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approximately. When , it is approximately .θ ≈ 294° (0.41)
πR3

3
In conclusion, if we want to maximise the total volume of the two cones
then we cut out a sector with central angle approximately  from the
given metal sheet and roll the two sectors into right circular cones.
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106.07 A function-based proof of the harmonic mean −
geometric mean − arithmetic mean inequalities

For , with , the harmonic, geometric and
arithmetic means of  and  are respectively defined by

a, b ∈ � 0 < b ≤ a
a b

H (a, b) =
2

1
a + 1

b
=

2ab
a + b

, G (a, b) = ab and  A (a, b) =
a + b

2
.

Theorem:  For , , that is0 < b ≤ a H (a, b) ≤ G (a, b) ≤ A (a, b)
2ab

a + b
≤ ab ≤

a + b
2

.

Proof:  If , then  and the inequalities to prove arex =
b
a

x ∈ (0,  1]
2x

1 + x
≤ x ≤

1 + x
2

.

There are easy purely algebraic proofs for these inequalities [1]. Here,
instead, we propose an elementary approach based on the graph of some
functions to prove them.
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FIGURE 1: G ≤ A
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From now on, we use the notation ,  and
.

H = H (a, b) G = G (a, b)
A = A (a, b)

Step 1:  and  if, and only if, , that is  for

, with equality only for .

G ≤ A G = A a = b x ≤
1 + x

2
x ∈ (0, 1] x = 1

If , and , then , ,
. In addition, , while . Since

, for , with , it follows that  for
, and the proof is complete.

f (x) = 1
2 (1 + x) g (x) = x f (0) = 1

2 g (0) = 0
f (1) = g (1) = 1 f ′ (x) = 1

2 g′ (x) = 1 / (2 x)
g′ (x) > 1

2 x ∈ (0, 1) g′ (1) = 1
2 g (x) < f (x)

x ∈ (0, 1)
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FIGURE 2: g′ (x) =
1
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Step 2: Note that , because . Since

, then , as the following figure shows:

G (A, H) = G x =
2x

1 + x
 · 

1 + x
2

G ≤ A H ≤ G ≤ A
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FIGURE 3: . Since , then G (A, H) = G G ≤ A H ≤ G ≤ A
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