
The Review of Symbolic Logic

Volume 15, Number 2, June 2022

BISIMULATIONS FOR KNOWING HOW LOGICS

RAUL FERVARI

Universidad Nacional de Córdoba and CONICET

FERNANDO R. VELÁZQUEZ-QUESADA

Institute for Logic, Language and Computation, Universiteit van Amsterdam
and

YANJING WANG

Institute for Foreign Philosophy and Department of Philosophy, Peking University

Abstract. As a new type of epistemic logics, the logics of knowing how capture the high-level
epistemic reasoning about the knowledge of various plans to achieve certain goals. Existing
work on these logics focuses on axiomatizations; this paper makes the first study of their model
theoretical properties. It does so by introducing suitable notions of bisimulation for a family of
five knowing how logics based on different notions of plans. As an application, we study and
compare the expressive power of these logics.

§1. Introduction. Standard epistemic logic [18, 33] studies the reasoning patterns
of knowing that: the knowledge an agent might have about the truth-value of certain
propositions. It has been successfully applied to various fields besides philosophy,
such as theoretical computer science, game theory, and AI (see, e.g., [18, 41, 56]).
However, knowing that is not the only interesting expression of knowledge an agent
might use. One can look, for example, at the closely-related knowing whether, which
indicates that the agent knows the truth-value of a proposition without indicating
if she knows that the proposition is true or if she knows that the proposition is
false [19, 30]. There is also the drastically different knowing why, concerning the
reasons/arguments/evidence/justifications the agent has for claiming that a certain
proposition is the case [6, 64]. There are also several forms of knowing what, discussing
variables, their possible values, their possible dependencies, and knowledge about the
latter two (e.g., [8, 26, 57]). In [61] Wang presents a survey of logical approaches to
these forms of knowledge.

Another important kind of knowledge is expressed by knowing how. This form of
knowledge is particularly important not only in philosophy [20], but also in applied
sciences (see the surveys [3, 23]). In particular, it is important in automated planning
and strategic reasoning within AI. For the first, deciding whether an agent knows how
to achieve a certain goal is essentially asking whether she has at her disposal a sequence
of actions (that is, a strategy or a plan) that will always reach the intended target. For

Received: August 23, 2019.
2020 Mathematics Subject Classification: 03B42, 03B45, 03B70, 68T27, 68Q85.
Key words and phrases: epistemic logic, knowing how, bisimulation.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

450 doi:10.1017/S1755020321000101

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1755020321000101
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1755020321000101&domain=pdf
https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 451

the second, in multi-agent interaction, (knowing) whether another agent has the ability
to guarantee a certain outcome is crucial when deciding our own course of action.

Interestingly, knowing how cannot be captured by a simple combination of knowing
that and ability, as shown in [31, 36]. This is because a philosophically grounded
formulation of knowing how to achieve ϕ requires a de re reading: there exists a plan
� such that the agent knows that executing � guarantees ϕ [53]. This differs from the
de dicto reading which, combining knowing that and ability, would yield ‘the agent
knows that there is a method whose execution guarantees ϕ’. This reading requires for
the agent to have a ϕ-guaranteeing method, but it does not force her to know which
the method is. Equally important is the fact that a proper notion of knowing how may
take a global perspective: the given strategy should allow the agent to achieve the goal
in every scenario satisfying a given initial condition, in order to assure that the success
is truly a matter of ability, and not a matter of luck.

Based on this reading, Wang proposed and studied a modal logic featuring a simple
goal-directed knowing how operator Kh [59, 62], of which variants have been studied
in [37, 38, 39]. At the semantic level, these logics use relational models, which in this
context can be viewed as a description of the abilities of the agent (hence their common
alternative name of ability maps). From these structures, one can extract the agent’s
knowledge-how.

Despite using standard modal logic tools [12], the proposed logics are not normal,
and actually they should not be: intuitively, knowing how to get drunk and knowing
how to prove a theorem do not imply knowing how to prove the theorem while
drunk, in contrast with the valid normal modal logic formula (�ϕ ∧ ��) → �(ϕ ∧ �).
Moreover, fulfilling the aforementioned requirement, the provided knowing how
operators are global, that is, the truth value of a knowing how formula does not
depend on the point of evaluation (in fact, they can define the global universal
modality discussed in [25]). Finally, these logics have characteristic axioms capturing
the composition of plans/strategies.

A potential drawback of the mentioned proposals is that, while the semantics of
Kh is based on linear plans, the languages do not have a traditional knowing that
modality K; thus, the logics do not capture notions as knowledge-based plans or
conditional plans. These notions are important in certain scenarios, such as planning
problems in AI, where initial uncertainty and nondeterministic actions are present. As
a consequence, [21] introduced a logic for strategically knowing how, which combines
the discussed form of knowing how with a standard knowing that. In this approach,
the ‘global perspective’ is left out, and both modalities are interpreted locally. This
is required in order to properly capture the interaction between knowing how and the
typically local knowing that operator. Even more, instead of linear plans, the knowing
how modality operates now over branching plans, so the agent can make use of the
knowledge acquired during the plan’s execution. Another approach to strategy-based
knowing how came from the coalition logic tradition, within a multi-agent setting,
but with single-step strategies [43, 44, 46, 47] inspired by (earlier versions of) [1]. All
these aspects, together with the diversity of proposals, are sufficient to make the family
of knowing how logics interesting not only for logicians but also for philosophers and
computer scientists.

The work of the mentioned proposals focuses mostly on axiomatizations. This
paper makes the first attempt to study the model theoretical aspects of these
know-how logics, focusing in particular in the study of appropriate notions of

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

452 RAUL FERVARI ET AL.

bisimulation.1 A bisimulation is a relation between the states of two models, providing
a semantic characterization of the distinguishing power of the given language while
also formalizing the idea of behavioral equivalence. More precisely, a bisimulation
relates states from two models when they contain the same propositional and relational
information, in the respective sense of having both the same labelling as well as
‘matching’ successors. (For a more detailed technical account of bismulation in modal
logic and, in general, notions of equivalence between structures, see e.g., [24, 34].)

Bisimulations are useful for theoretical results, as helping in characterizing the
expressive power of logical languages (e.g., the van Benthem characterization theorem
for modal logic; [12]). But they also have more practical applications [52]. For example,
it is well-known that the expressivity and the complexity of a language are somehow
related. In many cases, the high expressivity of the language gives us a hint of the
high computational complexity of its inference tasks. Thus, a language’s expressivity
provides a guideline on its complexity profile, which can be used to decide which
language is adequate for the problem at hand. Bisimulations also have applications
in AI planning, where the size of the domain (or, from a logical perspective, the size
of the model) is crucial. Here, bisimulations can be used to obtain smaller models by
means of a bisimulation contraction, which produces a minimal model that inherits all
the observable logical properties from the original one. In fact, in epistemic planning,
there are already proposals that rely on notions of bisimulation in order to reduce a
model or to show some technical result, with [14] being an example. Bisimulations can
also be used to add states efficiently, as done in [48] when computing the Merge and
Shrink abstraction, a method for heuristic design in AI planning. These examples show
how notions of bisimulations for knowing how frameworks can be useful in planning
scenarios.

In all the notions of bisimulation that this paper discusses, we need to overcome
one technical difficulty: the imbalance between weak languages (a single knowing how
operator, indicating only whether the agent can guarantee the satisfaction of ϕ when
starting in situations satisfying �) and rich models (the relational models, indicating
not only which actions are available at each state of the system, but also which states
are reached after each action takes place). To this end, the notions of bisimulation
introduced in this proposal work by abstracting from the details provided by the
model. More precisely, they are essentially based on a ‘forcing relation’ that takes
the agent from a given set of states U to those states she can reach (from U) by the
execution of some plan/strategy.

This paper presents bisimulations for several knowing how logics. The first one,
discussed in detail, is a bisimulation for the basic knowing how logic of [62]. The paper
also provides bisimulations for two of its variations, namely the knowing how with
intermediate constraints of [38] (which additionally asks for the chosen strategy to go
only through ‘appropriate’ states), and the weakly knowing how of [37] (which weakens
the requirement on the required strategy by allowing ‘incomplete’ runs). Bisimulations
for logics dealing with knowledge-based plans are also reviewed. We discuss in detail the
case of the strategically knowing how logic of [21], and we also establish connections
with a single-agent variant of the logic introduced in [46]. Other proposals dealing
with an agent’s abilities using different kinds of structures have been explored in the

1 A preliminary version of this paper was first presented at SR2017 [22].

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 453

Table 1. A summary of the five know-how logics discussed in this manuscript.

Plan Global/local Know-that Executability Int-cons. Reference

LKh Linear Global No Strong No [59]
LKhm Linear Global No Strong Yes [38]
LKhw Linear Global No Weak No [37]
LKhs Branching Local Yes Strong No [21]
LH One-step Local Yes Strong No [46]

The classification is based on features of the semantics of the know-how operator, to
be made clear in the later sections: whether it is based on linear or branching plan,
whether the modality is global or local, whether the language also includes know-that
operator, whether it requires strong executability, and whether it involves intermediate
constraints (int-cons. column).

literature. Examples include frameworks in the STIT tradition (e.g., [17, 32, 35]) and
approaches from coalition logics (e.g., [3, 42, 55]). This paper focuses on the specific
frameworks for know-how with a single agent. It is not the intention of the paper to
present an exhaustive survey of all the relevant frameworks and justify all the design
choices therein.

Table 1 summarizes the main features of the five know-how logics this paper
considers.2 In all cases, we obtain invariance results and prove Hennessy–Milner-style
theorems over finite models. Further variations can be treated similarly.

As any notion of bisimulation, the ones presented here provide a tool for comparing
the expressivity of different (here: knowing how) languages, sharpening in this way
our model theoretical understanding of the discussed frameworks. By using them, we
show that (i) LKhm is strictly more expressive than LKh, (ii) LKhw is incomparable
to both LKhm and LKh, and (iii) LKhs is incomparable to LH (with or without the
strategy operator). The models for LKh,LKhw,LKhm are quite different from those for
LKhs and LH; thus, it is not meaningful to compare expressivity between these two
types of knowing how logics.

Outline. Our work starts in Section 2 by reviewing the definitions of the basic
knowing how logic and then proposing and studying an appropriate notion of
bisimulation. The ideas are extended for dealing with two other closely related knowing
how logics: the knowing how logic with intermediate constraints is investigated in
Section 3 and a weaker knowing how logic in Section 4. Then, Section 5 moves to a
different knowing how setting, providing suitable notions of bisimulation for the logic
of strategically knowing how, and a single-step variant is discussed in Section 6. Also,
while we introduce the corresponding notions of bisimulation along the sections, we
use them to contrast the expressive power of the discussed frameworks. The introduced
bisimulations are then compared with the existing literature (Section 7). Finally,
Section 8 concludes with some remarks and future research directions.

2 Readers are advised to come back to this table after reading the later sections, to understand
the features of each logic. Note that LH also includes a strategy operator as in [46].

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

454 RAUL FERVARI ET AL.

§2. Knowing how.

2.1. The language LKh and its semantics. This subsection introduces the most
basic knowing how setting, presented in [59, 62]. Through the text, let Π be a countable
nonempty set of propositional symbols.

Definition 2.1 (Language LKh). Formulas ϕ of the language LKh are given by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kh(ϕ,ϕ),

with p ∈ Π. The language LP denotes the propositional fragment of LKh.

The formula Kh(�,ϕ) expresses that the agent knows how to achieve ϕ when � is
the case. Other Boolean constants and connectives (�, ⊥, ∨, →, ↔) are defined as
usual. Additionally, define Aϕ := Kh(¬ϕ,⊥) and Eϕ := ¬A¬ϕ. As we will see later, A
is a global universal modality, with Aϕ stating that ϕ holds in all the states.

Definition 2.2 (Relational model). A relational model for Π is a tuple M =
〈W,Σ,R,V〉 where

• W is a nonempty set of possible states (also denoted by D(M));
• Σ is a nonempty set of basic actions;
• R : Σ → ℘(W ×W) assigns a binary accessibility relation Ra ⊆W ×W to

each a ∈ Σ, (sometimes we will write w Ra v for (w, v) ∈ Ra); and
• V :W → ℘(Π) is an atomic valuation.

A pair M, w with M a relational model and w ∈ D(M) is called a pointed (relational)
model, with w its evaluation point.

Following [59], a relational model is also called an ability map. It represents the
ability of the agent by indicating not only the actions she can perform at each state,
but also the (potentially nondeterministic) outcome of such actions. There can also be
terminating states without outgoing relations. Note how the models allow loops, and
thus it should not be understood as a temporal model in the traditional sense. Also,
since a model describes the agent’s abilities, any learning (and, in general, any action
through which the abilities of the agent change) should correspond to an operation
that transforms the model, typically by changing the relation for atomic actions (thus
allowing the existence of new sequences of actions).

To define the semantics for Kh, we need a notion of strong executability of a plan (a
sequence of actions) in a model, which intuitively means that the plan can always be
executed successfully to the end. Before the formal definition of strong executability,
we introduce some basic notions.

Definition 2.3. Let M = 〈W,Σ,R,V〉 be a relational model for Π; let � ∈ Σ∗ be a
(possibly empty) finite sequence of actions in Σ, with the empty sequence denoted by �.
For � = �, define R� := {(w,w) | w ∈W }; for � = a1 ... an, define

Ra1...an := Ra1 ◦ ··· ◦ Ran where ◦ is the composition of relations.

Take a statew ∈W . The set {v ∈W | (w, v) ∈ R�}, containing the states R�-reachable
from w, is denoted by R� [w].

Note how, if � = a ∈ Σ, then R� is the relation given by the model, as expected.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 455

Example 2.4. Consider the following relational model.

w1

w2 w3

w4

a

a

b

According to the previous definition, R� = {(w1, w1), (w2, w2), (w3, w3), (w4, w4)}.
For �1 = a, R�1 = {(w1, w2), (w1, w4)}, and for �2 = b, R�2 = {(w2, w3)}. Finally,
Rab = R�1�2 = R�1 ◦R�2 = {(w1, w3)}.

Definition 2.5 (Executability). Let M = 〈W,Σ,R,V〉 be a relational model for Π. The
sequence � ∈ Σ∗ is executable at w ∈W if and only if w has at least one �-successor. In
other words, � is executable at w ∈W if and only if R� [w]
= ∅.

The notion of strong executability adds one further requirement to Definition 2.5:
each time the execution of a strategy starts, it must finish.

Definition 2.6 (Strong Executability). Let M = 〈W,Σ,R,V〉 be a relational model for
Π. Given a nonempty sequence � = a1 ... an ∈ Σ∗ and k ≤ |�|, denote by �k the initial
segment of � up to ak (i.e., �k := a1 ... ak). In particular, �0 := � (for the empty sequence,
�0 := �).

A sequence � = a1 ... an is strongly executable (SE) at w ∈W if and only if

for any 0 ≤ k < n, v ∈ R�k [w] implies Rak+1[v]
= ∅.

In other words, � = a1 ... an is strongly executable at w ∈W if and only if, for any
0 ≤ k < n, any state R�k -reachable from w has at least one ak+1-successor. Note that
if � is strongly executable at w, then it is executable at w but the other way around
does not hold in general.

Example 2.7. Consider the relational model from Example 2.4. Note howw3 ∈ Rab[w1],
as there is w2 such that w1 Ra w2 Rb w3; then Rab[w1]
= ∅, so ab is executable at w1.
However, ab is not strongly executable at w1: for its subsequence a we havew4 ∈ Ra [w1],
nevertheless w4 does not have a b-successor, therefore Rb[w4] = ∅.

With these tools defined, it is possible to provide the semantic interpretation for the
language LKh.

Definition 2.8 (Semantics). Let M = 〈W,Σ,R,V〉 be a relational model, and let w ∈
W . The satisfaction relation |= between the pointed model M, w and a formula ϕ in LKh

is inductively defined as follows:

M, w |= p iff p ∈ V(w)
M, w |= ¬ϕ iff M, w
|= ϕ
M, w |= ϕ ∧ � iff M, w |= ϕ and M, w |= �
M, w |= Kh(�,ϕ) iff there exists a sequence � ∈ Σ∗such that, for all states u ∈W,

if M, u |= �, then
(i) � is SE at u, and
(ii) for all states v ∈W,v ∈ R� [u] implies M, v |= ϕ.

A formula ϕ is satisfiable if and only if there exists a pointed model M, w such that
M, w |= ϕ. As usual, ϕ is valid if and only if M, w |= ϕ for every pointed model

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

456 RAUL FERVARI ET AL.

M, w. Additionally, define the set �ϕ�M := {w ∈W | M, w |= ϕ}, typically called the
extension of ϕ in M. The elements of �ϕ�M are also referred to as ϕ-states.

It is worthwhile to notice how, even though the semantic interpretation of Kh relies
on the existence of a sequence � ∈ Σ∗, such � is not a part of the formula. In fact, no
formula in LKh refers to actions in Σ.

For the semantic interpretation of the knowing how formulasKh(�,ϕ), the definition
establishes that, at state w of model M, the agent knows how to achieve ϕ given �,
written as M, w |= Kh(�,ϕ), if and only if there is a sequence � that is strongly
executable from any �-state, and any of such executions leads to a ϕ-state. Note how
the evaluation point w does not play any role in the semantic clause, which focuses
rather on global model properties. Because of this, a formula of the form Kh(�,ϕ) is
either true in every state (i.e., �Kh(�,ϕ)�M = D(M)) or else false in every state (i.e.,
�Kh(�,ϕ)�M = ∅). Thus, this form of knowing how relies not on the actual state of
affairs, but rather on ‘global’ abilities, just as knowing how to open a safe given that it
is closed does not rely on the current state of the safe.

To give the reader a better grasp of the knowing how formula Kh(�,ϕ), it is useful
to delve into the semantic interpretation of the abbreviation Aϕ := Kh(¬ϕ,⊥). The
following proposition states that A behaves exactly as the global universal modality
discussed in [25].

Proposition 2.9. LetM, w be a pointed model. Then,M, w |= Aϕ if and only ifM, u |=
ϕ holds for all u ∈ D(M).

Proof. Let M = 〈W,Σ,R,V〉 be a relational model; given a sequence � ∈ Σ∗ and a
state u ∈W , use SE(�, u) as a shortcut for ‘� is strongly executable at u’. By unfolding
the definition of A, we get that M, w |= Aϕ if and only if

∃� ∈ Σ∗.∀u ∈W.
(
u ∈ �¬ϕ�M ⇒

(
SE(�, u) ∧ ∀v ∈W.(v ∈ R� [u] ⇒ v ∈ �⊥�M)

))
,

which reduces to

∃� ∈ Σ∗.∀u ∈W.
(
u ∈ �¬ϕ�M ⇒ (SE(�, u) ∧ ∀v ∈W .v /∈ R� [u])

)
.

Note that the statement SE(�, u) ∧ ∀v ∈W .v /∈ R� [u] is contradictory: if � ∈ Σ∗ is
SE at u, the set R� [u] cannot be empty. Then, the statement becomes

∃� ∈ Σ∗.∀u ∈W .u /∈ �¬ϕ�M.

Hence, since Σ∗ is never empty,

M, w |= Aϕ iff for all u ∈W, we have u ∈ �ϕ�M.

Thus, A is the global universal modality; as a corollary, Eϕ is its existential dual.

For a sound and complete axiomatization of validities in LKh over the class of
relational models, the reader is referred to [59].

In order to finish with the preliminaries, we discuss here two further concepts. First,
we introduce the notion of LKh-equivalence between pointed models.

Definition 2.10 (LKh-equivalence). Let M, w and M′, w′ be two pointed models. We
say M, w and M′, w′ are LKh -equivalent (notation: M, w ≡LKh

M′, w′) if and only if

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 457

they satisfy the same LKh-formulas, i.e., if and only if, for all ϕ in LKh,

M, w |= ϕ iff M′, w′ |= ϕ.
Note that, by Definition 2.8, this is equivalent to checking, for all ϕ in LKh, that

w ∈ �ϕ�M iff w′ ∈ �ϕ�M
′
.

For the later discussions, we need a notion of definability of a set of states in a model
w.r.t. a given formal language:

Definition 2.11 (Definability). LetM be a relational model. A set of statesU ⊆ D(M)
is LKh-definable (resp., LP -definable, or propositionally definable) in M if and only if
there is ϕ ∈ LKh(resp., ϕ ∈ LP) such that U = �ϕ�M.

Since Kh formulas are global (either uniformly true or uniformly false throughout
the state space), it is a straightforward exercise to show the following proposition.

Proposition 2.12. Let M be a relational model. For all set U ⊆ D(M), U is LKh-
definable in M if and only if it is LP-definable in M.

2.2. Bisimulation for knowing how. This section introduces a notion of bisimulation
for the knowing how languageLKh. We show that this notion is appropriate to prove two
classical results: the invariance theorem, and over finite models, a Hennessy-Milner-
style theorem. Also, it allows us to compare LKh with other approaches of knowing
how.

When looking for a notion of bisimulation for a given language, one needs to be
careful in formulating the conditions: they should be strong enough to guarantee
that the language cannot distinguish bisimilar models, but they should also be weak
enough to hold between two models that cannot be distinguished by the language. In
other words, a bisimulation should be a notion of structural equivalence matching (in
appropriate classes of models) the notion of language indistinguishability. In many
cases, the definition will look natural after being provided, but the conditions might
not have been obvious at all before.

Let us first review the standard notion of bisimulation for multi-modal logic over
models with the same set of actions Σ ([12], Section 2.2).

Definition 2.13 (Bisimulation). Let M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ,R′,V′〉 be
two relational models. A bisimulation between M and M′ is a nonempty relation Z ⊆
W ×W ′ such that wZw′ implies:

• Atom: V(w) = V′(w ′);
• Zig: if w Ra v for some a ∈ Σ, then there is a v′ such that w ′ R′

a v
′ and vZv′;

• Zag: if w ′ R′
a v

′ for some a ∈ Σ, then there is a v such that w Ra v and vZv′.

We say thatM, w andM′, w′ are bisimilar (M, w↔M′, w′) when there is a bisimulation
Z between M and M′ such that wZw′.

It is clear that the standard bisimulation for the basic multi-modal language is
not adequate for our purposes. First of all, the standard bisimulation is only defined
between models with the same set of actions Σ. However, in our case, the language
LKh does not explicitly talk about the concrete actions in the models. We will define
a variant of bisimulation between models with different Σ, which does not match the
actions as in the standard bisimulation. As another (obvious) difference, the universal

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

458 RAUL FERVARI ET AL.

modality is not definable within the basic multi-modal language, but it is definable
within LKh. Therefore, only matching the connected states is not enough. Still, some
of the basic ingredients of the standard bisimulation should appear. From the fact
that LKh involves atomic propositions and Boolean operators, it is obvious that an
appropriate bisimulation relation Z ⊆W ×W ′ should only contain pairs of states
with matching atomic valuation.

Now, let us discuss the Zig and Zag conditions (also called forth and back). They
should match the only modal operator of the language, Kh. As we are in a modal
setting, one might be tempted to require that, if (w,w′) is in Z, then these states should
have ‘matching’ successors (for an appropriate definition of ‘matching’). However, as it
has been emphasized, the actual evaluation point does not play any role in the semantic
interpretation of Kh. In fact, as the universal modality is definable in LKh, every state
in W should have a ‘matching’ state inW ′, and vice-versa, regardless of whether they
are accessible from the ‘evaluation point’ w.

But this is clearly not enough: relations between states have not been considered so
far, and they are crucial when deciding whether the agent has some strongly executable
strategy to achieve a given goal. Further restrictions should be imposed, so the proposed
notion of bisimilarity indeed implies LKh-equivalence.

When looking for these additional conditions, a crucial observation is that the
Kh operator does not connect a state with another state (as, e.g., the standard �

and � modal operators do); it actually connects a set of states (those satisfying the
precondition) with another set of states (those that can be reached via the strong
execution of some given strategy). Conditions similar to what LKh requires can be
found in the literature for bisimulations over neighbourhood models (e.g., [5, 7, 27–29,
51, 54]), also related to those for alternating-time temporal logic (e.g., [2]) and for
conditional modalities (e.g., [9]). For this paper’s definition, the following notions will
be useful.

Definition 2.14 (Notation). Let M = 〈W,Σ,R,V〉 be a relational model for Π; take a
sequence � ∈ Σ∗ and a set of states U ⊆W .

• Define R� [U] as the set of states R� -reachable from some element of U:

R� [U] := {v ∈W | uR� v for some u ∈ U}.

• We write U �−→ V if and only if

(i) � is strongly executable at every u ∈ U and (ii) V = R� [U].

• We write U → V whenever there is � ∈ Σ∗ such that U �−→ V .

The relation ‘→’ between sets of states captures the essence of the modal operator
Kh: it relates a set U ⊆W with a set V ⊆W exactly when there is a sequence in Σ∗

that it is strongly executable at every u ∈ U and whose execution at some u ∈ U leads
to some v ∈ V . This relation is the crucial notion on the Kh-Zig and Kh-Zag clauses
(those designed to deal with equivalence for Kh-formulas) of the LKh-bisimulation.

Definition 2.15. Let M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉 be two relational
models; let Z ⊆W ×W ′ be a nonempty relation. Define the set of states inW ′ that are
reachable via Z from states in U ⊆W as

Z[U] := {v′ ∈W ′ | uZv′ for some u ∈ U},

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 459

and the set of states in W that are reachable via the converse of Z from states inU ′ ⊆W ′

as

Z–1[U ′] := {v ∈W | vZu′ for some u′ ∈ U ′}.

Definition 2.16 (LKh-bisimulation). Let M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉
be two relational models. A a nonempty relation Z ⊆W ×W ′ is called a LKh-
bisimulation between M and M′ if and only if wZw′ implies all of the following.

• Atom: V(w) = V′(w ′).
• Kh-Zig: for any propositionally definable set U ⊆W in M, if U → V for some

set V ⊆W , then there is a set V ′ ⊆W ′ such that

(i) Z[U] → V ′ and (ii)V ′ ⊆ Z[V].

• Kh-Zag: for any propositionally definable set U ′ ⊆W ′ in M′, if U ′ → V ′ for
some set V ′ ⊆W ′, then there is a set V ⊆W such that

(i)Z–1[U ′] → V and (ii)V ⊆ Z–1[V ′].

• A-Zig: for every state v in W there is a state v′ inW ′ such that vZv′.
• A-Zag: for every state v′ inW ′ there is a state v in W such that vZv′.

We say M, w and M′, w′ are LKh-bisimilar (M, w↔LKh
M′, w′) when there is a LKh-

bisimulation Z between M and M′ such that wZw′. We also call the induced ↔LKh

relation the LKh-bisimilarity relation.

The diagram below shows the requirement theKh-Zig condition imposes (the dashed
lines indicate what the condition demands). Let U be a propositionally definable subset
of W ; ifU → V (i.e., if V = R� [U] for some � ∈ Σ∗ strongly executable at all u ∈ U),
then there should exist a set V ′ ⊆W ′ such that

(i) Z[U] → V ′, that is, V ′ = R′
�′ [Z[U]] (the set V ′ contains exactly all those

states that are �′-reachable from some state inZ[U]) for some �′ ∈ Σ′∗ strongly
executable at all u′ ∈ Z[U] and

(ii) each state in V ′ is the Z-image of some state in V.

M

U

V

M′

Z[U]

Z[V]
V ′

Z

�

Z

�′

The Kh-Zag clause works in the other direction: for every propositionally definable
setU ′ ⊆W ′ satisfyingU ′ → V ′ there should be a setV ⊆W such that V satisfies both
(i)Z–1[U ′] → V , and (ii)V ⊆ Z–1[V ′]. The diagram is analogous to the previous one.

Observe how the Kh-Zig and Kh-Zag clauses of a LKh-bisimulation work globally
with arbitrary propositionally definable subsets of the domain. That they act globally

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

460 RAUL FERVARI ET AL.

over sets of states is natural, given the semantic interpretation of LKh’s only
modal operator, Kh. The requirement of definable sets is also reasonable, as we
are only interested in sets of states the language can distinguish. Finally, requiring
propositionally definable sets is the same as requiring LKh-definable ones (Proposition
2.12). The reason for choosing the former in the formulation is that, in this way, a
bisimulation is more ‘structural’, defined only in terms of the model (in particular, in
terms of valuations).

Because of their definitions, the clauses guarantee that any ‘→’ transition in one
model can be matched by some ‘→’ transition in the other. This is exactly what
is needed, as ‘U → V ’ is essentially the semantic counterpart of the knowing how
modality Kh(�,ϕ): both require the existence of a strongly executable sequence of
actions that, when started at any element of one set (U and ���M, respectively), ends
up invariably in some element of the other (V and �ϕ�M, respectively).

In the next example we show two bisimilar models, together with the conditions to
be checked according to Definition 2.16.

Example 2.17. Let M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉 be the relational
models of the diagram below, with nodes specified by both their names and the atoms true
at them, and arrows describing the relations Ra and R′

a . Take the relation Z ⊆W ×W ′

to be as depicted by the dotted lines.

w′ : p v′ : qM′

w : p v : p u : q t : qM a a a

a

Note how Z is a LKh-bisimulation between M and M′. First, Z clearly satisfies the
Atom clause, and also A-Zig and A-Zag. Moreover, it satisfies Kh-Zig too: every LP-
definable subsetU ⊆ D(M) satisfies the given requirements, as shown in the table below.
Therein, we list the sets U, V andV ′ in the model, and also the corresponding bisimulation
images Z[U] and Z[V]. The second column specifies which LP-formula defines the set
U, whereas the fourth and the sixth columns enumerate the witness sequences for each
relationU → V andZ[U] → V ′, respectively. Notice that on each row, the set in column
V ′ is included in the set in column Z[V], as requested for the satisfaction of Kh-Zig.

U Def. by V U → V by Z[U] Z[U] → V ′ by V ′ Z[V]

∅ ⊥ ∅ � ∅ � ∅ ∅
{w, v} p {w, v} � {w′} � {w′} {w′}

{v, u} a {w′} a {v′} {w′, v′}
{u, t} aa {w′} a {v′} {v′}

{u, t} q {u, t} � {v′} � {v′} {v′}
W � W � W ′ � W ′ W ′

An analogous argument shows that Z satisfies Kh-Zag too.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 461

Observe also the A-Zig and A-Zag clauses, which simply state that a bisimulation
needs to be total for both models (the global universal modality is definable), and
which are required to obtain modal equivalence (the proof of Theorem 2.20 will show
this). Note how, although A is definable in terms of Kh, the clauses A-Zig and A-Zag
do not follow from Kh-Zig and Kh-Zag, as shown by the following example.

Example 2.18. Consider the models from Example 2.17. Define M′′ = 〈W ′ ∪
{z},Σ′,R′,V′′〉, where V′′ is exactly as V′ except that V(z) = {r}. In other words,
M′′ is the result of adding an isolated r-state into M′, namely z. Let Z the relation
defined as in Example 2.17, now between M and M′′. There is no state s ∈W , s.t.
sZz; thus, the clauses Atom, Kh-Zig and Kh-Zag still hold. Moreover, A-Zag holds too.
However, A-Zig fails, as no state in W is sent to z.

Finally, note how the relation of LKh-bisimilarity is indeed an equivalence relation
among relational models, a fact that is sometimes used implicitly.

Proposition 2.19. The bisimulation relation ↔LKh
is an equivalence relation.

Proof. We need to show that ↔LKh
is reflexive, symmetric, and transitive. The first

two are straightforward. For transitivity, let M1 = 〈W1,R1,V1〉, M2 = 〈W2,R2,V2〉
andM3 = 〈W3,R3,V3〉 be models, with statesw1 ∈W1, w2 ∈W2, w3 ∈W3 satisfying
M1, w1 ↔LKh

M2, w2 andM2, w2 ↔LKh
M3, w3. Then, there are bisimulationsZ1 and

Z2 such that w1Z1w2 and w2Z2w3. We will show that Z2 ◦ Z1 is a LKh-bisimulation
containing the pair (w1, w3). The clauses Atom , A-Zig and A-Zag are easy to prove.
For Kh-Zig we need to show that, for each LP-definable set U with U → V in M1,
there is a set V ′′ ⊆W3 such that (Z2 ◦ Z1)[U] → V ′′ and V ′′ ⊆ (Z2 ◦ Z1)[V].

The first step is to show thatZ1[U] is LP-definable in M2. Let ϕ be the propositional
formula that defines U in M1; we claim Z1[U] is also definable by ϕ in M2. First, it
is straightforward that all states in Z1[U] satisfy ϕ. Indeed, each state u′ ∈ Z1[U] is
connected to some state u ∈ U by Z1 so, by Atom, u and u′ should satisfy the same
propositional formulas. In particular, u′ satisfies ϕ. Then, towards a contradiction,
suppose there is a state u′ ∈W2 that satisfies ϕ but that is not in Z1[U]. By A-Zag,
there must be a state u ∈W1 such that uZ1u

′; by Atom, u satisfies ϕ. Thus, u ∈ U
since U is defined by ϕ in M1. However, this contradicts the assumption u′
∈ Z[U].

Now we prove Kh-Zig for Z2 ◦ Z1. From Kh-Zig for Z1, there exists a set V ′ ⊆W2

such that Z1[U] → V ′ in M2 and V ′ ⊆ Z1[V]. From Kh-Zig for Z2 and the fact that
Z1[U] is LP-definable, there exists V ′′ ⊆W3 such that Z2[Z1[U]] → V ′′ in M3 and
V ′′ ⊆ Z2[V ′] ⊆ Z2[Z1[V]]. Therefore, Z2 ◦ Z1[U] → V ′′ and V ′′ ⊆ Z2 ◦ Z1[V].

The case for Kh-Zag. Finally, we have M1, w1 ↔LKh
M3, w3.

In order to simplify some steps in our proofs below, we introduce the following
notation: M, w |= Kh(�,ϕ) (or, equivalently by Definition 2.8, w ∈ �Kh(�,ϕ)�M) if
and only if

there is � ∈ Σ∗such that ���M �−→ V and V = R� [���M] ⊆ �ϕ�M.

The statement is equivalent to the semantic clause for Kh (Definition 2.8):

∃� ∈ Σ∗.∀u ∈W.
(
u ∈ ���M ⇒

(
SE(�, u) & ∀v ∈W.(v ∈ R� [u] ⇒ v ∈ �ϕ�M)

))
.

Both statements are indeed equivalent: from the latter, distribute first the antecedent
of the outermost implication, and then the outermost universal quantifier. Using the
new notation from Definition 2.14 does the job.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

462 RAUL FERVARI ET AL.

With these tools on the table, it is now time to show that ↔LKh
is indeed an

appropriate notion of bisimulation for LKh. The first result states that LKh-bisimilarity
implies LKh-equivalence.

Theorem 2.20 (LKh Invariance). Let M, w and M′, w′ be two pointed models, with
M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w↔LKh
M′, w′ implies M, w ≡LKh

M′, w′.

Proof. If M, w↔LKh
M′, w′, then there is a LKh-bisimulation Z ⊆W ×W ′ such

that wZw′. The proof of LKh-equivalence is by structural induction on LKh-formulas.
The case for atomic propositions follows immediately from the Atom clause, and the
cases for the Boolean operators follow from their inductive hypotheses.

The missing piece, the Kh(�,ϕ) case, uses the auxiliary result (†) : Z[���M] =
���M

′
.

(⊆) Take any state v′ ∈ Z[���M]. Then, there is a state v ∈ ���M such that vZv′.
By inductive hypothesis (� is a subformula of Kh(�,ϕ)), we have v′ ∈ ���M

′
.

(⊇) Take any state v′ ∈ ���M
′
. By A-Zag, there is a state v with vZv′; by inductive

hypothesis (� is a subformula ofKh(�,ϕ)), v ∈ ���M. Hence, v′ ∈ Z[���M].

For the actual proof, suppose w ∈ �Kh(�,ϕ)�M. From the semantic interpretation,
and using the notation of Definition 2.14, it follows that

there is � ∈ Σ∗ such that ���M �−→ V and V = R� [���M] ⊆ �ϕ�M.

The set ���M is clearly LKh-definable, and thus LP-definable (Proposition 2.12).
Moreover: there is a sequence� ∈ Σ∗ such that ���M �−→ V , so ���M → V . Then, from
clause Kh-Zig, there is a set V ′ ⊆W ′ such that (i)Z[���M] → V ′ (i.e., ���M

′ → V ′,
given the auxiliary result (†)) and (ii) V ′ ⊆ Z[V].

Now, from ���M → V and w ∈ �Kh(�,ϕ)�M we know that V ⊆ �ϕ�M. But the
inductive hypothesis states that, for proper subformulas of Kh(�,ϕ), LKh-bisimilarity
implies LKh-equivalence; then, from V ⊆ �ϕ�M it follows that Z[V] ⊆ �ϕ�M

′
. This,

together with (ii), yields V ′ ⊆ �ϕ�M
′
. Thus, we have both ���M

′ → V ′ and V ′ ⊆
�ϕ�M

′
; therefore, w′ ∈ �Kh(�,ϕ)�M

′
.

The other direction, from w′ ∈ �Kh(�,ϕ)�M
′

to w ∈ �Kh(�,ϕ)�M, follows a
symmetric argument, using A-Zig (for the auxiliary result Z–1[���M

′
] = ���M) and

Kh-Zag (for the actual proof) instead.

Theorem 2.20 tells us that the semantic condition described by ↔LKh
is strong

enough to guarantee LKh-equivalence. The other direction, showing that ↔LKh
is

weak enough to hold between any LKh-equivalent pointed models, does not hold in
general. A typical strategy when dealing with the basic modal language is to focus on a
weaker result, showing instead that the desired property holds for image-finite models:
those in which each state has, for every a ∈ Σ, only a finite number of a-successors
[12, 13]. Here we will focus rather on models with finite domain; this is because the
universal modality is definable in our language, and thus a finite domain is required in
order to ensure that each state has only finitely many ‘successors’.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 463

Theorem 2.21. Let M, w and M′, w′ be two pointed finite-domain models, with M =
〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w ≡LKh
M′, w′ implies M, w↔LKh

M′, w′.

Proof. The strategy is to show that the relation of LKh-equivalence is already a
bisimulation. Thus, define Z := {(v, v′) ∈ (W ×W ′) | M, v ≡LKh

M′, v′}; in order
to show that Z satisfies the requirements, take any (w,w′) ∈ Z (i.e., wZw′).

Atom: states w and w′ agree in all LKh-formulas, and in particular, in all atoms.
A-Zig: Take a state v ∈W and suppose, for the sake of a contradiction, that
there is no state v′ ∈W ′ such that vZv′. Then, from Z’s definition, for each
v′i ∈W ′ = {v′1, ... , v′n} (recall: M′ has a finite domain) there is a LKh-formula
�i such that M, v |= �i but M′, v′i
|= �i . Now take � := �1 ∧ ··· ∧ �n. Clearly,
M, v |= �; however, M′, v′i
|= � for each v′i ∈W ′, as each one of them makes
‘its’ conjunct �i false. Then, M, w |= E� and M′, w′
|= E�, contradicting the
assumption wZw′.
A-Zag: Analogous to the A-Zig case.
Kh-Zig: Take any propositionally definable set ���M ⊆W (thus, � is a
propositional formula), and suppose ���M → V for some set V ⊆W . We
need to find a set V ′ ⊆W ′ such that (i) Z[���M] → V ′ and (ii) V ′ ⊆ Z[V].

First, note that ���M
′

= Z[���M]. To show (⊇), take a state u′ ∈ Z[���M].
Then, there is a state u ∈ ���M with uZu′. Hence, from Z’s definition, u′ ∈
���M

′
. To show (⊆), take a state u′ ∈ ���M

′
. FromA-Zag there is a state u ∈W

with uZu′. Then, from Z’s definition, u ∈ ���M and hence u′ ∈ Z[���M].
Thus, we are actually looking for a set V ′ ⊆W ′ satisfying both (i) ���M

′ →
V ′ and (ii) V ′ ⊆ Z[V]. Now, consider two alternatives.

1. If ���M = ∅, then ���M
′

= Z[���M] = ∅ and hence taking V ′ = ∅
does the job: clearly, (i) ∅ → ∅ (due to � ∈ Σ∗) and (ii) ∅ ⊆ Z[V].

2. Otherwise, ���M
= ∅. Then, from A-Zag it followsZ[���M] = ���M
′
=

∅. For (i), note that the empty sequence � ∈ Σ∗ is such that ���M
′ �−→

���M
′
; thus, taking V ′ = ���M

′
gives us ���M

′ → V ′. Still, this only
guarantees that there is a V ′ satisfying (i), and we need one satisfying
both (i) and (ii). In order to do this, keep in mind that, due to ���M
= ∅
(resp., ���M

′ → V ′) and the strong executability requirement, V (resp.,
V ′) must be nonempty too. To show that there is a set V ′ ⊆W ′ satisfying
both (i) and (ii), argue by contradiction. Suppose there is no V ′ with the
given requirements: each setV ′ ⊆W ′ satisfying ���M

′ → V ′ is such that
V ′
⊆ Z[V]. In other words, every set V ′ ⊆W ′ satisfying ���M

′ → V ′

contains a state v′
V ′ that is not the Z-image of some state v ∈ V . From

Z’s definition, this means that for each state v ∈ V there is a formula �v
V ′

such that M, v |= �v
V ′ but M′, v′
|= �v

V ′ . Since the models are finite, one
can define the formulas

�V ′ :=
∨

v∈V
�vV ′ and � :=

∧

{V ′|���M′→V ′}

�V ′ .

Note how M, v |= � holds for all states v ∈ V : every such v satisfies
its ‘own’ disjunct �v

V ′ in each conjunct �V ′ . Thus, as ���M → V and

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

464 RAUL FERVARI ET AL.

Kh-formulas are global, we have M, w |= Kh(�, �). However, for every set
V ′ satisfying ���M

′ → V ′ there is a state v′ ∈ V ′ such that M′, v′
|= �:
the state v′ that cannot be matched with any state v ∈ V falsifies all
�v
V ′ , hence so does the disjunction �V ′ and therefore also the conjunction
�. Thus, again using the fact that Kh-formulas are global, M′, w′
|=
Kh(�, �), thus contradicting the LKh-equivalence of w and w′.

Kh-Zag: Analogous to the Kh-Zig case.

Thus, Z is a LKh-bisimulation; hence, M, w↔LKh
M′, w′.

Note that, without the finite domain condition, Theorem 2.21 does not hold. To
see this, consider two pointed models M, w and M′, w′, both over a set of atoms
{pi | i ∈ N}. Assume that, in M, statew has countably infinite a-successorsw0, w1, ... ,
with each atompk true at somewn iff n ≥ k; assumeM′, w′ is just asM, w, but withw′

having one more successor,w� , where all the propositional letters are true. It is not hard
to see that M, w ≡LKh

M′, w′ holds (any [recall: finite] sequence starting at w′ can be
matched by a sequence starting at w), but it is not the case that M, w↔LKh

M′, w′

since we can never match w� in M′ by A-Zig. To weaken the finiteness condition,
some notion of saturation is needed, but it is out of the scope of the present paper
(cf., e.g., [12]).

It is worthwhile to emphasize that a LKh-bisimulation works by checking that the
discussed models coincide at the abstract level of the ‘→’ transition (Definition 2.14).
This emphasizes the imbalance in the framework (rich models described by weak
languages), but also suggests that a better balance can be achieved by using a coarser
semantic structure where ‘→’ is the primitive notion.

§3. Knowing how with intermediate constraints. The knowing-how operator Kh has
a ‘conditional’ taste: M, w |= Kh(�,ϕ) holds if and only if the agent has a ‘method’
� ∈ Σ∗ whose output is guaranteed to be ϕ whenever � holds in the initial situation.
Still, the operator is indifferent about the way the given method works: as long as it
always takes us from �-states to ϕ-states, any strongly executable � will do.

However, in some situations one might be interested not only in the strategy’s final
outcome, but also on its intermediate stages. In particular, one might want to guarantee
that the strategy is ‘appropriate’ by asking for these intermediate stages to satisfy a
certain condition. This is the idea behind the knowing how operator with intermediate
constraints studied in [38].

3.1. The language LKhm and its semantics.

Definition 3.22 (Language LKhm). Formulas ϕ of the language LKhm are given by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Khm(ϕ,ϕ, ϕ),

with p ∈ Π. The abbreviation Aϕ is defined now as Aϕ := Khm(¬ϕ,�,⊥) (with Eϕ :=
¬A¬ϕ, as before).

In the language LKhm, the binary knowing how modality Kh from LKh is replaced by
a ternary modality Khm, understood as knowing how while maintaining. A formula
Khm(�, 	, ϕ) expresses that, given �, the agent knows how to achieve ϕ while
maintaining 	. Formulas of the language are still interpreted in relational models

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 465

(Definition 2.2). However, their interpretation requires a refinement of the notion of
strong executability: now one should take care of what happens at intermediate states.

Definition 3.23. Let M = 〈W,Σ,R,V〉 be a relational model for Π; let 	 be a formula
in LKhm. A sequence � = a1 ... an ∈ Σ∗ is strongly 	 -executable (SE–) at w ∈W if
and only if

(i) � is strongly executable at w and (ii) R�k [w] ⊆ �	�M for every 0 < k < n.

Note how strong 	-executability does not require for 	 to hold at either end of the
paths; it is enough for it to hold at the intermediate states. With this definition at hand,
we are in a position to introduce the language’s semantic interpretation.

Definition 3.24 (Semantics). Let M = 〈W,Σ,R,V〉 be a relational model, and let w ∈
W . The satisfaction relation |= between the pointed model M, w and atoms, negations
and conjunctions is as in Definition 2.8. For Khm,

M, w |= Khm(�, 	, ϕ) iff there exists a sequence � ∈ Σ∗ such that, for all states
u ∈W, if M, u |= �, then
(i) � is SE–	 at u, and
(ii) for all states v ∈W,v ∈ R� [u] implies M, v |= ϕ.

Note how, under this semantic interpretation, the new definition of the modality
A (as, recall, an abbreviation for Khm(¬ϕ,�,⊥)) also makes it the global universal
modality: the condition that should be maintained, �, is true at every state.

We use an example from [63] to emphasize the differences between the basic
knowing how operator of the previous section and the one with intermediate constraints
discussed in this one.

Example 3.25. Consider the following relational model.

w1 w2 : p w3 : p w4 : q w5

w6 w7 : q w8 : q

r

u

r

u

r

u

r

Note how, in this model, Kh(p, q) holds: if the agent is at a p-state, she knows how
to reach a situation where q holds. This is because there exists a sequence of actions
(namely, ru) that, when executed at any p-state (w2 or w3), is always completed, and
always ending up in a q-state (w7 and w8, respectively).

However, Khm(p, p, q) fails: if the agent is at a p-state, she does not know how to reach
a q-state by only passing through p-states. The only strongly executable sequence that
ends up in q-states when executed at p-ones, namely ru, has to travel through a ¬p-state
(w4) in the case in which the agent starts at w3.

3.2. Bisimulation for knowing how with intermediate constraints. Clearly, an
appropriate notion of bisimulation for the languageLKhm should have some similarities
with the notion of bisimulation for LKh (Definition 2.16). Still, here one should be
careful about the states visited by the sequence � ∈ Σ∗ when going from a �-state to
one satisfying ϕ. The definition below refines the previously used concepts by taking
into account these intermediate states.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

466 RAUL FERVARI ET AL.

Definition 3.26. Let M = 〈W,Σ,R,V〉 be a relational model for Π; take X⊆W .

• A sequence � = a1 ... an ∈ Σ∗ is strongly X -executable (SE–X) at state w ∈W
if and only if

(i) � is strongly executable at w and (ii) R�k [w] ⊆ X for every 0 < k < n.

• We write U �,X−−→ V if and only if

(i) �is strongly X -executable at every state u ∈ U and (ii) V = R� [U].

• We write U X−→ V whenever there is a sequence � ∈ Σ∗ such that U �,X−−→ V .

Analogous to the ‘simpler’ knowing how case, X−→ is the crucial notion on theKhm-Zig
and Khm-Zig clauses of a LKhm-bisimulation.

Definition 3.27 (LKhm-bisimulation). LetM = 〈W,Σ,R,V〉 andM = 〈W ′,Σ′,R′,V′〉
be two relational models. A nonempty relation Z ⊆W ×W ′ is called a LKhm-
bisimulation between M and M′ if and only if wZw′ implies all of the following.

• Atom, A-Zig and A-Zag, with these clauses as in Definition 2.16.
• Khm-Zig: for any propositionally definable setU ⊆W , ifU X−→ V for some sets
X,V ⊆W , then there are sets X ′, V ′ ⊆W ′ such that all of the following hold.

(i) Z[U] X
′

−−→ V ′, (ii) X ′ ⊆ Z[X], (iii) V ′ ⊆ Z[V].

• Khm-Zag: for any propositionally definable set U ′ ⊆W ′, if U ′ X ′
−−→ V ′ for some

sets X ′, V ′ ⊆W ′, then there are sets X,V ⊆W such that

(i) Z–1[U ′] X−→ V, (ii) X ⊆ Z–1[X ′], (iii)V ⊆ Z–1[V ′].

We writeM, w↔LKhm
M′, w′ when there is a LKhm-bisimulation Z between M and

M′ such that wZw′.

Note the difference between clauses Kh-Zig/Zag and Khm-Zig/Zag: the latter also
require for the ‘travelled states’ to be bisimilar. Note also how the propositional
definability requirement is kept since, just as with LKh, a set U ⊆ D(M) is LKhm-
definable if and only if it is propositionally definable. On the other hand, we do not
need the intermediate condition X to be propositionally definable in the definition (we
only need Z[X] to be propositional definable in the proof of Theorem 3.29, which can
be proved).

The next theorems establish that ↔LKhm
is an appropriate notion of bisimulation for

LKhm over relational models. For modal equivalence, the notion of LKhm-equivalence
(≡LKhm

) is defined as in Definition 2.10, but for formulas in LKhm.
First: LKhm-bisimilarity (↔LKhm

) implies LKhm-equivalence (≡LKhm
).

Theorem 3.28 (LKhm Invariance). Let M, w and M′, w′ be two pointed models, with
M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w↔LKhm
M′, w′ implies M, w ≡LKhm

M′, w′.

Proof. From M, w↔LKhm
M′, w′, there is a LKhm-bisimulationZ ⊆W ×W ′ such

that wZw′. The proof of LKhm-equivalence is by structural induction on LKhm-
formulas, with the case for atomic propositions being immediate from the Atom clause,
and the cases for Boolean operators following from the inductive hypotheses.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 467

For formulas of the form Khm(�, 	, ϕ), suppose w ∈ �Khm(�, 	, ϕ)�M. Then, by
semantic interpretation, and using the new notation (Definition 3.26),

there is � ∈ Σ∗ such that ���M �,X−−→ V (for X ⊆ �	�M) and R� [���M] ⊆ �ϕ�M.

The set ���M is clearly LKhm-definable, and thus LP-definable (Proposition 2.12).
Moreover: there is a sequence � ∈ Σ∗ such that ���M �,X−−→ V , so���M X−→ V .
Then, from clause Khm-Zig it follows that there are sets X ′, V ′ ⊆W ′ such that
(i) Z[���M] X−→ V ′, (ii) X ′ ⊆ Z[X], and (iii) V ′ ⊆ Z[V].

The following three points will be used to show that w′ ∈ �Khm(�, 	, ϕ)�M
′
.

First: using Z[���M] = ���M
′
,3 (i) yields���M

′ X−→ V ′. Second: using inductive
hypothesis on 	 (for proper subformulas of Khm(�, 	, ϕ), LKhm-bisimilarity implies
LKhm-equivalence), the X ⊆ �	�M of before implies Z[X] ⊆ �	�M

′
; this, together

with (ii), implies X ′ ⊆ �	�M
′
. Third, from the assumed w ∈ �Khm(�, 	, ϕ)�M and

the previous���M X−→ V , the semantic interpretation of Khm implies that V ⊆ �ϕ�M.
By inductive hypothesis on ϕ, this implies Z[V] ⊆ �ϕ�M

′
; hence, from (iii), it follows

that V ′ ⊆ �ϕ�M
′
. Thus, summarizing, we have

���M
′ X−→ V ′, X ′ ⊆ �	�M

′
and V ′ ⊆ �ϕ�M

′
,

which together imply the required w′ ∈ �Khm(�, 	, ϕ)�M
′
.

The other direction, fromw′ ∈ �Khm(�, 	, ϕ)�M
′

tow ∈ �Khm(�, 	, ϕ)�M, follows
from a symmetric argument, usingA-Zig (for the auxiliary resultZ–1[���M

′
] = ���M)

and Khm-Zag (for the actual proof) instead.

Second: LKhm-equivalence (≡LKhm
) implies LKhm-bisimilarity (↔LKhm

) in finite
relational models.

Theorem 3.29. Let M, w and M′, w′ be two pointed finite-domain models, with M =
〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w ≡LKhm
M′, w′ implies M, w↔LKhm

M′, w′.

Proof. As in the proof of Theorem 2.21, we will show that the modal equivalence
relation (in this case, ≡LKhm

) is already a bisimulation. Define Z := {(v, v′) ∈W ×
W ′ | M, v ≡LKhm

M′, v′}, and take any (w,w′) ∈ Z (i.e., wZw′).

Atom: states w and w′ agree in all LKhm-formulas, and in particular, in all
atoms.

A-Zig: As in the proof of Theorem 2.21.
A-Zag: Ditto.
Khm-Zig: Take any propositionally definable set ���M ⊆W (so � is a proposi-

tional formula), and suppose ���M X−→ V for some setsX,V ⊆W . We

need to find sets X ′, V ′ ⊆W ′ satisfying (i) ���M
′ X ′
−→ V ′, (ii) X ′ ⊆

Z[X], and (iii) V ′ ⊆ Z[V].

3 Its proof, using A-Zag, is as that for the auxiliary result in the proof of Theorem 2.20.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

468 RAUL FERVARI ET AL.

We start by taking the set X ′ to be Z[X]. This gives us (ii) directly,
so we only need to show that there is a set V ′ ⊆W ′ such that

(i) ���M
′ Z[X]−−−→ V ′ and (ii) V ′ ⊆ Z[V].

This goal is very similar to what the proof of Theorem 2.21 does. Still, in
order to use the LKhm-equivalence that Z entails, we need to show that,
in our current case with W ′ finite, the set Z[X] is LKhm-definable. In
order to show this, observe that if two states u′, u′′ ∈W ′ satisfy exactly
the same atoms, then either both are inZ[X] or else both are outside it.
Otherwise, if u′ is the state in Z[X], there would be a state x ∈ X such
that xZu′ holds but xZu′′ fails. Since Z relates LKhm-bisimilar states,
this would imply the existence of a formula in LKhm distinguishing
u′′ from x (xZu′′ fails), and thus distinguishing u′′ from u′ (xZu′

holds). But this cannot be the case: we have assumed that u′ and u′′

satisfy exactly the same atoms, and thus they satisfy exactly the same
Boolean formulas. Moreover, Khm-formulas are global, and thus they
cannot distinguish u′ from u′′. After this observation, one can build a
propositional formula 	 characterizingZ[X] within M′ (i.e., satisfying
Z[X] = �	�M

′
). Indeed, create a partition ofW ′ such that states in the

same partition cell satisfy exactly the same atoms. Since W ′ is finite,
the number of partition cells is finite, so each one can be distinguished
from all the others by means of a finite propositional formula. Then,
define 	 as the (finite) disjunction of the formulas characterizing the
partition cells whose union define Z[X]. Because of the observation,
no partition crosses the boundaries betweenZ[X] andW ′ \ Z[X], and
thus 	 characterizes Z[X].

As advanced, the rest of the proof is very similar to the one for
Theorem 2.21. In the interesting case (���M
= ∅), and towards a con-

tradiction, suppose that every set V ′ ⊆W ′ satisfying ���M
′ Z[X]−−−→ V ′

fails to satisfy (iii) for the given set V. Then, just as in Theorem 2.21, one
can find a formula � ∈ LKhm such that M, w |= Khm(�, 	, �) and yet
M′, w′
|= Khm(�, 	, �) (with, remember, 	 a formula characterizing
Z[X] within M′). Contradiction.

Khm-Zag: Analogous to the Khm-Zig case.

Thus, Z is a LKhm-bisimulation; therefore, M, w↔LKhm
M′, w′.

3.3. Relative expressive power of LKh and LKhm. Bisimulations are very useful for
investigating the expressive power of a logic. In this subsection, we make use of the
tools defined in the previous sections to compare the expressive power of LKh and
LKhm. Notice that in order to compare the expressive power of two frameworks, they
should rely on the same class of models. We use the following standard definitions for
comparing the expressive power of two languages.

Definition 3.30. Let L1 and L2 be languages over the same semantic structure.

• We write L1 ≤ L2, indicating that L2 is at least as expressive as L1, when every
formula in L1 is semantically equivalent to some formula in L2.

• We write L1
≤ L2, indicating that L2 is not as expressive as L1, when there is a
formula in L1 that is semantically different from every formula in L2.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 469

• We write L1 < L2, indicating that L2 is more expressive than L1, when L1 ≤ L2
and L2 � L1.

• We say that L1 and L2 are incomparable if and only if L1 � L2 and L2 � L1.

A typical proof for showingL1 ≤ L2 consists on providing a translation tr : L1 → L2

that assigns, to any formula ϕ in L1, a formula tr(ϕ) in L2 such that, in any given
semantic structure for the languages, ϕ holds if and only if tr(ϕ) holds. A typical
(simple) proof for showing L1
≤ L2 consists on providing two semantic structures that
satisfy exactly the same formulas in L2, and then provide a formula in L1 that holds in
one structure but fails in the other. In more complicated cases, you may need to find
two classes of models, {Mi | i ∈ N} and {Ni | i ∈ N} respectively, such that a formula
in L1 can distinguish Mi and Ni for all i ∈ N but any L2-formula cannot distinguish
all of them.

Proposition 3.31. LKh < LKhm.

Proof. It is easy to see that LKh ≤ LKhm since, as stated in [38], we can define
the translation tr(Kh(�,ϕ)) := Khm(�,�, ϕ). For showing LKhm
≤ LKh, consider the
models M and M′ in Example 2.17. As discussed, there is a LKh-bisimulation between
M and M′ containing the pair (w,w′); thus, by Theorem 2.20, w and w′ satisfy the
same LKh-formulas. However, these states can be distinguished by LKhm, as M, w
|=
Khm(p,⊥, q) and M′, w′ |= Khm(p,⊥, q).

§4. Weakly knowing how. The discussed logics of knowing how are useful when one
is interested in sequences of actions that can be fully executed, and that will end in
the desired outcome (the notion of strong executability). However, in some situations,
this might be a very strong requirement: sometimes, the given sequence might not be
executable to its end, and yet it might yield the desired outcome. For example, drinking
10 shots of tequila sounds like a good plan for getting drunk, but the shorter plan
consisting of drinking nine shots (or even less) and stop may also achieve the goal.

In [37] the author looked into this alternative by introducing a knowing how operator
based on weak conformant plans. A weak conformant plan for achieving ϕ from �-
states is a finite sequence of actions that, when started on any state satisfying �, it will
always end on states satisfying ϕ, regardless of whether the sequence was executed at
its fullest or not.

4.1. The language LKhw and its semantics.

Definition 4.32 (Language LKhw). Formulas ϕ of the language LKhw are given by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Khw(ϕ,ϕ),

with p ∈ Π.

Formulas of the form Khw(�,ϕ) express that, given �, the agent weakly knows how
to achieve ϕ. The abbreviation Aϕ is defined as Aϕ := Khw(¬ϕ,⊥), as it was done
within LKh (with Eϕ := ¬A¬ϕ, as usual).

For Khw’s semantic interpretation, a further definition is required.

Definition 4.33. Let M = 〈W,Σ,R,V〉 be a relational model; take a sequence � ∈ Σ∗

and a state w ∈W . The set TerSt(w, �) is the set of states at which the execution of �

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

470 RAUL FERVARI ET AL.

from w terminates. More precisely, TerSt(w, �) := {w} and

TerSt(w, a1 ... an) := Ra1...an [w] ∪ {v ∈W | v ∈ Ra1...ai [w] and
Rai+1[v] = ∅, for some i < n}.

Definition 4.34 (Semantics). Let M = 〈W,Σ,R,V〉 be a relational model; take w ∈
W . The satisfaction relation |= between the pointed model M, w and atoms, negations
and conjunctions is as in Definition 2.8. For Khw,

M, w |= Khw(�,ϕ) iff there exists a sequence � ∈ Σ∗ such that, for all states u ∈W,
if M, u |= �, then v ∈ TerSt(u, �) implies M, v |= ϕ.

Thus, weakly knowing how to achieve a given ϕ corresponds to the sketched notion
of weak conformant plan: the agent weakly knows how to achieveϕ given the condition
�, written as Khw(�,ϕ), if and only if there is a finite sequence of actions � ∈ Σ∗ that,
when started on any state satisfying � (for all u ∈W with M, u |= �), it always ends
on states satisfying ϕ, regardless of whether the sequence was executed at its fullest
or not (v ∈ TerSt(u, �) implies M, v |= ϕ). Once again, the knowing how modality is
global, making A the universal modality.

Example 4.35. In order to illustrate the difference between weakly knowing how and
the setting of Section 2, consider again the model in Example 3.25. The agent does not
know how to make ¬p ∧ ¬q true starting from p-states, ¬Kh(p,¬p ∧ ¬q), as there is no
strongly executable sequence of actions taking her from every state satisfying p (statesw2

andw3) to only states satisfying¬p ∧ ¬q (statesw1,w5 andw6). Indeed, the only strongly
executable sequence going from w3 to a state satisfying ¬p ∧ ¬q is rr (ending at w5),
but this sequence does not lead to a ¬p ∧ ¬q-state from w2. However, the agent weakly
knows how to reach ¬p ∧ ¬q given p (in symbols, Khw(p,¬p ∧ ¬q) holds): when starting
from a p-state, the execution of the sequence rrr always ends up in a (¬p ∧ ¬q)-state,
sometimes after a full execution, sometimes after reaching a dead-end.

There are other ways to weaken the executability in the semantics, e.g., [58], where
a notion of bisimulation was proposed, inspired by an earlier version of this paper.

4.2. Bisimulation for weakly knowing how. As before, defining a LKhw-bisimulation
requires an extra piece of notation.

Definition 4.36. Let M = 〈W,Σ,R,V〉 be a relational model; take a sequence � ∈ Σ∗

and a set U ⊆W .

• We write U �−→W V if and only if V =
⋃

u∈U
TerSt(u, �).

• We writeU →W V if and only if there is a sequence � ∈ Σ∗ such thatU �−→W V .

Below we introduce the notion of bisimulation for LKhw.

Definition 4.37 (LKhw-bisimulation). Let M=〈W,Σ,R,V〉 and M′=〈W ′,Σ′,R′,V′〉
be two relational models. A nonempty relation Z ⊆W ×W ′ is called a LKhw-
bisimulation between M and M′ if and only if wZw′ implies all of the following.

• Atom, A-Zig and A-Zag, with these clauses as in Definition 2.16.
• Khw-Zig: for any propositionally definable setU ⊆W , ifU →W V for some set
V ⊆W , then there is a set V ′ ⊆W ′ such that

(i) Z[U] →W V
′ and (ii)V ′ ⊆ Z[V].

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 471

• Khm-Zag: for any propositionally definable setU ′ ⊆W ′, ifU ′ →W V
′ for some

set V ′ ⊆W ′, then there is a set V ⊆W such that

(i)Z–1[U ′] →W V and (ii)V ⊆ Z–1[V ′].

We write M, w↔LKhw
M′, w′ when there is a LKhw-bisimulation Z between M and

M′ such that wZw′.

By reasoning as in the proofs of Theorems 2.20 and 3.28, it can be proved that
LKhw-bisimilarity (↔LKhw

) implies LKhw-equivalence (≡LKhw
), with the latter defined

as in Definition 2.10 but for formulas in LKhw.

Theorem 4.38 (LKhw Invariance). Let M, w and M′, w′ be two pointed models, with
M = 〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w↔LKhw
M′, w′ implies M, w ≡LKhw

M′, w′.

Then, just as for LKh and LKhm (Theorems 2.21 and 3.29, respectively), in finite-
domain relational models, LKhw-equivalence implies LKhw-bisimilarity.

Theorem 4.39. Let M, w and M′, w′ be two pointed finite-domain models, with M =
〈W,Σ,R,V〉 and M′ = 〈W ′,Σ′,R′,V′〉. Then,

M, w ≡LKhw
M′, w′ implies M, w↔LKhw

M′, w′.

4.3. Expressive power of LKhw. In this section we compare the expressive power of
LKhw with respect to LKh and LKhm.

Proposition 4.40. LKh
≤ LKhw. Moreover, together with Proposition 3.31, we get
LKhm
≤ LKhw.

Proof. Consider the following models:

w′ : p

v′ : q

u′ t′ : q

z ′ : q

M′

w : p v u : q

t : q

M

a a

b

a

a
a

a

Dotted lines define a LKhw-bisimulation. The table below shows that the models
satisfy the requirements for Khw-Zig from Definition 4.37 (Khw-Zag can be similarly
checked). Note that we only consider the non-trivial cases.

U Def. by V U →W V by Z[U] V ′ Z[V]

{w} p {v, t} a {w′} {u′, z ′} {v′, u′, z ′}
{t, u} aa {w′} {t′, z ′} {t′, v′, z ′}

{v} ¬p ∧ ¬q {u} a {u′} {t′} {v′, t′}

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

472 RAUL FERVARI ET AL.

Since M, w and M′, w are LKhw-bisimilar, they satisfy the same LKhw-formulas
(Theorem 4.38). However, they can be distinguished by LKh, as M, w
|= Kh(p, q) but
M′, w′ |= Kh(p, q).

One might be tempted to think, then, that both LKh and LKhm are strictly more
expressive than LKhw, but actually this is not the case.

Proposition 4.41. LKhw
≤ LKh and LKhw
≤ LKhm.

Proof. Consider the following models:

w : p v : q

u t : q

z

M a

a

a

a
a

w′ : p v′ : q

u′ t′ : q

M′
a

a

a

a

Dotted lines define both a LKh-bisimulation and a LKhm-bisimulation (the only
potentially meaningful differences between the models, the a-transition from u to z
in M and the a-transition from u′ to itself in M′, can mimic each other). Thus, the
models cannot be distinguished by LKh, and neither by LKhm. However, LKhw can tell
them apart, as M, w |= Khw(p, q) but M′, w′
|= Khw(p, q).

As a consequence, we get the following result:

Corollary 4.42. LKhw is incomparable with both LKh and LKhm.

§5. Strategically knowing how. The previous sections have introduced bisimula-
tions for different variants of knowing how operators, together with their corresponding
theorems matching bisimulation with logical equivalence. In all cases, we deal with
global modalities, whose truth-value does not depend on the evaluation point.
Moreover, these knowing how frameworks do not make use of the classical epistemic
notion of knowing that. As a consequence of the latter, an agent cannot rely on her
knowledge about the current situation to decide which action should be executed to
achieve the desired outcome. In other words, she cannot have knowledge-based plans.

In [21] a logic that puts together the two aspects mentioned above was presented.4 It
uses two epistemic notions, knowing how and knowing that, with their interaction used
to represent conditional plans. To achieve the interaction, the knowing how operator
becomes local, since now it needs to make use of the epistemic information the agent
has in a particular state.

4 Similar ideas have been presented in [42, 46].

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 473

5.1. The language LKhs and its semantics.

Definition 5.43 (Language). The languageLKhs has two modalities,K for knowing that,
and Khs for knowing how. Formally, formulas ϕ of LKhs are given by the grammar:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Khs(ϕ),

with p ∈ Π.

Note again how no formula in LKhs refers to actions in Σ. More importantly,
LKhs has two epistemic operators, and each of them needs to be interpreted on
a different dimension. For the Khs modality, the model must have one dimension
representing ‘strategies’ (the ability map of before), whereas for K we need the classical
indistinguishability relation used in classical epistemic logic. This produces richer
models, defined formally in the following way.

Definition 5.44 (Bi-dimensional models). A bi-dimensional model M for Π is a tuple
〈W,Σ,∼,R,V〉 where 〈W,Σ,R,V〉 is a relational model for Π, and ∼ ⊆W ×W is an
equivalence relation.

Note how the relations ∼ and Ra are independent from each other, thus giving us
the most general framework regarding the interaction between the two.

Remark 5.45. A bi-dimensional model captures, at any state, both the uncertainty the
agent might have as well as the actions available to her. In this sense, it is very similar to
the models for epistemic temporal logic [50, 55]. By having both the epistemic relation
and action transitions in the model, one can represent the way actions change the agent’s
knowledge (e.g., she considers more than one epistemic possibility, but in the state that
results from executing action a, only one epistemic possibility remains). However,
the Kh-setting does not provide information about the way the agent’s epistemic
uncertainty evolves through the execution of a sequence of actions. One way to establish
this connection is through the ‘dynamic view’, where the epistemic uncertainty after
an action is computed from the epistemic uncertainty before the action. Typically this
consists of making two assumptions: perfect recall and no miracles [40, 63].

Let us start by defining the transitions between indistinguishable epistemic states.

Definition 5.46 (Transitions). Let M = 〈W,Σ,∼,R,V〉 be a bi-dimensional relational
model for Π; take a state w ∈W .

• The equivalence class ofw with respect to ∼ is given by [w] := {v ∈W | w ∼ v}.
Then, W/∼ is the collection of all the equivalence classes on W with respect
to ∼.

• We use [w] Ra [v] to indicate that there are w ′ ∈ [w] and v′ ∈ [v] such that
w ′ Ra v′.

In the next definition, we make precise the notion of strategy.

Definition 5.47 (Strategy). Let M = 〈W,Σ,∼,R,V〉 be a bi-dimensional relational
model for Π. A (uniformly executable) strategy overM is a partial function � :W/∼ → Σ
such that, for every equivalence class [w] ∈W/∼, the action symbol �([w]) is executable
at every state w′ ∈ [w].

A strategy assigns an action not to a state, but rather to a ∼-equivalence class; this
we call uniformity. Equally important is the fact that the assigned action symbol should

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

474 RAUL FERVARI ET AL.

be executable in every state of the ∼-equivalence class; without it, the knowledge-how
may be trivialized. Note how the empty function is also a strategy: the empty strategy.
We use dom(�) to denote the domain of � (i.e., the set of equivalence classes inW/∼
on which � is defined).

Definition 5.48 (Executions over equivalence classes). Let � be a strategy over the
bi-dimensional model M = 〈W,Σ,∼,R,V〉.

• A possible execution of � is a possibly infinite sequence of equivalence classes

 = [w0][w1] ...

such that [wi] R�([wi])[wi+1] for all 0 ≤ i < |
|. In particular, [w] is a possible
execution of � when [w]
∈ dom(�).

• If a possible execution of a strategy is a finite sequence [w0] ... [wn], the last set
[wn] is called the leaf-node, and each set [wi] (for 0 ≤ i < n) is called inner-node,
both with respect to this possible execution (note: no equivalence class can be both
the leaf-node and an inner-node of a given possible execution). If the execution is
infinite, every [wi] is an inner-node (but none is a leaf-node).

• A possible execution of � is complete if it is infinite or its leaf-node is not in
dom(�).

• We use CELeaf(�,w) to denote the set of all leaf-nodes of all the �’s complete
executions starting from [w]. 5

Definition 5.49 (Semantics). Let M = 〈W,Σ,∼,R,V〉 be a bi-dimensional relational
model; take a state w ∈W . The satisfaction relation |= between the pointed model
M, w and a formula ϕ in LKhs is inductively defined as before for atoms, negation and
conjunction; for the new modalities,

M, w |= Kϕ iff for all w′ : w ∼ w′ implies M, w′ |= ϕ
M, w |= Khs(ϕ) iff there exists a strategy � such that

(i) [v] ⊆ �ϕ�M for all classes [v] ∈ CELeaf(�,w)
(ii) all its complete executions

starting from [w] are finite.

As we already mentioned, with this new logic we are capturing two epistemic
properties, unlike the logics presented in previous sections. Notice that although
the global universal modality definable in the previous frameworks can be viewed
as a restricted form of knowing that operator, it can only express global background
knowledge to some extent. Moreover, bi-dimensional models contain both epistemic
uncertainty and action transitions; thus, one can talk about changes of knowledge after
actions, which is essential to facilitate strategies based on local knowledge, compared
to the quite restricted linear plans used by [59, 62].

Finally, recall that the global operator Kh(�,ϕ) of Section 2 expresses that the
agent knows how to achieve ϕ given the condition �. From the perspective of this
section’s approach, the condition � in the basic knowing how setting defines an initial
uncertainty set, and Kh(�,ϕ) can be read rather as ‘the agent knows how to achieve ϕ
given that (s)he only knows �’. However, one might consider this a very weak notion

5 Note how, because of the potential nondeterminism of each relation Ra , there might be more
than one complete execution of � starting from a given [w].

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 475

of uncertainty. The strategically knowing how of this section deals with this issue by
combining local modalities for different kinds of knowledge.

Example 5.50. Consider the bi-dimensional model below [22], example 1.1) (double
dashed lines represent ∼; reflexive ∼-edges omitted).

w1 : p

w2 : p, q

w3 : p

w4 : p, q

w5

w6 : q

test q

test q

pills

surgery

pills

pills

The model represents a scenario in which a doctor needs a plan to treat a patient and
cure his pain (represented by the propositional symbol p), under the uncertainty about
some possible allergy (q). On the one hand, if there is no allergy (i.e., q fails) then taking
some pills will cure the pain, with a surgery not being an option. On the other hand, in
presence of the allergy (i.e., q holds), the pills may cure the pain or have no effect at
all, while the surgery can cure the pain for sure. Notice that there is an action to test
whether q is the case. The indistinguishability between w1 and w2 represents the initial
uncertainty about the allergy. According to the model, in order to cure the pain (reaching
¬p), it makes sense to take the surgery if the test of whether q is positive, and take the
pills otherwise. In this case, the doctor knows how to cure the pain, denoted Khs(¬p),
thanks to the aforementioned strategic plan.

Remark 5.51. Readers who are familiar with Alternating-time Temporal Logic may see
similarities between Khsϕ and K〈〈i〉〉Fϕ. However, the frameworks are quite different:
here, we need to put the quantifier on strategies outside the knowledge operator (see
[22, 31] for discussions). Moreover, we require strict termination of the strategies, so
just passing a ϕ-state is not enough: you have to stop exactly at ϕ-states.

5.2. Bisimulation for strategically knowing how. First, we introduce some further
notation.

Definition 5.52. Let M = 〈W,Σ,∼,R,V〉 be a model for Π; take a state w ∈W , a set
U ⊆W , and a (uniformly executable) strategy �. We write w �� U when:

1. all complete executions of � starting from [w] are finite and
2. U =

⋃

[v]∈CELeaf(�,w)

[v].

We say that w strategically reaches U (denoted w � U) if there exists a strategy �
such that w �� U .

Then, we introduce a notion of bisimulation for LKhs over bi-dimensional models.

Definition 5.53 (LKhs-bisimulation). Let M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′

,R′,V′〉 be two bi-dimensional relational models for Π. A nonempty relation Z ⊆W ×
W ′ is called a LKhs-bisimulation between M and M′ if and only if wZw′ implies all of
the following.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

476 RAUL FERVARI ET AL.

• Atom: V(w) = V′(w ′).
• Zig: if w ∼ v then there is some state v′ such that w ′ ∼ v′ and vZv′.
• Zag: if w ′ ∼ v′ then there is some state v such that w ∼ v and vZv′.
• Khs-Zig: if w � U for some set U ⊆W , then w ′ � U ′ for some set U ′ ⊆W ′

satisfying U ′ ⊆ Z[U].
• Khs-Zag: if w ′ � U ′ for some set U ′ ⊆W ′, then w � U for some set U ⊆W

satisfying U ⊆ Z–1[U ′].

The Zig and Zag conditions are inherited from the standard modal bisimulation
[12], Section 2.2). The diagram below describes the way the Khs-Zig condition works.
Gray circles represent the equivalence classes [w], [w′], [v′] and [u′], for the relations ∼
and ∼′, respectively. Given w � U (through the strategy �), then w′ � U ′ should be
the case (for someU ′ and through some �′). Moreover, each state inU ′ (which, recall,
might be the union of different equivalence classes due to the potential nondeterminism
of the relations), must be the Z-image of some state in U (so vZv′ and uZu′). Clause
Khs-Zag works analogously.

M

w

U

M′

w′

v′
U ′

u′

v
u

Z

�

Z

Z

�′

Notice that an LKhs-bisimulation takes care of two aspects. On the one hand,
LKhs includes the standard knowing that operator K, so a LKhs-bisimulation matches
pairs of states when they coincide in the structural information for their respective
indistinguishability relations. The usual Zig and Zag conditions take care of this. On
the other hand, only states coinciding in their executability should be matched. Unlike
the bisimulations introduced before, the strategic reachability condition establishes a
constraint not over a set of propositionally definable states, but on the states which are
epistemically indistinguishable. This way, we are able to describe the proper interaction
between the two kinds of knowledge the language considers.

The next theorem establishes that ↔LKhs
is an appropriate notion of bisimulation

for LKhs. As usual, the notion of LKhs-equivalence, ≡LKhs
, is defined as in Definition

2.10, but for formulas in LKhs.

Theorem 5.54 (LKhs Invariance). Let M, w and M′, w′ be two pointed bi-dimensional
models, with M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′,R′,V′〉. Then,

M, w↔LKhs
M′, w′ implies M, w ≡LKhs

M′, w′.

Proof. Suppose M, w↔LKhs
M′, w′; then there is a LKhs-bisimulation Z ⊆W ×

W ′ such that wZw′. The proof is by structural induction on LKhs-formulas. Atoms
and Boolean cases are straightforward; for the epistemic cases, proceed as follows.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 477

CaseKϕ: SupposeM, w |= Kϕ, then for all states v ∈W , ifw ∼ v thenM, u |=
ϕ. Now take any state v ∈W such thatw ∼ v′; from Zig, there is a state v′ ∈W ′

such that w′ ∼′ v′ and vZv′. From vZv′ and inductive hypothesis, M′, v′ |= ϕ.
Since v′ is an arbitrary ∼′-successor of w′, it follows that M′, w′ |= Kϕ. The
reasoning for other direction is analogous, using Zag instead.
Case Khs(ϕ): Suppose M, w |= Khs(ϕ). Then, there exists a strategy �
executable at w such that

1. [t] ⊆ �ϕ�M for all classes [t] ∈ CELeaf(�,w) and
2. all its complete executions from [w] are finite.
Take the set U such that w

�� U . By Khs-Zig, there is a strategy �′

such that w′ �
′

� U ′ for some set U ′ ⊆W ′ satisfying U ′ ⊆ Z[U]. Aiming
for contradiction, suppose M′, v′ |= ¬ϕ for some state v′ ∈ U ′; then, by
inductive hypothesis, M, v |= ¬ϕ for some state v ∈ U . This contradicts the
fact [v] ⊆ �ϕ�M (recall: from

��’s definition, each state v ∈ U is in [t] for
some [t] ∈ CELeaf(�,w)). Therefore, M′, v′ |= ϕ, for all states v′ ∈ U ′. Then,
M′, w′ |= Khs(ϕ). The other direction follows a symmetric argument, using
Khs-Zag instead.

We consider now the converse of Theorem 5.54; in finite models, LKhs-equivalence
(≡LKhs

) implies LKhs-bisimilarity (↔LKhs
).

Theorem 5.55. Let M, w and M′, w′ be two pointed finite-domain bi-dimensional
models, with M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′,R′,V′〉. Then,

M, w ≡LKhs
M′, w′implies M, w↔LKhs

M′, w′.

Proof. Define the relation Z := {(w,w′) ∈ (W ×W ′) | M, w ≡LKhs
M′, w′}. We

will show that Z is a bisimulation, so take any (w,w′) ∈ Z (i.e., wZw′).

Atom: from Z’s definition, states w and w′ agree in all atoms.
Zig: Suppose wZw′ and w ∼ v. For a contradiction, suppose no state v′ ∈W ′

satisfies w′ ∼ v′ and vZv′. Define S ′ := {u′ ∈W ′ | w′ ∼ u′} and note how the
set is nonempty. This is because the state v satisfies w ∼ v, so M, w |= ¬K⊥.
From this,wZw′ and the definition of Z, we haveM′, w′ |= ¬K⊥; byK’s seman-
tic interpretation, it follows that w′ has at least one ∼-successor. Now, sinceW ′

is finite, S ′ must be finite, so we can write it as {u′1, ... , u′n}. We assumed no state
u′i ∈ S ′ satisfies vZu′i , so for each u′i there is a formula �i such that M, v
|= �i
and M′, u′i |= �i . Thus, M, w
|= K(�1 ∨ ... ∨ �n) but M′, w′ |= K(�1 ∨ ... ∨
�n), which contradicts the assumption that wZw′. Therefore, Z satisfies Zig.
Zag: symmetric to the Zig clause.
Khs-Zig: Suppose wZw′ and w � U for some set U ⊆W . Aiming for a
contradiction, assume that there is no strategy �′ and no setU ′ ⊆W ′ such that

both w′ �
′

� U ′ and U ′ ⊆ Z[U]. Call this assumption (⊗).

Define the set S ′ := {U ′ ⊆W ′ | w′ �
′

� U ′ for some strategy �′}. Since w′ ��
[w′], the setS ′ is not empty. Moreover,S ′ is finite (because W is finite), so we can
write it as {U ′

1, ... , U
′
k}. By the assumption (⊗) above, no set U ′

i ∈ S ′ satisfies
U ′
i ⊆ Z[Ui]. In other words, for each U ′

i ∈ S ′ there is a state v′i ∈ U ′
i such that

there is no state v ∈ U with vZv′i . Hence, by definition of Z, for each state
v ∈ U there is a formula ϕvi such that M, v |= ϕvi and M′, v′i
|= ϕui . Now define

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

478 RAUL FERVARI ET AL.

ϕi :=
∨
v∈U ϕ

v
i (note that U is finite). It is clear thatϕi holds on all v ∈ U but not

on v′i . Define the formula � :=
∧

1≤i≤k ϕi . Note that � still holds on all v ∈ U
but not on those selected v′i ∈ U ′

i . It follows thatM, w |= Khs(�) andM′, w′
|=
Khs(�). This contradicts the fact that wZw′. Thus, Z satisfies Khs-Zig.
Khs-Zag: similar to the previous case.

§6. Single-step knowing how. In [46], the authors introduced a multi-agent knowing-
how logic to discuss distributed knowledge together with a one-step coalition knowing-
how operator. By restricting ourselves to the single-agent case (for uniformity reasons,
and for making the setting closer to the ones already discussed), the language and
semantics can be simplified as follows:

Definition 6.56 (Language). The language LH has three modalities: S for the existence
of the strategy, K for knowing that, and H for knowing how. More precisely, formulas ϕ
of the language LH are given by the grammar:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Sϕ | Hϕ,
with p ∈ Π.

For the reading of the formulas, Sϕ intuitively says that there is some strategy which,
when executable, can guarantee ϕ (in [46], a valid formula is the T-axiom for knowing
how: Hϕ → Sϕ).

The semantics is also based on bi-dimensional models with both an epistemic relation
(for the single-agent case) and action relations. In the original multi-agent setting of
[46], each agent chooses her (global) action among her available ones, and a strategy
profile for a group of agents is simply a collective action for those agents. If there is
only one agent, then she clearly can decide the global action. Moreover, every action
profile is executable on every state. However, to bring it closer to our setting, we do not
assume this but add the executability condition for H as given below:

Definition 6.57 (Semantics). Let M = 〈W,Σ,∼,R,V〉 be a bi-dimensional relational
model, and let w ∈W . The satisfaction relation |= between the pointed model M, w and
a formula ϕ in LH is inductively defined as before for atoms, negation, conjunction, and
the know-that modality; for the new modalities,

M, w |= Sϕ iff there is a ∈ Σ such that Ra(w) ⊆ �ϕ�M

M, w |= Hϕ iff there is a ∈ Σ such that for all v ∼ w
(1) a is executable on v, and
(2) Ra(v) ⊆ �ϕ�M.

Note that H only depends on the single-step strategy, i.e., some basic action a.
Moreover, it is crucial to note that, while here Hϕ does not entail HKϕ, in the setting
of [21] the LKhs formula Khs(ϕ) → Khs(Kϕ) is valid (see [45] for more on this).

Definition 6.58. Let M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′,R′,V′〉 be two bi-
dimensional relational models for Π. A nonempty relation Z ⊆W ×W ′ is called a
LKhs-bisimulation between M and M′ if and only if wZw′ implies Atom, Zig and Zag
as in Definition 5.53, and

• S-Zig: if w Ra v for some action a ∈ Σ, then there is a state v′ and an action
a′ ∈ Σ′ such that w ′ Ra′ v′ and vZv′;

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 479

• S-Zag: if w ′ Ra′ v′ for some action a′ ∈ Σ′, then there is a state v and an action
a ∈ Σ such that w Ra v and vZv′;

• H-Zig: if [w] a−→ U for some action a ∈ Σ and some setU ⊆W , then [w ′] a
′

−→ U ′

for some action a′ ∈ Σ′ and some set U ′ ⊆W ′ satisfying U ′ ⊆ Z[U]; and
• H-Zag: if [w ′] a

′
−→ U ′ for some action a′ ∈ Σ′ and some set U ′ ⊆W ′, then

[w] a−→ U for some action a ∈ Σ and some set U ⊆W satisfying U ⊆ Z–1[U ′];

where [w] a−→ U is as in Definition 2.14. We define ↔LH
as usual.

With the definition of LH-bisimulations at hand, we can show an invariance result,
similarly as it is done in Theorem 5.54.

Theorem 6.59 (LH Invariance). Let M, w and M′, w′ be two pointed bi-dimensional
models with M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′,R′,V′〉. Then,

M, w↔LH
M′, w′ implies M, w ≡LH

M′, w′.

The other way around also holds when the models have a finite domain.

Based on Definition 6.58, we can define its finite approximations (cf. also [12]). This
will be useful in the next section for comparing the expressive power of LKhs and LH.

Definition 6.60. Let M = 〈W,Σ,∼,R,V〉 and M′ = 〈W ′,Σ′,∼′,R′,V′〉 be two bi-
dimensional relational models for Π. Given n ∈ N and statesw ∈W and s ′ ∈W ′, define
the relation of n-LH bisimilarity (↔LH

n) in the following (inductive) way.

• w ↔LH
0 w ′ if and only if V(w) = V′(w ′).

• w ↔LH
k+1 w ′ if and only if all of the following hold.

–(k + 1)-Zig: ifw ∼ v then there is a state v′ such thatw ′ ∼ v′ andv ↔LH
k v′.

–(k + 1)-Zag: symmetric to the previous clause.
–(k + 1)-S-Zig: if w Ra v for some action a ∈ Σ then there is a state v′ and an

action a′ ∈ Σ′ such that w ′ Ra′ v′ andv ↔LH
k v′.

–(k + 1)-S-Zag: symmetric to the previous clause.
–(k + 1)-H-Zig: if [w] a−→ U for some action a ∈ Σ and some set U ⊆W , then

[w ′] a
′

−→ U ′ for some action a′ ∈ Σ′ and some set U ′ ⊆W ′ such that for
every state v′ ∈ U ′ there is a state v ∈ U satisfyingv ↔LH

k v′.
–(k + 1)-H-Zag: symmetric to the previous clause.

Let ≡nLH
be the relation of LH-equivalence w.r.t. formulas of modal depth up to n

(counting all the three modalities). Then an analogue of Theorem 6.59 can be obtained:

Theorem 6.61 (LH Invariance up-to n). Let M, w and M′, w′ be two pointed bi-
dimensional models. Then,

M, w n↔LH
M′, w′ implies M, w ≡nLH

M′, w′.

All three modalities S,K,H in LH are one-step in nature. Then, the modal depth of
each formula in LH determines its visibility ‘radius’ (the evaluation point being the
center), and thus the part of the model it can see.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

480 RAUL FERVARI ET AL.

6.1. Expressive power of LKhs and LH. As mentioned before, it is not possible to
compare the expressive power of the global knowing-how logics of Sections 2–4, with
that of the bi-dimensional setting of Section 5 and 6. In this section, we will compare
the expressivity of the two latter languages.

Intuitively, the knowing how operator in LKhs is more general than the H operator,
which can be viewed as a restriction on single-step strategies. However, LH has a
(one-step) strategy operator S, which can say something LKhs cannot express.

Theorem 6.62. LKhs and LH are incomparable.

Proof. To see that LH
≤ LKhs, note that S¬p is true at state v1 but not at state
w1 below (the epistemic relation is the collection of reflexive arrows only, which are
omitted from the picture). However, w1 and v1 are LKhs-bisimilar (witnessed by the
dotted lines). As before, dotted lines represent the bisimulation relation.

w1

w2 : p

w3

v1

a

a

a

On the other hand, it is not that straightforward to show LKhs
≤ LH, although
intuitively the Khs operator in LKhs looks more general. The tricky part comes with
the coding of Khs by iterating H given a model. For example, Khs¬p and HHK¬p both
hold at w1 in Example 5.50, where the latter is equivalent to the earlier in that pointed
model.

We need to find two classes of (finite) models such that aLKhs-formula can distinguish
the two classes but given any bound on the modal depth of the LH formulas, there are
some pairs of models in those two classes that cannot be distinguished.

We consider the following two classes of models (the epistemic relation is the
collection of reflexive arrows only):

w1 p
a a

w2 p
a a a

w3 p
a a a a

... ...

v1
a a

v2
a a a

v3
a a a a

··· ···

Clearly Khsp can distinguish each wk and vk by using a proper strategy which stops
at the p-state. However, for each LH-formula ϕ of modal depth k there are wk+1 and
vk+1, which are not distinguishable by ϕ due to Theorem 6.61.

Interested readers may wonder what happens if we drop the operator S from LH (we
denote this fragment LH–S). The following result states a comparison between such
fragment, and the language LKhs.

Theorem 6.63. The languages LKhs and LH – S are still incomparable.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 481

Proof. By using the second example in the proof of Theorem 6.62, we can show that
LKhs
≤ LH–S. To show LH–S
≤ LKhs, consider the following two models (the epistemic
relations are merely reflexive arrows which are omitted):

w1 p
a

v1 p
a a

It is clear thatHp holds atw1 but not at v1 since there is no single-step plan. However,
it is not hard to show that w1 and v1 are LKhs-bisimilar.

§7. Related work. The bisimulation notions proposed in this article have been
inspired by monotonic neighbourhood modal logic [5, 7, 27–29, 49, 51, 54]. This is
because they coincide with the discussed knowing how operators in their use of the ∃∀
schema suggested by the de re reading of ‘knowing how to achieve ϕ’. Bisimulations
for other logical systems with this quantification pattern can be found in [2]. A more
general notion of bisimulation, for a modal predicate language with a general ∃x�
modal operator, can be found in [60].

Several other approaches are also closely related to the work presented in this
article. One example is the bisimulation for conditionals studied by [9]. The proposal
is based on a framework with formulas of the form � � ϕ (‘ϕ is the case conditional
on �’), semantically interpreted in terms of a selection function f :W × ℘(W) →
℘(W) by stating that � � ϕ holds at w if and only if f(w, ���M) ⊆ �ϕ�M. The
settings have some similarities, as both � � ϕ and Kh(�,ϕ) guarantee that ϕ will
hold when � is satisfied. Still there are also important differences. First, � � ϕ works
locally (given a fixed condition �, the relevant set of states might vary depending
on the evaluation point), different from the global character of Kh(�,ϕ). Moreover,
while in the conditional setting, the set f(w, ���M) is the only relevant one, in the
discussed knowing how frameworks the relevant sets are all those that can be reached
from ���M via some sequence of actions (that is, the sets in {V ⊆W | ���M �−→
V for some sequence � ∈ Σ∗}. Thus, the just described conditional setting can be seen
as the ‘local’ and ‘single-step’ case of the knowing how framework.

Finally, one can find connections with bisimulations for logics with strategies such as
ATL [4], and in particular with ATL logics with knowledge operators [55]. However,
as mentioned in the introduction, a simple combination of knowledge and ability
does not capture knowing how properly [31]. Various alternative semantics have been
proposed in the literature (e.g., [15]). For example, in [10] a bisimulation notion for
ATL was studied under subjective semantics. The crucial idea behind their Zig-Zag
conditions is similar to ours: for each strategy � in one model there is a corresponding
strategy �′ in the other model such that any point in the outcome set for �′ is linked
by the bisimulation to a point in the outcome set for �. In a more recent work, in [11]
bisimulation notions for different fragments of strategy logic were introduced, using
them to compare the relative expressive power of such fragments. In particular, the
authors consider a multi-agent setting that includes coalition strategies, more related
to the setting in [46].

§8. Final remarks. In this article, we introduced suitable notions of bisimulation
for five different knowing how logics. The semantics of the first knowing how operator

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

482 RAUL FERVARI ET AL.

(first introduced in [59, 62]) requires plans that always succeed in order to know how
to achieve ϕ given a precondition �. The second alternative (from [38]) incorporates
conditions in each intermediate state that is ‘visited’ while executing the successful
plan. A weaker knowing how operator was introduced in [37], in which it is considered
that the goal ϕ is achieved when it holds in all states that can be reached via the given
plan, even those in which the plan cannot be finished. Finally, we consider the knowing
how operator from [21] and a variant from [46], that combine local knowing how and
knowing that modalities, allowing the execution of conditional plans.

As we pointed out, these operators were already investigated but the model
theoretical aspects have not been studied before. For the five notions of bisimulation
introduced, we proved that bisimilarity implies modal equivalence in the corresponding
logic, and when the class of finite models is considered, modal equivalence implies
bisimilarity. We discussed how the definitions of bisimulation we introduced are related
with similar notions, such as those for conditional logic [9], ATL [4, 55] and strategy
logic [11]. As as an application, bisimulations are used as a tool to investigate the
relative expressive power of the corresponding logics.

We believe the results presented here are the first step towards a better understanding
of the model theory and expressivity of this family of logics. As future work, the
algorithms to compute some notion of bisimulation contraction would help the
applications of both knowing how logic and epistemic planning (cf. [16]). It would also
be interesting to explore other model theoretical properties for this family of logics,
which can capture interactions between knowing how and knowing that operators. Also,
it would be interesting to explore the computational complexity of the inference tasks
for different knowing how frameworks, and analyze the trade-off between expressivity
and good computational behavior. Of course, another extension is to move to the
multi-agent setting, in order to describe the knowing how abilities of different agents.
When combined with a knowing that operator as in the just mentioned proposals, this
would give us a setting to talk about the knowledge agents have about one another’s
abilities.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments and suggestions. R. Fervari is supported by projects ANPCyT-PICT
2017-1130, Stic-AmSud 20-STIC-03 ‘DyLo-MPC’, Secyt-UNC, GRFT Mincyt-Cba,
and by the Laboratoire International Associé SINFIN. Y. Wang acknowledges the
support from NSSF grant 19BZX135.

BIBLIOGRAPHY

[1] Ågotnes, T. & Alechina, N. (2019). Coalition logic with individual, distributed
and common knowledge. Journal of Logic and Computation, 29(7), 1041–1069.

[2] Ågotnes, T., Goranko, V., & Jamroga, W. (2007). Alternating-time temporal
logics with irrevocable strategies. In Proceedings of Conference on Theoretical Aspects
of Rationality and Knowledge. New York: ACM, pp. 15–24.

[3] Ågotnes, T., Goranko, V., Jamroga, W., & Wooldridge, M. (2015). Knowledge
and ability (see van Ditmarsch et al. (2015), Ch. 11). In Handbook of Epistemic Logic.
London: College Publications, pp. 543–589.

[4] Alur, R., Henzinger, T., & Kupferman, O. (2002). Alternating-time temporal
logic. Journal of the ACM, 49(5), 672–713.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 483

[5] Areces, C. & Figueira, D. (2009). Which semantics for neighbourhood
semantics? In Proceedings of IJCAI 2009. San Francisco, CA: AAAI Press.
pp. 671–676.

[6] Artemov, S. & Fitting, M. (2019). Justification Logic: Reasoning with Reasons.
Cambridge Tracts in Mathematics, Vol. 216. Cambridge: Cambridge University Press.

[7] Bakhtiari, Z., van Ditmarsch, H., & Hansen, H. H. (2017). Neigh-
bourhood contingency bisimulation. In Proceedings of ICLA. Berlin: Springer,
pp. 48–63.

[8] Baltag, A. (2016). To know is to know the value of a variable. In Proceedings of
Advances in Modal Logic, Vol. 11. London: College Publications, pp. 135–155.

[9] Baltag, A. & Ciná, G. (2018). Bisimulation for conditional modalities. Studia
Logica, 106(1), 1–33.

[10] Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., & Jones, A. V.
(2017). Bisimulations for verifying strategic abilities with an application to threeballot.
In Proceedings of AAMAS. New York: ACM, pp. 1286–1295.

[11] Belardinelli, F., Dima, C., & Murano, A. (2018). Bisimulations for logics of
strategies: a study in expressiveness and verification. In Thielscher, M., Toni, F., and
Wolter, F., editors. Proceedings of KR. San Francisco, CA: AAAI Press. pp. 425–434.

[12] Blackburn, P., de Rijke, M., & Venema, Y. (2002). Modal Logic. Cambridge:
Cambridge University Press.

[13] Blackburn, P. & van Benthem, J. (2006). Modal logic: a semantic perspective.
In Handbook of Modal Logic. North Holland: Elsevier. pp. 1–84.

[14] Bolander, T. & Andersen, M. B. (2011). Epistemic planning for single and
multi-agent systems. Journal of Applied Non-Classical Logics, 21(1), 9–34.

[15] Bulling, N. & Jamroga, W. (2014). Comparing variants of strategic ability: how
uncertainty and memory influence general properties of games. Autonomous Agents
and Multi-Agent Systems, 28(3), 474–518.

[16] Dovier, A., Piazza, C. & Policriti, A. (2004). An efficient algorithm
for computing bisimulation equivalence. Theoretical Computer Science, 311(1–3),
221–256.

[17] Duijf, H. (2018). Let’s Do It!: Collective Responsibility, Joint Action, and
Participation. PhD Thesis, Utrecht University, Utrecht, The Netherlands.

[18] Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning About
Knowledge. Cambridge, MA: The MIT Press.

[19] Fan, J., Wang, Y., & van Ditmarsch, H. (2015). Contingency and knowing
whether. The Review of Symbolic Logic, 8, 75–107.

[20] Fantl, J. (2017). Knowledge how. In Zalta, E. N., editor. The Stanford
Encyclopedia of Philosophy (Fall 2017 edition). Stanford, CA: Metaphysics Research
Lab.

[21] Fervari, R., Herzig, A., Li, Y., & Wang, Y. (2017). Strategically knowing
how. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. IJCAI, USA: IJCAI, pp. 1031–1038.

[22] Fervari, R., Velázquez-Quesada, F. R., & Wang, Y. (2017). Bisimulations for
knowing how logics. Presented at 5th International Workshop on Strategic Reasoning.
Liverpool, UK.

[23] Gochet, P. (2013). An open problem in the logic of knowing how. In
Hintikka, J., editor. Open Problems in Epistemology. Helsinki: The Philosophical
Society of Finland.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

484 RAUL FERVARI ET AL.

[24] Goranko, V. & Otto, M. (2006). Model theory of modal logic. In Handbook
of Modal Logic, Vol. 3. New York: Elsevier Science, Inc., pp. 249–329.

[25] Goranko, V. & Passy, S. (1992). Using the universal modality: gains and
questions. Journal of Logic and Computation, 2(1), 5–30.

[26] Gu, T. & Wang, Y. (2016). “knowing value” logic as a normal modal logic.
In Proceedings of Advances in Modal Logic, Vol. 11. London: College Publications,
pp. 362–381.

[27] Hansen, H. H. (2003). Monotonic modal logics. Master’s Thesis, Universiteit
van Amsterdam.

[28] Hansen, H. H., Kupke, C., & Pacuit, E. (2007). Bisimulation for neigh-
bourhood structures. In Mossakowski T., Montanari U., and Haveraaen M., editors.
Algebra and Coalgebra in Computer Science. Lecture Notes in Computer Science, Vol.
4624. Berlin: Springer, pp. 279–293.

[29] ———. (2009). Neighbourhood structures: bisimilarity and basic model
theory. Logical Methods in Computer Science, 5(2), 1–38.

[30] Hart, S., Heifetz, A., & Samet, D. (1996). Knowing whether, knowing that,
and the cardinality of state spaces. Journal of Economic Theory, 70(1), 249–256.

[31] Herzig, A. (2015). Logics of knowledge and action: critical analysis and
challenges. Autonomous Agents and Multi-Agent Systems, 29(5), 719–753.

[32] Herzig, A. & Troquard, N. (2006). Knowing how to play: uniform choices in
logics of agency. In Proceedings of AAMAS. New York: ACM, pp. 209–216.

[33] Hintikka, J. (1962). Knowledge and Belief: An Introduction to the Logic of the
Two Notions. Ithaca, NY: Cornell University Press.

[34] Hodges, W. (1993). Model Theory. Encyclopedia of Mathematics and Its
Applications, Vol. 42. Cambridge: Cambridge University Press.

[35] Horty, J. F. & Pacuit, E. (2017). Action types in STIT semantics. Review of
Symbolic Logic, 10(4), 617–637.

[36] Jamroga, W. & Ågotnes, T. (2007). Constructive knowledge: what agents can
achieve under imperfect information. Journal of Applied Non-Classical Logics, 17(4),
423–475.

[37] Li, Y. (2017). Stopping means achieving: a weaker logic of knowing how. Studies
in Logic, 9(4), 34–54.

[38] Li, Y. & Wang, Y. (2017). Achieving while maintaining: a logic of knowing
how with intermediate constraints. In Proceedings of ICLA. Heidelberg: Springer,
pp. 154–167.

[39] ———. (2019). Multi-agent knowing how via multi-step plans: a dynamic
epistemic planning based approach. In Proceedings of LORI 2019. Berlin: Springer
Nature, pp. 126–139.

[40] Li, Y., Yu, Q., & Wang, Y. (2017). More for free: a dynamic epistemic
framework for conformant planning over transition systems. Journal of Logic and
Computation, 27(8), 2383–2410.

[41] Meyer, J.-J. C. & van Der Hoek, W. (1995). Epistemic Logic for AI and
Computer Science. New York: Cambridge University Press.

[42] Naumov, P. & Tao, J. (2017a). Coalition power in epistemic transition systems.
In Proceedings of AAMAS. New York: ACM, pp. 723–731.

[43] ———. (2017b). Together we know how to achieve: an epistemic logic
of know-how (extended abstract). In Proceedings of Conference on Theoretical
Aspects of Rationality and Knowledge. Australia: Open Publishing Association,
pp. 441–453.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

BISIMULATIONS FOR KNOWING HOW LOGICS 485

[44] ———. (2018a). Second-order know-how strategies. In Proceedings of
AAMAS, Richland, SC: IFAAMAS, pp. 390–398.

[45] ———. (2018b). Strategic coalitions with perfect recall. In Proceedings of
AAAI. San Francisco, CA: AAAI Press, pp. 4702–4709.

[46] ———. (2018c). Together we know how to achieve: an epistemic logic of know-
how. Artificial Intelligence, 262, 279–300.

[47] ———. (2019). Knowing-how under uncertainty. Artificial Intelligence, 276,
41–56.

[48] Nissim, R., Hoffmann, J., & Helmert, M. (2011). Computing perfect heuristics
in polynomial time: on bisimulation and merge-and-shrink abstraction in optimal
planning. In Proceedings of IJCAI 2011. Menlo Park, CA: AAAI, pp. 1983–1990.

[49] Pacuit, E. (2017). Neighborhood Semantics for Modal Logic. Berlin: Springer.
[50] Parikh, R. & Ramanujam, R. (2003). A knowledge based semantics of

messages. Journal of Logic, Language and Information, 12(4), 453–467.
[51] Pauly, M. (1999). Bisimulation for general non-normal modal logic. Unpub-

lished manuscript.
[52] Sangiorgi, D. (2011). Introduction to Bisimulation and Coinduction. Cambridge:

Cambridge University Press.
[53] Stanley, J. & Williamson, T. (2001). Knowing how. The Journal of Philosophy,

98(8), 411–444.
[54] van Benthem, J., Bezhanishvili, N., Enqvist, S., & Yu, J. (2017). Instantial

neighbourhood logic. The Review of Symbolic Logic, 10(1), 116–144.
[55] van der Hoek, W. & Wooldridge, M. (2003). Cooperation, knowledge, and

time: alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1), 125–157.

[56] van Ditmarsch, H., Halpern, J. Y., van der Hoek, W., & Kooi, B., editors.
(2015). Handbook of Epistemic Logic. London: College Publications.

[57] van Eijck, J., Gattinger, M., & Wang, Y. (2017). Knowing values and public
inspection. In Proceedings of ICLA. Berlin, pp. 77–90.

[58] Wang, X. (2019). A logic of knowing how with skippable plans. In Proceedings
of LORI. Berlin: Springer Nature, pp. 413–424.

[59] Wang, Y. (2015). A logic of knowing how. Proceedings of LORI. Lecture Notes
in Computer Science, Vol. 9394. Berlin: Springer, pp. 392–405.

[60] ———. (2017). A new modal framework for epistemic logic. In Proceedings
of Conference on Theoretical Aspects of Rationality and Knowledge. Australia: Open
Publishing Association, pp. 515–534.

[61] ———. (2018a). Beyond knowing that: a new generation of epistemic logics.
In van Ditmarsch, H. & Sandu, G., editors. Jaakko Hintikka on Knowledge and Game
Theoretical Semantics. Berlin: Springer, pp. 499–533.

[62] ———. (2018b). A logic of goal-directed knowing how. Synthese, 195(10),
4419–4439.

[63] Wang, Y. & Li, Y. (2012). Not all those who wander are lost: dynamic epistemic
reasoning in navigation. In Advances in Modal Logic, Vol. 10. pp. 559–580.

[64] Xu, C., Wang, Y., & Studer, T. (2021). A logic of knowing why. Synthese, 198,
1259–1285.

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000101

486 RAUL FERVARI ET AL.

FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y COMPUTACIÓN
UNIVERSIDAD NACIONAL DE CÓRDOBA

MEDINA ALLENDE S/N, CÓRDOBA, ARGENTINA
E-mail: rfervari@unc.edu.ar
URL: http://cs.famaf.unc.edu.ar/∼rfervari

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION
UNIVERSITEIT VAN AMSTERDAM

P.O. BOX 94242, 1090, GE AMSTERDAM, THE NETHERLANDS
E-mail: F.R.VelazquezQuesada@uva.nl
URL: http://staff.fnwi.uva.nl/f.r.velazquezquesada

DEPARTMENT OF PHILOSOPHY
PEKING UNIVERSITY

100871 BEIJING, CHINA
E-mail: y.wang@pku.edu.cn
URL: http://wangyanjing.com/

https://doi.org/10.1017/S1755020321000101 Published online by Cambridge University Press

mailto:rfervari@unc.edu.ar
http://cs.famaf.unc.edu.ar/~rfervari
mailto:F.R.VelazquezQuesada@uva.nl
http://staff.fnwi.uva.nl/f.r.velazquezquesada
mailto:y.wang@pku.edu.cn
http://wangyanjing.com/
https://doi.org/10.1017/S1755020321000101

	1 Introduction
	2 Knowing how
	2.1 The language LKh and its semantics
	2.2 Bisimulation for knowing how

	3 Knowing how with intermediate constraints
	3.1 The language LKhm and its semantics
	3.2 Bisimulation for knowing how with intermediate constraints
	3.3 Relative expressive power of LKh and LKhm

	4 Weakly knowing how
	4.1 The language LKhw and its semantics
	4.2 Bisimulation for weakly knowing how
	4.3 Expressive power of LKhw

	5 Strategically knowing how
	5.1 The language LKhs and its semantics
	5.2 Bisimulation for strategically knowing how

	6 Single-step knowing how
	6.1 Expressive power of LKhs and LH

	7 Related work
	8 Final remarks

