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Experiments on localized secondary instability
in bypass boundary layer transition
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An experimental study on localized secondary instability of unsteady streamwise
streaks in bypass boundary layer transition under an elevated level of free-stream
turbulence has been carried out mainly using the particle image velocimetry (PIV)
technique. Simultaneous orthogonal dual-plane PIV measurements were performed for
a concurrent examination of the transitional flow features in both wall-normal and
spanwise planes. These quantitative and simultaneous visualizations clearly show the
wall-normal view of a low-speed streak undergoing sinuous/varicose motion in the
spanwise plane. An oscillating shear layer in the wall-normal plane is found to be
associated with the sinuous/varicose streak oscillation in the spanwise plane. Further,
these measurements indicate that a localized secondary instability wavepacket can
originate near the boundary layer edge. The time-resolved PIV measurements in the
wall-normal plane clearly show how an instability develops on a lifted-up inclined
shear layer and leads to flow breakdown. The estimated wavelength and convection
velocity of such instabilities are found to compare well with those calculated from
the one-dimensional linear stability analysis of the spatially averaged velocity profiles
associated with the lifted-up shear layers. The time-resolved PIV measurements in
the spanwise plane also facilitate quantitative visualizations of sinuous and varicose
instabilities. These measurements experimentally confirm that a varicose instability at
the juncture of an incoming high-speed streak and a downstream low-speed streak
can eventually lead to the formation of lambda structures. The estimated convection
velocity, wavelength and growth rate of these instabilities are found to be consistent
with the numerical results reported in the literature. Moreover, the streak secondary
instability is found to be apparent in the velocity contours, while the estimated streak
amplitude is approximately 30 % of the free-stream velocity.

Key words: boundary layer receptivity, boundary layer stability, transition to turbulence

1. Introduction
Laminar–turbulent transition in a boundary layer has continued to be a potential

area of research for decades because of its importance in fundamental and applied
aspects of fluid mechanics (e.g. Kachanov 1994). Boundary layer transition over a
smooth surface in a zero-pressure-gradient flow is generally distinguished as natural or
bypass transition depending on the level of turbulence in the free-stream flow. Natural
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transition which occurs at very low levels of free-stream turbulence is characterized
by exponential amplification of two-dimensional Tollmien–Schlichting (TS) waves
followed by three-dimensional secondary instability and nonlinear breakdown to
turbulence (e.g. Kachanov 1994; Reed, Saric & Arnal 1996). On the other hand,
bypass transition which occurs at an elevated level of free-stream turbulence
(Morkovin 1969) is characterized by the generation of low- and high-velocity streaks
followed by their eventual breakdown to turbulent flow (e.g. Kendall 1998; Jacobs
& Durbin 2001; Matsubara & Alfredsson 2001). In contrast to TS waves, these
streaks grow algebraically at the initial stage of bypass transition (e.g. Kendall 1998;
Matsubara & Alfredsson 2001; Fransson, Matsubara & Alfredsson 2005).

The experimental work of Klebanoff (1971) first indicated the existence of low- and
high-velocity streaks in a boundary layer under large free-stream turbulence, although
he called them ‘breathing modes’. In his experimental work, Kendall (1985) visualized
these streaks and named them as ‘Klebanoff modes’. Various authors have contributed
to the understanding of the generation of longitudinal streaks and their inviscid/viscous
amplification with time, which is found to be algebraic/transient in nature (Ellingsen
& Palm 1975; Landahl 1980; Hultgren & Gustavsson 1981). Similarly, the optimal
perturbation theory in the boundary layer also reveals spatial transient growth of three-
dimensional disturbances (Andersson, Berggren & Henningson 1999; Luchini 2000).
The transient growth is due to the non-normal nature of the stability operator which
provides non-orthogonal eigenfunctions leading to algebraic growth.

In their theoretical analysis, Goldstein & Wundrow (1998) also found that, for
small distortion in the incoming flow over a plate, the stretched vortex lines around
the plate leading edge produce streamwise vorticity and velocity perturbation in the
boundary layer, which can be related to the generation of the Klebanoff modes in
the boundary layer. Using a single wire perpendicular to the free-stream flow and to
the plate leading edge, Watmuff and co-workers (Watmuff 2006; Pook & Watmuff
2014) experimentally and numerically demonstrated that the boundary layer is more
receptive to the streamwise vorticity than the normal vorticity. In these works, the
streamwise vorticity generated through stretching and tilting of the normal vorticity
in the contraction plays an important role in generating the Klebanoff streaks in
the boundary layer. Leib, Wundrow & Goldstein (1999) reported that the Klebanoff
type disturbances in the boundary layer are governed by the linearized unsteady
boundary-region equation. Using the interaction of the continuous Orr–Sommerfeld
and Squire modes, Zaki & Durbin (2005) also described the generation of boundary
layer streaks and their breakdown to turbulent flow.

However, the measured data from various experimental works indicate that the
disturbance growth in a boundary layer under large free-stream turbulence is algebraic
in nature (e.g. Westin et al. 1994; Kendall 1998; Fransson et al. 2005). Comparing
their data with other experimental data in the literature, Westin et al. (1994) found
that the disturbance grows as x1/2, where x is the streamwise distance. However,
they found different proportionality constants for different data. Similarly, Matsubara
& Alfredsson (2001) found that the disturbance energy grows linearly with x, and
the wall-normal distribution of their measured urms data compares well with the
non-modal theory of Luchini (2000); here, urms is the root mean squared value of
the streamwise fluctuating velocity u. However, Fransson et al. (2005) found that the
initial disturbance energy varies directly as the square of the free-stream turbulence
intensity, Tu2. Furthermore, they showed that the growth of the disturbance energy
(u2

rms/U
2
0 , measured at y/δ∗ = 1.4) for different turbulent intensities can be collapsed

to a single line, while the Reynolds number based on the streamwise distance is
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Localized secondary instability in bypass boundary layer transition 219

scaled with the Reynolds number considered at the position where the urms value is
10 % of the free-stream velocity, U0; here y denotes the wall-normal distance and δ∗
is the theoretical Blasius displacement thickness.

Several direct numerical simulations (DNS) (e.g. Rai & Moin 1993; Jacobs &
Durbin 2001; Brandt, Schlatter & Henningson 2004; Ovchinnikov, Choudhari &
Piomelli 2008) on bypass boundary layer transition have recently been carried out
with the aim of understanding this transition process in detail. The first DNS on
bypass transition by Rai & Moin (1993) did not produce the expected results perhaps
because of the problems that existed due to streamwise resolutions (Jacobs & Durbin
2001). However, Jacobs & Durbin (2001) found that their simulation on a boundary
layer subjected to large free-stream turbulence provided a good overall agreement
with the experiments of Roach & Brierly (1992). In their simulation, they found
that instability always sets in in a low-speed streak, and the interaction between
the lifted low-speed streak and the free-stream turbulence is the precursor of streak
secondary instabilities. On the other hand, the simulation of Brandt et al. (2004)
suggested that the flow breakdown occurs through the sinuous- and varicose-like
streak oscillations, and the varicose-like breakdown appears to be similar to the
breakdown feature reported by Jacobs & Durbin (2001). Some of the flow features
seen in these simulations have also been experimentally verified using particle image
velocimetry (PIV) measurements in bypass transition (Mandal, Venkatakrishnan &
Dey 2010; Nolan, Walsh & McEligot 2010). Considering two different length scales
at a fixed free-stream turbulence intensity (6 %), Ovchinnikov et al. (2008) found that
the streamwise streaks are involved in transition for the smaller length scale, whereas
the transition mechanism for the larger length scale is different.

While the hotwire measurements of Matsubara & Alfredsson (2001) confirm that
the disturbance growth and its wall-normal distribution follow the non-modal theory,
their flow visualizations of a streaky boundary layer also reveal that these streaks
develop streamwise waviness before they eventually break down to turbulent spots.
Similarly, using dye-flow visualizations in bypass transition in a water channel,
Mans et al. (2005) investigated the natural unforced secondary instability modes,
i.e. sinuous and varicose modes located on a low-speed streak. In their later PIV
experiment (Mans, de Lange & van Steenhoven 2007), which was confined to the
spanwise plane only, they observed the bypass transitional flow features while moving
their camera with a speed equal to the average fluid velocity at the measurement
plane. Identifying different streak configurations that lead to sinuous instability, they
reported the wavenumber and the temporal growth rate of the sinuous instability.

For better understanding, controlled numerical and experimental studies of streak
secondary instability in a zero-pressure-gradient boundary layer have been carried
out by several authors (e.g. Andersson et al. 2001; Asai, Minagawa & Nishioka
2002; Chernoray et al. 2006; Vaughan & Zaki 2011). In their controlled experiment,
Asai et al. (2002) found that the Kelvin–Helmholtz instability of the wall-normal
inflectional velocity profile governs the growth of a symmetric varicose mode,
whereas a wake type instability of the spanwise velocity profile across the streak
governs the growth of an anti-symmetric sinuous mode. Apart from the spatial
growth rate, they can predict the most amplified frequency and the wavenumber
using the linear stability analysis of the measured mean velocity profiles. Using
the inviscid linear stability analysis of a steady base flow and the DNS methods for
nonlinear evolution, Andersson et al. (2001) found that the streak secondary instability
is initially of sinuous type. According to their results, the secondary instability sets
in when the critical amplitude of streaks goes beyond 26 %, and the sinuous mode
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is more unstable than the varicose mode. Considering an unsteady base flow that
incorporates the nonlinear development of streaks and mean flow distortion, Vaughan
& Zaki (2011) identified the two most unstable modes, which they classified as inner
and outer modes. Their instability analysis of the outer mode extends the results
of Andersson et al. (2001) to unsteady base streaks, and the outer mode becomes
unstable while the streak amplitude goes beyond 17 %.

Since the base flows considered in the secondary instability analyses of Andersson
et al. (2001) and Vaughan & Zaki (2011) are periodic in the spanwise direction, their
stability results provide collective instability of the entire row of streaks (Hack &
Zaki 2014). However, the secondary instability of the boundary layer streaks is often
found to be localized in nature. Considering a realistic base flow from their DNS
simulation of bypass transition, Hack & Zaki (2014) carried out stability analysis
to characterize the localized secondary instability. Using their two-dimensional linear
stability analyses on the cross-sectional velocity field, they found that the calculated
temporal growth rate compares with the spatio-temporal growth rate obtained from
their DNS data. Their analyses also reveal that the streak amplitude between 20 %
and 35 % of the free-stream velocity can lead to a positive growth rate. They also
pointed out that the linear stability analysis of realistic flow fields can be useful in
various scenarios; for example, the linear stability analysis can be applied to the two-
dimensional velocity fields measured by the PIV technique.

Various numerical works indicate that the instability in the boundary layer streaks
is excited due to the interaction of the free-stream turbulence with the boundary layer
streaks (e.g. Jacobs & Durbin 2001; Durbin & Wu 2007). Schlatter et al. (2008) also
reported that the localized secondary instability wavepackets in bypass transition are
perhaps triggered by the localized free-stream perturbations. Some theoretical and
experimental works have also been carried out to understand this viewpoint. Using
numerical and asymptotic analyses of the linear perturbation equation, Zaki & Saha
(2009) found that the penetration of the vortical disturbance inside the boundary layer
increases with viscosity and remains limited with the shear for a single fluid case that
they studied. Hernon, Walsh & Mceligot (2007) carried out hotwire measurements in
bypass transition, and found that the penetration depth of the free-stream turbulence
increases with increasing free-stream turbulent intensities and length scales. On the
other hand, a recent experimental study on bypass transition by Nolan & Walsh
(2012) revealed that the boundary layer is receptive to the free-stream turbulence only
after the occurrence of secondary instability, and the role of the free-stream turbulence
is likely to sustain the growth of a turbulent spot after the onset of transition. This
observation initiated a new debate which needs further attention.

Some studies on bypass transition point out that the use of only two-dimensional
plan views cannot provide all the flow features to understand the associated instability
and flow breakdown, and sometimes such an approach can be misleading (Durbin
& Wu 2007; Schlatter et al. 2008). For example, using the bypass transition model
of Zaki & Durbin (2005), the numerical simulation of Schlatter et al. (2008) reveals
that while the data for both of the planes are simultaneously analysed, the Kelvin–
Helmholtz type instability, as was suggested by Jacobs & Durbin (2001) and Zaki &
Durbin (2005) from their analyses of the wall-normal plane data, shows its intricate
origin in the sinuous streak instability in the spanwise plane. While this contrasting
viewpoint certainly invites experimental verification, there exists a difficulty as the
instability events in bypass transition under an elevated level of free-stream turbulence
occur randomly in space and time. Hack & Zaki (2014) also pointed out that some
flow configurations, which are numerically possible and can provide unique knowledge
of the transition process, are perhaps difficult or impossible to set up experimentally.
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Nonetheless, using three different PIV configurations, an effort has been made
to identify and characterize the natural unforced secondary instability events in
bypass transition under an elevated level of free-stream turbulence. To examine
the flow features of these instability events simultaneously in both the wall-
normal and spanwise planes, the simultaneous orthogonal dual-plane PIV technique
(Ganapathisubramani et al. 2005; Hambleton, Hutchins & Marusic 2006) has
been utilized in this work. For further quantitative assessment of their origin,
development and breakdown, along with the role of streak amplitude, time-resolved
and conventional PIV measurements are separately carried out in the wall-normal and
spanwise planes.

This paper is organized as follows. Details of the experimental set-up, measurement
techniques and the free-stream turbulence characteristics are described in § 2. The
mean flow characteristics are presented in § 3. The results of the simultaneous
PIV measurements are discussed in § 4, and the results of the time-resolved PIV
measurements are discussed in § 5. The streak amplitude and its relation with the
streak secondary instability are discussed in § 6. A summary of the present work,
followed by a concluding remark, is presented in § 7.

2. Experimental details
2.1. Wind tunnel

The experiments reported in this paper were carried out in a suction type low-
turbulence wind tunnel. It is an open-circuit tunnel, which has a 3000 mm long test
section with a square cross-section of 610 mm × 610 mm. The settling chamber of
the tunnel houses a honeycomb and six screens. The contraction ratio of the tunnel
contraction section, which ensures a monotonic velocity increase, is 16:1. The test
section of the tunnel was made optically transparent for PIV measurements. The test
section is followed by a diffuser of length 3000 mm. The tunnel fan at the diffuser
end is driven by an AC motor (14.5 kW), which is controlled by a speed controller.
The streamwise turbulence level at the test section, measured following Mandal et al.
(2010), is found to be 0.1 % of the free-stream velocity, U0.

Boundary layer measurements were carried out on a transparent acrylic flat
plate that was 12 mm thick, 1200 mm long and 610 mm wide. It was mounted
horizontally at the midplane of the test section. The plate had an asymmetrical
modified superelliptic leading edge, which was designed based on the guidelines
suggested by Hanson, Buckley & Lavoie (2012) with a thickness ratio of 7/24
between the working and non-working sides. The leading edge was 120 mm long with
aspect ratios of 34.3 and 14.1 for the upper and lower ellipses respectively. Hanson
et al. (2012) pointed out that a leading edge of this kind reduces the receptivity of
the boundary layer by eliminating the discontinuity at the juncture where the curved
surface meets the flat surface of the plate. The curvature discontinuity at the juncture
can affect the stability properties of the flow (e.g. Saric, Reed & Kerschen 2002).
Flat plates with asymmetric leading edges were also utilized in earlier transition
studies to reduce the leading edge pressure gradient region (e.g. Klingmann et al.
1993; Fransson et al. 2005; Li & Gaster 2006). Moreover, a trailing edge flap was
used to minimize the leading edge suction peak by positioning the stagnation point
along the measurement side of the plate.

2.2. Measurement techniques: PIV and hotwire anemometry
We utilized three different PIV configurations, namely the conventional PIV technique,
the time-resolved PIV (TR-PIV) technique and the simultaneous orthogonal dual-plane

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.92


222 G. Balamurugan and A. C. Mandal

PIV technique, for this experimental work. All of the PIV measurements in the
wall-normal (x–y) plane were carried out at the plate centreline, i.e. z = 0, and
measurements in the spanwise (x–z) plane were carried out at y = 2.5 mm unless
otherwise stated. Here, the streamwise, wall-normal and spanwise directions are
denoted by x, y and z respectively. The plate leading edge is at x = 0, and y = 0
refers to the wall.

The conventional PIV measurements were carried out using high-resolution CCD
cameras (12bit, 8MP Imprex, 10 Hz; 16MP TSI, 2 Hz; 29MP Imperx, 2 Hz) and a
Nd:YAG laser (Innolas Spitlight Compact 400 PIV, 180 mJ pulse−1, 10 Hz). The PIV
data over a large field of view in bypass boundary layer transition were acquired at
a frequency of 2 Hz using the 29MP CCD camera. The measurements in the x–y
plane were carried out by centring the camera at x = 303 mm and 542 mm. The
field of view for both of these measurements was 1x × 1y ≈ 255 mm × 170 mm.
Hence, the streamwise distance of a particular PIV measurement zone varied from
(xc − 1x/2) mm to (xc + 1x/2) mm, where xc is the location of the camera centre.
The measurements in the x–z plane were carried out in two separate fields of view,
i.e. 1x × 1z ≈ 272 mm × 181 mm and 1x × 1z ≈ 308 mm × 205 mm, centring
the camera at x= 300 mm and 600 mm respectively. The results of the conventional
PIV measurements in bypass boundary layer transition in the x–y and x–z planes are
reported in §§ 3 and 6 respectively. The conventional PIV measurements in the Blasius
boundary layer, i.e. without using any grid in the test section, and in the free stream,
ahead of the plate leading edge, were carried out using the 8MP and 16MP CCD
cameras respectively. The fields of view for these measurements were 1x × 1y ≈
100 mm × 75 mm and 107 mm × 71 mm respectively. These measurements were
performed for determination of the virtual origin of the flat-plate boundary layer and
for characterization of the grid turbulence respectively.

The TR-PIV measurements were carried out using a high-frequency and high-
resolution CMOS camera (resolution: normal mode, 2336 × 1728 pixels; U-mode,
2560 × 1920 pixels; IDTpiv, USA, Model Y5.2) and a high-repetition-rate Nd:YLF
DPSS laser (Dual head, 30 mJ pulse−1, 1 kHz, Photonics Industries, USA). The
camera could capture 730 images per second (i.e. 365 image pairs per second) at full
resolution. However, the frame rate could be increased by reducing the active pixels
of the sensor. Utilizing the 2560 pixel × 1080 pixel array of the CMOS camera, all
of the TR-PIV data reported here were acquired at 645 Hz (i.e. 1290 images per
second). All of the TR-PIV measurements in the x–y and x–z planes were carried out
by centring the camera at x= 700 mm. The fields of view in the x–y and x–z planes
were 1x × 1y ≈ 104 mm × 44 mm and 1x × 1z ≈ 140 mm × 57 mm respectively,
except in § 5.1.2. The field of view of the TR-PIV measurements presented in § 5.1.2
was reduced to 1x × 1y ≈ 66 mm × 28 mm for better spatial resolution in the
wall-normal plane.

The simultaneous orthogonal dual-plane PIV measurements were carried out
following the works of Ganapathisubramani et al. (2005) and Hambleton et al.
(2006), who used this technique for measurements in a turbulent boundary layer. This
technique is based on the polarization characteristics of scatted light from seeding
particles (see Kähler & Kompenhans 2000, for details). Using this measurement
technique, the conventional PIV measurements were carried out in the x–y and x–z
planes simultaneously. Figure 1 shows the present measurement set-up schematically.
The x–y plane at z = 0 was illuminated using a Quantel Evergreen Nd:YAG double
pulsed laser with an energy of 200 mJ per pulse. The laser beam had been passed
through a half-wave plate before it entered into the sheet forming optics. The
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Turbulence 
generating grids

Flat plate with modified
superelliptic leading edge

Camera lens
Flap

Test section

Free-stream turbulence

Polarizing filter

x

y z

Camera for (x–y) plane

Camera for (x–z) plane

Laser sheet for (x–z) plane

Laser sheet for (x–y) plane

FIGURE 1. (Colour online) A schematic of the simultaneous orthogonal dual-plane PIV
measurement set-up in the wind tunnel test section.

half-wave plate rotated the polarization of the beam by 90◦. Thus, the initial laser
beam, which was vertically polarized, was changed to a horizontally polarized laser
beam. On the other hand, the x–z plane at y = 2.5 mm from the plate surface
was illuminated using the Innolas Nd:YAG laser, details of which are given above.
In this case, the initial vertical polarization of the laser beam was preserved. The
illuminated particles in the x–y plane were imaged by using a 12 bit 1MP PCO
pixelfly CCD camera. Two polarizing filters were mounted in front of this camera
lens which could be rotated independently to allow only the horizontally polarized
light of the wall-normal plane laser and block the vertically polarized light from
the wall-parallel plane laser. The flow field in the x–z plane was captured using
the CMOS camera, described above, and the two polarizing filters mounted in front
of this camera lens were adjusted to allow only the vertically polarized laser light.
With these arrangements, major reflections from the plate surface and from the line
of intersection of the two perpendicular laser sheets were minimized. Following
Hambleton et al. (2006), a series of image processing steps were also performed in
MATLAB to retain the information at the intersection. Centring the CCD camera
at x = 700 mm, the simultaneous PIV measurements were carried out at 5 Hz. The
fields of view in the x–y and x–z planes were 1x × 1y ≈ 46 mm × 34 mm and
1x × 1z ≈ 57 mm × 43 mm respectively. The field of view in the x–y plane was
chosen to be smaller for better spatial resolution.

All of the cameras used here were equipped with 100 mm focal length lenses
(Carl Zeiss Macro-Planar lenses). The laser and the camera were synchronized using
pulse generators (BNC Nucleonics, Model 575, and IDTpiv, Motion Pro Timing
hub). The flow was seeded with glycol based fog particles with a mean diameter of
approximately 1 µm. These particles were generated using a SAFEX fog generator
(Dantec Dynamics, Denmark). The acquired images were processed using the package
ProVision XS, IDTpiv, with a correlation window of 32 pixel × 32 pixel. This
package is based on the second-order-accurate mesh-free algorithm developed by
Lourenco & Krothapalli (2000). This package was also used in our previous work
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(e.g. Mandal & Dey 2011; Phani Kumar, Mandal & Dey 2015), and more details
on the data processing can be found in Mandal et al. (2010). However, based on
the correlation window, the spatial resolutions of the conventional PIV measurements
in bypass boundary layer transition were found to be 1.3 mm and 1.5 mm in the
x–y and x–z planes respectively. Similarly, the spatial resolutions of the conventional
PIV measurements in the Blasius boundary layer (without using any grid in the test
section) and in the free stream (in front of the leading edge) were found to be 0.97
mm and 0.69 mm respectively. The spatial resolutions of the TR-PIV measurements
for the two different fields of view in the x–y plane, as mentioned above, were
found to be 0.8 mm and 1.3 mm, whereas the spatial resolution in the x–z plane
was found to be 1.75 mm. The spatial resolutions for the simultaneous orthogonal
PIV measurements in the x–y and x–z planes were found to be 1 mm and 0.7 mm
respectively. While these values compare well with published work on boundary
layers (e.g. Liu, Adrian & Hanratty 2001; Dennis & Nickels 2011), a high-resolution
feature is also in-built in this package; details can be found in the literature (Lourenco
& Krothapalli 2000; Alkislar, Krothapalli, & Lourenco 2003). Therefore, the actual
spatial resolution of our measurements is expected to be even better than the values
mentioned above.

Although the PIV technique is now considered to be a reliable tool for whole-field
velocity measurements, one has to consider the uncertainty involved in the measured
values. Sources often considered for error/uncertainty analysis are equipment, particle
lag, sampling size and the processing algorithm (e.g. Lazar et al. 2010). Considering
equipment error, sampling size (random error) and the processing algorithm (bias
error) in the present PIV measurements, the overall/combined standard uncertainty
(Coleman & Steele 2009) was found to be within ±1.3 % of the free-stream velocity.
Uncertainty due to particle lag was neglected as it is often reported to be negligible
for glycol based fog particles (e.g. Raghav & Komerath 2014). The error due to the
processing algorithm was estimated by generating synthetic particle image pairs with
known pixel displacements (Raffel et al. 2013).

A constant-temperature hotwire anemometry system (Dantec Dynamics, Denmark)
was also utilized for the present experimental work. A single-wire probe (55P11,
Dantec Dynamics), which was connected to a multichannel CTA system (54N81), was
used for data acquisition. The sensing element of this probe was a 5 µm diameter
tungsten wire, and its length to diameter ratio was 250. The data were acquired
using a 16 bit National Instruments data acquisition card (NI-6034E) and LabVIEW
software. Setting the overheat ratio at 1.8, data were acquired at a sampling rate of
6 kHz and low-pass filtered at 3 kHz. Without installing any grid in the tunnel test
section, the hotwire probe was often calibrated using a Pitot-static tube connected to
a digital manometer (Furness Controls, FC012), and the King’s law fit. The hotwire
data were used to characterize the free-stream turbulence and the flow intermittency
in the boundary layer. A hotwire probe in the plate centreline was often placed at
the end of the PIV measurement region at y= 2.5 mm for simultaneous observation
and acquisition of the flow signal during PIV measurements. The uncertainty analysis
of the hotwire data was carried out following Yavuzkurt (1984), and the overall
uncertainty was found to be within ±1.7 % of the free-stream velocity.

2.3. Free-stream turbulence characteristics in the test section
Turbulence generating grids have served as important experimental devices in the
study of bypass boundary layer transition, and square mesh grids are often used
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0.015

0.020

0.025
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FIGURE 2. Downstream turbulence decay for grids A and B; symbols:E, grid A;@, grid
B. Solid line: curve fitted using (2.1).

to investigate the effect of free-stream turbulence on boundary layer transition (e.g.
Westin et al. 1994; Matsubara & Alfredsson 2001; Fransson et al. 2005; Hernon et al.
2007; Nolan et al. 2010). However, few works have been carried out using parallel
rod/bar grids, mainly focusing on streak generation and their initial development
in bypass transition (e.g. Kendall 1985; Roach & Brierly 1992; Pook, Watmuff &
Orifici 2016). Here, we intend to focus on the secondary instability characteristics of
the boundary layer streaks generated by a parallel rod grid and a square mesh grid,
identified as grid A and grid B respectively, to investigate the effect of grid geometry
on the streak secondary instability, if any. The parallel rod grid (grid A) was installed
in the tunnel such that the bars were perpendicular to the free stream and parallel to
the plate leading edge, in contrast to the work of Pook et al. (2016) where a screen
model made of parallel bars installed in the settling chamber of a wind tunnel was
used such that the bars were perpendicular to the free-stream flow and to the plate
leading edge.

Grid A was made of uniformly spaced parallel cylindrical rods with a centre-
to-centre distance of 34 mm. Grid B was made of cylindrical rods arranged
perpendicularly in two different planes so that they formed a square mesh with
a mesh width of 44 mm. Both grid A and grid B were made of cylindrical rods of
10 mm diameter. Grid solidity (Sg) is defined as Sg = 1− β, where β is the porosity
(e.g. Roach 1987; Kurian & Fransson 2009). In terms of the mesh width, M, and the
bar/rod diameter, d, the porosity can be expressed as β = (1− (d/M)) for a parallel
rod grid and β = (1 − (d/M))2 for a square mesh grid (e.g. Roach 1987). Using
these expressions, the solidities for grids A and B were found to be 0.294 and 0.403
respectively. However, the grids were placed near the entrance of the test section.
The distances of grids A and B from the leading edge (xgrid) were −1165 mm and
−1185 mm respectively. Using the hotwire anemometry technique, the streamwise
turbulent intensity, Tu, was measured at various downstream locations to characterize
the free-stream turbulence. The measurements were carried out at U0= 5.8 m s−1 and
6.4 m s−1 for grids A and B respectively. For both of the grids, the measured data,
as shown in figure 2, follow the power-law decay (e.g. Westin et al. 1994; Mandal
et al. 2010) given by

Tu= urms

U0
=C(x− xvo)

−b, (2.1)

where xvo is the virtual origin of a grid, b is the exponential decay rate and C is
a constant for a particular grid. The geometric parameters and the numerical values
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Grid Grid type Bar geometry Mesh width xgrid Sg C xvo b
(mm) (mm)

Grid A Parallel rods Circular 34 −1165 0.294 1.67 −1102 −0.6
Grid B Square mesh Circular 44 −1185 0.403 1.76 −1141 −0.6

TABLE 1. Details of grids A and B, and the power-law constants.

of these constants for these grids are given in table 1. The value of b, which is a
measure for isotropic turbulence, was found to be 0.6 for both of the grids, and this
value compares well with the values reported in the literature (e.g. Westin et al. 1994;
Fransson et al. 2005; Mandal et al. 2010). The streamwise turbulent intensities at the
plate leading edge were found to be 2.5 % and 2.6 % of the free-stream velocity for
grids A and B respectively. The integral length scale, Λx, and the Taylor microscale,
τx, were estimated from the auto-correlation function of the streamwise fluctuating
velocity, Ruu, at the leading edge (e.g. Mandal et al. 2010). The numerical value of
the integral length scale was found to be 17 mm, whereas the numerical value of the
Taylor microscale was found to be 7(±1) mm, for both of the grids.

For further characterization of the free-stream turbulence, conventional PIV
measurements in the x–y and x–z planes were separately carried out in the free-stream
flow. Due to experimental constraints in optical access at the leading edge position,
the measurements were performed ahead of the plate leading edge, as schematically
shown in figure 3(a). For measurements in the x–y and x–z planes, the camera was
centred at approximately x = −185 mm, y = 100 mm and z = 0 mm, such that the
measurement zone was at least 20 mesh widths downstream of the grid location. The
measurement field of view (107 mm × 71 mm) and the number of PIV realizations
were chosen such that the present spatial resolution, 0.69 mm, and the number of
PIV realizations, 1500, were comparable with published PIV measurements on grid
generated turbulence (e.g. Gomes-Fernandes, Ganapathisubramani & Vassilicos 2012).
Here and in the following, the streamwise, wall-normal and spanwise fluctuating
velocities are denoted by u(= UI − U), v(= VI − V) and w(= WI − W) respectively,
the local instantaneous velocities in the x-, y- and z-directions are denoted by UI , VI
and WI respectively, and the corresponding local mean velocities in these directions
are denoted by U, V and W respectively.

For investigation of the longitudinal and transverse length scales associated with an
any turbulent velocity fluctuations, q, the two-point spatial correlations

Rqq(r)= q(ri, t)q(ri + r, t)√
q2(ri, t)

√
q2(ri + r, t)

(2.2)

were estimated from the measured data; here, ri denotes a reference point, with r
the separation between two points, and an overbar denotes an ensemble average
over the number of PIV realizations. The spatial correlation is called the longitudinal
correlation when r is parallel to the direction of q and the transverse correlation when
r is perpendicular to the direction of q (O’Neill et al. 2004). Measured two-point
spatial correlations at x = −200 mm are shown in figures 3(b) and 3(c) for grids
A and B respectively. For comparison, the longitudinal, f (r), and transverse, g(r),
correlation functions, which are related as

f + 1
2

r
df
dr
= g (2.3)
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Turbulence generating grid

PIV fields of view
Flat plate

Flow

 0.5

 0

1.0
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 0.5
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(a)

(b) (c)

FIGURE 3. Conventional PIV measurements in the free stream for characterization of grid
generated turbulence. (a) A schematic illustrating the measurement planes. (b,c) Spatial
correlations for grids A and B respectively; longitudinal, f (——), and transverse, g (- - -),
correlation functions calculated from the isotropic relation (2.3) are also plotted for
comparison with the measured data. Symbols in (b): , Ruu versus 1x;E, Rvv versus 1x;
u, Rww versus 1x;

⊕
, Ruu versus 1y;

⊗
, Ruu versus 1z. Symbols in (c): , Ruu versus

1x;p, Rvv versus 1x;A, Rww versus 1x;@, Ruu versus 1y;6, Ruu versus 1z.

for homogeneous isotropic turbulence (e.g. Batchelor 1982; Kurian & Fransson
2009), are also displayed in figure 3(b,c). The longitudinal correlation function in
homogeneous isotropic turbulence is often approximated as f (r) = e−r/Λx , where Λx

is the longitudinal integral length scale (e.g. Roach 1987; Kurian & Fransson 2009).
We may note that the longitudinal integral length scale, Λx, is estimated from the
hotwire data at x = −200 mm and g(r) is obtained from (2.3). The present data in
figure 3(b,c) are found to be similar to those reported by Kurian & Fransson (2009).
Therefore, the present free-stream turbulence can be considered as nearly isotropic
for both of the grids. However, the data for grid A appear to compare better with the
calculated f (r) and g(r) functions than the data for grid B. This may be because of
the fact that the measurement location is at larger distance in terms of mesh width
for grid A than that for grid B, as the mesh width for grid A is less compared with
grid B.

The longitudinal (Λx) and transverse (Λy, Λz) integral length scales and the
corresponding Taylor microscales (τx, τy, τz) were estimated from the auto-correlation
functions of the streamwise velocity fluctuations in the respective directions (e.g.
Westin et al. 1994; Matsubara & Alfredsson 2001). The transverse integral length
scales (Λy, Λz) and the corresponding Taylor microscales (τy, τz) can also be estimated
from the auto-correlation functions of the cross-stream velocity fluctuations in the
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Grid Λz λz Λy λy Λx λx

(mm) (mm) (mm) (mm) (mm) (mm)

Grid A 9.3 (8.3) 5.4 (5.2) 9.7 (8.4) 5.5 (5.4) 14.4 6.9
Grid B 10.9 (8.8) 5.6 (5) 11.7(8.2) 6.2 (5.3) 16.8 7.4

TABLE 2. Longitudinal and transverse integral and Taylor microscales estimated at x =
−200 mm; the data inside parentheses refer to the corresponding transverse scales
estimated from the auto-correlation functions of the cross-stream velocity fluctuations in
the x-direction.

x-direction. The correlation curves were numerically integrated up to the zero-crossing
point (e.g. O’Neill et al. 2004) to estimate all of the length scales reported here. The
estimated length scales at x=−200 mm are provided in table 2; it should be noted
that the data given inside parentheses refer to the corresponding transverse scales
estimated from the auto-correlation functions of the cross-stream velocity fluctuations
in the x-direction. We may note that the value of Λx in table 2 is estimated from the
hotwire data at x=−200 mm, as Ruu(1x) does not reach zero because of the smaller
PIV field of view. The uncertainty in the estimated Taylor microscales is found to be
within ±1 mm.

2.4. Pressure gradient characteristics in the test section

The streamwise variation of the free-stream pressure coefficient, Cp= 1− (U/Ur)
2, as

shown in figure 4, was determined by measuring the local mean velocity in the free
stream (e.g. Westin et al. 1994; Mandal et al. 2010). Here, Ur denotes the reference
velocity. The velocity measurements in the free stream were carried out using a
hotwire probe, which was first calibrated using a Pitot-static tube without any grid in
the test section. Then, the measurements were carried out without installing any grid
in the test section for the no-grid case and with the respective grid installed for the
grid cases. The probe was kept at y= 25 mm from the wall, and it was then traversed
along the plate centreline for velocity measurements. The reference point was chosen
at x = 340 mm for the no-grid case and at approximately x = 668 mm for the grid
cases. The initial large value of Cp near the leading edge is attributed to the leading
edge shape. However, with and without a grid in the test section, the variation of Cp
within the domain of our investigation was approximately ±2 %. Similar variation of
the pressure coefficient is also reported in various works on bypass transition (e.g.
Arnal & Juillen 1978; Roach & Brierly 1992).

3. Mean flow characteristics
Mean flow quantities in the boundary layer are presented mainly to ensure

the consistency of our measurements with the published results in the literature.
Without installing any turbulence generating grid in the test section, conventional
PIV measurements in the x–y plane were carried out to determine the virtual origin
of the Blasius boundary layer. Centring the camera at x = 250 mm, 450 mm and
650 mm respectively, the PIV measurements were carried out at U0= 4.8 m s−1. The
displacement thickness, δ∗, was estimated from the mean velocity profiles obtained
by an ensemble average of 1000 PIV realizations. Following Pook et al. (2016), the
estimated values of Reδ∗ were plotted against R(=√U0x/ν), as shown in figure 5, and
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 0
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FIGURE 4. Variation of the pressure coefficient, Cp, in the streamwise direction for grids
A and B. Data without any grid in the test section are also shown. Symbols:E, grid A;
@, grid B;A, no grid.

200

400
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800

0 100 200 300 400 500

FIGURE 5. (Colour online) Determination of the virtual origin of the Blasius boundary
layer without a grid in the tunnel test section. Description of symbols and lines: D,
measured data; ——, a linear fit to the measured data within x= 400 mm–700 mm; - - -,
Blasius line from the virtual origin.

a straight line was fitted to find the virtual origin of the boundary layer. It should be
noted that the data points within x= 200–300 mm were not used in the straight line
fitting to avoid the effect of leading edge on the initial boundary layer development
(e.g. King 2000). The virtual origin of the boundary layer, xv, was found to be at
x = 3.1 mm. Moreover, the Blasius relation, Reδ∗ = 1.72

√
U0(x− xv)/ν, is shown as

a dashed line in figure 5 for comparison. As the value of xv was found to be small,
it has not been taken into account while presenting the results.

Boundary layer measurements under a high level of free-stream turbulence were
carried out at U0 = 4.8 m s−1 and 5.2 m s−1 for grids A and B respectively. For
these measurements in the x–y plane, the camera was centred at x = 302 mm and
542 mm for both of the grids. The boundary layer parameters, i.e. the momentum
thickness, θ , the displacement thickness, δ∗, the Reynolds numbers based on δ∗, at
the location of the camera centre, xc, and the number of PIV realizations, N, used
for ensemble averaging are given in table 3. The measurement uncertainties of the
displacement thickness (δ∗), the momentum thickness (θ ) and the Reynolds number
(Reδ∗) reported in this paper were found to be within ±2.3 %, ±2.6 % and ±3.5 %
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Grid U0 xc δ∗ θ Reδ∗ Number of PIV realizations
(m s−1) (mm) (mm) (mm) (N)

Grid A 4.8 303 1.8 0.7 559 1050
Grid A 4.8 542 2.4 1.0 745 1050
Grid B 5.2 303 1.7 0.7 556 1050
Grid B 5.2 542 2.3 0.9 753 1050

TABLE 3. Measurement details and boundary layer parameters for grid cases in § 3.

of the estimated values respectively. However, comparison of our measured mean
velocity profiles with the Blasius profile in figure 6(a) shows a velocity gain in
the lower part of the boundary layer and a velocity deficit in the outer part of the
boundary layer. The wall-normal distribution of the urms profiles in figure 6(b) and
the comparison of this wall-normal distribution with the non-modal theory of Luchini
(2000) in figure 6(c) are found to be similar to the results reported in the literature
(e.g. Westin et al. 1994; Matsubara & Alfredsson 2001; Mandal et al. 2010). The
linear streamwise growth of (urms,max/U0)

2 is found to collapse for both of the grids,
as shown in figure 6(d), when, following Fransson et al. (2005), the streamwise
Reynolds number, Rex, is scaled using the Rex value at urms,max/U0 = 0.1. We also
find that the present data follow the linear fit of Fransson et al. (2005), which is
reproduced from their paper and shown in figure 6(d), for comparison purposes. The
small difference seen in figure 6(d) may be attributed to the receptivity characteristics
of the two slightly different leading edges utilized in these two works. However, it is
interesting to note that the present PIV measurements and the hotwire measurements
of Fransson et al. (2005) show almost the same normalized energy growth, although
these two measurements were carried out at two different facilities and at different
turbulent intensities.

4. Simultaneous orthogonal dual-plane PIV data
Previous experimental studies on bypass transition (e.g. Mans et al. 2007; Mandal

et al. 2010; Nolan & Walsh 2012) have considered PIV realizations in one plane at a
time to study the transitional flow features. Since bypass transition under an elevated
level of free-stream turbulence is highly unsteady, and three-dimensional in nature, it
may be more interesting and revealing to consider instantaneous PIV realizations in
both the x–y and x–z planes simultaneously. Such measurements in turbulent boundary
layer flows are also found to be fruitful (Ganapathisubramani et al. 2005; Hambleton
et al. 2006).

Centring the camera at x= 700 mm, the present simultaneous PIV measurements in
the x–y and x–z planes, as detailed in § 2.2, were carried out at U0 = 5.8 m s−1 and
6.4 m s−1 for grid A and grid B respectively. We may note that these simultaneous
measurements, compared with the measurements reported in § 3, were carried out at
a higher free-stream velocity and at a further downstream location. This was mainly
to ensure that the transitional flow in the boundary layer had developed a certain
level of flow intermittency, so that the possibility of imaging instability events was
increased in the simultaneous PIV data. To find the flow intermittency, the streamwise
velocity data were acquired at x = 700 mm and y = 2.5 mm using a single hotwire
probe. The intermittency, γ , was estimated based on the dual slope method of Kuan
& Wang (1990), as detailed in Balamurugan (2014). The numerical values of the
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FIGURE 6. Mean flow characteristics for grids A and B. Symbols: E, grid A; @, grid
B. (a) Wall-normal variation of the normalized streamwise mean velocity profiles at xc =
542 mm; ——, Blasius profile; data are shown only at one location for clarity. (b) Wall-
normal distribution of urms/U0 at x = 270, 334, 392, 509, 617 and 636 mm; the dashed
lines with symbols are for clarity only. (c) Comparison of the urms/urms,max profiles with
the optimal disturbance theory of Luchini (2000) at xc= 303 mm; ——, line from figure 6
of Luchini (2000). (d) Variation of u2

rms,max/U
2
0 , with Rex/Rex,urms,max=0.1U0 ; solid lines: linear

fit to the present data; - - - -, data reproduced from figure 10(b) of Fransson et al. (2005),
for comparison.

Grid U0 xc δ∗ θ Reδ∗ γ Number of image pairs
(m s−1) (mm) (mm) (mm) (%) (N)

Grid A 5.8 700 2.4 1.1 916 5.7 3000
Grid B 6.4 700 2.2 1.0 918 7.3 2250

TABLE 4. Measurement details and boundary layer parameters of the simultaneous PIV
data, where xc is the centre of the measurement region.

flow intermittency at the above mentioned velocities are given in table 4, for both of
the grids. Further details of the simultaneous measurements, i.e. the boundary layer
parameters and the number of simultaneous PIV realizations, are also provided in
table 4. In the following, the displacement thickness (δ∗) and the free-stream velocity
(U0) corresponding to a particular grid, as mentioned in table 4, are used as the
length and velocity scales for normalization, unless otherwise stated. Moreover, a new
variable, x1, defined as x1 = (x − 700 mm), is used for representing the spatial PIV
data in the streamwise direction.
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FIGURE 7. Comparison of the streamwise mean and root mean square (r.m.s.) velocities
along the line of intersection of the x–y and x–z planes for grid A (a) and grid B (c).
Wall-normal distribution of the mean and r.m.s. velocities at x1 = 0 for grid A (b) and
grid B (d); here, a single data point obtained from the spanwise plane measurements at
the point of intersection is also shown in the corresponding distribution as a single filled
symbol. Symbols: circle, grid A; square, grid B. Filled symbols, x–z plane data; open
symbols, x–y plane data. Symbols with dashed line, urms/U0 data; symbols without line,
U/U0 data; ——, Blasius profile.

Similarly to Hambleton et al. (2006), the streamwise mean and r.m.s. velocities,
obtained from the simultaneous measurements in the x–y and x–z planes at the line of
intersection, are compared in figure 7. Comparisons of the mean and r.m.s. velocities
along the streamwise direction at y= 2.5 mm and z= 0 mm are shown in figures 7(a)
and 7(c) for grids A and B respectively. Figures 7(b) and 7(d) display the wall-normal
distribution of these velocities at x = 700 mm, along with the corresponding data
(single filled point) obtained from the x–z plane measurements at y=2.5 mm, for grids
A and B respectively. These results reveal clear correspondence between the spanwise
plane and the wall-normal plane data of our simultaneous measurements. We may also
mention that the mean velocity variation in the z-direction is found to be negligible.

Some instantaneous PIV realizations, which are simultaneously acquired in both
the x–y and x–z planes, are shown in figure 8. In this figure, the arrows over the
contours of the normalized instantaneous velocity, UI/U0, indicate the fluctuating
velocity vectors in the respective measurement planes. In this section, the white
dashed lines in the x–z and x–y plane views show the locations of the x–y and
x–z measurement planes respectively. Since the streamwise fluctuating velocity, u,
is large compared with the wall-normal and spanwise fluctuating velocities, v and
w respectively, these perturbations are called negative u fluctuations and positive u
fluctuations based on the sign of the fluctuations (Mandal et al. 2010). However,
Jacobs & Durbin (2001) and Zaki & Durbin (2005) identified these fluctuations as
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FIGURE 8. (Colour online) Quantitative and simultaneous visualizations of an
instantaneous low-speed streak (a), an instantaneous high-speed streak (b) and an
instantaneous low-speed streak residing over a high-speed streak (c) in the x–y and x–z
planes for grid A. The arrows are the fluctuating velocity vectors over the contours of the
normalized instantaneous streamwise velocity. The vectors, some of which are skipped
for clarity, are in the same relative scale for each panel.

backward jets and forward jets. In their review article, Durbin & Wu (2007) clarified
that the contours of u reveal the boundary layer streaks as long and narrow structures,
while these are not apparent in the contours of the v component, and, therefore, these
are rightly called jets. From their PIV measurements in bypass transition in one plane
at a time, Mandal et al. (2010) stated that these positive and negative u fluctuations
can arise due to the unsteady low- and high-velocity streaks in the boundary layer
respectively. The present simultaneous measurements explicitly show that the negative
u fluctuations in the wall-normal plane correspond to a low-speed streak and the
positive u fluctuations in the wall-normal plane correspond to a high-speed streak in
the boundary layer, as displayed in figures 8(a) and 8(b) respectively. Interestingly, we
also find that a low-speed streak can completely reside over a high-speed streak, as
shown in figure 8(c). This may be because of the fact that the low-velocity fluid from
the two lifted-up low-speed streaks residing on either side of a near-wall high-speed
streak can spread over it due to the spanwise meandering motions of the boundary
layer streaks.

For better presentation of the transitional flow features in either a flat boundary layer
flow or a channel/pipe flow, various authors (Nishioka, Asai & Iida 1981; Rist & Fasel
1995; Reuter & Rempfer 2004) have considered the contours of the wall-normal shear
to investigate the late-stage transitional events. Similarly to these canonical transitional
flows, the presence of inclined shear layers in bypass transition has also been reported
in the literature (e.g. Mandal et al. 2010; Nolan & Walsh 2012; Phani Kumar et al.
2015). In their recent study on transition delay, Phani Kumar et al. (2015) showed
that one can suppress transition by controlling these inclined shear layers in bypass
transition. However, the origin of an inclined shear layer was not clear solely from a
single-plane PIV measurement. The present simultaneous PIV realizations, as shown
in figure 9, clearly reveal the genesis of these inclined shear layers. We may note that
the wall-normal shear layer, here and in the following, is identified using the spanwise
instantaneous vorticity, ωz (= ∂VI/∂x − ∂UI/∂y), as ∂VI/∂x is small compared with
∂UI/∂y. Examination of the entire PIV realizations reveals that a lifted-up shear layer
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FIGURE 9. (Colour online) Three simultaneous PIV realizations depicting the origin of
inclined shear layers, due to the inclination of the boundary layer streaks in the spanwise
plane (a), due to a narrowing low-speed streak (b) and due to the interaction of high- and
low-speed streaks (c), for grid A. The arrows are the fluctuating velocity vectors over the
contours of the normalized vorticity and the normalized instantaneous velocity in the x–y
and x–z planes respectively. The vectors, some of which are skipped for clarity, are in the
same relative scale for each panel.

can originate while a pair of low- and high-speed streaks are inclined with respect to
the x-direction, as shown in figure 9(a), or while a low-speed streak becomes narrower
in the downstream direction due to the high-speed streaks on its sides, as shown in
figure 9(b), or while a high-speed streak interacts with a low-speed streak, as shown
in figure 9(c). It was also observed that an inclined shear layer can appear due to
the occurrence of a low-speed streak over a high-speed streak, i.e. for the case in
figure 8(c).

The streaks in bypass transition are unsteady in nature, and these streaks while
moving downstream often show slow movements in the spanwise direction as well.
These slow spanwise movements of the streaks, which cause the low-frequency
oscillations in the streamwise velocity in bypass transition, are often referred to as
streak meandering in the literature (e.g. Schlatter et al. 2008; Pasquale & Rona 2010).
Therefore, the different streak configurations, as seen in figure 9 in the x–z plane
visualizations, can be attributed to the spanwise meandering motion of the boundary
layer streaks. Since the shear layer thicknesses associated with low- and high-speed
streaks are different (Mandal et al. 2010), their inclined occurrence/interaction along
the x-direction results in an inclined shear layer in the x–y measurement plane, as
seen in figure 9(a,c). On the other hand, the fluctuating velocity vectors in figure 9(b)
reveal that the magnitude of the negative u fluctuations associated with the low-speed
streak at around z = 0 in the x–z plane reduces sluggishly in the x-direction. That
is, the gain in the instantaneous velocity, UI , is not significant in the streamwise
direction, as u = UI − U. Therefore, the low-speed fluid of the streak, constricted
by two high-speed streaks on either side, has to gradually lift up to maintain the
mass conservation of the low-speed fluid. This gradual lift-up of the low-speed fluid
towards the boundary layer edge eventually leads to an inclined shear layer in the
wall-normal plane.

Previous studies using flow visualizations and PIV measurements in the spanwise
plane have revealed the existence of sinuous and varicose streak instabilities in
bypass transition (e.g. Matsubara & Alfredsson 2001; Mans et al. 2005, 2007).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.92


Localized secondary instability in bypass boundary layer transition 235

However, to the best of our knowledge, no experimental work on bypass transition
induced by free-stream turbulence exists that shows the wall-normal flow features
corresponding to sinuous and varicose streak oscillations in the spanwise plane. Since
these oscillations appear randomly in the flow, one needs to utilize the simultaneous
dual-plane measurements to characterize these flow features. Moreover, these random
instability wavepackets can occur at any spanwise location. Therefore, a large
number of simultaneous PIV realizations were acquired to ensure the occurrence
of a considerable number of instability wavepackets exactly at the location of the
wall-normal plane laser sheet, i.e. at z= 0. This cumbersome exercise of simultaneous
measurements is essential to avoid misleading viewpoints, as mentioned earlier in this
paper.

Figure 10 depicts wall-normal views corresponding to sinuous and varicose streak
oscillations in the spanwise plane. One may clearly notice that the sinuous instability
of a low-speed streak in the spanwise plane corresponds to highly oscillating shear
layers in the wall-normal plane, as seen in figure 10(a,b). Shear layer roll-up
and associated vortex shedding can also be observed in these figures. Similarly,
figure 10(c,d) shows the wall-normal views corresponding to the varicose streak
instability in the spanwise plane. We notice that the varicose instability also develops
over a low-speed streak like the sinuous instability, and leads to shear layer
oscillations in the wall-normal plane. In this case, the shear layer oscillations are
found to occur a little closer to the wall compared with the ones in figure 10(a,b).
Moreover, the shear layer oscillations corresponding to the sinuous and varicose
instabilities are also found to be similar to the ones simulated by Brandt (2007) (see
his figure 13) and Brandt et al. (2004) (see their figures 13 and 16). We may also
mention that a larger number of sinuous oscillations were captured using the present
measurement configuration, perhaps because of their more unstable nature compared
with the varicose oscillations.

These instabilities in the low-speed streak more often lead to significant detached
vorticities and counter-rotating vortex pairs in the x–y plane, as can be seen in
figure 11(a,b). On the other hand, detached spanwise vorticity and counter-rotating
vortex pairs in the x–y plane usually correspond to an incipient turbulent spot (see
Singer 1996; Mandal et al. 2010, for example). Moreover, these sinuous streaks in
the x–z plane are closely comparable with the nonlinearly saturated sinuous streaks
of Konishi & Asai (2010), who studied the growth and breakdown of sinuous
subharmonic streaks generated in a controlled manner in a zero-pressure-gradient
boundary layer (see their figures 6 and 10, for example). Therefore, the sinuous
streak oscillations in the x–z plane, as shown in figure 11(a,b), are associated with
an incipient turbulent spot.

Some numerical works on bypass transition (e.g. Jacobs & Durbin 2001; Schlatter
et al. 2008; Hack & Zaki 2014) indicate that the secondary instability in the boundary
layer streaks can get excited near the boundary layer edge. Experimental verification
of such scenarios can be made possible with the aid of simultaneous dual-plane
PIV measurement. Figure 12(a,b) clearly shows shear layer oscillations towards
the outer side of the boundary layer in the x–y plane. However, no appreciable
varicose or sinuous oscillation of the corresponding streak in the x–z plane can be
noticed. Several such scenarios are found to exist in the entire PIV realizations.
Compared with figure 12(a,b), the shear oscillations, as shown in figure 12(c,d),
are closer to the x–z measurement plane at y = 2.5 mm, and the signature of
varicose and sinuous oscillations in the underlying low-speed streaks can clearly
be noticed in the corresponding x–z plane views. Therefore, one would have
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FIGURE 10. (Colour online) The x–y plane views corresponding to sinuous (a,b) and
varicose (c,d) instabilities in the x–z plane for grid A. The arrows are the fluctuating
velocity vectors over the contours of the normalized vorticity and the normalized
instantaneous velocity in the x–y and x–z planes respectively. The vectors, some of which
are skipped for clarity, are in same relative scale for each panel.

noticed varicose/sinuous instability in the x–z plane corresponding to the shear
layer oscillations in figure 12(a,b) if the x–z measurement plane were shifted towards
the boundary layer edge for those cases. Otherwise, the amplitude of a shear layer
oscillation should be high enough so that the spanwise streaks in the x–z plane at
y= 2.5 mm are influenced, although there exists a possibility that the shear layer will
get distorted due to its large oscillation, as seen in figure 10(a,b) for example. Hence,
the present simultaneous measurements, as shown in figure 12, clearly indicate that
the secondary instability on a low-speed streak can get excited near the edge of the
boundary layer.

In general, the shear layer oscillations in the x–y plane corresponding to the varicose
streak oscillations in the x–z plane are often found to be closer to the wall compared
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FIGURE 11. (Colour online) (a,b) The x–y plane views corresponding to two saturated
sinuous streaks in the x–z plane for grid A. The arrows are the fluctuating velocity vectors
over the contours of the normalized vorticity and the normalized instantaneous velocity in
the x–y and x–z planes respectively. The vectors, some of which are skipped for clarity,
are in the same relative scale for each panel.

with the shear layer oscillations corresponding to the sinuous streak oscillations in the
x–z plane; for example, see figures 10 and 12. These observations are also found to be
similar to the recent numerical findings of Vaughan & Zaki (2011) and Hack & Zaki
(2014), who reported that an outer mode, which is predominantly of sinuous nature,
occurs towards the outer edge of the boundary layer, whereas an inner mode, which
is mainly of varicose nature, occurs closer to the wall.

5. Time-resolved PIV data
In this section, results of the TR-PIV measurements, performed independently in

the x–y and x–z planes, are discussed in detail. Centring the camera at x= 700 mm,
the TR-PIV data were acquired at 645 Hz, as stated in § 2.2. Usually, the streaky
structures in bypass transition are low-frequency structures with non-dimensional
frequency F(= 2πf ν × 106/U2

0) 6 35 (Westin et al. 1994). The corresponding
dimensional frequency for the present study does not exceed 15 Hz, and the
frequencies of approximately 95 % of the secondary instability events considered
in this work are found to be well within 300 Hz. Further, simultaneous hotwire
and TR-PIV measurements were also carried out to investigate the correspondence
between the hotwire and TR-PIV velocity signals. The velocity time series extracted
from the TR-PIV data was found to be comparable with the one obtained from the
hotwire, as illustrated in figure 13. The slight phase shift and the small difference in
magnitude between these two signals are due to the fact that the TR-PIV data were
collected approximately 2 mm ahead of the hotwire probe, because particle images at
the probe location cannot be processed due to reflection from the probe, as illustrated
in the inset of figure 13. Although an acquisition rate higher than 645 Hz could
have been achieved by compromising further the spatial resolution of the camera,
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FIGURE 12. (Colour online) (a,b) Two instantaneous PIV realizations illustrating
oscillating shear layers in the x–y plane while no significant oscillations in the underlying
boundary layer streaks in the x–z plane. (c,d) Two instantaneous PIV realizations
illustrating oscillating shear layers in the x–y plane corresponding to varicose and sinuous
oscillations in the underlying boundary layer streaks in the x–z plane respectively. The
arrows are the fluctuating velocity vectors over the contours of the normalized vorticity
and the normalized instantaneous velocity in the x–y and x–z planes respectively. The
vectors, some of which are skipped for clarity, are in the same relative scale for each
panel. The data presented in (a) and (b) correspond to grids A and B respectively; the
data presented in (c) and (d) correspond to grid A.

the present acquisition rate was found to be sufficient for investigation of the flow
features under consideration. The measurements were carried out at nearly the same
free-stream velocities as presented in table 4 for grids A and B. With the available
inboard memory of the CMOS camera, 1250 TR-PIV realizations were acquired in
one run of the measurement. Since the instability events in bypass transition are
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FIGURE 13. (Colour online) Comparison of hotwire and TR-PIV time series of
intermittent signals at the end of the TR-PIV measurement zone. Both signals are
simultaneously acquired at the plate centreline and at y = 2.5 mm. The inset illustrates
the particle images and hotwire location.

random in nature, a total of 13 such runs in the x–y plane and 15 such runs in the
x–z plane were conducted for detailed statistical data analyses of these instability
events for grids A and B.

5.1. Instability of the lifted-up shear layers in the x–y plane
The simultaneous dual-plane PIV measurements presented in figure 12 indicate that
the sign of an instability first gets manifested as shear layer oscillation in the x–y
plane. Therefore, it is interesting to track these shear layer oscillations at different
instants of time to investigate their eventual outcome.

A time sequence of flow features associated with a lifted-up shear layer and its
eventual outcome is displayed in figure 14. The arrows in this figure are the fluctuating
velocity vectors over the contours of the normalized spanwise instantaneous vorticity.
In this figure, one may clearly see the onset of an oscillation in an almost straight
shear layer followed by its amplification in space and time. One may also notice that
this oscillation is developing near the leading edge of the inclined shear layer, which
eventually ends up with rolled-up vortices with clockwise rotation. Several numerical
studies on bypass transition (e.g. Brandt et al. 2004; Schlatter et al. 2008; Hack
& Zaki 2014) have revealed the existence of three-dimensional vortical structures
over the oscillating low-speed streaks. The present rolled-up vortices may represent
the wall-normal view of these three-dimensional vortical structures. However, one
may also observe in the last few snapshots of figure 14 that while the clockwise
vortices come close to the wall and interact with a high-speed streak, some pairs
of clockwise and anticlockwise vortices are formed. These counter-rotating vortex
pairs, while propagating over positive u fluctuations, i.e. over a high-speed streak, are
found to grow in size and destabilize the underlying high-speed streak and generate
smaller scales in the flow, as illustrated in figure 15. The sequence of events from
the time-resolved measurements, as shown in figures 14 and 15, therefore, clearly
confirms the previous speculation that an incipient spot can be formed from an
inclined shear layer oscillation and its associated vortex shedding (Mandal et al.
2010).

In contrast to the oscillation in figure 14, which develops at the leading edge
of an inclined shear layer, figure 16 displays an oscillation that develops near the
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FIGURE 14. (Colour online) Sequence of TR-PIV snapshots displaying the development of
an instability over a lifted-up low-speed streak in the x–y plane for grid B. The contours
correspond to the normalized spanwise vorticity. The vectors represent the fluctuating
velocity vectors. Each snapshot is separated by 1t= 0.00155 s.

trailing edge, i.e. almost at the start of its inclination with the wall. Moreover, these
oscillations are found to occur a little closer to the wall compared with those in
figure 14, and their amplification eventually generates some smaller inclined shear
layers, as seen at the 121t instant in figure 16. However, these oscillations are also
found to take part in generating smaller scales in the flow.

It would have been interesting if simultaneous spanwise plane views corresponding
to the flow features presented in figures 14 and 16 were available to investigate
how these time sequences are related to the streak oscillations in the spanwise
plane. However, in the absence of such measurements, we refer to our simultaneous
measurements for further comprehensive assessment of the data presented in figures 14
and 16. The shear layer oscillations in figure 14 (for example, realizations at 71t
and 81t instants) are found to be similar to those shown in figure 10(a,b), which are
related to the sinuous streak instability in the x–z plane. Therefore, if one could have
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FIGURE 15. (Colour online) Sequence of TR-PIV snapshots displaying flow randomization
through the propagation of clockwise–anticlockwise vortex pairs over a high-speed streak
in the x–y plane for grid B. The contours correspond to the normalized spanwise vorticity.
The vectors represent the fluctuating velocity vectors. Each snapshot is separated by 1t=
0.00155 s.

measured the spanwise data corresponding to the time sequence shown in figure 14,
one would have seen sinuous instability in the x–z plane. Further, the shear layer
oscillations in figure 16 (for example, realizations at the 111t and 121t instants) are
similar to those in figures 10(c,d) and 12(c). Therefore, these oscillations are most
likely related to the varicose streak instability in the x–z plane.

5.1.1. Linear stability analysis
The time sequences in figures 14 and 16 indicate that an instability develops on a

low-speed streak, as the fluctuating velocity vectors associated with the inclined shear
layers show large negative u fluctuations. The instantaneous velocity profiles, as seen
from the instantaneous velocity vectors associated with these shear layers, are found to
be highly inflectional, as shown in figure 17(a,c) at the 1t time instant. This implies

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.92


242 G. Balamurugan and A. C. Mandal

0–10–20 10 20 0–10–20 10 20

0

3

6

0

3

6

0

3

6

0

3

6

0

3

6

0

3

6

–0.08–0.16–0.24 0.08 0.16 0.24 0.32 0.40–0.32–0.40

FIGURE 16. (Colour online) Sequence of TR-PIV snapshots displaying the development
of an instability nearly at the trailing edge of an inclined shear layer in the x–y plane
for grid B. The contours correspond to the normalized spanwise vorticity. The vectors
represent the fluctuating velocity vectors. Each snapshot is separated by 1t= 0.00155 s.

that these shear layers may be prone to inflectional instability, and a local linear
instability analysis may be useful in predicting the frequency and wavelength of their
oscillations. In such an effort, Hack & Zaki (2014) utilized the instantaneous velocity
data in the y–z plane for two-dimensional linear stability analysis (2D-LSA), i.e.
UI(y, z) as the base profile that includes the effect of spanwise shear. They found that
the theoretical growth rate closely follows the estimated spatio-temporal growth rate
from their DNS data. However, their linear stability and statistical analyses indicate
that the growth rate of a base streak is well correlated with the wall-normal shear
and the base streak amplitude, whereas it is poorly correlated with the spanwise
shear. This indicates that the stability analysis of the wall-normal velocity profile
itself, i.e. U(y) as the base profile that does not include the effect of spanwise shear,
may be useful in providing elementary stability characteristics of these shear layer
oscillations.

For example, in their experimental study on boundary layer transition, Asai et al.
(2002) carried out one-dimensional linear stability analysis (1D-LSA) of the mean
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FIGURE 17. (Colour online) (a,c) Illustrations of the inflectional nature of the
instantaneous velocity vectors corresponding to the shear layers in figures 14 and 16 at the
1t instant of time respectively. The contours represent the normalized spanwise vorticity.
(b,d) Spatially averaged velocity data (symbols) over the white rectangular regions in (a,c)
respectively, along with the fitted velocity profiles (solid line) using (5.1); grid B data.

velocity profile of a low-speed streak by fitting a tangent-hyperbolic curve. They found
that the calculated most amplified frequency and the corresponding wavenumber
compared well with their measured counterparts. In this regard, the numerical
reproduction of the experimental work of Asai et al. (2002) reported by Brandt
(2007) is worth mentioning. Using the perturbation kinetic energy analysis, he found
that both sinuous and varicose instabilities are governed by the work of the Reynolds
stress against the wall-normal shear, and this is contrary to the common belief that
sinuous and varicose instabilities are driven by the streak spanwise and wall-normal
shears respectively. Similarly, Philip, Karp & Cohen (2016) carried out linear stability
analysis of a streaky base flow measured in a laminar plane Poiseuille flow. Neglecting
the spanwise shear, they carried out 1D-LSA and found that their stability results
(i.e. wavelength, eigenfunction shape) compared well with their experimental data.
Further, their 2D-LSA and energy balance analysis indicated that the wall-normal
shear is more important than the spanwise shear for producing symmetric varicose
mode. Moreover, the 1D-LSA in bypass transition may be justified based on the fact
that not all of the streaks in the spanwise direction simultaneously develop instability;
rather, the instability in a natural bypass transition is localized in nature (e.g. Hack &
Zaki 2014), i.e. it is often seen to develop on a single low-speed streak, in contrast
to the collective instability on the entire row of streaks as considered by Andersson
et al. (2001) and Vaughan & Zaki (2011).
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The boundary layer streaks in bypass transition are highly unsteady in nature
compared with the controlled ones considered by Asai et al. (2002) and Philip et al.
(2016). Hence, the usual ensemble average or time average data cannot provide a
mean velocity profile corresponding to a particular low-speed streak that eventually
develops instability. Therefore, a base velocity profile is obtained here by spatial
averaging of the instantaneous velocity profiles over a distance of 10δ∗–15δ∗ for a
single low-speed streak on which instabilities like those in figures 14 and 16 develop.
Then, the spatially averaged velocity profile is fitted with a tangent-hyperbolic
profile, following Asai et al. (2002), for the local linear stability analysis. The
tangent-hyperbolic profile

U (y)
UL
= a1 tanh

(
b1

y
δ∗L
− c1

)
+ a2 tanh

(
b2

y
δ∗L
− c2

)
+ a3 tanh

(
b3

y
δ∗L
− c3

)
+ d (5.1)

was found to describe the spatially averaged mean velocity data quite well; here, a1,
a2, a3, b1, b2, b3, c1, c2, c3 and d are constants; the local free-stream velocity, UL, and
the displacement thickness, δ∗L, are estimated based on the spatially averaged velocity
profile.

The above procedure is illustrated in figure 17. All of the instantaneous velocity
profiles within the white rectangular regions in figure 17(a,c) are spatially averaged,
and (5.1) has been used to fit the respective averaged velocity profiles. The fitted
curves are found to closely follow the measured data, as shown in figure 17(b,d).
Although there are several constants in (5.1), these constants can easily be determined
by a trial and error approach in MATLAB. The numerical values of {a1, a2, a3, b1, b2,

b3, c1, c2, c3,d} for the velocity profiles in figure 17(b,d) are found to be {0.518,1.698,
0.8207, 0.1085, −2.4, −4.08, 0.175, 2.45, 6.02, 0.4155} and {0.1995, 3.9, 0.1721,
0.1155, 2.88, 2.05, 0.2695, 2.8, 4.25, 0.4155} respectively.

For stability analysis on the fitted velocity profiles, the Orr–Sommerfeld equation,
following Boutilier & Yarusevych (2012), is written as

(αU −ω) [φ′′ − α2φ
]− αU′′φ =− iULδ

∗
L

Reδ∗L

[
φ′′′′ − 2α2φ′′ + α4φ

]
. (5.2)

Here, φ and φ′ denote the complex amplitude function of the wall-normal perturbation
velocity, i.e. v = φ(y)ei(αx−ωt), and its derivative with respect to y respectively. The
wavenumber, angular frequency and Reynolds number are denoted by α, ω and Reδ∗L(=
ULδ

∗
L/ν) respectively. The above equation (5.2) is solved with the boundary conditions

φ(0)= φ(∞)= 0 and φ′(0)= φ′(∞)= 0. Similarly, for inviscid stability analysis, the
Rayleigh equation

(αU −ω) [φ′′ − α2φ
]− αU′′φ = 0 (5.3)

is solved with the boundary conditions φ(0)= φ(∞)= 0. Both the Orr–Sommerfeld
and the Rayleigh equation are posed as spatial eigenvalue problems considering the
wavenumber, α=αr+ iαi, as complex and the angular frequency, ω, as real, and these
equations are then solved using the spectral method (Schmid & Henningson 2001).
The details of this method and the solution procedure are given in Dabaria (2015).

The growth rate, wavenumber and phase velocity obtained by solving the
Orr–Sommerfeld and Rayleigh equations at various circular frequencies are displayed
in figures 18(a–c) and 18(e–g) for the velocity profiles in figures 17(b) and 17(d)
respectively. The eigenfunctions corresponding to the streamwise velocity perturbation
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FIGURE 18. (a–d) Spatial growth rate, wavenumber, phase velocity and magnitude of u
eigenfunction |û| respectively for the velocity profile in figure 17(b). (e–h) Spatial growth
rate, wavenumber, phase velocity and magnitude of u eigenfunction |û| respectively for
the velocity profile in figure 17(d). Solid line, Orr–Sommerfeld calculation; dashed line,
Rayleigh calculation.

are also shown in figure 18(d) and 18(h), for the velocity profiles in figure 17(b)
and 17(d), respectively. One may notice that the stability results for a particular
velocity profile calculated based on the Orr–Sommerfeld and Rayleigh equations are
comparable except for the growth rates, which are found to be higher for the inviscid
stability calculations (see figure 18a,e). However, the most amplified frequencies
calculated based on the Orr–Sommerfeld and Rayleigh equations are found to be
nearly equal for each of the velocity profiles considered.

Since the oscillations in the shear layers are prominent, as seen in figures 14
and 16, one can easily estimate an average wavelength, λ, from the experimental
data. Similarly, utilizing the time sequences at different instants of time, an average
convection/propagation velocity, Uc, of an instability can also be estimated, and
the frequency, f , can be estimated from the ratio of the convection velocity and
the wavelength, i.e. Uc/λ. Using the contour levels of the normalized instantaneous
vorticity for identification of a shear layer oscillation, we estimated the average
wavelength and convection velocity of an oscillating shear layer from the experimental
data. At different instants of time, we followed the portion of the oscillating shear
layer that was initially confined within the rectangular box in figure 17(a,c). Then,
considering the wavelength as the peak to peak/trough to trough distance of the
oscillating shear layer at different instants of time, an average wavelength and
its standard deviation were obtained. Similarly, by tracking a peak/trough of the
oscillating shear layer at different instants of time and plotting its relative position
with time, the convection velocity could be determined (see Mans et al. 2005,
for details). Considering such an estimate for different peaks/troughs, an average
convection velocity and its standard deviation were then obtained.

Based on the Orr–Sommerfeld equation, the calculated normalized wavelengths
(λ/δ∗), corresponding to the most amplified frequency, were found to be 5.2 and 8.1
for the cases in figures 17(b) and 17(d) respectively. Following the method discussed
above, the estimated wavelengths from the experimental data, for the corresponding
cases, were found to be 5 and 8.4 respectively. Similarly, the calculated phase
speeds (c/U0) at the most amplified frequencies corresponding to the cases in figures
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FIGURE 19. Corresponding to the maximum growth rate, comparison of the calculated
wavelength (a), phase velocity (b) and frequency (c) with the estimated values of
wavelength, convection velocity and frequency for different cases; Ncase refers to the case
index. Symbols: circle, grid A; square, grid B; open symbols, calculated data; filled
symbols with error bars, estimated data.

17(b) and 17(d) were found to be 0.83 and 0.63 respectively, and the estimated
convection velocities, Uc/U0, corresponding to these cases were found to be 0.78
and 0.68 respectively. The calculated wavelengths and phase velocities compare
well with the estimated values of the wavelengths and convection velocities, for
both of the velocity profiles in figure 17(b,d). The maximum differences between
the calculated and estimated values of the wavelength and the phase velocity are
found to be 4 % and 8 % respectively. The most amplified frequencies calculated
based on the Orr–Sommerfeld equation are found to be 0.16 and 0.078 for the cases
in figure 17(b,d), and the estimated frequencies based on the wavelengths and the
convection velocities, for the corresponding cases, are found to be 0.16 and 0.08
respectively.

Several cases like those in figures 14 and 16 were identified and linear stability
analyses were carried out to investigate whether the above observations are consistent
with all such cases. We identified a total of 10 such cases, as we chose only those
shear layers that showed development of an instability from its inception within
the field of view, and neglected those shear layers that had already developed
significant oscillations before reaching the measurement field of view. Comparison of
the calculated wavelengths, phase velocities and frequencies with the estimated ones
is shown in figure 19, and we find similar results for all of the cases. We may note
that the abscissa in figure 19 indicates the case index, Ncase, and figure 19(a–c) also
includes the data corresponding to the velocity profiles in figure 17(b,d) (Ncase = 8
and 7 respectively). Hence, the results in figure 19 indicate that an oscillating shear
layer is most likely to be composed of a monochromatic wave that is excited by the
linear instability of the velocity profile associated with the inclined shear layer.

The numerical value of the calculated spatial growth rate (−αiδ
∗) for the most

unstable frequency is higher for the velocity profile in figure 17(d) compared with
the velocity profile in figure 17(b). On the other hand, the instability in figure 14,
corresponding to the velocity profile in figure 17(b), seems to grow temporally faster
than the instability in figure 16, corresponding to the velocity profile in figure 17(d).
However, this is not inconsistent, as the phase/group velocity of the instability in
figure 14 is higher than the phase/group velocity of the instability in figure 16 (see
figure 18c,g). The shapes of the eigenfunctions for both of the velocity profiles are
also found to bear some similarity to the u fluctuations at the later stage of the shear
layer oscillations (see the fluctuating velocity vectors in figures 14 and 16 at some
later stage in time).
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FIGURE 20. (Colour online) Contours of the spatial correlation coefficient (Rvv) of the
wall-normal velocity fluctuations at z= 0; non-intermittent flow (a) and intermittent flow
(b) for grid A; non-intermittent flow (c) and intermittent flow (d) for grid B. Contour
levels <0.3 are omitted. The dashed line indicates the boundary layer edge.

5.1.2. Penetration of the free-stream turbulence into the boundary layer
The data presented in the previous sections clearly indicate the existence of an

instability near the edge of the boundary layer. It would have been revealing if it
were possible to establish a direct role of the free-stream turbulence in intensification
of the instability process in the upper part of the boundary layer. However, it appears
to be a challenging task at present as far as the measurement techniques and analysis
tools are concerned. Nonetheless, using statistical analysis, it is interesting to check
whether there exists any relation of the free-stream velocity fluctuations to the
velocity fluctuations in the boundary layer edge. Nolan & Walsh (2012) reported that
the correlation analysis of the wall-normal perturbation velocity across the boundary
layer edge is a more direct representation of the penetration depth of the free-stream
disturbance inside the boundary layer. Therefore, following Nolan & Walsh (2012), a
spatial correlation analysis of the wall-normal perturbation velocity was carried out
to investigate the possibility of an interaction.

Figure 20 shows the contours of the spatial correlation coefficient of the wall-normal
disturbance velocity, defined here as Rvv(1x, 1y)= v(x0, y0, t)v(x0 +1x, y0 +1y, t)/
v2

rms; here x0 and y0 indicate the coordinates of the reference location. In this figure,
the data are presented for both of the grids at two different free-stream velocities,
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which were chosen such that we could measure a non-intermittent flow/pre-transitional
flow and an intermittent flow at the same location. The non-intermittent flows for both
of the grids were measured at U0 = 4.1 m s−1 and the intermittent flows for grids A
and B were measured at the velocities given in table 4. Figures 20(a) and 20(c) show
the contours of Rvv corresponding to the measured non-intermittent flows for grids A
and B respectively, whereas figures 20(b) and 20(d) display those corresponding to
the intermittent flows for grids A and B respectively. For non-intermittent flows, it
can be seen that the lower portion of the nearly circular correlation contours begins
to elongate as the location of the reference point moves inside the boundary layer
from the free stream, whereas the nearly circular shapes of the correlation contours
are retained until the location of the reference point is moved very closed to the
wall for intermittent flows. However, the extensions of the correlation contours across
the boundary layer edge (as shown by a dashed line in figure 20) are almost the
same for the intermittent and non-intermittent flows. The change of shape of the
correlation contours near the boundary layer edge is due to the fact that the shear at
the boundary layer edge is comparatively greater for a non-intermittent flow than the
shear for an intermittent flow, as the mixing of high-momentum fluid is enhanced due
to intermittent bursts of turbulent spots in an intermittent flow, and thereby reduces
the velocity gradient near the boundary layer edge.

Measurements were also carried out at different spanwise locations and at different
velocities to investigate the consistency of the above observation. Contours of Rvv at
different spanwise locations and at different velocities in non-transitional flows for
both of the grids are displayed in figure 21. Figure 21(a,b) shows Rvv contours at
U0 = 4.1 m s−1 and at z= 14 mm and z=−14 mm for grids A and B respectively;
it should be noted that the free-stream velocity was kept equal to the one at which
the data presented in figure 20(a,c) were measured. Figure 21(c,d) shows Rvv contours
at U0 = 3 m s−1 and at z= 0 mm and z=−14 mm for grids A and B respectively.
Comparing the contours in non-intermittent flows in figures 20 and 21, one may notice
a similarity in the correlation contours at different spanwise locations and at different
velocities. We may also note that the Rvv contours in intermittent flows (not presented
here) at different spanwise locations are found to be similar to those presented in
figure 20(b,d).

However, the present correlation maps for intermittent flows compare well with the
data of Nolan & Walsh (2012). The results for non-intermittent flows are different
from those reported by them. They did not find any significant correlation of v
fluctuations between the free stream and the boundary layer for non-intermittent
flows. The reason for the difference from the findings of Nolan & Walsh (2012)
may be because of different transition mechanisms involved in these two works.
They reported the interaction between a low-speed streak and a high-speed streak to
be a dominant spot precursor mechanism. In their numerical simulation of a bypass
transition on a flat plate with a blunt leading edge, Nagarajan, Lele & Ferziger (2007)
reported a wavepacket type flow breakdown, which was found to be similar to the
varicose type flow breakdown associated with the near-wall inner-mode mechanism
(Vaughan & Zaki 2011; Hack & Zaki 2014). In this respect, the results of Nolan
& Walsh (2012) may correspond to the inner-mode mechanism of Vaughan & Zaki
(2011) and Hack & Zaki (2014), and the results found in the present work are perhaps
related to the outer-mode mechanism, because our data reveal a greater number of
sinuous instabilities compared with varicose instabilities.
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FIGURE 21. (Colour online) (a,b) Contours of Rvv for non-intermittent flows at z=14 mm
and z=−14 mm for grids A and B respectively at U0= 4.1 m s−1. (c,d) Contours of Rvv
for non-intermittent flows at z= 0 mm and z=−14 mm for grids A and B respectively
at U0= 3 m s−1. Contour levels <0.3 are omitted. The dashed line indicates the boundary
layer edge.

5.2. Streak instabilities in the x–z plane
Time-resolved PIV measurements in the x–z plane at y= 2.5 mm were performed for
a detailed quantitative assessment of the streak secondary instability characteristics
in bypass transition. Using dye-flow visualizations in a water channel, Mans et al.
(2005) showed the time evolution of the natural unforced sinuous and varicose
instabilities in bypass transition. To the best of our knowledge, similar time sequences
of quantitative visualizations of these natural unforced instabilities are not available
in the experimental literature in bypass transition under a high level of free-stream
turbulence. Therefore, time sequences of TR-PIV realizations displaying the evolution
of sinuous and varicose instabilities are shown in figures 22 and 23 respectively.
Here, the field of view of our measurements was chosen such that the development
of these instabilities could be visualized and traced at each instant of time while they
propagated in the downstream direction. One may clearly notice that these instabilities
are localized and develop on a low-speed streak. The sinuous instability in figure 22
is seen to develop on the low-speed streak located at z/δ∗ = 8, whereas the varicose
instability in figure 23 develops on the low-speed streak located at z/δ∗ = 0. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.92


250 G. Balamurugan and A. C. Mandal

0

10

–10

0

10

–10

0

10

–10

0

10

–10

0

10

–10

0–10–20 10 3020 0–10–20 10 3020

0.02–0.11–0.17–0.24–0.30 –0.05 0.08 0.14 0.21 0.27

FIGURE 22. (Colour online) Time sequence of a sinuous instability developing on a low-
speed streak in the spanwise plane for grid B. The vectors are the fluctuating velocity
vectors over the contours of u/U0. Maintaining the aspect ratio, the region displayed is
zoomed in to clearly show the instability development. Each snapshot is separated by 1t=
0.00155 s.

frequencies of these instabilities in figures 22 and 23 are found to be 281 Hz and
186 Hz respectively.

Furthermore, the varicose instability that originates at the juncture of an incoming
high-speed streak and a downstream low-speed streak eventually generates lambda
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FIGURE 23. (Colour online) Time sequence of a varicose instability developing at the
juncture of high- and low-speed streaks in the x–z plane for grid A. The vectors are the
fluctuating velocity vectors over the contours of u/U0. Maintaining the aspect ratio, the
region displayed is zoomed in to clearly show the instability development. Each snapshot
is separated by 1t= 0.00155 s.
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structures, as can clearly be seen in figure 23. These structures grow in size as time
progresses and finally end up with small-scale structures because of their localized
inflectional instability, as a lambda structure is generally associated with a highly
inflectional velocity profile (e.g. Mandal & Dey 2011). In their DNS of a bypass
transition, Brandt et al. (2004) also found that the varicose instability is generated
due to the interaction of an incoming high-speed streak with a downstream low-speed
streak. They further reported that the varicose type instability eventually generates
lambda structures, which are susceptible to the localized inflectional instability. Recent
DNS on bypass transition by Hack & Zaki (2014) also indicates the presence of
lambda structures at the juncture of an incoming high-speed streak and a downstream
low-speed streak. The present results, thus, experimentally confirm these numerical
observations in bypass transition under an elevated level of free-stream turbulence.

Previous work on bypass transition has indicated that the growth of a sinuous/
varicose instability can lead to a turbulent spot in the flow (e.g. Brandt et al. 2004;
Mans et al. 2005; Hack & Zaki 2014). In their experimental work on bypass
transition in a water channel, Mans et al. (2007) carried out combined PIV and
dye visualizations in the spanwise plane, and visualized the flow structures using
a moving camera, enabled by a traversing system. Identifying the streak geometry
from their measured velocity data, they calculated the secondary amplitude at the
centreline of an unstable low-speed streak and estimated the growth rate. They found
that the normalized temporal growth rate for the sinuous instability is approximately
0.01; the local boundary layer thickness and the free-stream velocity were used for
normalization.

Instead of using the streak geometry to estimate the secondary amplitude and the
growth rate, here we follow Lundell (2004) and Hack & Zaki (2014), and utilize a
quantitative criterion based on the measured velocity data. We estimate the normalized
temporal growth rate as

σ = δ∗

U01t
ln
[

As (t+1t)
As (t)

]
, (5.4)

where the secondary amplitude, As, similarly to Hack & Zaki (2014), is estimated as
As(t)=max w(x, y= 2.5 mm, z, t)−min w(x, y= 2.5 mm, z, t). It should be noted that
the secondary amplitude in the present work is estimated based on the maximum and
minimum spanwise perturbation velocity in the x–z plane located at y = 2.5 mm, in
the absence of three-dimensional velocity data. Isolating the localized instability region
in a PIV realization, we estimate the temporal growth rate of these instabilities. This
procedure is illustrated in detail in figure 24. Time-resolved PIV realizations showing
the growth of sinuous and varicose instabilities are tracked using a rectangular region
at each instant of time, as shown in figures 24(a) and 24(b) respectively. Then, the
secondary amplitude, As, is estimated based on the maximum and minimum spanwise
perturbation velocity within the rectangular region at that instant of time. Finally, the
natural logarithm of the normalized secondary amplitude, As(t+1t)/As(t), is plotted
against the normalized time, U01t/δ∗, and the normalized growth rate is estimated
from the slope of a straight line fitted to the estimated data, as clearly shown in
figures 24(c) and 24(d) for the sinuous and varicose instabilities respectively. The
growth rates, as estimated from figures 24(c) and 24(d) for the sinuous and varicose
instabilities in figures 24(a) and 24(b), are found to be 0.033 and 0.029 respectively.

However, to find the average growth rates for sinuous and varicose instabilities,
several instability events, similar to those in figure 24(a,b), were identified from
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FIGURE 24. (Colour online) Illustration of the procedure to estimate the growth rate for
sinuous and varicose instabilities in the x–z plane. (a,b) Tracking of sinuous and varicose
instability wavepackets at each instant of time to find the secondary amplitude, As, for
grids B and A respectively. (c,d) Variation of the normalized secondary amplitude, As(t+
1t)/As(t), with the normalized time, tU0/δ

∗, for the sinuous instability in (a) and the
varicose instability in (b) respectively. Symbols, estimated amplitude; solid line, linear fit.

the entire TR-PIV realizations, and the above procedure was followed to estimate
the secondary amplitude for each of these instability events. It should be noted that
only those instabilities that grow over a minimum of five time steps are considered
for estimating the growth rate. The variation of the normalized secondary amplitude
versus the normalized time, for 24 sinuous and 12 varicose instabilities, is shown in
figures 25(a) and 25(b) respectively for grid A. Similarly, figures 25(c) and 25(d) show
the variation of the normalized secondary amplitude versus the normalized time for
24 sinuous and 11 varicose instabilities respectively for grid B. The scatter in the data
as seen in these figures was found to be similar to that found by Mans et al. (2007).
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FIGURE 25. Average growth rates of sinuous and varicose instabilities based on several
observations. (a) Sinuous instability for grid A. (b) Varicose instability for grid A. (c)
Sinuous instability for grid B. (d) Varicose instability for grid B. Symbols, estimated
amplitude; solid line, linear fit to the data.

However, an average growth rate for the sinuous/varicose instability for a particular
grid was estimated based on a straight line fit to all of the data for a particular case
(i.e. sinuous/varicose). The sinuous growth rates for grids A and B were found to be
0.022 and 0.025 respectively, whereas the varicose growth rates for grids A and B
were found to be 0.035 and 0.04 respectively.

The present growth rate for the sinuous instability is comparable with the theoretical
growth rates reported by Andersson et al. (2001) and Schlatter et al. (2008). Hack
& Zaki (2014) reported the normalized growth rate based on the length and velocity
scales corresponding to their inlet Reynolds number, Re= 800. Therefore, to compare
our present data with their calculated growth rates, we estimate the equivalent length
scale at that Reynolds number based on our present free-stream velocity and kinematic
viscosity. According to this equivalent length scale and the free-stream velocity, the
present growth rates for the sinuous instability are found to be 0.02 and 0.022 for
grids A and B respectively, whereas the growth rates for the varicose instability are
found to be 0.031 and 0.035 for grids A and B respectively. Therefore, the present
growth rate for the sinuous instability is found to be within the range reported by
Hack & Zaki (2014). The present growth rate for the varicose instability is also found
to be comparable with their growth rate statistics for the inner mode.

Figure 26 shows the histograms of the convection velocity and the wavelength for
both sinuous and varicose instabilities; here, white bars refer to the sinuous instability
and black bars refer to the varicose instability. It should be noted that these statistics
are based on all of the sinuous and varicose instabilities identified for both of the grids.
Following a similar methodology to that in § 5.1.1, the propagation/convection velocity
is estimated from the space–time shift of these instabilities, and the wavenumbers
are estimated from the measured wavelengths. However, we may mention that in
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FIGURE 26. Histograms of the convection velocity (a) and the wavenumber (b) for the
sinuous and varicose instabilities. White bars, sinuous instability; black bars, varicose
instability.

contrast to the oscillations in the x–y plane, which were visualized using the ωzδ
∗/U0

contours, wavy oscillations (sinuous/varicose) in the x–z plane are visualized using
the u/U0 contours to estimate the wavelength and convection velocity reported
in this section. Figure 26(a) shows that the convection velocity of the sinuous
instability varies from 0.5U0 to 0.9U0 with a peak at approximately 0.7U0, and that
of the varicose instability varies approximately from 0.5U0 to 0.7U0 with a peak at
approximately 0.7U0. However, the average convection velocities for the sinuous and
varicose instabilities are found to be 0.70U0 and 0.64U0 respectively. These results
are comparable to the numerical simulations of Brandt et al. (2004) and Hack & Zaki
(2014). Based on their dye-flow visualizations at two different wall-normal heights in
a water channel, Mans et al. (2005) reported a value of 0.75U0 for a single sinuous
instability and 0.47U0 for a single varicose instability. The convection velocities
estimated from the present TR-PIV measurements are thus comparable with their
visualization results. Similarly, figure 26(b) shows that the normalized wavelength
varies from 5 to 19 for the sinuous instability and from 5 to 14 for the varicose
instability. These values are also found to be consistent with the simulated values
reported in the literature (e.g. Brandt et al. 2004; Schlatter et al. 2008; Hack & Zaki
2014). Considering three sinuous instabilities, a similar variation in wavelength was
also reported by Mans et al. (2007) based on their PIV measurements in a water
channel flow. One may also notice that the estimated and calculated values of the
convection velocity and the wavelength of the oscillating shear layers in the x–y plane
(figure 23) are found to be within the range seen in figure 26.

6. Streak amplitude
Amplification of sinuous and varicose instabilities, as discussed in § 5.2, is often

attributed to the streak amplitude, usually defined based on the velocity difference
between a low-speed streak and a high-speed streak (e.g. Andersson et al. 2001)
or based on the maximum absolute value of the perturbation velocity (Vaughan &
Zaki 2011). Although various experimental works have been carried out in bypass
transition under an elevated level of free-stream turbulence, the streak amplitude
in terms of the velocity difference, and its relation to streak secondary instability
have not been experimentally investigated and reported to the best of our knowledge.
Therefore, we estimated the streak amplitude using wide field of view conventional
PIV measurements in the x–z plane. The measurements were carried out at the same
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FIGURE 27. Variation of the streak amplitude with the streamwise distance for grids A
and B. Symbols: circle, grid A; square, grid B; the open and filled symbols denote the
data measured in the x–z planes located at y= 1.5 mm and 2.5 mm respectively.

free-stream velocities as given in table 4. Following Andersson et al. (2001), the
streak amplitude is defined here as

A (x)= 1
2U0

[
max

z,N
(UI −UB)−min

z,N
(UI −UB)

]
, (6.1)

where UB is the Blasius velocity and N is the number of PIV realizations. To cover
a large streamwise extent, the PIV measurements were carried out in two separate
fields of view centred at x = 300 mm and 600 mm respectively, as stated in § 2.2.
Our measurements in the first and second fields of view extended from x= 164 mm
to 436 mm and x = 446 mm to 754 mm respectively. The measurement plane was
located at y = 1.5 mm for both of these fields of view. However, to investigate the
amplitude variation with respect to the wall-normal distance, the PIV measurements
in the second field of view were also carried out at y= 2.5 mm. We may also mention
that the wall-normal locations, y= 1.5 mm and y= 2.5 mm, closely correspond to the
locations of the peak urms values in their wall-normal distributions at x= 300 mm and
600 mm respectively.

Figure 27 shows the variation of the estimated streak amplitude, A, in the
downstream direction for both grid A and grid B. The open and filled symbols
in figure 27 refer to the data measured at y= 1.5 mm and 2.5 mm respectively. The
streak amplitude, A, was estimated utilizing a minimum of 990 PIV realizations for
each case considered. The data in figure 27 show that the streak amplitude increases
in the downstream direction and saturates at a value of approximately 35 % of the
free-stream velocity for both of the grids. We also notice that the data measured at
two different x–z planes do not show significant differences in the estimated streak
amplitudes.

Although the streak amplitude at the end of the first field of view was found to
be approximately 29 % of the free-stream velocity (figure 27), the hotwire signals at
that location were not found to be intermittent for either of the grids. Similarly, the
spatial PIV data in the first field of view revealed no sign of sinuous and varicose
instabilities for either of the grids. The typical streaky structures, which were seen
in the first field of view, are illustrated in figure 28(a) for grid A. On the other
hand, the flow in the second field of view was found to be intermittent starting at
approximately x/δ∗≈ 210, and the flow intermittency at the centre of the second field
of view was found to be 1.5 % and 2 % for grids A and B respectively. A signature
of the streak secondary instability in the second field of view can also be noticed in
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FIGURE 28. (Colour online) (a,b) Instantaneous PIV realizations in the first and second
fields of view depicting typical streaky structures measured at y = 1.5 mm and 2.5 mm
respectively for grid A. (c,d) Typical hotwire signals at x/δ∗ = 210, z/δ∗ = 0 and x/δ∗ =
250, z/δ∗ = 0 respectively for grid A. The wall-normal location of the hotwire was at
y= 2.5 mm.

the instantaneous PIV realizations, as illustrated in figure 28(b) for grid A. One of
these instability packets in this figure can clearly be seen at approximately x/δ∗ =
200 and z/δ∗ = 5, where the streak amplitude is found to be approximately 30 %.
The typical hotwire signals in the plate centreline at x/δ∗ = 210 and 250, as shown
in figures 28(c) and 28(d) respectively, also indicate a sign of some flow instability
for grid A. The value of the streak amplitude over the streamwise extent where the
instabilities, as shown in figures 22 and 23, were measured was found to be above
30 % of the free-stream velocity. Therefore, the present measurements indicate that the
streak secondary instability may set in at a streak amplitude of approximately 30 % of
the free-stream velocity.

The present threshold amplitude, 30 %, is slightly higher than the value of
Andersson et al. (2001), who reported the threshold value to be 26 % of the
free-stream velocity. It is also higher than the threshold value of Hack & Zaki
(2014), who reported that a streak amplitude of 20 %–35 % of the free-stream
velocity can lead to a positive growth rate for an outer instability. Although the
present measured value is well within the bounds reported by these authors, the
4 %–10 % difference compared with the values reported by these authors may be
due to the following reason. In an experiment, the visualization of an instability
wavepacket may be prominent in the velocity contours only when its amplification
is large enough, although its amplification may start earlier than its manifestation
in the velocity contours. Hack & Zaki (2014) reported a similar observation in the
numerical simulation of bypass transition.

7. Summary and concluding remarks
Localized secondary instability events in bypass boundary layer transition have been

experimentally investigated using three different PIV configurations. The conventional
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PIV measurements in the x–y plane clearly revealed that the present mean flow data
are consistent with those in the published literature (see figure 6).

A simultaneous orthogonal dual-plane PIV technique was utilized to acquire
simultaneous PIV data in the x–y and x–z planes. These measurements indicated
that the origin of an inclined shear layer in the x–y plane can be attributed to
the spanwise meandering motions of low- and high-speed streaks (see figure 9).
Moreover, the present simultaneous measurements, for the first time, experimentally
facilitate the quantitative x–y plane visualization of streaky structures undergoing
sinuous/varicose motion in the x–z plane in bypass transition under an elevated level
of free-stream turbulence. The sinuous and varicose streak instabilities in the x–z
plane were found to be associated with oscillating shear layers in the x–y plane. The
shear layer oscillation corresponding to a varicose instability was found to occur
closer to the wall compared with the oscillation corresponding to a sinuous instability
(see figure 10 for example). Although the sinuous and varicose instabilities in the
x–z plane were always found to be associated with oscillating shear layers in the x–y
plane, the converse may not be true, as some simultaneous PIV realizations revealed
that while there exist significant shear layer oscillations in the x–y plane near the
boundary layer edge, the corresponding near-wall streaks in the x–z plane do not
show any appreciable varicose/sinuous motion (see figure 12a,b). This indicates that
an instability wavepacket can originate near the boundary layer edge.

Time-resolved PIV measurements in the x–y plane were carried out to investigate
the time evolution of the oscillating shear layers. The data show that an oscillation
may develop at either the leading edge or the trailing edge portion of a lifted-up
inclined shear layer, and these shear layer oscillations, while comparing with the
simultaneous PIV data, are found to be similar to those that correspond to sinuous
and varicose motions in the x–z plane respectively. Interestingly, the one-dimensional
linear stability analysis on the realistic base velocity profile of a low-speed steak
undergoing shear layer oscillation in the x–y plane indicates that an oscillation in an
inclined shear layer develops due to the linear instability, as the estimated wavelength
and the frequency of oscillation are found to be comparable to the calculated ones
(see figure 19). Moreover, the phase velocity associated with an inclined shear layer
far away from the wall is higher than the phase velocity associated with an inclined
shear layer closer to the wall. This is consistent with the recent theoretical and
numerical findings of Vaughan & Zaki (2011) and Hack & Zaki (2014). In addition,
the role of free-stream turbulence in inception of these instabilities was examined
using the correlation contours of the wall-normal fluctuating velocity, which indicated
the existence of a clear relation between the free-stream turbulence and the boundary
layer streaks (figures 20 and21).

Therefore, the simultaneous PIV measurements in the x–y and x–z planes and
the TR-PIV measurements in the x–y plane collectively corroborated the fact that
an instability wavepacket on a low-speed streak can get excited near the boundary
layer edge (see figures 12 and 14 for example). Hence, these measurements provide
experimental support to the proposal that a secondary instability wavepacket can
originate near the boundary layer edge (e.g. Jacobs & Durbin 2001; Durbin & Wu
2007; Schlatter et al. 2008; Hack & Zaki 2014). Further, our measurements clearly
show that a sinuous instability in its nonlinear saturated stage can lead to an incipient
turbulent spot with significant detached vorticity and counter-rotating vortex pairs (see
figures 11, 14 and 15). The existence of such a scenario for a varicose instability
may also be deduced from the presented data (see figure 10d for example).

The TR-PIV measurements in the x–z plane enabled us to visualize the quantitative
time sequences of the localized sinuous and varicose instabilities. The present
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measurements confirm the numerical observations of Brandt et al. (2004) and
Hack & Zaki (2014) that a varicose instability can occur due to the interaction
of an incoming high-speed streak with a downstream low-speed streak, leading to
an eventual generation of lambda structures (see figure 23). To the best of our
knowledge, this experimental observation is reported for the first time in bypass
transition at an elevated level of free-stream turbulence, substantiating the need for a
TR-PIV measurement in bypass transition studies. However, the present measurements
also show that other than the juncture of a high-speed and a low-speed streak,
a varicose instability may even develop in the middle of a low-speed streak (see
figures 10c and 12cfor example).

The TR-PIV data were also utilized to estimate the growth rate of sinuous and
varicose instabilities in the x–z plane. The statistical analysis shows that the growth
rate of the sinuous instability is lower compared with the varicose instability. However,
the growth rates of these instabilities are found to be consistent with the theoretical
values reported in the literature (e.g. Andersson et al. 2001; Schlatter et al. 2008;
Hack & Zaki 2014). Similarly, the statistics of the estimated convection velocity and
wavelength are found to compare well with the previous numerical and theoretical
data. The value of the streak amplitude, at the streamwise location where the sign
of streak secondary instability becomes evident in the velocity contours, is found to
be ∼30 % of the free-stream velocity. This value is found to be within the bounds
reported by Andersson et al. (2001) and Hack & Zaki (2014).

In conclusion, the present work on bypass transition provides experimental evidence
of the fact that the boundary layer edge can be a receptive site for excitation of
a localized secondary instability wavepacket besides other excitation sites, such as
the juncture between a low-speed streak and a high-speed streak. The effect of free-
stream turbulence in the excitation of a secondary instability wavepacket which is
manifested initially as an oscillation of a lifted-up shear layer at the boundary layer
edge cannot be ruled out. Moreover, the natural secondary instability characteristics in
bypass transition for parallel and square grids are found to be similar for nearly the
same free-stream turbulent characteristics.
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