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In this paper, the spacecraft close-range safe proximity problem is investigated. In the pres-
ence of a “chief” spacecraft, a Multi-Equal-Collision-Probability-Curve (MECPC) method is
developed. The influence of the chief spacecraft with a convex polygon shape is considered
and the chief spacecraft is divided into several small components. Each component generates a
corresponding separate repulsive force and the superposition of these forces is regarded as the
ultimate avoidance force. As a result, the proposed MECPC method not only improves the sys-
tem robustness against control and navigation uncertainties but is also analytically validated in
collision avoidance. The MECPC method solves the safe proximity problem in the presence of a
convex polygon shape. In addition, an Improved Linear Quadratic Regulator (ILQR) is designed
to track the expected trajectory. Numerical simulations are performed in a close-range operation
environment to verify the effectiveness of the proposed MECPC method.
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1. INTRODUCTION. Close-range proximity spacecraft flight is a promising technol-
ogy for on-orbit servicing missions such as space assembly, maintenance, inspection and
space debris capture and removal (Flores-Abad et al., 2014; Yu et al., 2015; Shan et al.,
2016). To facilitate this, solving the collision avoidance problem is essential. To this end,
the Artificial Potential Function (APF) method is popular and has been widely developed
(Bevilacqua et al., 2011; Nag and Summerer, 2013; Palacios et al., 2015; Spencer et al.,
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2016; Ni et al, 2016; Huang et al., 2017a; 2017b; Cao et al., 2018). The APF method has
several advantages, such as low computing cost and ease of analytical validation. However,
the presented potential functions ignore the influence of quantities such as navigation and
control uncertainties.

As uncertainties exist in the measurement data (Cao et al., 2018b), the collision proba-
bility is always computed to assess the collision risk. According to different scenarios with
different relative velocities or different encounter durations, the collision probability com-
puting methods have been divided into short-term encounters (Alfano., 2006a; Bai et al.,
2013; 2016; Serra et al., 2016) and long-term encounters (Patera., 2003; 2006; Alfano.,
2006b; McKinley, 2006). Researchers have developed many methodologies to decrease
the computational burden of collision probability. In terms of non-Gaussian distribution,
Demars et al. (2014) and Vittaldev et al. (2016) employed a Gaussian Mixture Model to
compute the collision probability. With the collision probability, the optimal avoidance
strategies can be determined. However, in some special scenarios, such as space debris
capture, not only is the computational cost large, but also the value of collision probability
exceeds the tolerance threshold (Sun et al., 2014). Therefore, the application of the collision
probability is limited in these scenarios.

To address this problem, Wang et al. (2017; 2018) proposed an Equal-Collision-
Probability-Curve (ECPC) method for the spacecraft close-range safe proximity problem
in the presence of navigation and control uncertainties. Firstly, considering those uncertain-
ties, the ECPC around the chief spacecraft is established. Then, a novel auxiliary function
is proposed to calculate the gradient direction of the traditional collision probability func-
tion. Along with the estimated gradient direction, a collision avoidance manoeuvre can be
executed to guarantee the safety of the mission. The effectiveness of this novel avoidance
scheme can be theoretically verified (Ge et al., 2002; Ni et al., 2016). Furthermore, this
method requires a low computational burden. In the ECPC method, the geometrical shapes
of the two spacecraft are assumed to be spherical. The shapes of most spacecraft are not
simple spheres but the geometrical shape has a great influence on the collision potential
(Bai et al., 2016). Hence, when only the ECPC method is adopted, the safety performance
of the space mission deteriorates.

With the discussion above, a Multi-Equal-Collision-Probability-Curve (MECPC)
method is proposed to assist in delivering convex polygon-shape spacecraft close-range
safe proximity. First, the convex polygon shape chief spacecraft is divided into several
small components and each small component has a minimum exterior envelope. Then, the
problem of spacecraft close-range safe proximity in the presence of the convex shape can
be decomposed into multiple problems of safe spherical spacecraft close-range proximity.
With the divided smaller parts and its corresponding minimum exterior enveloping circle,
the ECPC method is used to generate the corresponding avoidance manoeuvres. Finally,
the superposition of avoidance manoeuvres with respect to the corresponding small com-
ponents is taken as the ultimate avoidance manoeuvre. As the deputy spacecraft does not
collide with every smaller component, it can be kept away from the chief spacecraft. More-
over, an Improved Linear Quadratic Regulator (ILQR) is designed to track the reference
trajectory. Compared with the ECPC method, the MECPC can guarantee safe spacecraft
proximity in presence of a chief spacecraft with a convex polygon shape.

This rest of this paper is organised as follows. A linear dynamics of spacecraft relative
motion is provided Section 2, followed by a description of the ECPC method in Section 3.
The MECPC method in the presence of a convex polygon shape spacecraft is developed in
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Section 4. In Section 5, using the MECPC method and the ILQR controller, a composite
control law is designed and analysed. Numerical simulations are presented in Section 6,
and Section 7 concludes the paper.

2. DYNAMICS OF SPACECRAFT RELATIVE MOTION. This section illustrates the
spacecraft relative motion dynamics. The Local Vertical Local Horizontal (LVLH) coordi-
nate (Cao et al., 2014; Ou and Zhang, 2017a) is utilised to describe the spacecraft relative
motion. The LVLH coordinate is centred at the centroid of the chief spacecraft, the x-axis
points out radially from the centre of the Earth to the mass centre of the chief spacecraft,
the y-axis is aligned in the direction of in-track motion and the z-axis completes the right-
handed coordinate system. Furthermore, as the in-plane is decoupled from motion normal
to the orbital plane, the six-dimensional system can be reduced into a second-order system
for the motion normal to the nominal orbit plane and a fourth-order system for the in-plane
motion. Then, only the coplanar problem is considered in this paper and hence the relative
motion is given as: {

ẍt − 2nẏt − 3n2xt = ux−t

ÿt + 2nẋt = uy−t
(1)

where r1−t = [xt, yt]T and v1−t = [vx−t, vy−t]T represent the relative positions and relative
velocities in LVLH coordinates, respectively. u1−t = [ux−t, uy−t]T represents the control
acceleration, μ is the gravitational constant of the Earth, a represents the semi-major axis
of the orbit of the chief spacecraft and n is the angular velocity, where n =

√
μ/a3.

Then, the forces along both planar directions are assumed to be independent and we
obtain the state dynamics matrix A and B, which is shown as:

Ẋ = AX + Bu (2)

where X = [rT
1−t vT

1−t]
T is the state vector:

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

⎤
⎥⎥⎦ · B =

[
0 0 1 0
0 0 0 1

]T

(3)

Furthermore, as only the circular orbit of the chief spacecraft is considered in this paper,
we obtain the analytical solution X (t) as:

X (t) = Φ(t0, t)X (t0) +
∫ t

t0
Φv(s, t)u(s)ds (4)

where t0 is the initial time and the transition matrix Φ(t0, t) is given by:

Φ(t0, t) =
[
Φrr(t0, t) Φrv(t0, t)
Φvr(t0, t) Φvv(t0, t)

]
, Φv(t0, t) =

[
Φrv(t0, t)
Φvv(t0, t)

]
(5)
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where Φrr(t0, t), Φrv(t0, t), Φvr(t0, t), Φvv(t0, t) are obtained as follows:

Φrr(t0, t) =
[

4 − 3 cos(n(t − t0)) 0
6(sin(n(t − t0)) − n(t − t0)) 1

]
,

Φrv(t0, t) =
1
n

[
sin(n(t − t0)) 2(1 − cos(n(t − t0)))

−2(1 − cos(n(t − t0))) 4 sin(n(t − t0)) − 3n(t − t0)

]
, (6)

Φvr(t0, t) =
[

3n sin(n(t − t0)) 0
6n(cos(n(t − t0)) − 1) 0

]
,

Φvv(t0, t) =
[

cos(n(t − t0)) 2 sin(n(t − t0))
−2 sin(n(t − t0)) 4 cos(n(t − t0)) − 3

]
.

3. THE ECPC METHOD. Wang et al. (2017; 2018) developed an ECPC method for
spacecraft close-range safe proximity in the presence of uncertainties. Similar to the con-
cept of an isobaric curve, the ECPC represents a curve consisting of equal collision
probability points around the chief spacecraft. This proposed safe close-range proximity
scheme is attractive for two reasons. First, the ECPC method does not need to solve the
transcendental function after the approximate treatment, so that the computational burden
can be greatly decreased while maintaining the necessary accuracy. More importantly, the
effectiveness of the proposed method can be theoretically verified.

Considering the navigation and the control uncertainties, the linear covariance method
is utilised to propagate the uncertainties and we obtain the covariance matrix with respect
to the state error, which is given as (Yang et al., 2016; Luo and Yang, 2017):

δX = X − E(X ) (7)

CδX = E
{
[δX − E(δX )][δX − E(δX )]T}

= Φ(t0, t)CδX0Φ(t0, t)T +
N∑

i=1

Φv(ti, t)CδviΦv(ti, t)T (8)

where N is the number of control impulses, δX is the error of the X , and E(X ) and E(δX )
represent the mean values of X and δX , respectively. Cδx0 and Cδvi are the covariance matri-
ces of the initial navigation and control uncertainties in LVLH coordinates, respectively and
CδX is the uncertainty covariance matrix of the state vector.

Wang et al. (2017) developed an equal collision probability cure, which is a Gaussian
form and can be described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
x2

1−t

σ 2
x−t

+
y2

1−t

σ 2
y−t

< D0 & v
paral
1−t > 0

V0(r1−t) = λ0

{
exp

[
−1

2

(
x2

1−t

σ 2
x−t

+
y2

1−t

σ 2
y−t

)]
− exp

(
−1

2
D2

0

)}
,

else
V0(r1−t) = 0.

(9)

where Cδr1−t = diag([σ 2
x−t σ 2

y−t]) is the uncertainty covariance matrix of the relative posi-
tion. λ0 is a positive constant that shapes the repulsive potential magnitude, D0 is the radius
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of the hazardous zone and v
paral
1−t is the value of relative parallel velocity, which is given as:

v
paral
1−t = v1−t · nparal

1−t (10)

where nparal
1−t is the unit vector pointing from the deputy spacecraft to the chief space-

craft and nparal
1−t = −r1−t/|r1−t|. If vparal

1−t ≤ 0, the deputy spacecraft is moving away from
the chief spacecraft and we do not execute the avoidance manoeuvres. Otherwise, the
deputy spacecraft is moving toward the chief spacecraft and the avoidance manoeuvres
are implemented.

The hazardous zone is defined as the zone where a collision is likely to happen. Fur-
thermore, the hazardous zone is a sphere around the chief spacecraft and has the following
radius:

D0 = d0(R0 + Ds) (11)

where d0 is a positive constant and Ds is defined as the braking distance taken to stop once
the avoidance manoeuvres are implemented and is computed by:

Ds =
(vparal

1−t )2

2amax
(12)

where amax is the maximum control acceleration of the deputy spacecraft. The perpendicu-
lar relative velocity of the deputy spacecraft is obtained from:

vperpen
1−t nperpen

1−t = v1−t − vparal
1−t nparal

1−t (13)

where vperpen
1−t is the value of the perpendicular relative velocity and nperpen

1−t is the unit vector
perpendicular to nparal

1−t , which is as follows:

nperpen
1−t = − 1√

x2
1−t + y2

1−t

[−y1−t
x1−t

]
. (14)

According to Equation (9), we define the negative gradient of the repulsive potential
with respect to the position terms as the avoidance manoeuvres (Ge and Cui, 2002):

Frepel = −∇r1−t V0(r1−t) (15)

where:

∇r1−t V0(r1−t) =
∂V0(r1−t)

∂r1−t

∂r1−t

∂r1−t
+

∂V0(r1−t)
∂D0

∂D0

∂r1−t
(16)

With the help of Equations (9), (15) and (16), we obtain the collision avoidance
manoeuvre as:

Frepel = Foparal + Fperpen (17)

where

M1 = exp

[
−1

2

(
x2

1−t

σ 2
x−t

+
y2

1−t

σ 2
y−t

)]
, M2 = exp

(
−1

2
D2

0

)
(18)

Foparal = −λ0r1−tM1

(
1

σ 2
x−t

+
1

σ 2
y−t

)
nparal

1−t , Fperpen = λ0D0M2d0
v

paral
1−t

amax

v
perpen
1−t

r1−t
nperpen

1−t . (19)
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Figure 1. The defined divisions of the convex polygon shape chief spacecraft.

4. THE MECPC METHOD. As the collision probability varies with different shapes
(Bai et al., 2016), the shape has great influence on the traditional ECPC method. However,
in the ECPC method, Wang et al. (2017; 2018) assumed that the geometrical shapes of the
two spacecraft were spheres but most space objects are not actually spheres. Therefore, if
the spacecraft shape is assumed as a sphere in some scenarios, the safety performance of
the mission deteriorates, as a collision will normally lead to mission failure. To address this
problem, the MECPC method is proposed to guarantee convex polygon shape spacecraft
safe proximity with other spacecraft.

Assuming that the shape of the chief spacecraft is a convex polygon, such as a square,
the chief spacecraft’s geometrical shape can be divided into one maximum inside envelope
circle part and several arbitrary parts. Moreover, each arbitrary shape part has its corre-
sponding minimum exterior envelope circle. Once the deputy spacecraft flies around the
chief spacecraft, the function modules, which are the maximum inside the envelope cir-
cle part with respect to the main circle and the minimum exterior envelope circle part
with respect to the arbitrary shape parts, jointly generate avoidance manoeuvres on the
deputy spacecraft with the basic ECPC method. Figure 1 shows the defined divisions of
the convex polygon shape chief spacecraft. As shown in Figure 1, the vertical coordi-
nates system is divided into parts I II, III and IV. The convex polygon shape of the chief
spacecraft is also separated into five parts, and part 5 is the maximum inside envelope cir-
cle. When the deputy spacecraft flies around the chief spacecraft, the function module is
selected by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Part 1 and Part 5, h = 1 x > 0 and y > 0
Part 2 and Part 5, h = 2 x < 0 and y > 0
Part 3 and Part 5, h = 3 x < 0 and y < 0
Part 4 and Part 5, h = 4 x > 0 and y < 0
Part 5, h = 5 x = 0 or y = 0

(20)
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Figure 2. The force analysis of the deputy spacecraft in Section I.

Then, if the expected encounter position rep =
[
xep yep

]T, which is located in the
outside envelope surface, the following two conditions are analysed:

(i) xep = 0 or yep = 0

Figure 2 illustrates the force analysis of the deputy spacecraft in Section I. From
Figure 2, part 5 and the minimum exterior envelope circle of part 1 generates forces
F50-repel and F10-repel, respectively. Moreover, the O1x1y1 coordinate system is established,
which has its x1 axis radiating from the origin in the LVLH coordinates toward the cen-
tre of the minimum exterior envelope circle located at the centre. Rotating the x1 axis
counter-clock-wise along the Oz axis for 90◦, we obtain the y1 axis.

As shown in Figure 2, any points r1−t in the LVLH coordinates are transformed to a
relative position in the O1x1y1 coordinates, which is given as:

r10−t = W1
{
r1−t − [x10 y10]T} (21)

where:

W1 =
[

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

]
, sin(θ ) =

y10√
x2

10 + y2
10

, cos(θ ) =
x10√

x2
10 + y2

10

. (22)

Assuming the attitude of the chief spacecraft is fixed, the relative velocity is transformed
from the LVLH coordinates to the O1x1y1 coordinates:

v10−t = W1vt. (23)

From Equation (21), the covariance matrices Cδr1−t are defined in LVLH coordinates and
are transformed to the O1x1y1 coordinates:

Cδr10−t = W1Cδr1−t W
−1
1 . (24)
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The transformation from the O1x1y1 frame to the O1x1dy1d frame in which Cδr10−t is
diagonalized is given by G1−tW−1

1 :

Cδr10−td = G1−tW−1
1 Cδr10−t (G1−tW1)

−1 =
[
σ 2

x−td 0
0 σ 2

y−td

]
(25)

where G1−t is an orthogonal transformation.
According to Equations (21), (23) and (25), the relative position and relative velocity in

the O1x1dy1d coordinates are given as:

r10−td = G1−t
{
r1−t − [x10 y10]T} , r10−td = G1−tv1−t (26)

where r10−td = [x10−td, y10−td]T and v10−td = [vx10−td, vy10−td]T represent the relative posi-
tion and the relative velocity in the O1x1dy1d coordinates, respectively.

From Equations (9)–(26), when the deputy spacecraft flies in Section I, the collision
avoidance manoeuvres generated by Part 1 in the LVLH coordinates are given as:

F10−repel = F10−paral + F10−perpen (27)

where D010 is radius of the hazardous zone around Part 1 in the O1x1dy1d coordinates.
r10−td is the value of relative position in the O1x1dy1d coordinates, v

paral
10−td and v

perpen
10−td are

the value of relative parallel velocity and relative perpendicular velocity in the O1x1dy1d

coordinates and nparal
10−td and nperpen

10−td represent the unit vector opposite and perpendicular to
r1−td, respectively.

M110d = exp

[
−1

2

(
x2

10−td

σ 2
x−td

+
y2

10−td

σ 2
y−td

)]
, M210d = exp

(
−1

2
D2

010d

)
(28)

F10−paral = −λ0r1−dM110d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
nparal

10−td (29)

F10−perpen = λ0D010M210d0
v

paral
10−td

amax

v
perpen
10−d

r10−td
nperpen

10−td . (30)

With the aid of Equations (9), (10), (14) and Equations (21)–(22), we obtain:

r10 = a10−1nparal
1−t + a10−2nperpen

1−t (31)

where:

a10−1 = −x10x1−t + y10y1−t√
x1−t

2 + y2
1−t

, a10−2 =
x10y1−tŰy10x1−t√

x2
1−t + y2

1−t

(32)

According to Equations (9)–(32), we obtain:

nparal
10−td =

r1−t + a10−1

r10−td
nparal

1−td +
a10−2

r10−td
nperpen

1−td . (33)

Based on Equation (33), we have

nperpen
10−td =

a10−2

+
r10−tdnparal

1−td +
r1−t + a10−1

r10−td
nperpen

1−td . (34)
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From Equations (33) and (34), we obtain:

F10−paral = −

⎡
⎢⎢⎢⎣

λ0r10−tdM110d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
r1−t + a10−1

r10−td

+λ0D010dM210dd0
v

paral
10−td

amax

v
perpen
10−td

r10−td

a10−2

r10−td

⎤
⎥⎥⎥⎦ nparal

1−td (35)

F10−perpen =

⎡
⎢⎢⎢⎣

λ0r10−tdM110d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
a10−2

r10−td

+λ0D010dM210dd0
v

paral
10−td

amax

v
perpen
10−td

r10−td

r1−t + a10−1

r10−td

⎤
⎥⎥⎥⎦ nperpen

1−td (36)

According to the above deduction, the collision avoidance manoeuvres generated by
Part 2, Part 3 and Part 4 with respect to Section II, Section III and Section IV are given as:

Fi0−repel = Fi0−paral + Fi0−perpen, (i = 2, 3, 4) (37)

where Fi0−repel(i = 2, 3, 4) represents the collision avoidance manoeuvres generated by Part
2, Part 3 and Part 4. ri0 = [xi0 yi0]T, (i = 2, 3, 4) represents the different relative position
of the minimum exterior circle’s centre with respect to the corresponding part. ri0−td =
[xi0−td, yi0−td]T and vi0−td = [vxi0−td, vyi0−td]T(i = 2, 3, 4) represent the relative position and
the relative velocity in the corresponding coordinates, respectively. D0i0, (i = 2, 3, 4) rep-
resents the radius of the corresponding hazardous zones, ri0−td, (i = 2, 3, 4) are values
of relative positions in the corresponding coordinates and v

paral
i0−td, (i = 2, 3, 4) and v

perpen
i0−td ,

(i = 2, 3, 4) are the values of relative parallel velocity and relative perpendicular velocity in
the corresponding coordinates.

ri0−td = G1−t
{
r1−t − [xi0 yi0]T} , vi0−td = G1−tv1−t, (i = 2, 3, 4) (38)

M1i0d = exp

[
−1

2

(
x2

i0−td

σ 2
x−td

+
y2

i0−td

σ 2
y−td

)]
, M2i0d = exp

(
−1

2
D2

0i0d

)
, (i = 2, 3, 4) (39)

ai0−1 = −xi0x1−t + yi0y1−t√
x2

1−t + y2
1−t

, ai0−2 = −xi0y1−t + yi0x1−t√
x2

1−t + y2
1−t

, (i = 2, 3, 4) (40)

F10−paral = −

⎡
⎢⎢⎢⎢⎣

λ0ri0−tdM1i0d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
r1−t + ai0−1

ri0−td

+ λ0D0i0dM2i0dd0
v

paral
i0−td

amax

v
perpen
i0−td

ri0−td

ai0−2

ri0−td

⎤
⎥⎥⎥⎥⎦ nparal

1−td , (i = 2, 3, 4) (41)

F10−perpen = −

⎡
⎢⎢⎢⎢⎣

λ0ri0−tdM1i0d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
ai0−2

ri0−td

+ λ0D0i0dM2i0dd0
v

paral
i0−td

amax

v
perpen
i0−td

ri0−td

r1−t + ai0−1

ri0−td

⎤
⎥⎥⎥⎥⎦nperpen

1−td , (i = 2, 3, 4) (42)
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From Equations (9)–(19), the collision avoidance manoeuvres generated by part 5 are
given as follows:

F50-repel = F50-paral + F50-perpen (43)

where F50-repel represents the collision avoidance manoeuvres generated by part 5. r50-td =
[x50-td, y50-td]T and v50-td = [vx50-td, vy50-td]T represent the relative position and the relative
velocity in the O1x1dy1d coordinates, respectively. D050 is the radius of the corresponding
hazardous zone, r50-td is the value of the relative positions and v

paral
50-td and v

perpen
50-td are the

values of the relative parallel velocity and relative perpendicular velocity in the O1x1dy1d
coordinates.

r50-td = G1−tr1−t, v50-td = G1−tv1−t (44)

M150d = exp

[
−1

2

(
x2

50-td

σ 2
x−td

+
y2

50-td

σ 2
y−td

)]
, M250d = exp

(
−1

2
D2

050d

)
(45)

F50-paral = −λ0r50-tdM150d

(
1

σ 2
x−td

1
σ 2

y−td

)
nparal

1−td (46)

F50-perpen = −λ0D050-tdM250dd0
v

paral
50-td

amax

v
perpen
50-td

r50-td
nperpen

1−td (47)

Thus, the total collision avoidance manoeuvres generated are given as:

FTotal−repel =

{
F50-repel + Fh0−repel, h = 1, 2, 3, 4
F50-repel, h = 5

(48)

(ii) xep �= 0 and yep �= 0

Figure 3 illustrates the force analysis of the deputy spacecraft in Section I. As we can see
from Figure 3, part 5 generates force F50-repel. By the encounter point rep , part 1 is divided
into two parts, and each part has its own minimum exterior envelope circle. Subsequently,
the O1−ix1−iy1−i (i = 1, 2) coordinates are established, which have their x1−i axis pointing
out from the origin in the LVLH coordinates toward the centre of the minimum exterior
envelope circle located at the centre. The y1−i axis of the O1−ix1−iy1−i (i = 1, 2) frame has
the same direction as the x1−i axis and is rotated 90◦ counter-clock-wise along the Oz axis.

In this section, the following condition is divided into the following four parts:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h1 = 1 xep > 0 and yep > 0
h1 = 2 xep < 0 and yep > 0
h1 = 3 xep < 0 and yep < 0
h1 = 4 xep > 0 and yep < 0

. (49)

If the condition h1 =1 is satisfied, Figure 3 illustrates the force analysis of the deputy
spacecraft in Section I. From Figure 3, the minimum exterior envelope circle of part 1-1
and part 1-2 generate the repulsive force F11−repel and F12−repel, respectively. Furthermore,
both the O1−1x1−1y1−1 coordinates and the O1−2x1−2y1−2 coordinates are established as the
O1x1y1 coordinates depicted in Figure 2.
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Figure 3. The force analysis of the deputy spacecraft in Section I and the condition h1 = 1.

From Equations (9)–(36), the collision avoidance manoeuvres generated with respect to
the corresponding part are given as:

Fij −repel = Fij −paral + Fij −perpen(i = 1, 2, 3, 4, j = 1, 2) (50)

where Fij −repel(i = 1, 2, 3, 4, j = 1, 2) represent the collision avoidance manoeuvres
generated by the corresponding part. rij = [xij yij ]T, (i = 1, 2, 3, 4, j = 1, 2) represent the
different relative position of the minimum exterior circle’s centre with respect to the corre-
sponding part. rij −td = [xij −td, yij −td]T, vij −td = [vxij −td, vyij −td]T(i = 1, 2, 3, 4, j = 1, 2)
represent the relative position and the relative velocity in the corresponding coordi-
nates, respectively. D0ij , (i = 1, 2, 3, 4, j = 1, 2) are the radii of the corresponding hazardous
regions, rij −td, (i = 1, 2, 3, 4, j = 1, 2) are values of relative positions in the corresponding
coordinates and v

paral
ij −td, (i = 1, 2, 3, 4, j = 1, 2) and v

perpen
ij −td , (i = 1, 2, 3, 4, j = 1, 2) are the val-

ues of relative parallel velocity and relative perpendicular velocity in the corresponding
coordinates.

rij −td = G1−t

{
r1−t − [xij yij

]T} , vij −td = G1−tv1−t, (i = 1, 2, 3, 4, j = 1, 2) (51)

M1ijd = exp

[
−1

2

(
x2

ij −td

σ 2
x−td

+
y2

ij −td

σ 2
y−td

)]
, M2ijd = exp

(
−1

2
D2

0ijd

)
(i = 1, 2, 3, 4, j = 1, 2)

(52)

aij −1 = −xij x1−t + yij y1−t√
x2

1−t + y2
1−t

, aij −2 = −xij y1−t + yij x1−t√
x2

1−t + y2
1−t

, (i = 1, 2, 3, 4, j = 1, 2) (53)

https://doi.org/10.1017/S0373463318000711 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000711


416 WANG YI AND OTHERS VOL. 72

Fij −paral = −

⎡
⎢⎢⎢⎣

λ0rij −tdM1ijd

(
1

σ 2
x−td

+
1

σ 2
y−td

)
r1−t + aij −1

rij −td

+λ0D0ijdM2ijdd0
v

paral
ij −td

amax

v
perpen
ij −td

rij −td

aij −2

rij −td

⎤
⎥⎥⎥⎦nparpal

1−td , (i = 1, 2, 3, 4, j = 1, 2)

(54)

Fij −perpen = −

⎡
⎢⎢⎢⎣

−λ0rij −tdM1ijd

(
1

σ 2
x−td

+
1

σ 2
y−td

)
aij −2

rij −td

+λ0D0ijdM2ijdd0
v

paral
ij −td

amax

v
perpen
ij −td

rij −td

r1−t + aij −1

rij −td

⎤
⎥⎥⎥⎦nperpen

1−td , (i = 1, 2, 3, 4, j = 1, 2).

(55)

Thus, the total collision avoidance manoeuvres are obtained as:

FTotal−repel =

⎧⎪⎨
⎪⎩

F50-repel + Fh1−repel + Fh2−repel, h = h1

F50-repel + Fh0−repel h = 1, 2, 3, 4 & h �= h1.
F50-repel h = 5

(56)

5. THE EFFECTIVE COLLISION AVOIDANCE CONTROL LAW AND THE
DEFINITION OF THE COMPOSITE CONTROL LAW. If x2

1−t/σ
2
x−t + y2

1−t/σ
2
1−t < D0,

the relative parallel velocity v
paral
1−t > 0 at any time t and ∀|r1−t| �= 0 are satisfied and the

repulsive force is activated. In this section, we analyse the effectiveness of the avoidance
scheme and design the composite law.

5.1. Analysis of the effective collision avoidance control law. According to Equations
(9)–(56), the following conditions are satisfied:

1) M1ijd > M2ijd > 0(i = 1, 2, 3, 4, j = 0, 1, 2), M150d > M250d > 0.
2) λ0 > 0, D0ijd > R0 > 0(i = 1, 2, 3, 4, j = 0, 1, 2), D050d > R0 > 0.
3) d0 > 0, amax > 0, rij −td > 0(i = 1, 2, 3, 4, j = 0, 1, 2), r50-td > 0.
4) v

paral
ij −td > 0, vparal

ij −td > 0(i = 1, 2, 3, 4, j = 0, 1, 2), vparal
50-td > 0, vparal

50-td > 0.

As the parallel repulsive force is much larger than the perpendicular repulsive force (Ge
and Cui, 2002), we get

λ0rij −tdM1ij −td

(
1

σ 2
x−t

+
1

σ 2
y−t

)
	 λ0D0ijdM2ijdd0

v
paral
ij −d

amax

v
perpen
ij −d

rij −d
> 0(i = 1, 2, 3, 4, j = 0, 1, 2)

(57)

λ0r50-tdM150-td

(
1

σ 2
x−t

+
1

σ 2
y−t

)
	 λ0D050dM250-tdd0

v
paral
50-d

amax

v
perpen
50-d

r50-td
> 0 (58)

Subsequently, from Equations (48) and (56), we obtain the total collision avoidance
manoeuvres as follows:

FTotal−repel = FTotal−paral + FTotal−perpen (59)
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where:

FTotal−paral =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xep = 0 or yep = 0

{
F50-paral + Fh0−paral, h = 1, 2, 3, 4
F50-paral, h = 5

xep �= 0 and yep �= 0

⎧⎪⎨
⎪⎩

F50-paral + Fh1−paral + Fh2−paral, h = h1

F50-paral + Fh0−paral, h = 1, 2, 3, 4 & h �= h1

F50-paral, h = 5
(60)

FTotal−perpen =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xep = 0 or yep = 0

{
F50-perpen + Fh0−perpen, h = 1, 2, 3, 4
F50-perpen, h = 5

xep �= 0 and yep �= 0

⎧⎪⎨
⎪⎩

F50-perpen + Fh1−perpen + Fh2−perpen, h = h1

F50-perpen + Fh0−perpen, h = 1, 2, 3, 4 & h �= h1

F50-perpen, h = 5
(61)

Therefore, based on Equations (57) and (58), the parallel force FTotal−paral is along the
negative direction of nparal

1−t and prevents the deputy spacecraft from moving closer to the
chief spacecraft. The perpendicular component FTotal−operpen of the force FTotal−repel steers
the deputy spacecraft around the chief spacecraft.

As the parallel repulsive force is much larger than the perpendicular repulsive force
(Ge and Cui, 2002), therefore, the main analysis of the repulsive force is with respect to
the parallel repulsive force. Moreover, as the force FTotal-repel contains the force F50-paral
in every condition, F50-paral can be taken as an example to show the analysis progress in
proving the effectiveness of the MECPC method. Subsequently, the parallel repulsive force
generated by part 5 is differentiated with respect to the relative distance as:

∂F50-paral

∂r50-td
= −λ0M150d

(
1

σ 2
x−td

+
1

σ 2
y−td

)2

r2
50-td + λ0M150d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
. (62)

Similar to Equation (62), the auxiliary function I with respect to h(r50-td) is defined as:

h(r50-td) = −λ0M150d

(
1

σ 2
x−td

+
1

σ 2
y−td

)2

r2
50-td + λ0M150d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
. (63)

With the help of Equation (63), the defined auxiliary function is a second-order equation
with respect to r50-td and its quadratic coefficient is negative. Therefore, the maximum value
of Equation (63) can be obtained as:

Hmax(r50-td) = λ0M150d

(
1

σ 2
x−td

+
1

σ 2
y−td

)
> 0. (64)

Equation (63) has two zero points and its symmetry axis is zero. Moreover, we have
r50-td > 0. Then, x2 > 0 is assumed to be one zero point with respect to h(r50-td), which is
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given as:

X2 =
σx−tdσy−td√
σ 2

x−td + σ 2
y−td

. (65)

As a result, if r50-td > x2, h(r50-td) < 0, if 0 < r50-td < x2, h(r50-td) > 0.
From Equation (9), x3 is assumed to be the maximum value of r50-td, which is defined

as:

r50-td < x3 = max

⎛
⎝
√√√√σ 2

y−tD050 + x2
1−t

(
1 − σ 2

y−t

σ 2
x−t

)
,

√√√√σ 2
y−tD050 + x2

1−t

(
1 − σ 2

y−t

σ 2
x−t

)⎞⎠ .

(66)
According to Equations (62)–(66), if x2 < r50-td < x3, ∂F50-paral/∂r50-td < 0. Moreover,

F50-paral is a decreasing function; if 0 < r50-td < x2, ∂F50-paral/∂r50-td < 0. F50-paral is an
increasing function. Then, the critical point ζ50 is the minimum relative distance between
the deputy spacecraft and the centre of part 5 of the chief spacecraft and thus we obtain the
critical point. When the deputy spacecraft reaches the critical point ζ50, its parallel relative
velocity decreases to zero.

According to the above analysis, the critical points ζij (i = 1, 2, 3, 4, j = 0, 1, 2) and ζ50
with respect to those parts can be obtained. Figure 4 shows the interval of speed range in the
collision avoidance manoeuvre in two conditions. Using the available parameters’ values
{λ0, d0}, the deputy spacecraft will not collide with the chief spacecraft when the following
condition is satisfied:{

ζ50 > R50 & ζi0 > Ri0(i = 1, 2, 3, 4); If xep = 0 or yep = 0
ζ50 > R50 & ζij > Rij (i = 1, 2, 3, 4, j = 1, 2); If xep �= 0 or yep �= 0

(67)

where Rij (i = 1, 2, 3, 4, j = 0, 1, 2) are the radii of the small components’ exterior envelope
circle. R50 is the radius of part 5’s exterior envelope circle.

5.2. The composite control law. Considering a system as Equation (2), the LQR con-
troller is utilised to find an optimal control law. Furthermore, the cost function (Lin, 2007;
Xing et al., 2016) is given as:

J0 =
1
2

∫ ∞

t0
[X TQX + uTRu]dt (68)

where Q ≥ 0 and 1 ≥ R ≥ 0 are semi-positive definite symmetric matrices. According to
the principle of minimum values as per Equation (68), we obtain the optimal control law
as follows:

u∗ = K 1X (69)

where K 1 = −R−1BTS1 is the optimal feedback gain matrix and S1 is a matrix which
satisfies the Riccati equation:

S1A + ATS1 − S1BR−1BTS1 + Q = 0. (70)

According to Equations (2) and (68), we can obtain u∗(t) by solving the Riccati alge-
braic equation. Then, the ILQR controller is proposed to track the reference trajectory and
introduced below.
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Figure 4. The interval of speed range in collision avoidance manoeuvre in two conditions.

Based on Equation (59), we obtain:

FTotal−repel = b11nparal
1−td + b12nperpen

1−td (71)

where b11, b12 are the auxiliary parameters.
With the help of Equations (9)–(14), Equation (71) is computed by:

FTotal−repel = K 2X (72)

where:

K 2 =
1

r1−t

[−b11 b12 0 0
−b12 b11 0 0

]
. (73)

From Equation (73), we get:

K T
2 K 2 ≤

[
K 3 02×2

02×2 02×2

]
(74)
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where:

K 3 =
b2

11 + b2
12

r2
1−t

I 2×2 (75)

Furthermore, the upper matrix K 4 on the K T
2 (t)K 2(t) is defined as:

K 4 =
[

KupperI 2×2 02×2
02×2 02×2

]
(76)

where:

b2
11 + b2

12

r2 ≤ Kupper (77)

Considering a system as Equation (2), the ILQR controller aims to find an optimal
control law which minimises the following cost function (Xing et al., 2016):

J =
1
2

∫ ∞

t0

[
X T
(

K 4

m2 + Q
)

X + uTRu
]

dt (78)

where m is the mass of the deputy spacecraft. With the help of the principle of minimum
values as per Equation (78), we get the optimal control as:

u∗
1 = K 5X (79)

where K 5 = −R−1BTS2 is the optimal feedback gain matrix and S2 is a matrix which
satisfies the Riccati equation:

S2A + ATS2 − S2BR−1BTS2 +
K 4

m2 + Q = 0 (80)

Based on Equations (2) and (78), the design of u∗
1 can be obtained by solving the Riccati

algebraic equation. Then, the auxiliary function II (Lin, 2007) is given as:

V1(X ) = min
u∗

∫ ∞

0

(
X T
(

K 4

m2 + Q
)

X + uTRu
)

dt. (81)

As the V1(X ) is the minimum cost of the optimal control of the nominal system
from some initial state X , V1(X ) is defined as a Lyapunov function of Equation (2). By
definition, V1(X ) must satisfy the Hamilton-Jacobi-Bellman equation (Lin, 2007):

min
u∗

{
X T
(

K 4

m2 + Q
)

X + uTRu + VT
1−X (AX + Bu)

}
= 0 (82)

where V1−X = (∂V/∂X ). Since u∗
1 = K 5X is the optimal control, it must satisfy: (1) the

above minimum zero; and (2) the derivative of X T(K 4/m2 + Q)X + uTRu + VT
1−X (AX +
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Bu) with respect to u is zero.

X T
(

K 4

m2 + Q
)

X + X TK T
5 RK 5X + VT

1−X (AX + BK 5X ) = 0 (83)

2X TK T
5 + VT

1−X B = 0. (84)

So, the composite controller is given as:

utotal = u∗
1 +

FTotal−repel

m
(85)

Based on the Lyapunov-based method, the stability of the overall close-system with the
composite controller is verified (Lin, 2007).

5.3. The flow of the MECPC method algorithm. With the aid of Equations (2)–(85),
we obtain Algorithm 1 to describe the MECPC method. The control error of the deputy
spacecraft is assumed to be an uncorrelated zero-mean Gaussian distribution (Psiaki, 2011;
Peynot et al., 2014). Furthermore, the covariance matrix of the control uncertainty is given
as follows (Luo et al., 2011):

Cδ�vt =

{
0, if |u| = 0
Diag

([
(0·02 + 0·01|ux|)2, (0·02 + 0·01|uy |)2

])
, if |u| �= 0

. (86)

Algorithm 1. The MECPC method.

Number Content

1 Initialisation: X0, λ0, d0, R0, m, amax, tf , CδX0 .
2 The reference trajectory of the deputy spacecraft is designed, X p is the reference relative

vector and the control impulse uT is obtained for orbital transformation.
3 Using Equation (2) and Equations (78)–(80), we compute the optimal feedback gain matrix

K 5.
4 For t = 1, 2, . . . tf , implement the following MECPC steps.
5 The “virtual” actual state vector X a−1(t) is computed by the sum of the actual state vector

X a and navigation uncertainties.
6 Based on Equation (79), we obtain the optimal control impulse u∗

1 to track reference
trajectory.

7 According to Equation (86), we get the control uncertainty matrix Cδ�vt .
8 Via Equations (7) and (8), we compute the covariance matrix Cδx of state error.
9 By Equations (9)–(61), the repel force FTotal−repel is obtained with Cδx and X a−1(t).
10 Then, using Equation (85),we compute the uTotal.
11 With the aid of the uTotal and old X a, we update the new actual state vector X a.
12 End

6. SIMULATION RESULTS AND ANALYSIS. To verify the effectiveness of the pro-
posed method, a numerical simulation was carried out. Using the relative dynamic motion
Equation (2), the relative motion of the deputy spacecraft was designed and propagated
(Xing et al., 2007; Ou and Zhang, 2017b). Table 1 gives the physical parameters of the
chief spacecraft and the deputy spacecraft. Table 2 lists the initial relative state vector of
the deputy spacecraft in the LVLH frame. Figure 5 shows the reference relative motion
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Figure 5. The reference relative motion of the deputy spacecraft.

Table 1. The physical parameters of the deputy spacecraft and chief spacecraft.

The chief spacecraft The deputy spacecraft

Parameters Values Parameters Values
Side length/m 30 Mass/kg 50

Max propulsion/N 30

Table 2. The initial relative state vector of the deputy spacecraft in the LVLH frame.

x (m) y (m) vx(m/s) vy (m/s)

0 50 2·766957 × 10−2 −9·051367 × 10−9

of the deputy spacecraft. There are three blue asterisks, which are asterisks 1, 2, and 3.
The deputy spacecraft begins at asterisk 1 with the initial relative velocity v0 and flies
around the chief spacecraft along the grey trajectory without any transfer impulse. Then,
the deputy spacecraft arrives at asterisk 3 and the transfer impulse is implemented on the
deputy spacecraft to reach asterisk 2. According to the pulse rendezvous for orbital transfor-
mation, we compute the control impulse as Table 3 shows. Table 3 lists the initial impulse
control. The purple curves are the reference relative trajectories and the yellow curve is
the boundary of the chief spacecraft’s size. Moreover, the working area is defined as the
area where the deputy spacecraft will execute further operations, such as space inspection
and maintenance. A circle is centred on the planned terminal position asterisk 2 and has
a certain radius. The working area is the overlap part between the circle and outside the
yellow curve.

The final condition is tf = 3, 400 s and the radius of the working area is 10 m. Both
the frequency of the delta velocity manoeuvres and the integration step are 1 s. The semi-
major axis and the eccentricity of the orbit of the chief spacecraft are 6,778.1336 km and 0,
respectively, λ0 =30 and d0 =3. The distribution with respect to the navigation uncertainty
is assumed as an uncorrelated zero-mean Gaussian (Psiaki, 2011; Peynot et al., 2014).
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Table 3. The initial impulse control in the LVLH frame.

The pulse u1 u2

t (s) 2800 3400
vx−t (m/s) −9·412288 × 10−3 2·249601 × 10−2

vy−t (m/s) 5·155332 × 10−2 −3·22202 × 10−2

Figure 6. The trajectory of the deputy spacecraft over 100 Monte Carlo runs.

Moreover, the covariance matrix is given as follows (Luo et al., 2011):

CδX0 = diag([16, 16, 1·6 × 10−3, 1·6 × 10−3]) (87)

In this simulation, Q = diag[10−14, 10−14, 0, 0]; R = diag[10−8, 10−8] and the gravita-
tional constant of Earth is 3·986 × 1014m3/2.

6.1. Case with ECPC method with λ0 = 30. In this section, we utilise the traditional
ECPC method to avoid collision. Figures 6(a) and 6(b) show the actual trajectory of the
deputy spacecraft over 100 Monte Carlo runs with a LQR controller and ILQR controller,
respectively. The yellow curve is the boundary of the chief spacecraft’s size and the purple
curve is the reference relative trajectory of the deputy spacecraft. The red curve is the
boundary of the working area. Meanwhile, the green region is the actual trajectory of the
deputy spacecraft over 100 Monte Carlo runs. According to Figure 6, when only the ECPC
method is executed on the deputy spacecraft, the deputy spacecraft does collide with the
chief spacecraft in the presence of a convex polygon shape.

Figure 7 illustrates the values of collision probability over 100 Monte Carlo runs. The
blue part is the value of collision probability and the light green part is the ratio of safe
missions. From Figure 7, a collision between the deputy spacecraft and the chief spacecraft
will occur. Furthermore, the collision probabilities with respect to the LQR controller and
the ILQR controller are 31% and 33%. Thus, from Figures 6 and 7, we can conclude that
the ECPC method does not solve the safe proximity problem in the presence of a convex
polygon shape.
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Figure 7. The values of collision probability over 100 Monte Carlo runs.

For comparison, 100 independent Monte Caro runs were executed under the same condi-
tions, and the Root Mean Square Error (RMSE) in position was calculated as a performance
metric. The RMSE is given as (Chen et al., 2018):

RMSE =

√√√√Num−1
Num∑
t=1

(z1 – z2)2 (88)

where Num represents the total number of iterations. z1 and z2 represent two different series
of data. In this paper, the two different series are the actual trajectory and the reference
trajectory in the x and y directions.

Figure 8 depicts a comparison of RMSE behaviours in the x and y directions. Based on
the ECPC method with the LQR controller, the brown curve and the pink curve represent
the RMSE value in the x and y directions, respectively. Combining the ECPC method
and the ILQR controller, we can obtain the blue curve and the green curve. The blue curve
and the green curve are the RMSE values with respect to the x direction and y directions.
From Figure 10, the RMSE values with the LQR controller are larger than those with the
ILQR controller. Compared with the LQR controller, the ILQR controller obtains higher
control accuracy in the influence of uncertainties. In other words, the robustness of the
system is strengthened.

Figure 9 illustrates the associated velocity increment consumptions over 100 Monte
Carlo runs. The green curve and the blue curve are the velocity increment consumptions of
the deputy spacecraft with the ILQR controller and the LQR controller, respectively. The
green curve fluctuates between 90 m/s and 95 m/s while the blue curve is around 89 m/s.
From Figure 9, the deputy spacecraft with a ILQR controller requires more fuel. The reason
is that K 4/m2 + Q in the ILQR controller is larger than Q in the LQR controller while the
R in the two methods have equal values.

Figure 10 depicts the collision probability and the successful rate of arrival at the work-
ing area with different values of λ0 over 100 Monte Carlo runs. The blue curve is the
collision probability and the green curve represents the success rate. From Figure 10, if we
adopt the ECPC method with different values of λ0, collisions do also take place and the
safe proximity problem in the presence of the convex polygon shape is not solved.

6.2. Case with MECPC method with λ0 = 30. To solve the safe proximity problem in
the presence of a convex polygon shape, the MECPC method is proposed to generate the
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Figure 8. Comparison with respect to the RMSE in two directions.

Figure 9. The velocity increment consumptions over 100 Monte Carlo runs.

avoidance manoeuvres. Figure 11 shows the actual trajectory of the deputy spacecraft over
100 Monte Carlo runs. The yellow curve and the purple curve represent the boundary of the
chief spacecraft’s size and the reference relative trajectory of the deputy spacecraft. The red
curve is the boundary of the working area and the green zone is the actual trajectory of the
deputy spacecraft over 100 Monte Carlo runs. From Figure 11, as the avoidance manoeu-
vres generated by the MECPC method are implemented, the deputy spacecraft successfully
avoids collision with the chief spacecraft.

Figure 12 shows the comparison of RMSE behaviours in the x and y directions. Accord-
ing to the MECPC method with the LQR controller, we get the brown curve and the pink
curve. The brown curve and the pink curve represent the RMSE values with respect to
the x and y directions. The blue curve and the green curve are the RMSE values in the x
and y directions, respectively. From Figure 12, the RMSE values with the ILQR controller
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Figure 10. The collision probability and the successful rate with different values of λ0 over 100 Monte Carlo
runs.

Figure 11. The actual trajectory of deputy spacecraft over 100 Monte Carlo runs.

are lower than the values with the LQR controller. Therefore, the ILQR controller obtains
higher control accuracy.

Figure 13 illustrates the associated velocity increment consumptions over 100 Monte
Carlo runs. The blue curve and the green curve represent the velocity increment con-
sumptions of the deputy spacecraft with the LQR controller and the ILQR controller,
respectively. The green curve is about 94 m/s and the blue curve fluctuates around 90 m/s.
Comparing the two curves in Figure 13, the deputy spacecraft with the ILQR controller
requires more fuel.

7. CONCLUSIONS. A MECPC method was developed for the spacecraft close-range
safe proximity manoeuvre problem for a chief spacecraft with a convex polygon shape.
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Figure 12. Comparison with respect to RMSE in two directions.

Figure 13. The velocity increment consumptions over 100 Monte Carlo runs.

Compared with the ECPC method, the proposed MECPC method retains advantages such
as enhanced robustness against control and navigation uncertainties and has easy theoretical
verification of its ability to avoid collision. The MECPC method solves the close-range safe
proximity problem considering the influence of the convex polygon shape. Also, an ILQR
controller was designed to track the expected trajectory. Finally, numerical simulations are
presented to show the effectiveness of the novel MECPC method.
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