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Let hom(G) denote the size of the largest clique or independent set of a graph G. In 2007,
Bukh and Sudakov proved that every n-vertex graph G with hom(G) = O(logn) contains an
induced subgraph with Ω(n1/2) distinct degrees, and raised the question of deciding whether
an analogous result holds for every n-vertex graph G with hom(G) = O(nε ), where ε > 0 is a
fixed constant. Here, we answer their question in the affirmative and show that every graph G
on n vertices contains an induced subgraph with Ω((n/hom(G))1/2) distinct degrees. We also
prove a stronger result for graphs with large cliques or independent sets and show, for any fixed
k ∈ N, that if an n-vertex graph G contains no induced subgraph with k distinct degrees, then
hom(G) � n/(k−1)−o(n); this bound is essentially best possible.

2010 Mathematics subject classification: Primary 05D10
Secondary 05C07

1. Introduction

A subset of the vertices of a graph is called homogeneous if it induces either a clique or an
independent set. What can one say about the structure of graphs with no large homogeneous
sets? This is a central question in graph Ramsey theory and has received considerable attention
over the last sixty years. Let hom(G) denote the size of the largest homogeneous set of a graph
G. Erdős and Szekeres [9] proved that hom(G) � (logn)/2 for any graph G on n vertices, and
subsequently Erdős [7] used probabilistic arguments to demonstrate the existence of an n-vertex
graph G with hom(G) � 2logn; here, and throughout the paper, all logarithms are base 2. Despite
considerable effort (see [2, 5, 6, 11] for instance), we know of no deterministic constructions of
graphs with no large homogeneous sets; this suggests that such graphs should perhaps ‘look like’
random graphs. This belief is supported by many results which show that graphs with no large
homogeneous sets possess many of the same properties as random graphs.

For a constant C > 0, we say that an n-vertex graph G is C-Ramsey if hom(G) � C logn. There
are a number of results which show that Ramsey graphs share various properties with dense
random graphs. For example, Erdős and Szemerédi [10] proved that Ramsey graphs must have
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edge densities bounded away from 0 and 1. Prömel and Rödl [12] later showed that every C-
Ramsey graph on n vertices is (δ logn)-universal for some positive constant δ = δ (C); here, a
graph is k-universal if it contains an induced copy of every graph on at most k vertices. As a final
example, let us mention that Shelah [13] proved that Ramsey graphs contain exponentially many
non-isomorphic induced subgraphs.

The results of this paper are motivated by a line of questioning proposed by Bukh and Sudakov.
Bukh and Sudakov [3] proved, settling a conjecture of Erdős, Faudree and Sós [8], that every C-
Ramsey graph on n vertices contains an induced subgraph with at least δn1/2 distinct degrees for
some constant δ (C) > 0. They then raised the possibility of a similar result holding for graphs
with much larger homogeneous sets, and suggested in particular that for any 0 < ε < 1/2, every
n-vertex graph G with hom(G) < nε should contain an induced subgraph with Ω(n1/2−ε) distinct
degrees; by building on their work, we establish this fact as a special case of Theorem 1.1 below.

For a graph G, let f (G) denote the largest integer k for which G contains an induced subgraph
with k distinct degrees. Our first result is the following.

Theorem 1.1. For every graph G on n vertices, we have

f (G) � 1
250

(
n

hom(G)

)1/2

.

We believe that this result is far from sharp however; for example, we are unable to construct
an n-vertex graph G either with hom(G) < n1/2 and f (G) = o(n1/2), or with hom(G) � n1/2 and
f (G) = o(n/hom(G)).

Our next result sharpens Theorem 1.1 for graphs with very large homogeneous sets. For a pos-
itive integer k ∈ N, the disjoint union of n/(k−1) cliques each of size k−1 gives us an example
of a graph G on n vertices with f (G) = k− 1 and hom(G) = max{n/(k− 1),k− 1}. We prove
that if k is fixed and n is sufficiently large, then such a construction is essentially best possible.

Theorem 1.2. Fix k ∈ N and ε > 0. If n is sufficiently large, then f (G) � k for every n-vertex
graph G with hom(G) < n/(k−1+ ε).

We remark that with ε fixed, the minimal n for which we are able to verify Theorem 1.2 is
exponential in k. We further believe that it should be possible to prove Theorem 1.2 without an
ε-dependent error term; however, we are unable to do this at present.

This paper is organized as follows. In the next section we establish some notation and collect
together a few basic tools. In Section 3 we introduce the main ideas used in this paper and prove
Theorem 1.1. In Section 4 we refine the ideas used to prove Theorem 1.1 and prove Theorem 1.2.
We conclude with a discussion of some open problems in Section 5.

For the sake of clarity of presentation, we systematically omit floor and ceiling signs whenever
they are not crucial. We also make no attempt to optimize the absolute constants in our results.

2. Preliminaries

In this short section, we introduce some notation and collect together some facts that we shall
rely on repeatedly below.
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2.1. Notation
For us, a pair {x,y} will always mean an unordered pair with x �= y. For a set X , we write X (2)

for the family of all pairs on the ground set X .
Let G = (V,E) be a graph. We write v(G) and e(G) respectively for the number of vertices and

edges of G. The complement of G is denoted by G. The neighbourhood of a vertex x is denoted
by Γ(x), and the non-neighbourhood of x is denoted by Γ(x). Also, let d(x) = |Γ(x)| denote the
degree of x in G, and let d(x) = |Γ(x)| be the degree of x in G.

For a subset U ⊂ V , we write G[U ] for the subgraph of G induced by U . For a vertex x ∈ V ,
we write ΓU(x) for the set Γ(x)∩U and ΓU(x) for the set Γ(x)∩U ; we also set dU(x) = |ΓU(x)|
and dU(x) = |ΓU(x)|.

Finally, we define the neighbourhood-distance between two vertices x,y ∈V by

δ (x,y) = |(Γ(x)\{y})�(Γ(y)\{x})|.

It is not hard to check that this distance satisfies the triangle inequality, that is, δ (x,y)+δ (y,z) �
δ (x,z) for any three vertices x,y,z ∈V .

2.2. Graph theoretic estimates
We need the following simple fact about the neighbourhood-distance.

Proposition 2.1. For each K ∈ N, there exists a Δ ∈ N such that the following holds. If G is a
graph with δ (x,y) � K for all x,y ∈V (G), then either G or G has maximum degree at most Δ.

Proof. We prove the claim with Δ = 4K. The proposition is trivial if v(G) � 4K, so we may
assume that v(G) � 4K + 1. Fix a vertex v ∈ V (G) and let s and t be the number of edges and
non-edges between Γ(v) and Γ(v) respectively.

If x ∈ Γ(v), then dΓ(v)(x) � δ (v,x) � K. Hence, s � K|Γ(v)| and analogously, t � K|Γ(v)|.
Since s+ t = |Γ(v)||Γ(v)|, it follows that

|Γ(v)||Γ(v)| � K(|Γ(v)|+ |Γ(v)|) = K(v(G)−1).

Since v(G) � 4K +1, this is only possible if one of |Γ(v)| or |Γ(v)| is at most 2K. If |Γ(v)|� 2K,
then it is not hard to see that every vertex has degree at most 3K; indeed, this follows from the
trivial observation that d(x) � δ (x,v)+d(v) for any x ∈V (G). If |Γ(v)| � 2K on the other hand,
then it is clear that the maximum degree of G is at most 3K.

We shall also require the following fact.

Proposition 2.2. For any k,Δ ∈ N, there exists an L ∈ N such that the following holds. If G is
a graph with f (G) < k and maximum degree at most Δ, then G contains at most L vertices of
degree at least k−1.

Proof. We shall prove the claim with L = (Δ2 + 1)k. We say that two vertices x,y ∈ V (G) are
independent if (Γ(x)∪{x})∩ (Γ(y)∪{y}) = ∅. As the maximum degree of G is at most Δ, a
vertex of G is dependent on at most Δ + Δ(Δ− 1) = Δ2 other vertices. Let S ⊂ V (G) be the set
of vertices of degree at least k− 1 and suppose for the sake of contradiction that |S| > L. Since
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|S|/(Δ2 +1) > k, we can select k pairwise independent vertices from S; let x1,x2, . . . ,xk be these
vertices. For 1 � i � k, let Xi be an arbitrary (i−1)-element subset of Γ(xi) and let

X = {x1,x2, . . . ,xk}∪X1 ∪X2 ∪·· ·∪Xk.

Since the vertices x1,x2, . . . ,xk are pairwise independent, we see that dX(xi) = i− 1 for each
1 � i � k. It follows that x1,x2, . . . ,xk have different degrees in G[X ]; this contradicts the fact that
f (G) < k.

Finally, we need the Caro–Wei theorem [4, 14], which refines Turán’s theorem.

Proposition 2.3. Every graph G contains an independent set of size at least

∑
v∈V (G)

1
d(v)+1

� v(G)2

2e(G)+ v(G)
.

Proof. Order the vertices of G uniformly at random and consider the set I of those vertices that
precede all their neighbours in this ordering. Clearly, I is independent; the proposition follows
since

E[|I|] = ∑
v∈V (G)

1
d(v)+1

.

2.3. Probabilistic inequalities
We need the following two well-known inequalities; the proofs of these claims may be found
in [1]. We shall require Markov’s inequality.

Proposition 2.4. Let X be a non-negative real-valued random variable. For any t � 0, we have

P(X > t) <
E[X ]

t
.

We shall also require Hoeffding’s inequality.

Proposition 2.5. Let X = ∑n
i=1 Xi, where X1,X2, . . . ,Xn are independent real-valued random

variables with 0 � Xi � 1 for each 1 � i � n. For any t � 0, we have

P(|X −E[X ]| � t) � 2exp

(
−2t2

n

)
.

3. Small homogeneous sets

This section is devoted to the proof of Theorem 1.1. Before we prove the result, let us give an
overview of the proof. To show that a graph G contains an induced subgraph with many distinct
degrees, we pick a random subset U of the vertices and consider the subgraph of G induced by U .
We first show that if the neighbourhood-distance between a pair of vertices x,y ∈U is large, then
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the probability of dU(x) and dU(y) being equal is small. Next, to show that there are many such
pairs of vertices with large neighbourhood-distances, we bound the number of pairs of vertices
with small neighbourhood-distances in terms of hom(G). We now make this sketch precise.

Proof of Theorem 1.1. The result is trivial if our graph has fewer than 250 vertices, so we may
assume that G = (V,E) is a graph on n � 250 vertices. Let U be a random subset of V obtained
by selecting each vertex of G with probability 1/2, independently of the other vertices. Define
an auxiliary degree graph D on U where two vertices x,y ∈U are joined by an edge if they have
the same degree in G[U ]; note that D is the union of vertex disjoint cliques, one for each vertex
degree in G[U ]. For any pair of distinct vertices x,y ∈ V , the probability that xy is an edge of D
is precisely P(dU(x) = dU(y))/4. Hence, the expected number of edges of D is given by

E[e(D)] =
1
4 ∑

{x,y}∈V (2)

P(dU(x) = dU(y)).

We shall bound the probability of the event dU(x) = dU(y) by the neighbourhood-distance
between x and y; a similar result appears in [3].

Lemma 3.1. For any pair of distinct vertices x,y ∈V , we have

P(dU(x) = dU(y)) <
20√

δ (x,y)+1
.

Proof. Let s = |Γ(x) \Γ(y)| and t = |Γ(y) \Γ(x)|. Observe that s + t is equal to δ (x,y)+ 2 if
xy ∈ E and δ (x,y) otherwise. Without loss of generality, we may suppose that s � t. Therefore,
s � δ (x,y)/2 and it follows that

P(dU(x) = dU(y)) =
1

2s+t

t

∑
i=0

(
s
i

)(
t
i

)

� 1
2s

max
0�i�s

(
s
i

)(
1
2t

t

∑
i=0

(
t
i

))

=
1
2s

(
s

	s/2


)
<

10√
s+1

� 20√
δ (x,y)+1

.

As an immediate consequence of this lemma, we have

E[e(D)] < ∑
{x,y}∈V (2)

5√
δ (x,y)+1

. (3.1)

We now bound the right hand side of (3.1) in terms of hom(G). Fix a vertex x∈V and consider the
sets S = Γ(x) and T = Γ(x). Note that δ (x,y) � dT (y) for any y ∈ T . By applying Proposition 2.3
to the graph G[T ], we get

hom(G) � ∑
y∈T

1
dT (y)+1

� ∑
y∈T

1
δ (x,y)+1

.
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Similarly, if y ∈ S, then δ (x,y) � dS(y). Applying Proposition 2.3 to the complement of G[S], we
similarly get

hom(G) � ∑
y∈S

1

dS(y)+1
� ∑

y∈S

1
δ (x,y)+1

.

It follows that

2hom(G) � ∑
y∈V\{x}

1
δ (x,y)+1

.

Finally, by summing this inequality over all the vertices of G and applying the Cauchy–Schwarz
inequality, we get

nhom(G) � ∑
{x,y}∈V (2)

1
δ (x,y)+1

�
(

n
2

)−1(
∑

{x,y}∈V (2)

1√
δ (x,y)+1

)2

. (3.2)

From (3.1) and (3.2), we conclude that

E[e(D)] < 4
√

n3 hom(G).

It follows from Markov’s inequality that

P(e(D) > 12
√

n3 hom(G)) <
1
3
.

Next, since |U | is the sum of n � 250 independent indicator random variables and E[|U |] = n/2,
it follows from Hoeffding’s inequality that

P(|U | < n/3) <
1
3
.

Hence, with positive probability, the degree graph D satisfies v(D) > n/3 and

e(D) < 12(n3 hom(G))1/2.

Applying Proposition 2.3 to D, we see that this graph contains an independent set of size at least

v(D)2

2e(D)+ v(D)
� 1

250

√
n

hom(G)
.

The vertices of this independent set have different degrees in G[U ] by the definition of D.
Therefore, the subgraph induced by U has at least (1/250)(n/hom(G))1/2 distinct degrees with
positive probability; the result follows.

4. Large homogeneous sets

In this section, we consider graphs with large homogeneous sets and prove Theorem 1.2. Before
we turn to the proof of Theorem 1.2, let us identify the inefficiencies in the proof of Theorem 1.1;
to this end, we consider some examples of graphs with large homogeneous sets that contain no
induced subgraphs with many distinct degrees. Let b,k,n ∈ N be positive integers satisfying
b � k � (logn)/2, and consider:

(1) a disjoint union of n/k cliques each of size k,
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(2) a disjoint union of k cliques each of size n/k, and
(3) a disjoint union of k/b copies of H, where H is the disjoint union of n/k cliques each of

size b.

It is not hard to see that if G is the graph in either of the above three examples, then hom(G) = n/k
and f (G) = k. Suppose that G is one of the graphs described above; let U be a 1/2-random subset
of V (G) and define the degree graph D on U as in the proof of Theorem 1.1.

If G is the graph in example (1), then with high probability, G[U ] has about

n
2k

(
k−1

i

)

vertices of degree i for each 0 � i � k−1. This means that while G[U ] has k distinct degrees, the
k cliques in the auxiliary graph D have very different sizes. Hence, the final application of the
Caro–Wei bound in the proof of Theorem 1.1 is too crude for this graph.

If G is the graph in example (2), then G[U ] again has k distinct degrees with high probability.
However, notice that δ (x,y) is either 0 or 2n/k − 2 for any pair of vertices x,y ∈ V (G) with
the former being the case for about 1/k of the pairs. Our application of the Cauchy–Schwarz
inequality in the proof of Theorem 1.1 is therefore suboptimal for this graph.

Our third example is a generalization of the first two examples. The graph defined in ex-
ample (3) is the complement of the graph in our first example if b = k, and is the graph in our
second example when b = 1. When 1 < b < k, this example illustrates both the aforementioned
inefficiencies in the proof of Theorem 1.1.

Nevertheless, notice that in all of our examples, a random induced subgraph has at least k
distinct degrees with high probability; our strategy for proving Theorem 1.2 will be informed
by this fact. Let us now sketch our strategy. First, we show that we may partition the vertex
set of our graph G into groups in such a way that vertices within a group are all close together
in neighbourhood-distance while vertices from different groups are far apart. We then select a
random subset U of the vertices as before. We use the bound on hom(G) to show that in G[U ], the
degrees of the vertices within a group are distributed like the vertex degrees in a random induced
subgraph of the graph in example (1). We then argue that most pairs of vertices from different
groups have different degrees in G[U ]. We finally deduce from these facts that the number of
distinct degrees in G[U ] is large.

We are ready to prove Theorem 1.2; while following the proof, the reader is encouraged to
keep example (3) in mind.

Proof of Theorem 1.2. The result is trivial when k = 1, so fix k � 2. Also, we may assume
without loss of generality that 0 < ε < 1/2. With the benefit of hindsight, we define the constants
β = ε/10k, η = εβ/105k2 and J = 104k1224k/η4.

Assume that n is sufficiently large and suppose for the sake of contradiction that G = (V,E) is
a graph on n vertices with hom(G) < n/(k−1+ ε) and f (G) < k.

Let U be a random subset of V obtained by selecting each vertex of V with probability 1/2,
independently of the other vertices. As before, define an auxiliary degree graph D on U where
two vertices x,y ∈U are joined by an edge if they have the same degree in G[U ].
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For a set of vertices W ⊂V , we define

δ̂ (W ) = ∑
{x,y}∈W (2)

5√
δ (x,y)+1

.

We first prove the following.

Claim 4.1. For each W ⊂V , we have

δ̂ (W ) >
|W |2 −3k|W |

54k
.

Proof. The statement is trivial if |W | � 3k, so suppose that |W | � 3k + 1 � 7. Note that by
Lemma 3.1, the quantity δ̂ (W ) is an upper bound for the expected number of edges of D spanned
by W ∩U ; in other words,

E[e(D[W ∩U ])] � δ̂ (W ).

Applying Markov’s inequality, we get

P(e(D[W ∩U ]) > 3δ̂ (W )) < 1/3.

Also, |W ∩U | is the sum of |W | � 7 independent indicator random variables, so by Hoeffding’s
inequality,

P(|W ∩U | < |W |/3) � 2exp(−14/9) < 1/2.

Hence, with positive probability, we have both e(D[W ∩U ]) � 3δ̂ (W ) and |W ∩U | � |W |/3. By
Proposition 2.3, with positive probability, the graph D[W ∩U ] contains an independent set of size
at least

|W ∩U |2
2e(D[W ∩U ])+ |W ∩U | � |W |2

54δ̂ (W )+3|W |
.

However, since f (G) < k, we know that D cannot contain an independent set of size k. It follows
that

k >
|W |2

54δ̂ (W )+3|W |
,

or equivalently

δ̂ (W ) >
|W |2 −3k|W |

54k
.

This tells us that every large subset of V must have many pairs of vertices with small
neighbourhood-distance. This suggests that we should be able to group the vertices of G into large
groups in such a way that the neighbourhood-distance between any two vertices within a group
is small. We prove such a statement this next; recall that β = ε/10k and J = 1024k2024k/(εβ )4.

Claim 4.2. There exists a K = K(k,ε) > 0 such that the following holds. There are pairwise
disjoint sets A1,A2, . . . ,Am ⊂V such that:
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(1) |A1 ∪A2 ∪·· ·∪Am| > (1−β )n,

(2) |Ai| > βn/104k for each 1 � i � m,

(3) if x,y ∈ Ai, then δ (x,y) < K, and

(4) if x ∈ Ai and y ∈ Aj with i �= j, then δ (x,y) > J.

Proof. We prove the claim with

K = 2

(
106k2 +

J log(104k)
log(1+β/2)

)
.

We shall construct a sequence of pairwise disjoint sets A1,A2, . . . and another nested sequence of
sets B0 ⊂ B1 ⊂ . . . such that, for each l ∈ N:

(i) Bl is disjoint from A1 ∪A2 ∪·· ·∪Al ,

(ii) |Al | > βn/104k,

(iii) |Bl | < (β/2)∑l
i=1 |Ai|,

(iv) if x,y ∈ Al , then δ (x,y) < K, and

(v) if x ∈ Al and y ∈V \ (Al ∪Bl), then δ (x,y) > J.

We set B0 = ∅. Let l � 0 and suppose that the sets A1,A2, . . . ,Al and Bl have already been
constructed satisfying the above properties. The claim is proved if ∑l

i=1 |Ai|> (1−β )n. Suppose
otherwise; we construct Al+1 and Bl+1 as follows.

Define W = V \ (Bl ∪A1 ∪A2 ∪ ·· · ∪Al) and note that |W | > βn/2. Let p be the number of
pairs {x,y} ∈W (2) such that δ (x,y) < 106k2. Note that we have

δ̂ (W ) = ∑
{x,y}∈W (2)

5√
δ (x,y)+1

< 5p+
|W |2
103k

.

On the other hand, if n is sufficiently large, then by Claim 4.1, we have

δ̂ (W ) >
|W |2 −3k|W |

54k
>

|W |2
100k

.

It follows that p > |W |2/103k. Thus, there is a vertex w ∈ W and a subset S ⊂ W with |S| >

|W |/103k where every x ∈ S satisfies δ (w,x) < 106k2.
We set C1 = {w}∪S and iteratively construct an increasing sequence of sets C1 ⊂C2 ⊂ . . . as

follows. Having constructed Ci, consider the set T of vertices x ∈W \Ci for which there exists a
vertex y ∈Ci such that δ (x,y) � J. If |T | � β |Ci|/2, then set Ci+1 = Ci ∪T . Otherwise, stop and
define Al+1 = Ci and Bl+1 = Bl ∪T .

It is clear that Bl+1 ∩ (A1 ∪ A2 ∪ ·· · ∪ Al+1) = ∅ and that δ (x,y) > J for all x ∈ Al+1 and
y ∈V \ (Bl+1 ∪Al+1). It is also clear that

|Al+1| � |C1| >
|W |
103k

>
βn

104k
.

Finally, note that we must have |T | < β |Ci|/2 when we define Al+1 and Bl+1, so we inductively
have

|Bl+1| <
β
2

l+1

∑
i=1

|Ai|.
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Next, observe that for each i � 1, we have

|Ci| �
(

1+
β
2

)i−1

|C1| �
(

1+
β
2

)i−1 |W |
103k

.

As each Ci is a subset of W , it is clear that the sets Al+1 and Bl+1 get defined after at most
log(104k)/ log(1+β/2) iterations. The neighbourhood-distance satisfies the triangle inequality;
consequently,

δ (w,x) < 106k2 +(i−1)J

for all x ∈Ci and therefore,

δ (x,y) < 2(106k2 +(i−1)J)

for all x,y ∈Ci. Thus, for all x,y ∈ Al+1, we have

δ (x,y) < 2

(
106k2 +

J log(104k)
log(1+β/2)

)
= K.

Therefore, the sets A1,A2, . . . ,Al+1 and Bl+1 also satisfy the properties described above.
To finish the proof, note that since the sets A1,A2, . . . are pairwise disjoint, the above described

construction procedure must terminate; indeed, if m > 104k/β , then ∑m
i=1 |Ai| > (1−β )n.

Let K and A1,A2, . . . ,Am be as promised by Claim 4.2. Note that m � 104k/β since |Ai| >

βn/104k for each 1 � i � m.
To proceed, we need to introduce the following notion of independence. If S ⊂V and x,y ∈ S,

we say that x and y are S-independent in G if

(ΓS(x)∪{x})∩ (ΓS(y)∪{y}) = ∅;

analogously, we say that x and y are S-independent in G if

(ΓS(x)∪{x})∩ (ΓS(y)∪{y}) = ∅.

Recall that U is a 1/2-random subset of the vertices; therefore, if x and y are S-independent, then
dU∩S(x) and dU∩S(y) are independent random variables.

For 1 � i � m, let ri be the unique non-negative integer such that

rin
k−1+ ε

< |Ai|−ηn � (ri +1)n
k−1+ ε

.

Our next step is to show that each Ai has a large subset of pairwise Ai-independent vertices; recall
that η = εβ/105k2.

Claim 4.3. For each 1 � i � m, there is a subset Bi ⊂ Ai with |Bi| > ηn/2k2 such that either

(i) ri � dAi
(x) � k−2 for every x ∈ Bi, and

(ii) any pair of distinct vertices x,y ∈ Bi are Ai-independent in G,

or

(i) ri � dAi
(x) � k−2 for every x ∈ Bi, and
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(ii) any pair of distinct vertices x,y ∈ Bi are Ai-independent in G.

It is clear from the definition of ri that ri � k− 1; the above claim implicitly tells us that our
assumptions about G actually imply that ri � k−2 for each 1 � i � m.

Proof of Claim 4.3. Fix 1 � i � m and let r = ri, A = Ai and F = G[Ai]. To avoid confusion,
we write dF and δF to denote the degrees and neighbourhood-distances in the graph F .

Note that δF(x,y) � δ (x,y) < K for all x,y ∈ A. Hence, by applying Proposition 2.1 to F , we
see that there exists a Δ = Δ(k,ε) such that either dF(x) � Δ for all x ∈ A or dF(x) � Δ for all
x ∈ A. We suppose that the former holds; the other case may be handled analogously.

We now apply Proposition 2.2 to F and conclude that all but at most L = L(k,ε) vertices
x ∈ A satisfy dF(x) � k−2. Let q be the number of vertices x ∈ A with dF(x) � r−1. Then, by
Proposition 2.3, F contains an independent set of size at least q/r. From our assumption about
hom(G), it follows that

q � r hom(F) � r hom(G) <
rn

k−1+ ε
;

therefore, there are at least ηn vertices x ∈ A with dF(x) � r.
Let S1 be the set of vertices x ∈ A with dF(x) � r. Let S2 be the set of those x ∈ S1 which are

A-dependent on some vertex y ∈ A with dF(y) � k− 1; the number of such y is at most L, so it
follows that |S2|� L(1+Δ+Δ(Δ−1)). If n is sufficiently large, then the set S3 = S1 \S2 contains
at least 2ηn/3 vertices. For every vertex x ∈ S3, there are at most (k−2)+(k−2)(k−3) � k2−1
other vertices y ∈ A such that x and y are A-dependent. Hence, we can greedily select a set B ⊂ S3

of pairwise A-independent vertices of size at least |S3|/k2 > ηn/2k2.

For 1 � i � m, let Bi ⊂ Ai be as guaranteed by Claim 4.3 and let Ai be the event that there
exists an integer di � 0 and ri +1 pairwise disjoint sets Bi,0,Bi,1, . . . ,Bi,ri

⊂ Bi ∩U such that, for
all 0 � s, t � ri:

(i) |Bi,s| � ηn/2k+1k3,
(ii) dU∩Ai

(x) = dU∩Ai
(y) for all x,y ∈ Bi,s,

(iii) dU∩Ai
(x) �= dU∩Ai

(y) for all x ∈ Bi,s and y ∈ Bi,t with s �= t, and
(iv) dU∩(V\Ai)

(x) = di for all x ∈ Bi,0 ∪Bi,1 ∪·· ·∪Bi,ri
.

We next prove the following bound.

Claim 4.4. For each 1 � i � m,

P(Ai) > 1− 1
3m

.

Proof. Fix 1 � i � m and suppose that all pairs of distinct vertices from Bi are Ai-independent
in G; the other case may be handled similarly by working with vertex degrees in G instead of G.

For each W ⊂V \Ai, we shall prove that

P(Ai |U ∩ (V \Ai) = W ) > 1− 1
3m

.
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We fix W ⊂ V \ Ai and condition on the event U ∩ (V \ Ai) = W ; note that any event that
depends only on the vertices in Ai is independent of this event. If the collection of degrees
{dW (x)}x∈Bi

contains k distinct integers, then the subgraph induced by Bi ∪W has k different
degrees, contradicting our assumption that f (G) < k. Hence, there exists an integer di � 0 for
which there are least |Bi|/k vertices x ∈ Bi with dW (x) = di; let Ci ⊂ Bi be the set of these vertices.

For a vertex x∈Ci and 0 � s � ri, let Ii(x,s) be the indicator of the event {x∈U}∩{dU∩Ai
(x) =

s} and define

Ii(s) = ∑
x∈Ci

Ii(x,s).

Observe that E[Ii(x,s)] � 1/2k−1 since ri � dAi
(x) � k−2 and consequently

E[Ii(s)] �
|Ci|
2k−1

� ηn
2kk3

.

Also, the indicator random variables {Ii(x,s)}x∈Ci
are independent, so by Hoeffding’s inequality,

we have

P

(
Ii(s) <

ηn
2k+1k3

)
<

1
3mk

for all sufficiently large n since m � 104k/β . If Ii(s) � ηn/2k+1k3 for each 0 � s � ri, then Ai

clearly holds. Since ri � k−2, the claim follows by the union bound.

Define the event A = A1 ∩A2 ∩·· ·∩Am; it is clear from the previous claim that P(A) > 2/3.
Let us remind the reader that D is the graph on U where x,y ∈U are joined by an edge if dU(x) =
dU(y). Let b be the number of edges xy of D with x ∈ Ai and y ∈ Aj for some 1 � i < j � m. As
δ (x,y) > J for such a pair of vertices x and y, it follows from Claim 3.1 that

P(xy ∈ E(D)) <
5√

J +1
,

and hence E[b] < 5n2/J1/2.
Let B be the event that b � 15n2/J1/2. By Markov’s inequality, P(B) > 2/3. We finish the

proof of Theorem 1.2 by proving the following.

Claim 4.5. If both A and B hold, then G[U ] has at least k distinct degrees.

Proof. We know that D is the union of vertex disjoint cliques, one for each vertex degree
in G[U ]. If A holds, then for each 1 � i � m, the graph D[Ai ∩U ] contains at least ri + 1
disjoint cliques Di,0,Di,1, . . . ,Di,ri

(which correspond to the degrees in G[U ] of the vertices in

Bi,0,Bi,1, . . . ,Bi,ri
) each of size at least ηn/2k+1k3. Additionally, if B holds, then there are no

edges in D between Di,s and Dj,t for any 1 � i < j � m, 0 � s � ri and 0 � t � r j. Indeed, if not,
then Di,s ∪Dj,t induces a clique in D and we arrive at a contradiction since we would then have

b � |Di,s||Dj,t | �
η2n2

22k+2k6
>

15n2

√
J

;
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here, the last inequality holds since J = 10424kk12/η4. Hence, for all 1 � i � m and 0 � s � ri,
the cliques Di,s all correspond to distinct degrees in G[U ]. Thus, G[U ] has at least ∑m

i=1(ri + 1)
different degrees. Since

(ri +1)n
k−1+ ε

� |Ai|−ηn,

it follows that
m

∑
i=1

(ri +1) � (1−β −mη)(k−1+ ε) > k−1;

here, the last inequality holds since β = ε/10k, η = εβ/105k and m � 104k/β . Since ∑m
i=1(ri +1)

is an integer, this sum is at least k. We conclude that if both A and B hold, then G[U ] has at least
k distinct degrees.

We know by the union bound that P(A∩B) > 0. Therefore, G[U ] has k distinct degrees with
positive probability, contradicting our assumption that f (G) < k; the result follows.

5. Conclusion

We conclude this note by discussing two of the questions we alluded to in the Introduction. First,
as we mentioned earlier, we suspect that the following strengthening of Theorem 1.2 is true.

Conjecture 5.1. Fix a positive integer k � 2. If n is sufficiently large, then f (G) � k for every
n-vertex graph G with hom(G) < n/(k−1).

It may be read out of the proof of Theorem 1.2 that if G is an n-vertex graph with hom(G) >

n/(100logn), then f (G) = Ω(n/hom(G)); for such graphs, this is a significant improvement
over Theorem 1.1. We believe that it should be possible to prove a similar result for graphs with
much smaller homogeneous sets.

Conjecture 5.2. If G is an n-vertex graph with hom(G) > n1/2, then f (G) = Ω(n/hom(G)).
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