential components using the

approach in ref. [14], where the shear velocity vector,
[
v j t v jl v jn

]T
, is utilized to separate the

tangential and lateral components as

τt(σ, j)= τt (σ, j)
(
v j t/

√
v2

j t + v2
jl

)
(A12)

and

τt(σ, j)= τt (σ, j)
(
v jl/

√
v2

j t + v2
jl

)
(A13)

The shear velocities of the wheel surface
[
v j t v jl v jn

]T
are the lateral and tangential components

of the absolute wheel velocity at any point along the wheel surface. Suppose the velocity of wheel
hub center is

[
vx , vy, vz

]T
and its angular velocity is

[
ωx , ωy, ωz

]T
, then the absolute velocity of an

arbitrary point
[
x, y, z

]T
on the wheel surface is

v(ψ, θ)=
⎡
⎣ṽx

ṽy

ṽz

⎤
⎦=

⎡
⎣vx +ωyz −ωz y
vy −ωx z +ωz x
vz +ωx y −ωy x

⎤
⎦ (A14)

The lateral and tangential components of the absolute wheel velocity can be expressed as

vj t = ṽx cos θ − ṽz sin θ (A15)

vjl = ṽx sinψ sin θ + ṽy cosψ + ṽz sinψ cos θ, (A16)

and

vjn = ṽx cosψ sin θ − ṽy sinψ + ṽz cosψ cos θ (A17)
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Table A1. Terramechanic WTIM parameter description and values for DDAGR.

Parameter Value Unit Description

a 5.0 cm Minor radius
a0 0.5 − Coefficient for θm

a1 0.5 − Coefficient for θm

b 10.16 cm Half of the wheel width
c 22.94 cm Major radius
cm 4140 Pa Cohesion coefficient
K 0.006 m Shear modulus
kc 13,190 N/mn+1 Cohesive modulus
kφ 692,000 N/mn+1 Friction modulus
n 0.5 − Exponential coefficient
λθ 0.9 − Coefficient for θr

φ 13 deg Internal friction angle

The shear deformation of terrain j that has occurred at a point along the wheel–terrain contact patch
can be calculated by integrating the shear rate over time. In the terramechanic WTI models, if we
assume that the states rolling on horizontal ground are quasi-steady, the velocity v and the angular
rate ω at the wheel hub can be treated as constants during a brief time interval of the integration. The
shear deformation of the terrain j in the lateral and tangential directions can be calculated by using

jt (ψ, θ)=
[
ṽx

(
sin θ f − sin θ

)+ ṽz
(
cos θ f − cos θ

)]
/ωy (A18)

and

jl (ψ, θ)=
[
k1ṽx sinψ + ṽy

(
θ f − θ

)
cosψ + k2ṽz sinψ

]
/ωy, (A19)

where k1 � cos θ − cos θ f and k2 � sin θ f − sin θ .
The soil parameters used to simulate the off-road environments are listed in Table A1.

Appendix B. Nomenclatures

a minor radius of the wheel
ai coefficients for the angle of the point with the maximum normal stress, i = 0, 1
b half of the wheel width
bψ effective width of the wheel
c major radius of the wheel
ci coefficients of the approximated longitudinal force, i = 0, 1, 2, 3, 4
cm coefficient of the terrain cohesion
di coefficients of the approximated lateral force, i = 1, 2, 3
Fw,i wheel–terrain interaction forces, i = x, y
f state function in the control affine model
fext state function in the process model
g control input matrix in the control affine model
h f entry sinkage depth
hr exit sinkage depth
h measurement model
Iz moment of inertia about the z-axis
j shear deformation vector, j = [

jt , jl, jn
]T

K shear modulus of the soil
kc cohesive modulus of the soil
kω motor time constant of the PID controller
kφ friction modulus of the soil
L half of the robot length
Mext moment about the z-axis of the robot
m mass of the robot
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P0 initial error covariance matrix
Q covariance matrix of the noise in the process model
R covariance matrix of the noise in the measurement model
r wheel radius
r p position vector of an arbitrary point on the wheel surface
rψ radius of a vertical wheel slice
t time
u control variable
v absolute velocity of an arbitrary point on the wheel surface
v zero mean white Gaussian noise associated with the measurement model
W half of the robot width
w zero mean white Gaussian noise associated with the process model
xR longitudinal position in the body fixed frame
ẋR longitudinal velocity in the body fixed frame
ẍR longitudinal acceleration in the body fixed frame
x state vector in the control affine model
ẋi longitudinal velocity of the i th wheel in the wheel frame, i = 1, 2, 3, 4
ẍi longitudinal acceleration of the i th wheel in the wheel frame, i = 1, 2, 3, 4
xext state vector to be estimated
yR longitudinal position in the body fixed frame
yout measurement vector
ẏR longitudinal velocity in the body fixed frame
ÿR longitudinal acceleration in the body fixed frame
ẏi longitudinal velocity of the i th wheel in the wheel frame, i = 1, 2, 3, 4
ÿi longitudinal acceleration of the i th wheel in wheel fixed frame, i = 1, 2, 3, 4
βi slip angle of the i th wheel, i = 1, 2, 3, 4
θ rotation angle of the wheel
θ f entry angle
θr exit angle
θm angle of the point with the maximum normal stress
λi the i th wheel slip ratio, i = r, l, 1, 2, 3, 4
λ̇i rate of change of the i th wheel slip ratio, i = r, l
λθ coefficient for θr

ρi position vector from the center of mass of the robot to the origin of the wheel local
reference frame

σn normal stress along the wheel–terrain contact surface
τi shear stresses along the wheel–terrain contact surface, i = t, l
τm maximum shear stress of the wheel
φ internal friction angle of the soil
ψi bound angles of the wheel with respect to the soil, i = r, l
ψR heading angle of the robot
ψ̇R yaw rate of the robot
ψ̈R yaw acceleration of the robot
�I inertial reference frame
�B body fixed reference frame
�i wheel local reference frame
�H wheel hub reference frame
�S wheel surface reference frame
ωi the i th wheel angular velocity, i = r, l, 1, 2, 3, 4
ωc,i commanded angular velocities of the wheel banks, i = r, l
ω̇i angular acceleration of the wheel banks, i = r, l
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