approximately. When $\theta \approx 294^\circ$, it is approximately $(0.41)\frac{\pi R^3}{3}$.

In conclusion, if we want to maximise the total volume of the two cones then we cut out a sector with central angle approximately 115.2° from the given metal sheet and roll the two sectors into right circular cones.

Acknowledgement

I would like to sincerely thank the referee for valuable suggestions which improved the presentation of the content of the Note.

10.1017/mag.2022.21 © The Authors, 2022PRITHWIJIT DEPublished by Cambridge University Press on
behalf of The Mathematical AssociationHomi Bhabha Centre for
and Science Education,

Tata Institute of Fundamental Research, Mumbai - 400088, INDIA e-mails: de.prithwijit@gmail.com / prithwijit@hbcse.tifr.res.in

106.07 A function-based proof of the harmonic mean – geometric mean – arithmetic mean inequalities

For $a, b \in \mathbb{R}$, with $0 < b \le a$, the harmonic, geometric and arithmetic means of *a* and *b* are respectively defined by

$$H(a, b) = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2ab}{a+b}, G(a, b) = \sqrt{ab} \text{ and } A(a, b) = \frac{a+b}{2}.$$

Theorem: For $0 < b \leq a, H(a, b) \leq G(a, b) \leq A(a, b)$, that is

$$\frac{2ab}{a+b} \leqslant \sqrt{ab} \leqslant \frac{a+b}{2}.$$

a + *b* 2 *Proof*: If $x = \frac{b}{a}$, then $x \in (0, 1]$ and the inequalities to prove are

$$\frac{2x}{1+x} \leqslant \sqrt{x} \leqslant \frac{1+x}{2}$$

There are easy purely algebraic proofs for these inequalities [1]. Here, instead, we propose an elementary approach based on the graph of some functions to prove them.

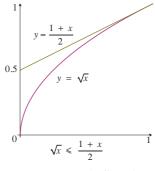
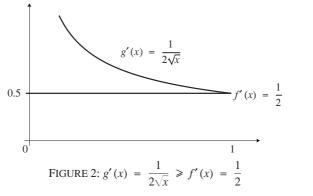


FIGURE 1: $G \leq A$

From now on, we use the notation H = H(a, b), G = G(a, b) and A = A(a, b).

Step 1: $G \le A$ and G = A if, and only if, a = b, that is $\sqrt{x} \le \frac{1+x}{2}$ for $x \in (0, 1]$, with equality only for x = 1.

If $f(x) = \frac{1}{2}(1 + x)$, and $g(x) = \sqrt{x}$, then $f(0) = \frac{1}{2}$, g(0) = 0, f(1) = g(1) = 1. In addition, $f'(x) = \frac{1}{2}$, while $g'(x) = 1/(2\sqrt{x})$. Since $g'(x) > \frac{1}{2}$, for $x \in (0, 1)$, with $g'(1) = \frac{1}{2}$, it follows that g(x) < f(x) for $x \in (0, 1)$, and the proof is complete.



Step 2: Note that G(A, H) = G, because $\sqrt{x} = \sqrt{\frac{2x}{1+x}} \cdot \frac{1+x}{2}$. Since $G \le A$, then $H \le G \le A$, as the following figure shows:

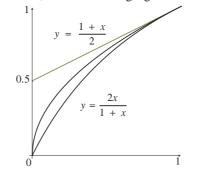


FIGURE 3: G(A, H) = G. Since $G \leq A$, then $H \leq G \leq A$

Reference

1. P. S. Bullen, Handbook of means and their inequalities (Springer) 2003.10.1017/mag.2022.22 © The Authors, 2022ÁNGEL PLAZAPublished by Cambridge University Press on
behalf of The Mathematical AssociationUniversidad de Las Palmas
de Gran Canaria, Spain
e-mail: angel.plaza@ulpgc.es

131