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Smart Representations: Rationality and
Evolution in a Richer Environment
Paolo Galeazzi and Michael Franke*y

Standard applications of evolutionary game theory look at a single game and focus on
the evolution of behavior for that game alone. Instead, this article uses tools from evolu-
tionary game theory to study the competition between choice mechanisms in a rich and
variable multigame environment. A choicemechanism is a way of subjectively represent-
ing a decision situation, paired with a method for choosing an act based on this subjec-
tive representation. We demonstrate the usefulness of this approach by a case study that
shows how subjective representations in terms of regret that differ from the actual fitness
can be evolutionarily advantageous.
1. Introduction. If agents deal with a rich and variable environment, they
have to face many different choice situations. Standard evolutionary game
models frequently simplify reality in at least two ways. First, the environ-
ment is represented as a fixed stage game; second, the focus of evolutionary
selection is behavior for that stage game alone. In contrast, some argue for
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studying the evolutionary competition of general choice mechanisms in a
rich and variable environment (e.g., Hammerstein and Stevens 2012; Faw-
cett, Hamblin, and Giraldeau 2013; McNamara 2013). In response to this
and adding to recent like-minded approaches, this article introduces a gen-
eral meta-game model that conservatively extends the scope of evolutionary
game theory to deal with evolutionary selection of choice mechanisms in
variable environments (see also Harley 1981; Bednar and Page 2007; Rayo
and Becker 2007; Zollman 2008; Skyrms and Zollman 2010; Zollman and
Smead 2010; Smead and Zollman 2013; O’Connor 2015).1

A choicemechanism associates decision situations with action choices. A
crucial part of a choice mechanism is the subjective representation of the de-
cision situation, in particular the manner of forming preferences and beliefs
about a possibly uncertain world. To show the usefulness of the meta-game
approach, this article asks: which preference and belief representations are
ecologically valuable and lead to high fitness? The evolution of preferences
has been the subject of recent interest in theoretical economics (e.g., Dekel,
Ely, and Ylankaya 2007; Robson and Samuelson 2011; Alger and Weibull
2013). Here, we argue that questions of preference evolution should take var-
iability in uncertainty representation into account as well. We demonstrate
that if agents have imprecise probabilistic beliefs (e.g., Levi 1974; Garden-
fors and Sahlin 1982; Walley 1996), faithful and objective representations
in terms of true evolutionary fitness can be outperformed by subjective (e.g.,
regret-based) preference representations that deviate from the true fitness
that natural selection operates on.

The article is organized as follows. Section 2 sets the scene by reviewing
different perspectives on rational choice. Section 3 introduces themeta-game
approach. In doing so, it covers key notions such as choice mechanisms, de-
cision rules and subjective representations, all with an eye toward the evolu-
tionary application of section 4. Section 5 contains the main results for that
application, and section 6 discusses some interesting extensions. Finally, sec-
tion 7 concludes.
1. Some of these contributions are closely related to ours. Bednar and Page (2007) use a
multigame framework, composed of a fixed selection of six possible games, to study the
emergence of different cultural behaviors, and model agents as finite-state automata
playing games from the fixed selection. Zollman (2008) explains seemingly “irrational”
fair behavior in social dilemmas (like the Ultimatum game) by means of a model where
agents have to play the Ultimatum game together with the Nash bargaining game, but
they are constrained to choose the same strategy for both games. Finally, Rayo and
Becker (2007) consider, in a more decision-theoretic setting, what subjective utility
function a cognitively limited agent should be endowed with in order to maximize
her evolutionary fitness. Our framework can then be viewed as a generalization of those
models, mainly in that here players do not necessarily have any specific cognitive lim-
itations, and we allow for larger and possibly variable classes of games.
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2. Rationality and Subjective Representations. The standard textbook
definition of rationality in economics and decision theory traces back to the
seminal work by de Finetti (1937), von Neumann and Morgenstern (1944),
and Savage (1954). It says that a choice is rational only if it maximizes (sub-
jective) expected utility. Expected utility is subjective in the sense that it is
a function of subjective beliefs and subjective preferences of the decision
maker (DM). To wit, a choice can be rational, that is, the best choice from
theDM’s point of view, even if based on peculiar beliefs and/or aberrant pref-
erences.

If beliefs and preferences are subjective, there is room for rationalization
or redescriptionism of observable behavior. For example, in the case of so-
cial decision making, including considerations of fairness allows us to de-
scribe as rational empirically observed behavior, such as in experimental
Prisoner’s Dilemmas or public goods games, that might otherwise appear
irrational (e.g., Fehr and Schmidt 1999; Charness and Rabin 2002).

The main objection to redescriptionism is that, without additional con-
straints, the notion of rationality is likely to collapse, as it seems possible
to deem rational almost everything that is observed, given the freedom to ad-
just beliefs and preferences at will. Normativism therefore emphasizes that
there are many ways in which ascriptions of beliefs and preferences should
be constrained by normative considerations of rationality as well: for ex-
ample, subjective beliefs should reflect objective chance where possible;
subjective preferences should be oriented toward tracking objective fitness.
For instance, profit maximization seems a necessary requirement for evolu-
tion in a competitive market because only firms behaving according to profit
maximization will survive in the long run (e.g., Alchian 1950; Friedman
1953).

An alternative view on rationality of choice is adaptationism (e.g., An-
derson 1991; Chater and Oaksford 2000; Hagen et al. 2012). Adaptationism
aims to explain rational behavior by appealing to evolutionary considerations:
DMs have acquired choice mechanisms that have proved to be adaptive with
respect to the variable environment where they have evolved. A choice mech-
anism can be a set of distinct heuristics (the DM’s adaptive toolbox) that have
little in common (e.g., Gigerenzer and Goldstein 1996; Tversky and Kahne-
mann1981;Scheibehenne,Rieskamp, andWagenmakers2013).But toclosely
relate to the literature on evolution of preferences and to the philosophical de-
bate about the nature of rational choice, we here suggest thinking of a choice
mechanism as a map from choice situations to action choices that includes
an explicit level of subjective representation of the situation. Specifically, a
subjective representation is a general way of forming preferences and beliefs
about the choice situation. We are most interested in the question of which
subjective representations, and which choice mechanisms in general, are bet-
ter than others from an evolutionary point of view.
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3. Choice Mechanisms and Meta-Games. We view a choice mechanism
as the combination of three different things: a subjective utility (or prefer-
ence), a subjective belief, and a decision rule. In general, the agent’s action
choice will depend both on the agent’s utility at different possible outcomes
of the choice situation and on the agent’s beliefs about the realization of
these outcomes. The decision rule then combines the agent’s subjective util-
ity and belief, and dictates how the agent should act: a decision rule is a func-
tion that associates an action choice with the agent’s utility and beliefs:

Decision Rule:  Utility  �  Beliefs →Actions:

The subjective utility of an agent can be formally expressed by a function u:
W � A→R, where A stands for a (finite) set of actions available to the agent
andW is a (finite) set of possible states of the world. There are many different
ways to describe beliefs, but for concreteness of later applications we here
assume that the agent’s beliefs are represented in terms of a (possibly single-
ton) convex compact set of probability functions G ⊆D(W) over the possi-
ble states of the world. Given a utility u and a belief G, examples of well-
known decision rules from the literature that we will encounter later are:

1. Maxmin:

a* u, Gð Þ 5 argmax
a∈A

 min
m∈G ow∈Wu w, að Þm wð Þ,

2. Maximax:

a* u, Gð Þ 5 argmax
a∈A

 max
m∈G ow∈Wu w, að Þm wð Þ,

3. Laplace rule:

a* u, Gð Þ 5 argmax
a∈A

o
w∈W

1

Wj j u w, að Þ,

4. Expected utility maximization (for G singleton):

a* u, Gð Þ 5 argmax
a∈A

o
w∈W

u w, að Þm wð Þ:

It is worth noticing that bothmaxmin andmaximax boil down to expected
utility maximization when the set G is a singleton, and in turn expected util-
ity maximization reduces to the Laplace rule when the belief m is a uniform
probability over the states.

As mentioned previously, for a choice mechanism to prescribe an action,
the decision rule needs to be given a specific utility u and belief G as input.
We call the pair (u, G) a subjective representation of the decision situation.
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In the following, we investigate the evolutionary fitness of general and sys-
tematic ways of forming such subjective representations across many differ-
ent decision situations.

A fitness game is an interactive decision situation. For a given fitness
game G 5 hN , (Ai, p

G
i )i∈Ni, let us denote the evolutionary payoff, or fitness,

of player i by the function pG
i :Pi∈NAi →R, where Ai is player i’s (finite) set

of actions. For simplicity of exposition we assume that all games that are
played are symmetric two-player games where N ≔ f1, 2g, A1 5 A2, and
pG

1 (a1, a
0
2) 5 pG

2 (a
0
1, a2) ≕ pG(a, a0).2 The fitness of a choice mechanism c

with decision rule a*c and subjective representation (uc, Gc) is measured in
terms of the expected evolutionary payoff of c. Formally, the fitness of choice
mechanism c against choice mechanism c0 in a symmetric two-player game
G 5 hf1, 2g, A, pGi is given by:3

FG c, c0ð Þ 5 pG a*c uG
c , Gc

� �
, a*c0 u

G
c0 , Gc0

� �� �
:

Given the game-theoretic setting, the subjective utility uG
c is now a function

uG
c : A � A→R, and the subjective belief Gc is a set of probability functions

over the coplayer’s actions, Gc ⊆ D(A).
Going beyond a single fixed fitness game, we consider a class of possible

games. For concreteness, let G be a class of two-player symmetric games,
together with a probability measure PG(G

0) for the occurrence probability of
gameG0 ∈ G. Intuitively, the probability PG encodes the statistical properties
of the environment. A meta-game is then a tuple MG 5 hCM , G, PG, Fi,
where CM is a set of choice mechanisms, G is a class of possible games,
PG(G

0) is the probability of game G0 to occur, and F :CM � CM →R is the
(meta-)fitness function, defined as:

F c, c0ð Þ 5
ð
FG c, c0ð Þ dPG Gð Þ: (1)

Hence, F(c, c0) determines the evolutionary payoff of choice mechanism c
against c0 in themeta-game. The setCM can be thought of as the set of choice
mechanisms that are present within a given population playing the games
from the class G. Consequently, it is possible to compute the average fitness
of c against the population, that is given by:
2. Since payoff functions are symmetric, we simply write pG(a, a0) for pG
1 (a1, a

0
2) and

A ≔ A1 5 A2, as usual. However, notice that all definitions and results can be extended
to more general cases.

3. Whenever a choice mechanism would not select a unique action, we assume that the
player chooses one of the equally optimal actions at random. That is, FG(c, c

0) 5
oa∈a*c (uG

c ,Gc)oa0∈a*
c0 (u

G
c0 ,Gc0 )(1=ja*c (uG

c , Gc)j)(1=ja*c0 (uG
c0 , Gc0 )j)pG(a, a0).
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F cð Þ 5
ð
F c, c0ð Þ dPc c

0ð Þ 5
ð ð

FG c, c0ð Þ dPc c
0ð Þ dPG Gð Þ, (2)

where Pc(c
0) is the probability of encountering a coplayer with choice mech-

anism c0.
Meta-games are then abstract models for the evolutionary competition

between choice mechanisms in interactive decision-making contexts. Stan-
dard notions of evolutionary game theory apply to meta-games as well. For
example, a choice mechanism c is a strict Nash equilibrium if F(c, c) >
F(c0, c) for all c0; it is evolutionarily stable if for all c0 either (i) F(c, c) >
F(c0, c) or (ii) F(c, c) 5 F(c0, c) and F(c, c0) > F(c0, c0); it is neutrally stable
if for all c0 either (i) F(c, c) > F(c0, c) or (ii) F(c, c) 5 F(c0, c) and F(c, c0) ≥
F(c0, c0) (Maynard Smith 1982). Similarly, evolutionary dynamics can be
applied to meta-games. Later we will also turn toward a dynamical analysis
in terms of replicator dynamics (Taylor and Jonker 1978) and replicator mu-
tator dynamics (e.g., Nowak 2006).

4. Evolution of Preferences. To demonstrate the usefulness of a meta-
game approach, we compare a selection of general ways of forming belief
and preference representations against each other. As for subjective prefer-
ences, consider initially:
1. the objective utility, defined by: for all G ∈ G,

objG a, a0ð Þ 5 pG a, a0ð Þ;

2. the regret, defined by: for all G ∈ G,

regG a, a0ð Þ 5 pG a, a0ð Þ 2 max
a00∈A

pG a00, a0ð Þ:

As motivation for this comparison, it is to be stressed that regret minimi-
zation is one of the main alternatives to utility (or value) maximization in the
literature on decision criteria (see also Bleichrodt and Wakker 2015). For a
start, the subjective beliefs that we take into consideration are also two:

1. prc: a precise uniform belief �m such that �m(a) 5 1=jAj for all a ∈ A;
2. imp: a maximally imprecise belief �G 5 D(A).

Although a thorough discussion of this issue goes beyond the scope of
this work, let us say that these two kinds of belief underlie two different and
alternative views on uncertainty. Faced with uncertain events, a strict Bayes-
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ian will always form a precise belief, specified by a single probability m. In
the absence of any information about future uncertain events, the Bayesian
would mostly invoke the principle of insufficient reason and accordingly
choose a uniform probability over the possible outcomes. In contrast, others
have argued against the obligation of representing a belief bymeans of a single
probability measure, opposite to the Bayesian paradigm (e.g., Gilboa and
Marinacci 2013). They argue instead in favor of a more encompassing ac-
count, according to which uncertainty can be unmeasurable and represented
by a (convex and compact) set of probabilities (e.g., Gilboa and Schmeid-
ler 1989). This line of thought has its origin in decision theory, motivated by
Ellsberg’s famousparadoxes (Ellsberg 1961), and appears extremely relevant
in game-theoretic contexts too. Indeed, in a recent paper Battigalli et al. (2015,
646) write: “Such [unmeasurable] uncertainty is inherent in situations of
strategic interaction. This is quite obvious when such situations have been
faced only a few times.”

In evolutionary game theory, for instance, players obviously face uncer-
tainty about the composition of the population that they are part of, and con-
sequently about the (type of ) coplayer that they are randomly paired with at
each round and about the coplayer’s action. In case of complete lack of in-
formation about the composition of the population, a non-Bayesian player
would thus entertain maximal unmeasurable uncertainty, that is, a maximally
imprecise belief.4 As already anticipated,wewill see that theway agents form
beliefs, and the possibility of holding imprecise beliefs in particular, can have
a fundamental impact on their evolutionary success.

As for the decision rule, we assume that players use themaxmin rule. This
is in line with many representation results of decision making under unmea-
surable uncertainty (e.g., Gilboa and Schmeidler 1989; Ghirardato and Ma-
rinacci 2002) and seems corroborated by empirical findings too. Ellsberg’s
paradoxes are prominent examples (Ellsberg 1961), and evidence from ex-
perimental literature suggests that agents are generally averse to unmeasur-
able uncertainty (e.g., Trautmann and Kuilen 2016).

Finally, note that when themaxmin rule acts on subjective representations
of type (obj, imp), that is, objective preferences and imprecise beliefs, the
generated behavior corresponds to the classic maxmin strategy (von Neu-
mann andMorgenstern 1944).When themaxmin rule acts on subjective rep-
resentation (reg, imp), the agent’s behavior is known as regret minimiza-
4. Such a radical uncertainty could ensue, for example, if agents have no conception of
their coplayer or her preferences. Unsophisticated agents, as considered in evolutionary
game theory, might be entirely unaware of the fact that they are engaged in social deci-
sion making (see Heifetz, Meier, and Schipper [2013] for game-theoretic models of un-
awareness). It is therefore not ludicrous to consider radical uncertainty first and tend to
more sophisticated ways of forming beliefs later (more on this below).

7 Published online by Cambridge University Press

https://doi.org/10.1086/692147


SMART REPRESENTATIONS 551

https://doi.org/10.10
tion.5 Two facts follow from these observations. The first is related to our fo-
cus on different types of uncertainty that players may entertain.
5. Th
(1951
and S
the u
Trave
ition
as in
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Fact 1 For any precise (Bayesian) belief m, maximization of expected (ob-
jective) utility based on m and minimization of expected regret based on m
are behaviorally equivalent.
The second fact highlights another behavioral equivalence, which we will
make use of shortly in the following section.
Fact 2 In the class of 2 � 2 symmetric games, the acts selected by the La-
place rule are exactly the acts selected by regret minimization.
Here is a simple example that shows these choice mechanisms in action.
Consider the coordination fitness game G depicted in figure 1a. Since the
game is symmetric, it suffices to specify the evolutionary payoffs for the
row player. Figure 1a also represents the objective utility objG, since objG 5
pG by definition, whereas figure 1b pictures the representation of G in terms
of regret-based utilities. While classic maxmin is indifferent between I and
II (fig. 1a), regret minimization uniquely selects II (fig. 1b).

5. Results

5.1. Simulation Results. Since for now we keep the decision rule fixed
to maxmin, a player’s choice mechanism will only depend on the player’s
subjective representation (u, G). For brevity, from now on we will refer to
the pair (u, G), like (reg, imp) or (obj, prc), as the type of the player. Some-
times wewill also distinguish types by referring to the subjective utility only,
for instance (reg, imp) and (reg, prc) are regret types.

As observed earlier, meta-games factor in statistical properties of the en-
vironment. For particular empirical purposes, one could consult a specific
class of games G with appropriate, maybe empirically informed probability
PG in order to match the natural environment of a given population. For our
present purposes, let G be a set of symmetric two-player fitness games with
two acts for a start. Each game G ∈ G is then individuated solely by its pay-
off function, that is, by a quadruple of numbers G 5 (a, b, c, d). As for the
e notion of regret in decision theory dates back at least to the work by Savage
) and has later been developed by Bell (1982), Fishburn (1982), and Loomes
ugden (1982) independently. Recently, Halpern and Pass (2012) showed how
se of regret minimization can give solutions to game-theoretic puzzles (like the
ller’s dilemma and the Centipede game) in a way that is closer to everyday intu-
and empirical data. In this article the notion of regret defined earlier is the same
Halpern and Pass (2012).
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occurrence probability PG(G) of game G, we imagine that the values a, b, c,
d are independently and identically distributed (i.i.d.) random variables
sampled from the set {0, ..., 10} according to uniform probability PV. Using
Monte Carlo simulations, we can then approximate the values of equation (1)
to construct meta-game payoffs. Results based on 100,000 randomly sampled
games are given in table 1.6

Simulation results obviously reflect fact 2 in that all encounters in which
types (reg, imp), (reg, prc), or (obj, prc) are substituted for one another yield
identical results. More interestingly, table 1 shows that (obj, imp), the max-
min strategy, is strictly dominated by the three other types: in each column
(i.e., for each type of coplayer), themaxmin strategy is strictly worse than any
of the three competitors. This has a number of interesting consequences.

If we restrict attention to subjective representations with imprecise beliefs
only, then a monomorphic state in which every agent has regret-based pref-
erences is the only evolutionarily stable state.More strongly, since (obj, imp)
is strictly dominated by (reg, imp), we expect selection that is driven by (ex-
pected) fitness to invariably weed out maxmin players (obj, imp) in favor of
(reg, imp), regret minimization. In terms of choice rules, this means that re-
gretminimization isevolutionarilybetter thanmaxminover theclassofgames
considered. In terms of subjective preferences, it shows that players using
the objective representation that directly looks at fitness (possibly money,
or profit) are outperformed by nonveridical (regret) representations, when
players’ beliefs are imprecise.

Next, if we look at the competition between all four types represented in
table 1, (reg, imp) is no longer evolutionarily stable. Given behavioral equiv-
alence (fact 2), types (reg, imp), (reg, prc), and (obj, prc) are all neutrally sta-
ble (Maynard Smith 1982). But since (obj, imp) is strictly dominated and
so disfavored by fitness-based selection, we are still drawn to conclude that
Figure 1. A coordination game (left) and the associated regret representation (right).
6. Concretely, 100,000 games were sampled repeatedly by choosing independently four
integers between 0 and 10 uniformly at random. For each game, the action choices of all
four choice mechanisms were determined and payoffs from all pairwise encounters re-
corded. The number in each cell of table 1 is the average payoff for the choice mecha-
nism listed in the row when matched with the choice mechanism in the column.
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maxmin behavior is weeded out in favor of a population with a random dis-
tribution of the remaining three types.

Simulation results of the (discrete time) replicator dynamics (Taylor and
Jonker 1978) indeed show that random initial population configurations are
attracted to states with only three player types: (reg, imp), (reg, prc), and
(obj, prc). The relative proportions of these depend on the initial shares in
the population. This variability fully disappears if we add a small mutation
rate to the dynamics. Take a fixed, small mutation rate ε for the probability
that a player’s subjective utility or her subjective belief changes to another
utility or belief. The probability that a player’s subjective representation ran-
domlymutates into a completely different representation with altogether dif-
ferent utility and belief would then be ε 2. With these assumptions about
“component-wise mutations,” numerical simulations of the (discrete time)
replicator mutator dynamics (Nowak 2006) show that already for very small
mutation rates almost all initial population states converge to a single fixed
point in which the majority of players have regret-based utility. For instance,
with ε 5 0:001, almost all initial populations are attracted to a final distribu-
tion with proportions:

(reg, imp) (obj, imp) (reg, prc) (obj, prc)

.289 .021 .398 .289
86/692147 Published online by Ca
mbridge University Press
What this suggests is that, if biological evolution selects behavior-generating
mechanisms, not behavior as such, it need not be the case that behaviorally
equivalent mechanisms are treated equally all the while. If mutation proba-
bilities are a function of individual components, it can be the case that certain
components of such behavior-generating mechanisms are more strongly fa-
vored by a process of randommutation and selection. This is exactly the case
with regret-based preferences. Since regret-based preferences are much bet-
ter in connection with imprecise beliefs than veridical preferences are, the
proportion of expected regret minimizers, (reg, prc), in the attracting state
is substantially higher than that of expected utility maximizers, (obj, prc),
even though these types are behaviorally equivalent.
TABLE 1. AVERAGE EVOLUTIONARY FITNESS FROM MONTE CARLO SIMULATIONS

OF 100,000 SYMMETRIC 2 � 2 GAMES

reg, imp obj, imp reg, prc obj, prc

reg, imp 6.663 6.662 6.663 6.663
obj, imp 6.486 6.484 6.486 6.486
reg, prc 6.663 6.662 6.663 6.663
obj, prc 6.663 6.662 6.663 6.663
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5.2. Analytical Results. Resultsbasedonthesinglemeta-game in table1
are not fully general and possibly spoiled by random fluctuations in the sam-
pling procedure. Fortunately, for the case of 2 � 2 symmetric games, the
main result that maxmin types (obj, imp) are strictly dominated by regret
minimizers can also be shown analytically for considerably general conditions.
7 Publ
Proposition 1 LetGbe the classof 2 � 2 symmetric gamesG 5 (a, b, c, d)
generated by i.i.d. sampling a, b, c, d from a set of values with at least three
elements in the support. Then, (reg, imp) strictly dominates (obj, imp) in the
resulting meta-game.

Proof All proofs are in the appendix.

Corollary 1 Let G be as in proposition 1. If we only consider imprecise
belief types, (obj, imp) and (reg, imp), then the unique evolutionarily sta-
ble state is a monomorphic population of (reg, imp) players.
The result shows that there is support for the main conceptual point that
we wanted to make: objective preference representations are not necessarily
favored by natural selection; objective preferences are outperformed by non-
veridical regret preferences if agents have imprecise beliefs. This tells us that
the main conclusions drawn in the previous section based on the approxi-
matedmeta-game of table 1 holdmore generally for arbitrary 2 � 2 symmet-
ric games with i.i.d. sampled payoffs.

This result presupposes at least occasional imprecise beliefs. The assumed
imprecise beliefs do not need to be maximally uncertain, however. Let the
uncertainty held by a player be defined by a convex compact set of probabil-
ities ½s, t� ⊆D(A) over the coplayer’s actions, where s is the lower probability
and t is the upper probability of action II. We can then prove the following
proposition, which is the analogue of proposition 1 for any possible (not nec-
essarily maximal) degree of uncertainty [s, t], with s ≠ t. There is only one
difference: we are now going to require i.i.d. drawing of a continuous ran-
dom variable with uniform distribution. This is due to the fact that, for arbi-
trarily small intervals [s, t], objective players (obj, [s, t]) and regret players
(reg, [s, t]) can behave as holding a unique probability measure (precise be-
lief) if the underlying payoff space is not dense. The reason for this technical
requirement will become clearer from the proof.
Proposition 2 Let G be the class of symmetric 2 � 2 games generated by
i.i.d. drawing of a continuous random variable with uniform distribution
over any set of values, and fix any imprecise belief [s, t]. Then the only evo-
lutionarily stable state of a population with regret players (reg, [s, t]) and
objective players (obj, [s, t]) is a monomorphic state of (reg, [s, t]) players.
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This tells us that regret-based preferences can outperform objective pref-
erence representations when agents are also capable of learning or otherwise
restricting their assumptions about the coplayer’s behavior as long as there
is, at least on occasion, some imprecision in their beliefs. We will enlarge on
the issue of belief formation after having covered some more relevant exten-
sions in the next section.

6. Extensions. How do the basic results from the previous section carry
over to richer models? Section 6.1 first introduces further conceptually inter-
esting subjective representations that have been considered in the literature.
Section 6.2 then addresses the case of symmetric two-player n � n games
for n ≥ 2. Finally, section 6.3 ends with a brief comparison to the case of sol-
itary decision making.

6.1. More Preference Types. The space of possible preference types is
enormous, and we have only compared regret and objective types so far. Let
us now look at two other types of subjective preferences that have been in-
vestigated, especially in behavioral economics and in evolutionary game the-
ory. A famous example is the altruistic preference (e.g., Becker 1976; Bester
and Güth 1998), summoned to explain the possibility of altruistic behavior.
At the other end of the spectrum, the competitive preference is located. The
two subjective utilities are defined as follows:

1. Altruistic utility: for all G ∈ G, altG(a, a0) 5 pG(a, a0) 2 pG(a0, a);
2. Competitiveutility: forallG ∈ G, comG(a, a0) 5 pG(a, a0) 2 pG(a0, a).7

Table 2 shows results of Monte Carlo simulations that approximate the
expected fitness in the relevant meta-game with all the subjective represen-
tations considered so far. These results confirm basic intuitions about altru-
istic and competitive types: everybody would like to have an altruistic co-
player and nobody would like to play against a competitive player. Perhaps
more surprisingly, (alt, imp) comes up strictly dominated by (com, imp), but
competitive types themselves are worse off against all types except against
maxmin players (obj, imp) than any of the behaviorally equivalent types
(reg, imp), (obj, prc), and (reg, prc). It is thus easy to see that the previous re-
7. A more general formulation would be to define a-altruistic utility, for a ∈ ½0, 1�,
uG
a (a, a

0) 5 pG(a, a0) 1 apG(a0, a). Since we are not interested in the evolution of de-
grees of altruism, here we simply fix a 5 1. Analogously for a-competitive utilities
too. Other possible generalizations could also take into account combinations of all these
preferences with different decision rules. Maximax, minimax, and minimin, for exam-
ple, would be possible rules for choice. Here we opted for maxmin because we were spe-
cifically interested in comparing maxmin and regret minimization, as these are two ma-
jor alternatives for decision making.
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sults still obtain for the larger meta-game in table 2: (reg, imp), (obj, prc), and
(reg, prc) are still neutrally stable; simulation runs of the (discrete-time)
replicator dynamics on the 8 � 8 meta-game from table 2 end up in popula-
tion states consisting of only these three types in variable proportion. In sum,
the presence of other subjective representations, such as those based on al-
truistic or competitive utilities, does not undermine, but rather strengthens,
our previous results.

6.2. More Actions. Results from section 5 relied heavily on fact 2,
which is no longer true when we look at arbitrary n � n games. Table 3 gives
approximations of expected fitness in the class of n � n symmetric games.
Concretely, the numbers in table 3 are averages of evolutionary payoffs ob-
tained in 100,000 randomly sampled symmetric games, where each fitness
game G was sampled by first picking a number of acts nG ∈ f2, :::10g uni-
formly at random, and then filling the necessary nG � nG payoff matrix with
i.i.d. sampled numbers, as before.
TABLE 2. AVERAGE EVOLUTIONARY FITNESS FROM MONTE CARLO SIMULATIONS

OF 100,000 SYMMETRIC 2 � 2 GAMES

(reg,
imp)

(obj,
imp)

(com,
imp)

(alt,
imp)

(reg,
prc)

(obj,
prc)

(com,
prc)

(alt,
prc)

(reg, imp) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489
(obj, imp) 6.486 6.484 6.088 6.703 6.486 6.486 6.088 6.875
(com, imp) 6.323 6.758 5.496 6.977 6.323 6.323 5.496 7.149
(alt, imp) 5.949 5.722 5.326 6.396 5.949 5.949 5.326 6.568
(reg, prc) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489
(obj, prc) 6.663 6.662 5.829 7.105 6.663 6.663 5.829 7.489
(com, prc) 6.323 6.758 5.496 6.977 6.323 6.323 5.496 7.149
(alt, prc) 6.331 5.893 5.497 6.566 6.331 6.331 5.497 7.152
7 Published onlin
e by Cambr
idge Univers
ity Press
TABLE 3. AVERAGE EVOLUTIONARY FITNESS FOR 100,000 RANDOMLY GENERATED N � N

SYMMETRIC GAMES WITH N RANDOMLY DRAWN FROM {2, ..., 10}

(reg,
imp)

(obj,
imp)

(com,
imp)

(alt,
imp)

(reg,
prc)

(obj,
prc)

(com,
prc)

(alt,
prc)

(reg, imp) 6.567 6.570 5.650 6.992 6.564 6.564 5.593 7.409
(obj, imp) 6.476 6.483 5.896 6.818 6.484 6.484 5.850 7.124
(com, imp) 6.468 6.647 5.512 7.169 6.578 6.578 5.577 7.354
(alt, imp) 5.968 5.923 5.363 6.685 5.975 5.975 5.086 6.973
(reg, prc) 6.908 6.918 5.988 7.456 6.929 6.929 5.934 7.783
(obj, prc) 6.908 6.918 5.988 7.456 6.929 6.929 5.934 7.783
(com, prc) 6.529 6.680 5.445 7.276 6.542 6.542 5.521 7.440
(alt, prc) 6.450 6.337 5.772 6.978 6.457 6.457 5.479 7.500
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The most important result is that the regret-minimizing type (reg, imp) is
strictly dominated by (reg, prc) and by (obj, prc) in the meta-game from ta-
ble 3. This means that while simple regret minimization can thrive in some
evolutionary contexts, there are also contexts where it is demonstrably worse
off. While this may be bad news for regret-minimizing types (reg, imp), it is
not the case that regret types as such are weeded out by selection. Since, by
fact 1, (reg, prc) and (obj, prc) are behaviorally equivalent in general, it re-
mains that selection based on meta-games constructed from n � n games
will still not eradicate regret preferences.

On the other hand, there are plenty of ways in which the basic insights
from propositions 1 and 2 can make for situations in which evolution would
favor regret types, even in n � n games. If, for example, the belief of a player
is a trait that biological evolution has no bite on, but rather something that
the particular choice situation would exogenously give us (possibly because
of the different amount of information available in different choice situa-
tions), then regret-based preferences can again drive out veridical prefer-
ences altogether. For example, suppose that only preference representations
compete and that agents’ beliefs are exogenously given, in such a way that
both players hold precise (Bayesian) uniform beliefs with probability p and
they both have maximally imprecise beliefs otherwise. This transforms the
meta-game from table 3 into a simpler 4 � 4 meta-game in which the payoff
obtained by a subjective preference is the weighted average over the payoffs
of the subjective representations including that preference in table 3. Setting
p 5 :98 for illustration, we get the meta-game in table 4. The only evolu-
tionarily stable state of this meta-game is again a monomorphic population
of regret types. Accordingly, all our simulation runs of the (discrete-time)
replicator dynamics converge to monomorphic regret-type populations. The
reasonwhy regret-based utilities prosper is because they have a substantialfit-
ness advantage when paired with imprecise beliefs (propositions 1 and 2). If
unmeasurable uncertainty is exogenously given as something that happens
to agents because of the information available in some choice situations, and
even if that happens only very infrequently (i.e., for rather low p), regret pref-
erences will outperform objective preferences, as well as competitive and al-
truistic preferences.
TABLE 4. META-GAME FOR THE EVOLUTIONARY COMPETITION BETWEEN SUBJECTIVE
UTILITIES WHEN BELIEFS ARE EXOGENOUSLY GIVEN (SEE MAIN TEXT)

reg obj com alt

reg 6.926 6.926 5.942 7.757
obj 6.924 6.924 5.948 7.751
com 6.566 6.570 5.481 7.434
alt 6.463 6.461 5.478 7.469
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6.3. Solitary Decisions. To see how different choice mechanisms be-
have in evolutionary competition based on solitary decision making, we ap-
proximated, much in the spirit of meta-games, average accumulated fitness
obtained in randomly generated solitary decision problems. For our pur-
poses, a decision problem D 5 hW , A, pDi consists of a set of states of the
world W, a set of acts A, and a payoff function pD :W � A→R. We gen-
erate arbitrary decision problems by selecting, uniformly at random, num-
bers of states and acts nD

w, n
D
a ∈ f2, :::, 10g and then filling the payoff table,

so to speak, by i.i.d. samples for each pD(w, a) ∈ f0, 10g. Unlike with two-
player games, we need to also sample the actual state of the world, which we
selected uniformly at random from the available states in the current decision
problem. Accordingly, the fitness of choice mechanism c in decision prob-
lem D is given by:

FD cð Þ 5 pD w, a*c uD
c , Gcð Þð Þ�m wð Þ,

with �m(w) 5 1=nD
w for all w. As subjective representations, we considered

the original cast of four from table 1, since altruistic and competitive types
are meaningless in solitary decision situations. As before, the relevant fit-
ness measure, defined in equation (3), was approximated by Monte Carlo
simulations, the results of which are given in table 5.

F cð Þ 5
ð
FD cð ÞdPD Dð Þ: (3)

Facts 1 and 2 still apply: (reg, prc) and (obj, prc) are behaviorally equivalent
in general, and (reg, imp) is behaviorally equivalent to the former two in de-
cision problems with two states and two acts. This shows in the results from
table 5 in that the averages for (reg, prc) and (obj, prc) are identical. But since
we included decision problems with more acts and more states as well, the
average for regret minimizers (reg, imp) is not identical to the one of (reg,
prc) and (obj, prc). It is, in fact, lower, but again not as low as that of (obj,
imp).

This means that every relevant result we have seen about game situations
is also borne out for solitary decisions. Evolutionary selection based on ob-
jective fitness will not select against regret preferences, as these are indis-
tinguishable from veridical preferences when paired with precise beliefs.
But when paired with imprecise beliefs, regret-based utilities outperform
objective utilities. Consequently, if there is a chance, however small, that
TABLE 5. EXPECTED FITNESS OF CHOICE MECHANISMS APPROXIMATED FROM

100,000 SIMULATED SOLITARY DECISION PROBLEMS (SEE MAIN TEXT)

(reg, imp) (obj, imp) (reg, prc) (obj, prc)

6.318 6.237 6.661 6.661
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agents fall back on imprecise beliefs, evolution will actually positively se-
lect for nonveridical regret-based preferences.

6.4. Sophisticated Beliefs. Since one of our main purposes was to illus-
trate the usefulness of a meta-game approach by the case study of objective
and regret preferences, we have partially neglected an important and inter-
esting issue, namely, the evolution of ways of forming beliefs about coplay-
ers’ behavior or the actual state of the world. For reasons of space we must,
unfortunately, leave a deeper exploration of belief type evolution to another
occasion. Two remarks are in order nonetheless. First, belief type evolution
can be studied without conceptual hurdles in the meta-game framework, so
that there is no principled argument against the main methodological contri-
bution of this article. Second, our results regarding the comparison between
regret and objective types remain to be informative, even if we allow agents
to learn or reason strategically.8 This is because we know from fact 1 that re-
gret and objective preferences come up behaviorally equivalent when paired
with precise probabilistic beliefs (given identical decision rule). This holds
no matter what the content of that belief is. So, if learning, reasoning, or sta-
tistical knowledge about a recurrent situation can be brought to bear, this will
not make evolution select against regret-based preferences. If, on the other
hand, agents resort to imprecise beliefs at least occasionally (e.g., when they
are unaware of the coplayer or her utilities or when strategic reasoning can-
not reduce all uncertainty about the coplayer’s choice), then regret-based
preferences can be favored by natural selection over objective preferences.

7. Conclusion. The assumption that players and decision makers maxi-
mize their (subjective) utility is central through all economic literature, and
the maximization of actual (objective) payoffs is often justified by appealing
to evolutionary arguments and natural selection. In contrast to the standard
view, we showed the existence of player types with subjective utilities differ-
ent from the actual evolutionary payoffs that can outperform types whose
subjective utilities coincide with the evolutionary payoffs. Here the claim
is not that regret preferences are the best on the market, but rather that util-
ities that perfectly mirror evolutionary fitness can be outclassed by subjec-
tive utilities that differ from the objective fitness.While the literature on evo-
lution of preferences has focused on fixed games, we have adopted a more
general approach here. We suggested that attention to “meta-games” is cru-
cial, because what may be a good subjective representation in one type of
game (e.g., cooperative preferences in the Prisoner’s Dilemma) need not
be generally beneficial.
8. Some research has recently been done along these lines. See, in particular, Mengel
(2012), Mohlin (2012), and Robalino and Robson (2016).
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Appendix

Proofs

The proof of proposition 1 relies on a partition of G, and on some lemmas.
For brevity, let us denote the regret minimizer (reg, imp) by R and the
maximinimizer (obj, imp) by M. Following equation (1), let FG(X , Y ) de-
note the expected payoff of choice mechanism X against choice mechanism
Y on the possibly restricted class of fitness games G.
Proof of Proposition 1. By definition of strict dominance, we have to show
that in the class G of symmetric 2 � 2 games with payoffs sampled from a
set of i.i.d. values with at least three elements in the support, it holds that:

(i) FG(R, R) > FG(M , R);
(ii) FG(M ,M ) < FG(R,M ):

To show this we use the following partition of G, based on payoffs param-

etrized as follows:
7 Published online by Cambridge University
I II

I a b
II c d
 Press
1. Coordination games C: a > c and d > b;
2. Anticoordination games A: a < c and d < b;
3. Strong dominance games S: aut (a > c and b > d ) aut (a < c and

b < d);
4. Weak dominance games W: aut a 5 c aut b 5 d;
5. Boring games B: a 5 c and b 5 d.

Before proving the lemmas, it is convenient to fix some notation. Let us call
x, y, z the three elements in the support, and without loss of generality sup-
pose that x > y > z. We denote by C a coordination game in C with payoffs
aC, bC, cC, and dC; similarly for games A ∈ A, S ∈ S, W ∈ W, and B ∈ B.
Let us denote by IRC the event that a R-player plays action I in the game C;
and similarly for action II, for player M, and for games A, S, W, and B. We
first consider the case of i.i.d. sampling with finite support.

Lemma 1
R and M perform equally well in S and in B.
Proof
By definition of regret minimization andmaxmin it is easy to check that when-
ever in a game there is a strongly dominant action a$, then a$ is both the max-
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min action and the regret-minimizing action. Then, for all the games in S, R
chooses action a if and only if M chooses action a. Consequently, R and M
always perform equally (well) in S. In the case of B it is trivial to see that
all the players perform equally. QED

Lemma 2
In W, R strictly dominates M.

Proof
Assume without loss of generality that b 5 d, and that a > c. There are two
cases that we have to check: (i) c < b 5 d and (ii) c ≥ b 5 d. In the first case
it is easy to see that R andM perform equally: act I is the choice of both R and
M. In the case of (ii) instead we have that I is the regret-minimizing action,
whereas both actions have the same minimum and M plays ((1=2)I; (1=2)II),
since both I and II maximize the minimal payoff. Consider now a population
of R and M playing games from the class W. Whenever (i) is the case R and
M perform equally well. But suppose W ∈ W and (ii) is the case. Then,
pW (R, R) 5 a > (1=2)a 1 (1=2)c 5 pW (M , R), whereas

pW M ,Mð Þ 5 1

4
a 1

1

4
b 1

1

4
c 1

1

4
d <

1

2
a 1

1

2
b 5 pW R,Mð Þ:

Hence, we have that in general FW(R, R) > FW(M , R), and FW(M ,M ) <
FW(R,M ). QED

Since it is not difficult to see that both (R, R) and (M, M) are strict Nash
equilibria in C, and that (R, R) and (M, M) are not Nash equilibria in A, the
main part of the proof will be to show that R strictly dominates C in the class
C [ A, that is:

(i0) FC[A(R, R) > FC[A(M , R),
(ii0) FC[A(M ,M ) < FC[A(R,M ):

This part needs some more lemmas to be proven, but first we introduce
the following bijective function ɸ between coordination and anticoordina-
tion games.

Definition 3 (ɸ)
The permutation ɸ(a, b, c, d ) 5 (c, d, a, b) defines a bijective function
ɸ : C→A that for each coordination game C ∈ C with payoffs (aC, bC, cC,
dC) gives the anticoordination game A ∈ A with payoffs (aA, bA, cA, dA) 5
(cC, dC, aC, bC). Essentially, ɸ swaps rows in the payoff matrix.
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Lemma 4
Occurrence probability of C equals that of ɸ (C): P(ɸ(C) 5 P(C).

Proof
By definition, each game C ; (aC,  bC,  cC,  dC) is such that aC > cC  and
dC > bC, and each game A ; (aA,  bA,  cA,  dA) is such that aA < cA and dA <
bA. Given that a, b, c, d are i.i.d. random variables and that a sequence of
i.i.d. random variables is exchangeable, it is clear that the probability of (aC, bC,
cC, dC) equals the probability of (cC, dC, aC, bC). Hence, P(ɸ(C)) 5 P(C). QED

Lemma 5
Let P(E) be the probability of event E, for example, P(IRC) is the probability
that a random R-player plays act I in coordination game C, which is either 0,
.5, or 1. It then holds that:
ublish
• P(IRC) 5 P(IIRɸ(C)), and P(IIRC) 5 P(IRɸ(C));
• P(IMC) 5 P(IIMɸ(C)), and P(IIMC) 5 P(IMɸ(C)).
Proof
It is easy to check that if bC 2 dC > cC 2 aC, an R-player plays action I in
C; that if bC 2 dC < cC 2 aC, R plays II; and that if bC 2 dC 5 cC 2 aC, an
R-player is indifferent between I and II in C, and so randomizes with
((1=2)I; (1=2)II). Similarly, if aA 2 cA > dA 2 bA, an R-player plays action I
in A; if aA 2 cA 5 dA 2 bA, R plays II; and if aA 2 cA 5 dA 2 bA, an R-player
is indifferent between I and II in A, and randomizes with ((1=2)I; (1=2)II).
Consequently, if bC 2 dC > cC 2 aC, then P(IRC) 5 1, and by definition of
ɸ we have P(IIRɸ(C)) 5 1. Likewise, if bC 2 dC < cC 2 aC, then P(IIRC) 5
1 5 P(IRɸ(C)); and if bC 2 dC 5 cC 2 aC, then P(IRC) 5 P(IIRC) 5 1=2 5
P(IIRɸ(C)) 5 P(IRɸ(C)).

In the same way, in coordination games we have that if bC > cC, an M-
player plays I; if cC > bC, an M-player plays II; and if bC 5 cC, M is in-
different between I and II and plays ((1=2)I; (1=2)II). In anticoordination
games instead, if aA > dA, M plays I; if aA 5 dA, M plays II; if aA 5 dA,
M plays ((1=2)I; (1=2)II). By definition of ɸ:P(IMC) 5 1 5 P(IIMɸ(C)) if bC >
cC; P(IIMC) 5 1 5 P(IMɸ(C)) if cC > bC; and P(IMC) 5 P(IIMC) 5 1=2 5
P(IIMɸ(C)) 5 P(IMɸ(C)) if bC 5 cC. QED

Lemma 6
It holds that:
• aC > dC →(IMC ⊆ IRC);
• aC 5 dC → IMC 5 IRC .
• aC < dC →(IIMC ⊆ IIRC);
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Proof
The event that R plays action I, IRC, with positive probability is the event that
bC 2 dC ≥ cC 2 aC: if bC 2 dC > cC 2 aC, R plays I, and if bC 2 dC 5 cC 2
aC, R plays ((1=2)I; (1=2)II). Similarly, the event that IMC has positive occur-
rence is the event that bC ≥ cC: if bC > cC,M plays I, and if bC 5 cC,M plays
((1=2)I; (1=2)II). Then, IRC implies that bC 2 dC ≥ cC 2 aC, and IMC implies
that bC ≥ cC . Moreover, on the assumption that aC > dC , it is easy to check
that bC ≥ cC implies bC 2 dC > cC 2 aC. Hence, in any C with aC > dC it
holds that IMC implies IRC, that is, aC > dC → (IMC ⊆ IRC). Instead, it is pos-
sible that aC > dC, bC 2 dC > cC 2 aC, and bC < cC hold simultaneously,
so that IMC ⊉ IRC. By a symmetric argument it can be shown that aC >
dC → (IIMC ⊆ IIRC) too. Finally, when aC 5 dC it holds that: bC 2 dC > cC2
aC iff bC > cC; bC 2 dC < cC 2 aC iff bC < cC; and bC 2 dC 5 cC 2 aC iff
bC 5 cC . Hence, aC 5 dC → IMC 5 IRC . QED

We are now ready to prove that FC[A(R, R) > FC[A(M , R). With nota-
tion like P(IRC \ IRC) denoting the probability that a random R-player plays
I and another R-player plays I as well in game C, rewrite the inequality
as:

o
C∈C

P Cð Þ ½ P IRC \ IRCð Þ � aC 1 P IIRC \ IIRCð Þ � dC 1 P IRC \ IIRCð Þ � bC

1 P IIRC \ IRCð Þ � cC� 1 o
A∈A

P Að Þ ½ P IRA \ IRAð Þ � aA 1 P IIRA \ IIRAð Þ
� dA 1 P IRA \ IIRAð Þ � bA 1 P IIRA \ IRAð Þ � cA�

> o
C∈C

P Cð Þ ½ P IRC \ IMCð Þ � aC 1 P IIRC \ IIMCð Þ � dC 1 P IRC \ IIMCð Þ
� cC 1 P IIRC \ IMCð Þ � bC� 1 o

A∈A
P Að Þ ½ P IRA \ IMAð Þ � aA

1 P IIRA \ IIMAð Þ � dA 1 P IRA \ IIMAð Þ � cA 1 P IIRA \ IMAð Þ � bA�:

By lemma 4 and lemma 5, we can express everything in terms of C only:

o
C

P Cð Þ ½ P IRC \ IRCð Þ � aC 1 P IIRC \ IIRCð Þ � dC 1 P IRC \ IIRCð Þ � bC

1 P IIRC \ IRCð Þ � cC 1 P IIRC \ IIRCð Þ � cC 1 P IRC \ IRCð Þ � bC

1 P IIRC \ IRCð Þ � dC 1 P IRC \ IIRCð Þ � aC�
> o

C

P Cð Þ 2½ P IRC \ IMCð Þ � aC 1 P IIRC \ IIMCð Þ � dC 1 P IRC \ IIMCð Þ � cC
1 P IIRC \ IMCð Þ � bC 1 P IIRC \ IIMCð Þ � cC 1 P IRC \ IMCð Þ � bC

1 P IIRC \ IMCð Þ � aC 1 P IRC \ IIMCð Þ � dC�
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This simplifies to:

o
C

P Cð Þ ½ aC � P IRC \ IRCð Þ 1 P IRC \ IIRCð Þð Þ 1 bC � P ðIRC \ IIRCð Þ

1 P IRC \ IRCð ÞÞ 1 cC � P IIRC \ IRCð Þ 1 P IIRC \ IIRCð Þð Þ 1 dC

� P IIRC \ IIRCð Þ 1 P IIRC \ IRCð Þð Þ�

> o
C

P Cð Þ ½ aC � P ð IRC \ IMCð Þ 1 P IIRC \ IMCð ÞÞ 1 bC

� P IIRC \ IMCð Þ 1 P IRC \ IMCð Þð Þ 1 cC

� P IRC \ IIMCð Þ 1 P IIRC \ IIMCð Þð Þ 1 dC

� ðP IIRC \ IIMCð Þ 1 P IRC \ IIMCð ÞÞ�:
Now let us split into a > d and a < d, and consider a > d first. Notice that,
by lemma 6, the case a 5 d is irrelevant in order to discriminate between R
and M. If a > d, by lemma 6 we can eliminate the cases where R plays II
andM plays I:

o
Ca>d

P Cð Þ aC � P IRC \ IRCð Þ 1 P IRC \ IIRCð Þ 2 P IRC \ IMCð Þð Þ½

1 bC � P IRC \ IIRCð Þ 1 P IRC \ IRCð Þ 2 P IRC \ IMCð Þð Þ
1 cC � P IIRC \ IRCð Þ 1 P IIRC \ IIRCð Þ 2 P IRC \ IIMCð Þ 2 P IIRC \ IIMCð Þð Þ
1 dC � P IIRC \ IIRCð Þ1 P IIRC \ IRCð Þ 2 P IIRC \ IIMCð Þ 2 P IRC \ IIMCð Þð Þ�
> 0:

We now distinguish between two cases: (1) a 2 c 5 d 2 b and (2) a 2 c ≠
d 2 b.Notice thatP(IRC \ IIRC) ≠ 0ifandonly ifcase (1)obtains,and thata >
d and (1) imply IIMC. Then, from (1) we have:9

o
Ca>d

P Cð Þ
�
aC � 1

4
1

1

4

� �
1 bC � 1

4
1

1

4

� �
1 cC � 1

4
1

1

4
2

1

2
2

1

2

� �

1 dC � 1

4
1

1

4
2

1

2
2

1

2

� ��
> 0:
9. Note that when we have only 3 elements in the support it is not guaranteed that case
(1), together with a > d, may arise in a coordination game, whereas it is guaranteed that
case (2), together with a > d, occurs with some positive probability. If we take for in-
stance x 5 5, y 5 2, z 5 1, then case (1) cannot obtain, whereas if we take x 5 3, y 5 2,
z 5 1, both (1) and (2) may obtain (a 5 3, b 5 1, c 5 2, d 5 2 for case (1), and a 5 3,
b 5 1, c 5 2, d 5 2 for case (2)). Moreover, under the assumption that a > d, having
three elements in the support is a necessary and sufficient condition for case (2) to have
positive occurrence in a coordination game. As it will be clear in the following, a positive
occurrence of case (2) only is enough for the theorem to hold.
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Since we have assumed a 2 c 5 d 2 b, the last inequality is not satisfied.
We have instead:

o
Ca>d

P Cð Þ 1

2
aC 1

1

2
bC 2

1

2
cC 2

1

2
dC

� �
5 0:

This means that where aC > dC and where (1) is the case, R andM are equally
fit. This changes when we turn to (2). In that case, since aC > dC → (IMC ⊂
IRC) by lemma 6, we have that P(IRC \ IRC) 2 P(IRC \ IMC) 5 P(IRC \ IIMC).
Moreover, when aC > dC, bC ≥ cC implies bC 2 dC > cC 2 aC (see lemma 6).
Consequently, when M plays either I or ((1=2)I; (1=2)II), R always plays I.
Hence, whenever aC > dC and (2) obtain, it also holds that P(IIRC \ IIMC) 5
P(IIRC \ IIRC). In this case we can simplify to:

o
Ca>d

P Cð Þ P IRC \ IIMCð Þ � aC 1 bC 2 cC 2 dCð Þ½ � > 0:

Weknowthat IRC implies thataC 2 cC ≥ dC 2 bC.Sincewehaveassumedthat
aC 2 cC ≠ dC 2 bC, we have that aC 2 cC > dC 2 bC. Hence, the inequality

o
Ca>d

P Cð Þ P IRC \ IIMCð Þ � aC 1 bC 2 cC 2 dCð Þ½ � > 0

is satisfied. So, when aC > dC, R strictly dominatesM. Symmetrically, from
a < d and by distinguishing between the two cases (1) and (2) as before, in
the end we get:

(1) oCa<d
P(C)

�
2 1

2 aC 2 1
2 bC 1 1

2 cC 1 1
2 dC

	
5 0; and

(2) oCa<d
P(C)½P(IIRC \ IMC) � (2aC 2 bC 1 cC 1 dC)� > 0.

Hence, we can conclude that R strictly dominates M in the class C [ A.
It remains to be shown that FC[A(M ,M ) < FC[A(R,M ). As before, spell

this out as:

o
C

P Cð Þ½P IMC \ IMCð Þ � aC 1 P IIMC \ IIMCð Þ � dC

1 P IMC \ IIMCð Þ � bC 1 P IIMC \ IMCð Þ � cC�
1o

A

P Að Þ ½P IMA \ IMAð Þ � aA 1 P IIMA \ IIMAð Þ � dA

1 P IMA \ IIMAð Þ � bA 1 P IIMA \ IMAð Þ � cA�
< o

C

P Cð Þ½P IRC \ IMCð Þ � aC 1 P IIRC \ IIMCð Þ � dC

1 P IRC \ IIMCð Þ � bC 1 P IIRC \ IMCð Þ � cC�
1o

A

P Að Þ ½P IRA \ IMAð Þ � aA 1 P IIRA \ IIMAð Þ � dA

1 P IRA \ IIMAð Þ � bA 1 P IIRA \ IMAð Þ � cA�:
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Similarly to the above derivation, we consider a > d first, and we now dis-
tinguish between (1) b 5 c, (2) b > c, and (3) b < c. Notice that either (1)
or (2), together with a > d, implies IRC. Then we obtain:10

(1)

o
Ca>d

P Cð Þ 2
1

2
aC 2

1

2
bC 1

1

2
cC 1

1

2
dC

� �
< 0;

(2)
oCa>d

P(C)½aC � (P(IMC \ IMC) 2 P(IRC \ IMC)) 1 bC

� (P(IMC \ IMC) 2 P(IRC \ IMC))� 5 0;
10.
sib
pur

7 Pu
(3)
oCa>d

P(C)½aC � (2P(IRC \ IIMC)) 1 bC � (2P(IRC \ IIMC))
1 cC � (P(IIMC \ IIMC) 2 P(IIRC \ IIMC)) 1 dC

� (P(IIMC \ IIMC) 2 P(IIRC \ IIMC))� ≤ 0:
When a < d, the derivation proceeds symmetrically and we get:

(1)

o
Ca<d

P Cð Þ 1

2
aC 1

1

2
bC 2

1

2
cC 2

1

2
dC

� �
< 0;

(2)
oCa<d

P(C)½aC � (P(IMC \ IMC) 2 P(IRC \ IMC)) 1 bC

� (P(IMC \ IMC) 2 P(IRC \ IMC)) 1 cC � (2P(IIRC \ IMC))
1 dC � (2P(IIRC \ IMC))� ≤ 0;
(3)
oCa<d

P(C)½cC � (P(IIMC \ IIMC) 2 P(IIRC \ IIMC)) 1 dC

� (P(IIMC \ IIMC) 2 P(IIRC \ IIMC))� 5 0.

Finally, we can conclude that FC[A(M ,M ) < FC[A(R,M ).
When we have i.i.d. sampling with continuous support, games inW and

B never occur, and the proof for the other cases reduces to the proof of prop-
osition 2 for s 5 0 and t 5 1.

Proof of Proposition 2. As shown in figure A1a, given a game (a, b, c, d ),
action I corresponds to the line a 1 (b 2 a)x, while action II corresponds to
the line c 1 (d 2 c)x. The slope of action I is then (b 2 a), and the slope of
action II is (d 2 c). Action I is steeper than action II if jb 2 aj > jd 2 cj,
and action II is steeper than action I if the reverse of the last inequality
Note that here, when we only have three elements in the support, case (2) is impos-
le, but cases (1) and (3) can occur with positive probability, and this enough for our
pose.
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holds. Given a belief G 5 ½s, t�, let us define
a0 ≔ 1 2 sð Þa 1 sb 5 a 1 s b 2 að Þ
b0 ≔ 1 2 tð Þa 1 tb 5 a 1 t b 2 að Þ
c0 ≔ 1 2 sð Þc 1 sd 5 c 1 s d 2 cð Þ
d0 ≔ 1 2 tð Þc 1 td 5 c 1 t d 2 cð Þ:

(4)

Next, type R is indifferent between the two acts if

c 2 a

c 2 a 1 b 2 d
2 s 5 t 2

c 2 a

c 2 a 1 b 2 d

and prefers I over II if

c 2 a

c 2 a 1 b 2 d
2 s < t 2

c 2 a

c 2 a 1 b 2 d
:

For succinctness, let us abbreviate Z ≔ c 2 a 1 b 2 d. Whenever jd 2
cj > jb 2 aj and ½(c 2 a)=Z� 2 s ≤ t 2 ½(c 2 a)=Z�, it is the case that a0 >
d0, so that M prefers I over II. Indeed, when s 5 t 5 (c 2 a)=Z, we have
that a0 5 d0 5 (cb 2 ad)=Z. When we enlarge the interval G by moving
s to the left of (c 2 a)=Z and t to the right of (c 2 a)=Z by the same extent,
such that ½(c 2 a)=Z� 2 s 5 t 2 ½(c 2 a)=Z�, we get that a0 > d0, since a0

moved by

a 2 bð Þ c 2 a

Z
2 s


 �

while d 0 moved by
Figure A1. Examples of coordination game C and corresponding anticoordination
game w(C).
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d 2 cð Þ t 2
c 2 a

Z


 �
:

Consequently, in a game where action II is steeper than action I, the only
possible way in which the two types can differ is M playing I and R play-
ing II, since we will never observe M playing II and R playing I in such
games. By a similar argument, when action I is steeper than action II, the
only possible way in which the two types can differ is M playing II and
R playing I. Hence, whenever one of the actions is steeper than the other,
the two types can differ in only one of the two possible ways. Finally, when
action I and action II are equally steep, jd 2 cj 5 jb 2 aj, then one type
strictly prefers one action if and only if the other type does too. We say that
a game is relevant if the two types play different actions.

Since the two cases are symmetric, consider the case jd 2 cj 5 jb 2 aj.
Suppose that c and d have been drawn such that c < d. For jd 2 cj 5 jb 2 aj
to hold, the game has to be a coordination game, otherwise we would have
b 5 d and c 5 a, so jd 2 cj < jb 2 aj.

If the game is a coordination game, the two types choose differently if
and only if

s <
c 2 a

Z
<
s 1 t

2

and

b0 > c0:

Consider all the points P ∈ (s, (s 1 t)=2). Each of these points can be ex-
pressed as a linear combination:

ks 1 n 2 kð Þt
n

,

for k > (n=2). By simple algebra, for each point in P ∈ (s, ½(s 1 t)=2�) and
c < d, the point

c 1
ks 1 n 2 kð Þt

n
d 2 cð Þ

expresses the expected value of action II for

P 5
ks 1 n 2 kð Þt

n
,

that is, it is the y-value of the line corresponding to action II when

x 5
ks 1 n 2 kð Þt

n
:
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Then, given a two-dimensional point (x0, y0), the sheaf of lines passing
through that point is defined by all the equations

y 2 y0 5 m x 2 x0ð Þ
for m ∈ R. (The vertical line m 5 ∞ is excluded from the sheaf, but it is not
relevant for the proof.) Consequently, given the two-dimensional point

ks 1 n 2 kð Þt
n

, c 1
ks 1 n 2 kð Þt

n
d 2 cð Þ

� �
,

the sheaf of lines passing through that point is defined by the set of equa-
tions, for m ∈ R:

y 5 m x 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ:

If, for each equation in the set, we define

a⋄ ≔ m 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ

b⋄ ≔ m 1 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ
, (5)

then each equation corresponds to a possible game
86/692147 Published online by Cambridge U
I II

I a⋄ b⋄
II c d
niversity P
ress
such that

c 2 a⋄

c 2 a⋄ 1 b⋄ 2 d
5

ks 1 n 2 kð Þt
n

:

By algebraic computations, the condition d 2 c > ja⋄ 2 b⋄j is equivalent to
mj j < d 2 c:

Moreover, among the coordination games such that d 2 c > ja⋄ 2 b⋄j, the
relevant ones are those that also satisfy b0 > c0, otherwise typeM would not
(strictly) prefer I over II. If we rewrite a0, b0, c0, d0 as in equation (4), then the
inequality b0 > c0 reduces to

m
k

k 2 n

� �
< d 2 c:
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By symmetric arguments, whenever c > d, the only possible relevant
games for the same interval [s, t] are anticoordination games for which

s 1 t

2
<
c 2 a

Z
< t,

and such that c 2 d > ja 2 bj, and that a0 > d0. Similarly, for k < n=2,
these correspond to all games

y 5 m x 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ

such that

mj j < c 2 d

and

m
k 2 n

k

� �
> d 2 c:

Consider now the following bijective function w : C → A between coor-
dination and anticoordination games, that, for d > c, associates the coordi-
nation game

y 5 m x 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ

with the anticoordination game

y 5 2m x 2
n 2 kð Þs 1 kt

n

� �
1 d 1

n 2 kð Þs 1 kt

n
c 2 dð Þ:

Essentially, w changes c to d, m to 2m, and k to n 2 k. In particular, note
that w is a bijection that, for a fixed interval [s, t], sends relevant coordina-
tion games to relevant anticoordination games. Figure A1 gives a graphical
example of the bijection.

We can then pair these two games and consider the average fitness in {C,
w(C )} of (reg, [s, t]) against (reg, [s, t]), and then compare it to the fitness of
(obj, [s, t]) against (reg, [s, t]), denoted respectively byM and R henceforth.
In the pair of relevant games C and w(C), R strictly dominates M if

F C,w Cð Þf g R, Rð Þ > F C,w Cð Þf g M , Rð Þ
and

F C,w Cð Þf g R,Mð Þ > F C,w Cð Þf g M ,Mð Þ:
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Consider the first inequality. Since both C and w(C ) are relevant with re-
spect to the interval [s, t], it implies that FfC,w(C)g(R, R) 5 d 1 c, and
FfC,w(C)g(M , R) 5 b⋄ 1 w(b⋄). Therefore, the first inequality is equivalent to

d 1 c

2
>
b⋄ 1 w b⋄ð Þ

2
,

which can be spelled out as

d 1 c > m 1 2
ks 1 n 2 kð Þt

n

� �
1 c 1

ks 1 n 2 kð Þt
n

d 2 cð Þ

2 m 1 2
n 2 kð Þs 1 kt

n

� �
1 d 1

n 2 kð Þs 1 kt

n
c 2 dð Þ:

After some computations, the previous inequality boils down to

d 2 c > m,

which we know is the case, since we have seen that the condition d 2 c >
ja⋄ 2 b⋄j is equivalent to d 2 c > jmj.

Finally, from the previous argument it follows that, for any given interval
[s, t], if we consider the set of all relevant coordination games, is denote it
by Cr, and the set of all relevant anticoordination games Ar, then it holds
that

F Cr[Arf g R, Rð Þ > F Cr[Arf g M , Rð Þ:
Let us now check that the second inequality for R to strictly dominate M
also holds. In {C, w(C)}, that is equivalent to

d 1 c > a⋄ 1 w a⋄ð Þ,
which amounts to m < d 2 c. As before, it then follows that

F Cr[Arf g R,Mð Þ > F Cr[Arf g M ,Mð Þ:
Therefore, R strictly dominates M.
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