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Under the action of solid body rotation, homogeneous neutrally stratified turbulence
undergoes anisotropization and onset of the inverse energy cascade. These processes
are investigated using a quasi-normal scale elimination (QNSE) theory in which
successive coarsening of a flow domain yields scale-dependent eddy viscosity and
diffusivity. The effect of rotation increases with increasing scale and manifests
in anisotropization of the eddy viscosities, eddy diffusivities and kinetic energy
spectra. Not only the vertical (in the direction of the vector of rotation Ω) and
horizontal eddy viscosities and eddy diffusivities become different but, reflecting
both directional and componental anisotropization, there emerge four different eddy
viscosities. Three of them decrease relative to the eddy viscosity in non-rotating flows
while one increases; the horizontal ‘isotropic’ viscosity decreases at the fastest rate.
This behaviour is indicative of the increasing redirection of the energy flux to larger
scales, the phenomenon that can be associated with the energy backscatter or inverse
energy cascade. On scales comparable to the Woods’s scale which is the rotational
analogue of the Ozmidov length scale in stably stratified flows, the horizontal viscosity
rapidly decreases, and in order to keep it positive, a weak rotation limit is invoked.
Within that limit, an analytical theory of the transition from the Kolmogorov to a
rotation-dominated turbulence regime is developed. It is shown that the dispersion
relation of linear inertial waves is unaffected by turbulence while all one-dimensional
energy spectra undergo steepening from the Kolmogorov −5/3 to the −3 slope.

Key words: rotating flows, turbulence theory

1. Introduction
Rotating turbulent flows are ubiquitous and their studies have long become one

of the areas of classical fluid mechanics (Greenspan 1968; Vanyo 1993; Sagaut
& Cambon 2008; Davidson 2013, see also a recent review by Godeferd & Moisy
2015). Rotation is a primary factor affecting circulations of planetary and terrestrial
atmospheres and oceans (Pedlosky 1998; Vallis 2006; Sánchez-Lavega 2011).
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QNSE theory of turbulence with solid body rotation 385

Environments with a background rotation are conducive to anisotropization of
dynamical and transport properties of a fluid flow and excitation of inertial waves.
Practical needs and theoretical interest in understanding and predicting rotating
turbulent flows yielded accumulation of extensive and ever expanding volume of
experimental, observational, heuristic and computational information.

Different flow regimes emerging in rotating systems can be characterized in terms
of spatial and temporal scales and ensuing non-dimensional parameters derived from
heuristic, semi-empirical and analytical theories (see e.g. Cambon & Jacquin 1989;
Godeferd & Cambon 1994; Bartello 1995; Cambon & Scott 1999; Cambon 2001;
Smith & Waleffe 2002; Sagaut & Cambon 2008; Davidson 2013). Despite the ongoing
effort, however, we are still far away from full understanding of the intricacies of
rotating turbulence. As in the case of stable stratification, progressive anisotropization
of transport properties on increasing spatial scales is one of the most challenging
aspects of turbulence with rotation. The mathematical description of this phenomenon
evokes tensorial apparatus whose complexity is exacerbated by the presence of
inertial waves (Cambon & Jacquin 1989; Gaite 2003). Due to the anisotropization,
the isotropic spectrum provides only partial representation of the dynamics of rotating
flows (appropriate discussions can be found in Zeman 1994; Canuto & Dubovikov
1997; Yeung & Zhou 1998; Thangam & Wang 1999; Gledzer 2008). More detailed
analysis requires consideration of various one-dimensional (1-D) spectra as was done
in e.g. Cambon, Mansour & Godeferd (1997), Yang & Domaradzki (2004), Thiele &
Müller (2009), Baerenzung et al. (2010) and Mininni & Pouquet (2010).

Many analytical investigations of rotating turbulence utilize a spectral approach
employing some version of the eddy-damped quasi-normal Markovian (EDQNM)
theory (Orszag 1977; Cambon et al. 1997; Sagaut & Cambon 2008; Baerenzung et al.
2008; Sen et al. 2012) based upon consideration of wave vector triad interactions.
In anisotropic turbulent flows with dispersive waves, in addition to the vector triads,
one must consider frequency resonances associated with the interacting vectors which
narrow down the number of the interacting triads and preferentially select those that
funnel energy into waveless (and thus slow mode) subsets lying in the hypersurfaces
orthogonal to or enclosing the directions of zero frequency (e.g. Rhines 1975; Bartello
1995; Huang, Galperin & Sukoriansky 2001; Smith & Waleffe 2002; Chen et al. 2005;
Bourouiba & Bartello 2007; Sagaut & Cambon 2008).

The recently developed quasi-normal scale elimination (QNSE) theory (Sukoriansky,
Galperin & Staroselsky 2003, 2005; Galperin & Sukoriansky 2010; Sukoriansky &
Galperin 2013; Sukoriansky & Zemach 2016) operates at the level of the momentum
equation and is thus simpler than EDQNM. It is amenable to closed-form analytical
solutions for basic neutrally stratified flows and for flows with extra strains (following
the terminology by Bradshaw 1973) produced by stable stratification and/or system
rotation. The theory is well suited for explicit accounting of the combined effect
of anisotropy and waves upon initially isotropic turbulence. QNSE can be used to
complement the EDQNM-based theories as it provides a framework for computing
the spectra, eddy viscosities and eddy diffusivities necessary for evaluation of the
time decorrelation exponents (e.g. Cambon et al. 1997; Sen et al. 2012).

Physically, QNSE aims at establishing a self-consistent coarse-graining procedure
yielding the effective viscosity as a function of the grain size, i.e. the smallest
explicit (or resolved) scale. The QNSE formalism utilizes the key fact that for a
small shell (denoted 1Λ) of the velocity modes adjacent to the dissipation cutoff
wavenumber, the Reynolds number, Re, is of O(1). Using the Langevin equation to
represent forcing of a given mode by all other modes due to nonlinear interactions,
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that shell is mapped onto a randomly forced vector field with quasi-normal statistics.
The coarse graining is achieved by ensemble averaging over the modes in the shell
1Λ. The averaging generates a small, O(1Λ), correction to the viscosity which
accounts for the transport processes taking place within that shell. Along with the
increase of the effective viscosity, the effective dissipation wavenumber, Λ, decreases.
The effective Re built upon the scales pertinent to the new value of Λ remains of
O(1) thus enabling a cyclic repetition of the averaging procedure. Taking a limit
1Λ→ 0, one obtains a differential equation relating the effective viscosity to the
current value of Λ. The effective, Λ-dependent viscosity emerging in this procedure
can be used as a subgrid-scale (SGS) viscosity in large eddy simulations (LES) where
Λ is determined by the grid resolution. The combination of a modal quasi-normal
forcing and an eddy damping by the effective viscosity places QNSE in the class of
the quasi-normal eddy-damped theories of turbulence (Orszag 1977; Chasnov 1991;
McComb 1991). The algorithm of successive small-scale elimination was initially
developed within the renormalization group theory of turbulence (RNG) (Forster,
Nelson & Stephen 1977; Yakhot & Orszag 1986; Smith & Woodruff 1998; Zhou
2010). QNSE methodology significantly differs from the RNG, however, because it
employs neither the ε-expansion nor the fixed point arguments (note that ε denotes
the expansion parameter in the original renormalization group theory by Forster et al.
(1977) in this paragraph only). Instead, QNSE exploits the quasi-normality assumption
within the shell 1Λ (Sukoriansky et al. 2003, 2005).

In neutral flows with no extra strains, QNSE replicates all known RNG results.
Those include the derivation from nearly first principles of the classical Kolmogorov
and Corrsin–Obukhov spectra of the kinetic energy and temperature variance and
computing their respective universal constants.

Applied to flows with stable stratification, QNSE yields expressions for the
anisotropic effective viscosities and effective diffusivities valid in a broad range
of stratification strength (Sukoriansky et al. 2005). In the limit of weak stratification,
the theory allows for a fully analytical description of the transition from the isotropic,
Kolmogorov to anisotropic buoyancy-dominated turbulence regime (Sukoriansky &
Galperin 2013). Other important QNSE results include 1-D spectra of the kinetic and
potential energies, the dispersion relationships for internal waves in the presence of
turbulence and the demonstration of the absence of the critical Richardson number
(Galperin, Sukoriansky & Anderson 2007). Reviews by Galperin & Sukoriansky
(2010) and Sukoriansky & Galperin (2013) detail the QNSE results and compare
them with observations and other theories.

The present study broadens the range of QNSE applications by focusing it on
a neutrally stratified turbulent flow in a coordinate frame rotating with a constant
angular velocity Ω which, without the loss of generality, is assumed to be aligned
vertically. The rotation evokes an inertial pseudo-force, the Coriolis force (e.g. Landau
& Lifshitz 1993). Despite obvious differences in the large-scale behaviour of rotating
and stably stratified flows, they also exhibit some similarities. Those include the
spatial anisotropization of the eddy viscosities and eddy diffusivities and emergence
of slow modes. In agreement with the Taylor–Proudman theorem, the slow modes in
rotating flows are represented by cyclonic and anticyclonic vortices whose axes are
aligned with the axis of rotation. Such an alignment has been observed in numerous
laboratory experiments (e.g. Hopfinger, Browand & Gagne 1982) and computer
simulations. Rotating flows also feature componentality (Sagaut & Cambon 2008;
Godeferd & Moisy 2015), i.e. different velocity components being affected by the
rotation-modified eddy viscosities in different ways.
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Stably stratified flows tend to develop direct energy cascade and a Kolmogorov
1-D spectrum in the direction orthogonal to the gravity vector (Riley & Lindborg
2008; Galperin & Sukoriansky 2010). Rotating flows, on the other hand, exhibit
complicated scale-dependent energy transfer between different directions and different
velocity components (e.g. Godeferd & Cambon 1994; Bourouiba & Bartello 2007;
Staplehurst, Davidson & Dalziel 2008; Bourouiba, Straub & Waite 2012). Yeung
& Xu (2004) note two well-known effects of rotation: (i) reduced energy transfer
to small scales and, thus, reduced rate of viscous dissipation despite the Coriolis
term not entering the turbulence kinetic energy equation explicitly, and (ii) strong
anisotropization of the characteristic length scales of turbulence as they become quite
different in the directions parallel (k‖) and orthogonal (k⊥) to the axis of rotation. If
the forcing is localized on intermediate scales, rotation causes gradually increasing
with scale redirection of the energy flux from smaller to larger scales in the plane
orthogonal to Ω and on scales smaller than the forcing scale. This redirection can
be identified with the energy backscatter or the inverse energy cascade (e.g. Chen
et al. 2005). The inverse cascade facilitates the reduction of the viscous dissipation
rate mentioned in (i) (also see e.g. Bardina, Ferziger & Rogallo 1985; Dubrulle &
Valdettaro 1992) and concurrent decrease of the horizontal eddy viscosity that may
become negative, the point beyond which QNSE derivations cannot be continued. The
increase of the length scale in the direction k‖ mentioned in (ii) above can be related
to the conservation of the angular momentum and formation of the Taylor columns
(Davidson 2013).

Even though QNSE cannot be extended to large scales in 3-D flows that combine
fully 3-D and quasi-2-D dynamics on small and large scales, respectively, the method
allows one to analyse the transition from the classical Kolmogorov 3-D to the
anisotropic rotation-dominated turbulence regime, just as was done by Sukoriansky
& Galperin (2013) for flows with stable stratification and by Sukoriansky & Zemach
(2016) for magneto-hydrodynamic flows with low magnetic Reynolds number.
In both cases, the derivations are amenable to closed-form analytical treatment.
This transition is of great theoretical interest on its own sake and in addition,
QNSE allows one to focus on the analogies and differences between the effects
of rotation and stable stratification. Along with ever increasing computing power
and concurrent proliferation of numerical investigations of rotating turbulence with
continually increasing resolution (Godeferd & Moisy 2015), comprehensive theoretical
investigations have been scarce and the present study to some degree addresses this
void.

The layout of the paper is as follows. Section 2 elaborates the anisotropization
of the viscosity and diffusivity under the action of rotation and introduces new
variables that will be used in the formal analysis in § 3. That section presents
the mathematical formulation of the problem of neutrally stratified turbulence in a
rotating frame and outlines the basic assumptions and methods of QNSE. The relation
between the Navier–Stokes and the Langevin equations underlying the idea of the
quasi-Gaussian mapping is explained. Section 4 clarifies the procedure of successive
small-scale elimination, i.e. coarse graining, for the momentum equation while § 5
explains the spectral gap approximation. Section 6 extends this procedure to the
diffusion equation. Section 7 details the computation of the effective viscosities and
effective diffusivities and considers the limit of weak rotation. Section 8 considers
the relationship between the forcing amplitude and an observable parameter, the rate
of the viscous dissipation ε, which allows one to express the effective turbulent
transport coefficients as functions of ε. These expressions are derived and elaborated
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in § 9. All turbulence transport coefficients are shown to depend on a non-dimensional
parameter k/kΩ , where k is a running wavenumber, kΩ = ( f 3/ε)1/2, f = 2Ω is the
Coriolis parameter and Ω = |Ω|. The wavenumber kΩ is the rotational analogue
of the Ozmidov wavenumber, kO = (N3/ε)1/2, N being the Brunt-Väisälä frequency,
which has been used to quantify the effect of stable stratification on turbulent
flow field (Dougherty 1961; Ozmidov 1965). The scalings with k/kΩ and k/kO are
explored to clarify the analogies and differences between the effects of rotation and
stable stratification. Section 10 analyses the effect of turbulence on the dispersion
relationship for inertial waves. Section 11 provides analytical expressions for various
1-D and 3-D spectra of the kinetic energy and passive-scalar variance. Section 12
discusses the anisotropy of spectral energy transfers and demonstrates that it indeed
corresponds to columnar self-organization. Section 13 offers the interpretation of the
decreasing eddy viscosities as a manifestation of the inverse energy cascade. Finally,
§ 14 provides discussion and conclusions which include situations when both rotation
and stratification are present.

2. Directionality and componentality of turbulent transport anisotropization
under the action of rotation; horizontal and vertical eddy viscosities and eddy
diffusivities
The anisotropy introduced by the system rotation causes the effective viscosity and

diffusivity to transform differently in the directions parallel and orthogonal to the
direction of rotation (i.e. along k‖ and k⊥, respectively) whose unity vector is aligned
vertically and given by e3 =Ω/|Ω|. In this coordinate system, vectors collinear with
k⊥ and k‖ become kh (‘horizontal’) and kz ≡ k3 (‘vertical’), respectively, such that

k2 = k2
1 + k2

2 + k2
3 = k2

h + k2
z . (2.1)

In the process of small-scale elimination, there will emerge two types of
anisotropization – by direction and by component (hence componentality). Utilizing
the least restrictive and most general approach, we assume that the renormalized
viscosities differ in different directions and for different components. For the
horizontal velocity components, the effective viscosities in the horizontal and vertical
directions are, respectively, νh and νz,

νh ≡ ν, νz = ν + δνz, (2.2a,b)

and for the vertical velocity component v3 they are

ν3 ≡ ν3h = νh + δν3, ν3z = νz + δν3 + δν3z. (2.3a,b)

In (2.2) and (2.3), the terms with δ mark anisotropic corrections to viscosity. These
corrections are small for weak rotation, the limit in the focus of this investigation.
This smallness will be utilized later in small parameter expansions.

The spectral viscosity operator acting on the horizontal velocity components is

νhk2
h + νzk2

z = νk2 + δνzk2
z , (2.4)

while that acting on v3 is

ν3hk2
h + ν3zk2

z = (ν + δν3)k2 + (δνz + δν3z)k2
z . (2.5)
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The renormalized diffusivity is directionally dependent and given by

κh ≡ κ, κz = κ + δκz (2.6a,b)

in the horizontal and vertical directions, respectively, while the spectral diffusivity
operator is

κhk2
h + κzk2

z = κk2 + δκzk2
z . (2.7)

3. Governing equations
Consider the dynamics of fully three-dimensional, incompressible turbulent flow

in a coordinate system rotating with the angular velocity Ω . The flow occupies an
infinite domain and its dynamics is governed by the momentum (Navier–Stokes) and
continuity equations,

∂tvα + (v ·∇)vα + ( f × v)α = ν0∇2vα − ∂αP+ ξ 0
α , (3.1)

∂αvα = 0, (3.2)

where vα is the velocity vector, P is the pressure divided by the constant density, and
ν0 is the molecular viscosity. The external solenoidal force ξ 0

α mimics the effect of
large-scale stirring that maintains turbulence in a statistically steady state.

In the spectral domain bounded by the viscous dissipation (or Kolmogorov)
wavenumber kd ∝ (ε/ν3

0)
1/4, a space–time Fourier transform of the velocity is given

by

vα(x, t)= 1
(2π)d+1

∫
k6kd

dk
∫

dωvα(ω, k) exp[i(kx−ωt)], (3.3)

where d (= 3) is the dimension of space.
In the original Navier–Stokes equation all scales are resolved, and the Fourier

transform of the viscous term is simply ν0k2. In the rotating coordinate frame,
however, this term undergoes anisotropization elaborated in § 2. Anticipating this
anisotropization, we added new viscous terms in (3.4) with which the Fourier-
transformed momentum equation becomes

−iωvα(k̂)+ ikβ

∫
vα(q̂)vβ(k̂− q̂)

dq̂
(2π)d+1

+ εαβγ fβvγ

=−ikαP(k̂)− (νk2 + δνzk2
z )vα(k̂)

− (δν3k2 + δν3zk2
z )v3(k̂)δα3 + ξ 0

α(k̂), (3.4)

where k̂ = (ω, k), q̂ = ($, q), ξ 0
β (k̂) is the Fourier transform of the external forcing

and εαβγ is the permutation tensor. Of course, in the limit Ω → 0, all anisotropic
corrections disappear (see (7.26), (7.27), (7.45)–(7.47) below) and the process of
small-scale elimination will only produce the isotropic eddy viscosity term, νk2, as
in Sukoriansky et al. (2003).

The Fourier-transformed continuity equation is

vα(k̂)kα = 0. (3.5)
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The pressure term is evaluated by taking the divergence of (3.4) using the continuity
equation (3.5),

−kαkβ
k2

∫
vα(q̂)vβ(k̂− q̂)

dq̂
(2π)d+1

+ iεαβγ
kα
k2

fβvγ

+i(δν3k2 + δν3zk2
3)

k3

k2
v3(k̂)= P(k̂), (3.6)

where the standard nonlinear term on the left-hand side is complemented by
contributions due to the Coriolis force and terms expected to emerge from eddy
viscosity anisotropization.

Substituting (3.6) in (3.4) and symmetrizing the resulting equation using the tensor
Pαβγ (k) (e.g. Lesieur 1997), where

Pαβγ (k)= kβPαγ (k)+ kγPαβ(k) (3.7)

and

Pαβ(k)= δαβ − kαkβ/k2 (3.8)

is the operator that projects any vector to a plane normal to k, one can transform (3.4)
into

[Gαβ(k̂)]−1vβ(k̂)= ξ 0
α(k̂)−

i
2

Pαβγ (k)
∫
vβ(q̂)vγ (k̂− q̂)

dq̂
(2π)d+1

. (3.9)

Here, the inverse Green function,

[Gαβ(k̂)]−1 = g−1(k̂)δαβ + Pασ (k)εσγβ fγ + (δν3k2 + δν3zk2
3)P3αδ3β, (3.10)

is a non-diagonal tensor conditioned by the rotation-imposed anisotropy,

g−1(k̂)=−iω+ νk2 + δνzk2
3 (3.11)

is the inverse auxiliary scalar Green function and δαβ is the Kronecker delta.
The momentum equation (3.9) can be rearranged in the form of the canonical

equation,

vα(k̂)=Gαβ(k̂)
[
ξ 0
β (k̂)−

i
2

Pβµν(k)
∫
vµ(q̂)vν(k̂− q̂)

dq̂
(2π)d+1

]
, (3.12)

used in the procedure of coarse graining. This equation preserves its form in flows
with different extra strains while the strains’ effect is absorbed in the tensorial Green
function.

The canonical equation appears as the Langevin equation,

vα(k̂)=Gαβ(k̂)ξβ(k̂), (3.13)

where ξβ(k̂) represents nonlinear stirring of a mode k̂ by all other modes (Kraichnan
1987; McComb 1991; Sukoriansky et al. 2003) and is associated with the ‘dressed’
force. Generally, replacing the nonlinear term in the Navier–Stokes equations by a
random stochastic force has been one of the tools used in theories of turbulence (e.g.
Lesieur 1997).
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We distinguish between the ‘bare’ and ‘dressed’ forces, ξ 0
β (k̂) and ξβ(k̂) (Sukoriansky

et al. 2005). The ‘bare’ force mimics the effect of large-scale instabilities and
provides forcing that maintains turbulence in statistically steady state. In 3-D isotropic
flows, this force is isotropic; it generates direct energy cascade characterized by the
Kolmogorov kinetic energy spectrum. Due to the anisotropy of the Coriolis force,
rotating flows are inherently anisotropic. A bare forcing may introduce additional
complications if it is also anisotropic and produces helicity on large scales. A flow of
this kind, with Beltrami forcing, was studied in direct numerical simulations (DNS)
by Mininni, Rosenberg & Pouquet (2012). They found, however, that on scales
smaller than the Woods scale, LΩ = k−1

Ω (the wavenumber kΩ is defined by (7.36);
the naming of the scale LΩ will be elucidated in § 7.1.3), the helicity cascade breaks
down and a flow returns to isotropic Kolmogorov turbulence. This result is consistent
with a general study by Biferale & Procaccia (2005) showing that on small scales,
the isotropic solution is always of leading order. Being informed of these results, it is
assumed here that the bare and the dressed forces are isotropic and that the forcing
scale, Lξ , does not significantly exceed LΩ . The ensuing results are correct on scales
smaller than Lξ . It is possible that they will remain correct for Lξ/LΩ� 1 but we do
not know that a priori. In a study that follows up, we shall investigate the limits of
validity of the theory and present comparisons with observations.

The ‘dressed’, or effective, force, ξβ(k̂), acts upon every mode k and represents
nonlinear stirring of that mode by all other modes. The Langevin equation (3.13)
is used in the coarse-graining procedure for which ξβ(k̂) needs to be determined.
Unfortunately, a complete mathematical representation of this force cannot be derived
from first principles at the present time (McComb 1991; Canuto & Dubovikov
1996). Since we consider an incompressible, homogeneous in space, stochastically
steady-state turbulent flow in an infinite domain, the force ξβ(k̂) must be solenoidal,
zero mean and homogeneous in space and time. The rate of the energy injection into
the mode k must be proportional to the energy dissipation rate ε. These requirements
yield the correlation function in the form

〈ξα(k̂)ξβ(k̂′)〉 = 2D(2π)4k−3Pαβ(k)δ(k̂+ k̂′), (3.14)

where the multiplicative factor k−3 ensures correct dimensionality and numerical
coefficients are introduced for convenience. The correlator’s amplitude D is
proportional to the mean rate of energy transfer through the mode k. The relationship
between D and ε in neutrally stratified non-rotating flows can be calculated using
the energy balance considerations (Yakhot & Orszag 1986) which yield (Sukoriansky
et al. 2005)

D' 13.1ε. (3.15)

We shall use (3.15) as a zero-order approximation; the next-order correction will be
considered in § 13.

Note that the assumption of isotropic ξα(ω, k) is well justified only in non-rotating
neutral flows (Sukoriansky et al. 2003). Various extra strains may invalidate this
assumption. Indeed, diverse numerical simulations point to a sensitivity of the results
to the nature of the forcing. However, similarly to the case of stable stratification
(Sukoriansky et al. 2005), it is assumed here that flow anisotropization due to
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rotation will chiefly manifest itself through the anisotropization of the Green functions.
This assumption is particularly well justified for the case of weak rotation which is
the main subject of the present study.

Equation (3.12) is the starting point of the scale elimination procedure. It requires
the inversion of the tensorial operator [Gαβ(k̂)]−1 given by (3.10)–(3.11). Since f is
aligned with the vertical axis in the chosen coordinate system, the second term on
the right-hand side of (3.10) is Pασ (k)εσγβ fγ = fPαγ eγβ ≡ fSαβ(k), where

Sαβ(k)= Pαγ (k)eγβ, (3.16)

and the matrix representation of the tensor eαβ is0 −1 0
1 0 0
0 0 0

 . (3.17)

Retaining only the terms up to O( f 2) in the limit of weak rotation, one can
invert (3.9) to obtain

Gαβ(k̂)= g(k̂)

d(k̂)
[δαβ −H(k̂)Sαβ(k)− Z(k̂)P3α(k)P3β], (3.18)

where

H(k̂)= fg(k̂), (3.19)

Z(k̂)= (δν3k2 + δν3zk2
3)g(k̂), (3.20)

d(k̂)= 1+H2(k̂)[1− P33(k)]. (3.21)

In the derivation of (3.18) we took into account that the Green function Gαβ(k̂) acts
upon the solenoidal vector field ξβ(ω, k) and, as will be shown later, δν3 =O( f 2).

4. The procedure of successive coarse graining
The scale elimination formalism consists of the following steps (Sukoriansky et al.

2005):

(i) Introduction of the dynamic dissipation cutoff wavenumber, Λ, a small shell 1Λ,
1Λ/Λ� 1, which is subject to elimination, and ‘slow’ and ‘fast’ modes.

(ii) Computing O(1Λ) correction to the inverse Green function resulting from the
ensemble averaging of the fast modes over 1Λ. This correction generates O(1Λ)
accruals to all renormalized viscosities defined in § 2 while otherwise preserving
the analytical form of the governing equations.

(iii) All viscosities are updated and the process moves forward towards elimination of
the next shell 1Λ.

These steps are similar to those in flows with stable stratification (Sukoriansky et al.
2005) and so they will only be described briefly.

The wavenumber of the dynamic dissipation cutoff, Λ, defines the current domain
of definition of the canonical equation (3.12), D = (0, Λ]. At the first iteration,
when all scales are included, Λ= kd. A small shell 1Λ subdivides the domain onto
D< = (0, Λ − 1Λ] and D> = (Λ − 1Λ, Λ], such that D = D< ∪ D>. At every step
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QNSE theory of turbulence with solid body rotation 393

of the scale elimination procedure, modes within the shell 1Λ undergo ensemble
averaging which results in shrinking of the domain of definition from D to D<

and corresponding modifications of the viscosity and diffusivity which renders them
Λ dependent or ‘dressed’. The ‘dressed’ Green functions employ these ‘dressed’
viscosities and diffusivities. After every step of this process, the governing equations
reproduce their form precisely and ‘forget’ about the molecular values.

The ‘slow’ (v<) and ‘fast’ (v>) velocity modes are defined such that k ∈ D< for
v<(k̂) and k ∈ D> for v>(k̂). The velocity mode vα is represented as a sum, vα =
v<α + v>α , substitution of which in the canonical equation (3.12) yields

vα(k̂) = Gαβ(k̂)ξ 0
β −

i
2

Gαβ(k̂)Pβµν(k)
∫
[v<µ (q̂)v<ν (k̂− q̂)

+ 2v>µ (q̂)v
<
ν (k̂− q̂)+ v>µ (q̂)v>ν (k̂− q̂)] dq̂

(2π)d+1
. (4.1)

This equation holds for either k∈D< or k∈D> and so (4.1) applies to both v<α and v>α .
Schematically, the equation for v< contains v> in the second and third terms of

the integrand. In order to derive a self-contained equation for v<, we iterate this
equation once by substituting (4.1) itself, written for v< and v>, in the second and
third terms, respectively. We then replace v> by the Langevin equation (3.13) and
perform ensemble averaging over the force ξ>. Details of this procedure are given in
Sukoriansky et al. (2005). The final expression for the correction to the inverse Green
function produced by the elimination of the shell D> is

∆[G−1
αβ (ω, k)] = Pαµθ(k)

∫ >

Pνσβ(k− q)Uµσ ($, q)Gθν(ω−$, k− q)
ddq d$
(2π)d+1

, (4.2)

where ∫ >

dq̂=
∫

D>
ddq

∫ ∞
−∞

d$. (4.3)

Equation (4.2) contains the velocity correlation tensor, Uµσ ($, q), which can be
evaluated using the Langevin equation (3.13) and (3.18),

Uαβ(ω, k) = |G(ω, k)|2
|d(ω, k)|2 D(k) [A(ω, k)Pαβ(k)+ B(ω, k)Qαβ(k)

+C(ω, k)P3α(k)P3β(k)], (4.4)

where

A(ω, k)= 1+ |H(ω, k)|2[1− P33(k)], (4.5)
B(ω, k)=H(−ω, k)−H(ω, k), (4.6)
C(k)=−Z(ω, k)− Z(−ω, k), (4.7)

Qαβ(k)= Pασ (k)eσµPµβ(k), (4.8)
D(k)= 2Dk−3. (4.9)

Note that the tensor Qαβ(k) is antisymmetric.
The integral in (4.2) is calculated in the long-time limit, ω → 0, and using the

spectral gap approximation which is explained in the next section.
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394 S. Sukoriansky and B. Galperin

Concluding this section we remark that a requirement imposed upon the ‘dressed’
force ξ in the Langevin equation (3.13) is that 〈ξα(p)ξβ(q)ξσ (k − p − q)〉 = 0 for
all vector triads (p, q, k − p − q) ∈ 1Λ, 1Λ being a shell subject to elimination
(Sukoriansky et al. 2003, 2005). This requirement is somewhat weaker than the
global quasi-Gaussianity implied in classical theories such as the EDQNM. The
quasi-Gaussianity in the shell 1Λ alone suffices to develop a rigorous self-contained
mathematical procedure of successive coarse graining. There is no need for the force
ξ(k̂) to be quasi-Gaussian in the entire domain although such field would fulfil the
above condition. In general terms, ξ(k̂) could be characterized as quasi-normal.
The combination of a quasi-normal forcing and eddy damping represented by
the renormalized viscosity places the QNSE theory in the class of quasi-normal
eddy-damped theories of turbulence elucidated by e.g. Orszag (1977), Chasnov
(1991), McComb (1991), Sagaut & Cambon (2008).

5. The spectral gap approximation
The concept of viscosity implies the existence of a spectral gap between the

resolvable (explicit) and subgrid (implicit) scales which may be either molecular or
computational. While in the former case the gap is real, in the latter it does not exist
and as a result, the effect of the subgrid scales on the explicit ones in the vicinity
of Λ differs from that away from it. Recognizing this physics, Kraichnan (1976)
introduced a two-parametric viscosity denoted ν(k|Λ) which depends on the local
explicit wavenumber k and the dynamic dissipation cutoff Λ.

The idea of a spectral gap is used to simplify the computation of the correction
to the inverse Green function given by (4.2). In this computation, only the terms
up to O[(k/Λ)2] are retained. This is equivalent to introducing a virtual spectral gap
and taking all renormalized viscosities constant and equal to their values at Λ. This
method will be named a spectral gap approximation, or SGA. Note that in Yakhot
& Orszag (1986), as well as in our earlier publications, this method was referred
to as the distant interaction approximation, or DIA. This abbreviation conflicts with
DIA introduced by Kraichnan (1959) for the direct interaction approximation. The new
name mitigates this conflict.

To illustrate the effect of the SGA, figure 1 shows the two-parametric viscosity,
ν(k|Λ), computed following Kraichnan (1976) for 3-D non-rotating flows and
normalized with ν(Λ) evaluated using the QNSE theory and SGA. The two-parametric
viscosity displays a cusp-like behaviour at k→Λ the nature of which was elaborated
by Kraichnan (1976). Even though the cusp is lost in QNSE, it gives reliable subgrid
scale parameterization in 3-D flows featuring direct energy cascade.

In flows with inverse energy cascade, the SGA becomes problematic because ν(k|Λ)
changes sign and grows negative at k→ 0, as shown in figure 2 (also see Chekhlov
et al. 1994). A problem of this kind arises in 3-D flows with a solid body rotation
where the energy is gradually channelled into a manifold occupying a conical region
orthogonal to the axis of rotation giving rise to the inverse energy cascade (Sagaut &
Cambon 2008). In such flows, the QNSE formalism can only be applied on relatively
small scales in the assumption that the forcing acts on scales where the eddy viscosity
remains positive. In other words, in flows with rotation, the QNSE theory can only
be used in the limit of weak rotation or on scales where the effect of rotation is
weak. Although this limitation constrains the applicability of the QNSE theory to
rotating flows, it does not preclude the possibility of developing an analytical theory
of transition from Kolmogorov to rotation-dominated turbulence which is a subject
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FIGURE 1. Plot of ν(k|Λ)/ν(Λ) (solid line) in non-rotating 3-D flows. Here ν(Λ) is
evaluated using QNSE with SGA.
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FIGURE 2. Normalized two-parametric eddy viscosity in isotropic 2-D flows from DNS
(dots), the test field model (dashed line) and the renormalization group theory (solid
line). (After Sukoriansky & Zemach 2016, c© The Royal Swedish Academy of Sciences.
Reproduced by permission of IOP Publishing. All rights reserved.)

of the forthcoming sections. Note in this respect that the QNSE theory was also
used to develop an analytical theory of the transition from Kolmogorov to stable
stratification-dominated turbulence where it provided a deep physical insight of flow
anisotropization and turbulence–internal wave interaction (Sukoriansky & Galperin
2013).
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6. Passive-scalar diffusion equation and its successive coarse graining
The procedure of successive quasi-normal coarse graining can be developed for

the scalar diffusion equation. The resulting equation and (4.2) will be used later to
compute scale-dependent eddy viscosities and eddy diffusivities.

The diffusion of a passive scalar c is described by a standard diffusion equation

∂c
∂t
+ (v∇)c= κ0∇2c, (6.1)

where κ0 is the molecular diffusivity. Space–time Fourier-transformed representation
of (6.1) is

c(k̂)=−iGD(k̂)kα

∫
vα(q̂)c(k̂− q̂)

dq̂
(2π)d+1

, (6.2)

where GD(k̂) is the diffusion Green function,

GD(ω, k)= (−iω+ κk2 + δκzk2
3)
−1, (6.3)

where following § 2 an anisotropic correction is included.
Similar to (3.13), (6.2) can be written in the form of the Langevin equation for a

scalar c,

c(k̂)=GD(k̂)ξc(k̂), (6.4)

where ξc(k̂) represents nonlinear stirring of a mode k̂ by all other modes.
Successive coarse graining of the diffusion equation (6.2) is performed using a two-

part procedure similar to that outlined in § 4 for the momentum equation. Namely,
‘slow’, c<, and ‘fast’, c>, scalar modes are introduced and the expansion c= c< + c>
is substituted in (6.2) yielding

c(k̂) = −iG0
D(k̂)kα

∫
[v<α (q̂)c<(k̂− q̂)+ v<α (q̂)c>(k̂− q̂)

+ v>α (q̂)c<(k̂− q̂)+ v>α (q̂)c>(k̂− q̂)] dq̂
(2π)d+1

. (6.5)

Similarly to (4.1), this equation is valid for either k ∈D< or k ∈D>.
Then, an equation for c<(k̂) is derived by manipulating (6.5) written for c<(k̂). The

second and third terms are iterated by substituting the ‘slow’ mode equations for
c< and v<, respectively, while the term v>c> is iterated by substituting the equation
for c>. Then, replacing the ‘fast’ variables v> and c> by their respective Langevin
equations (3.13) and (6.4) and ensemble averaging the result over the fast modes
ξ> and ξ>c , we compute corrections to the inverse Green function produced by the
elimination of the shell D>,

1G−1
D (ω, k)= kαkβ

∫ >

Uαβ($, q)GD(ω−$, k− q)
ddq d$
(2π)d+1

. (6.6)

Similarly to (4.2), the integral in (6.6) is calculated in the long-time limit, ω→ 0,
and using the spectral gap approximation.

Note that (6.6) depends on the velocity correlator Uαβ($, q) and so the statistics of
the scalar forcing ξc(k̂) is immaterial. The closure is achieved by neglecting the odd
velocity-scalar moments of the fast modes in the iterated (6.5) (see Sukoriansky et al.
(2005) for details).
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7. Computation of the effective viscosities and diffusivities
Evaluation of the integrals in (4.2) and (6.6) is accomplished in the following steps:

(i) Contour integration over the frequency $ .
(ii) Invoking the spectral gap approximation.

(iii) Integration over the spherical shell D> which is a two-step operation combining
multiplication by 1Λ and the angular integration over the surface of a sphere
with the radius Λ. The inherent anisotropy due to the system rotation complicates
the integration. However, by utilizing the isotropy of the integrand in the plane
normal to Ω one can carry out all calculations analytically.

In the next sections it will be shown that the corrections to the inverse velocity
and diffusion Green functions caused by the elimination of the fast shell D> result
in O(1Λ) corrections to eddy viscosities and eddy diffusivities such that both
G−1
αβ (0, k, kz) + 1G−1

αβ (0, k, kz) and G−1
D (0, k, kz) + 1G−1

D (0, k, kz) preserve their
forms. The procedure also generates a correction proportional to fk2Sαβ(k, kz). This
correction corresponds to renormalization of Ω . It should be discarded as being
O(k2) small whereas the original term is O(1). Finally, by dividing 1G−1

αβ (0, k, kz)

and 1G−1
D (0, k, kz) by 1Λ and taking the limit 1Λ→ 0, we obtain a system of

coupled ordinary differential equations for all eddy viscosities and eddy diffusivities.
In the process of computation, the integral in (6.6) will be evaluated first. This

integral is simpler of the two and its evaluation provides a good illustration for
calculation of the other integral. In all the forthcoming derivations, the continuity
equation (3.5) will be routinely enforced. This means that if a term, such as the
integral (4.2), is factored with vβ(k̂) then any part of this term proportional to kβ
will be set to zero automatically. Other simplifying relationships are related to the
symmetry and solenoidality properties of the projection operator, i.e. Pαβ(k)= Pβα(k)
and kαPαβ(k) = 0, and zeroing out the contractions of symmetric and antisymmetric
tensors (e.g. Pαβ(k) and Qαβ(k) or Pαβ(k) and eαβ). All related simplifications will
usually be implemented without specific mentioning.

7.1. Effective diffusivities
7.1.1. Simplification of the integrand

Turn now to (6.6) in the limit ω→ 0 where the integrand is

ID
αβ =Uαβ($, q, q3)GD(−$, |k− q|, k3 − q3). (7.1)

As explained earlier in § 5, the application of the spectral gap approximation implies
that the calculation of the expression in the right-hand side of (6.6) needs to be carried
out only up to the order of O(k2). The presence of the product kαkβ in front of
the integral makes the calculation of terms smaller than O(1) in the integrand (7.1)
unnecessary and so, one can set k= 0 in GD yielding

ID
αβ =Uαβ($, q, q3)GD(−$, q, q3). (7.2)

Using (4.4), one can represent ID
αβ as

ID
αβ =

|G($, q, q3)|2
|d($, q, q3)|2 D(q) [A($, q, q3)Pαβ(q)+ B($, q, q3)Qαβ(q)

+C($, q, q3)P3α(q)P3β(q)]GD(−$, q, q3). (7.3)
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We keep in mind that the second term in (7.3) zeroes out upon contraction of the
antisymmetric tensor Qαβ(q) with the symmetric product kαkβ in front of the integral
in (6.6). After this simplification, the integrand (7.1) can be factorized,

ID
αβ =D(q)R1($, q, q3)Pαβ(q)+D(q)R2($, q, q3)P3α(q)P3β(q), (7.4)

where

R1($, q, q3)=
−i($ 2 + f1 +ω2

q)

($ − iωD
q )[$ 4 + 2(ω2

q − f1)$ 2 + (ω2
q + f1)2] , (7.5)

R2($, q, q3)= 2i(δν3q2 + δν3zq2
3)ωq

($ − iωD
q )[$ 4 + 2(ω2

q − f1)$ 2 + (ω2
q + f1)2] , (7.6)

f1 = [1− P33(q)] f 2, (7.7)
ωq ≡ νq2 + δνzq2

z , (7.8)

ωD
q ≡ κq2 + δκzq2

z . (7.9)

7.1.2. Frequency integration
The $ -integration in (6.6) reduces to the integration of R1($, q, q3) and

R2($, q, q3) which can be performed using the contour methods. Both functions
R1($, q, q3) and R2($, q, q3) have 5 poles,

$1,2,3,4 =±
√

f1 ± iωq, $5 = iωD
q . (7.10a,b)

Three of these poles are located in the upper half-plane while the other two belong
in the lower half-plane. The frequency integrals are computed over the lower half-
plane and yield

R1(q, q3)=
∫

R1($, q, q3)
d$
2π
= ωq +ωD

q

2ωq[ f1 + (ωq +ωD
q )

2] ,

R2(q, q3)=
∫

R2($, q, q3)
d$
2π
=− (δν3q2 + δν3zq2

3)(2ωq +ωD
q )

2( f1 +ω2
q)[ f1 + (ωq +ωD

q )
2] .

 (7.11)

The integration in (6.6) is now reduced to integration of the product D(q)Pαβ(q)
R(q, q3) over the spherical shell D>.

7.1.3. Integration over spherical shell D>

The integration over D> consists of the integration in the radial direction (which
results in multiplication by −1Λ; the negative sign is due to contraction of the
domain when scales are eliminated) and subsequent integration over the surface of a
d-dimensional sphere, Σd, whose radius is Λ. Some of the calculations are performed
in d-dimensional space with the understanding that d = 3. In the isotropic case, the
angular integration yields sums of products of the Kronecker δ-symbols (Yakhot &
Orszag 1986; Sukoriansky et al. 2003). In flows with system rotation the integrand
is anisotropic and the procedure of angular integration requires further development.
Similarly to the case of stable stratification (Sukoriansky et al. 2005), the isotropy
is preserved in horizontal planes. Utilizing this observation, the angular integration
over the surface of a d-dimensional sphere, Σd, is performed, firstly, by integrating
over the surface of a d − 1-dimensional sphere Σd−1 (clearly, for d − 1 = 2, this is
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merely a circle in the horizontal plane) and, secondly, integrating over the vertical
semi-circle: ∫

D>
ddq=−1Λ

∫
Σd

dd−1q=−Λ 1Λ

∫ π

0
dθ
∫
Σd−1

dd−2q. (7.12)

In the integration over Σd−1, the horizontal radius qh is a function of the vertical
coordinate,

qh = q sin θ =Λ sin θ, (7.13)

where θ is the angle between the vector q and the vertical axis; q is replaced by Λ
reflecting the fact that D> is a spherical shell of the radius Λ. Note that by (3.8),

P33(q)= 1− q2
3/q

2 = sin2 θ. (7.14)

The horizontal isotropy comes into play by representing the vector q as a sum of
its horizontal and vertical projections, qh = (q1, q2, 0) and q3, respectively,

qj = qhj + q3δ3j. (7.15)

This decomposition enables one to perform the integration over Σd−1 analytically.
The integration over a d − 1-dimensional spherical surface of the radius Λ can be
accomplished by utilizing the following auxiliary relationships valid for the horizontal
components of the vector q,∫

Σd−1

dd−2q= Sd−1(Λ sin θ)d−2, (7.16)∫
Σd−1

qhαqhβdd−2q= Sd−1(Λ sin θ)d
δαβ

d− 1
, (7.17)∫

Σd−1

qhαqhβqhγ qhδd
d−2q = Sd−1(Λ sin θ)d+2

× δαβδγ δ + δαγ δβδ + δαδδβγ
(d− 1)(d+ 1)

, (7.18)

where Sd = 2πd/2/Γ (d/2) is the surface area of a d-dimensional unit sphere and α
through δ are indexes in the horizontal plane.

With the use of the auxiliary relationships for the integration in the horizontal plane
one finds

kαkβ

∫
Σd−1

Pαβ(q)dd−2q = Sd−1(Λ sin θ)d−2

×
[

k2

(
1− sin2 θ

d− 1

)
+ k2

3

(
d

d− 1
sin2 θ − 1

)]
(7.19)

and

kαkβ

∫
Σd−1

P3α(q)P3βdd−2q = Sd−1

d− 1
(Λ sin θ)d−2

× [k2 sin2 θ cos2 θ + k2
3 sin2 θ(d sin2 θ − 1)

]
. (7.20)
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Terms proportional to k2 and k2
3 in (7.19) and (7.20) give corrections to κ and κz,

respectively. After collecting all the factors, taking the limit 1Λ→ 0 and substituting
d= 3 and x= cos θ , we obtain differential equations for κ and κz,

dκ
dΛ
= D

8π2Λ

∫ 1

−1

{
(ωΛ +ωD

Λ)(1+ x2)

ωΛ[ f 2x2 + (ωΛ +ωD
Λ)

2]
− δωΛ(2ωΛ +ωD

Λ)x
2(1− x2)

( f 2x2 +ω2
Λ)[ f 2x2 + (ωΛ +ωD

Λ)
2]
}

dx, (7.21)

dκz

dΛ
= − D

4π2Λ

∫ 1

−1

{
(ωΛ +ωD

Λ)(1− x2)

ωΛ[ f 2x2 + (ωΛ +ωD
Λ)

2]
− δωΛ(2ωΛ +ωD

Λ)(1− x2)2

( f 2x2 +ω2
Λ)[ f 2x2 + (ωΛ +ωD

Λ)
2]
}

dx, (7.22)

where

ωΛ ≡Λ2(ν + δνzx2), (7.23)
δωΛ ≡Λ2(δν3 + δν3zx2), (7.24)
ωD
Λ ≡Λ2(κ + δκzx2). (7.25)

Equations (7.21) and (7.22) are coupled; their right-hand sides involve both effective
diffusivities and viscosities. Four additional differential equations, for ν, δνz, δν3 and
δν3z, will be derived in the next section.

In the approximation of weak rotation, the integrals simplify significantly and reduce
to

dκ
dΛ
= − D

3π2Λ5ν2(1+ α)
{

1− 1
1+ α

[
2

5(1+ α)Ro−2 + 2
5
δκz

νn

+ 2(2+ α)
5

δνz

νn
+ 2+ α

10
δν3

νn
+ 3(2+ α)

70
δν3z

νn

]}
, (7.26)

dδκz

dΛ
= − D

3π2Λ5ν2
n(1+ α)2

[
1

5(1+ α)Ro−2 + 1
5
δκz

νn
+ 2+ α

5
δνz

νn

− 7(2+ α)
10

δν3

νn
− 2+ α

14
δν3z

νn

]
, (7.27)

where νn and κn are the eddy viscosity and eddy diffusivity for non-rotating flows
and α = κn/νn is the corresponding inverse turbulent Prandtl number given by (7.33)
below. νn(Λ) was computed in Yakhot & Orszag (1986), Sukoriansky et al. (2003)
and Sukoriansky et al. (2005),

νn(Λ)= ( 3
4 AdD)1/3Λ−4/3, (7.28)

where for d= 3,

Ad = d− 1
2(d+ 2)

Sd

(2π)d
= (10π2)−1. (7.29)

In non-rotating flows, (7.26) reduces to

dκn(Λ)

dΛ
=− KdD

νn(κn + νn)Λ5
, (7.30)
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where for d= 3,

Kd = d− 1
d

Sd

(2π)d
= (3π2)−1, (7.31)

and νn is given by (7.28). The solution to (7.30) is

κn(Λ)= 1
2

(
3
4

AdD
)1/3

(√
1+ 4

Kd

Ad
− 1

)
Λ−4/3, (7.32)

from which one finds

α = κn(Λ)/νn(Λ)= const.' 1.39. (7.33)

Furthermore,

Ro(Λ)= ν(Λ)Λ
2

f
(7.34)

is a spectral Rossby number which is the ratio of the time scale of system rotation
and the eddy turnover time at a local scale Λ. In (7.34), the eddy viscosity νn(Λ) can
be used instead of ν(Λ). The spectral Rossby number is analogous to the spectral
Froude number in stably stratified turbulence (Sukoriansky et al. 2005) and is an
important characteristic of the scalewise effect of rotation on turbulence. Clearly,
turbulence is isotropic on scales where Ro> 1 while the effects of inertial waves and
anisotropy become strong on scales where Ro< 1. Such classification of flow regimes
is consistent with experimental results, see e.g. Jacquin et al. (1990).

It will be shown later in (8.3) that in zero-order approximation, D ' 13.1ε. Then,
Ro(k) can be presented in an alternative form reminiscent of flows with stable
stratification (Sukoriansky et al. 2005),

Ro(k)= νn(k)k2

f
' 0.46

(
k

kΩ

)2/3

, (7.35)

where

kΩ =
(

f 3

ε

)1/2

(7.36)

is a wavenumber analogous to the Ozmidov wavenumber, kO, in stably stratified
flows. The wavenumber kΩ identifies a scale at which turbulence eddy turnover time
is commensurate with the time scale of system rotation. Similarly to Ro, the ratio
k/kΩ is a non-dimensional parameter characterizing scalewise strength of the effect
of rotation. It is weak on scales where k/kΩ > 1 and strong on scales where k/kΩ . 1.
In some studies, kΩ is defined in terms of the angular velocity of system rotation, Ω .
Here, we use the definition based upon f because this is a variable recognized by the
governing equation (3.1). Both representations (7.35) and (7.36) will be utilized in
studies of explicit modifications of eddy viscosities and eddy diffusivities by rotation.

Mininni et al. (2012) propose to name the scale LΩ = k−1
Ω after Zeman following

Zeman (1994). Earlier, however, following Hopfinger & Browand (1981), Gibson
(1991) referred to LΩ as the Hopfinger scale. A similar scale was introduced in the
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402 S. Sukoriansky and B. Galperin

analysis of the effects of rotation on thermal convection (Fernando, Boyer & Chen
1989; Fernando, Chen & Boyer 1991) but the role of ε there played the kinematic
surface heat flux. That scale, referred to by Gibson (1991) as the Fernando scale,
has become one of the main characteristics of convective turbulence. Two decades
earlier, the scale LΩ was introduced in the works by Woods (1973, 1974, 1980) and
following these papers, it was included in the discussions of the variety of scales of
oceanic and atmospheric circulations in the books by Monin & Ozmidov (1985) and
Kamenkovich, Koshlyakov & Monin (1986). To the best of our knowledge, Woods
was the first to recognize the importance of LΩ as a scale characterizing the effect of
rotation on turbulence and for this reason, it would be appropriate to refer to LΩ as
the Woods scale (Gibson (1991) also credited Woods with the invention of the term
‘fossil turbulence’ in Woods (1969)).

7.2. Effective viscosities
Derivation of ν, νz, ν3 and ν3z follows the pattern employed for the computation of
κ and κz. Setting ω = 0 and bringing the factor Pαµθ(k) inside the integral in (4.2)
yields

Iαβ = Pαµθ(k)Pνσβ(k− q)Gθν(−$, |k− q|, k3 − q3)Uµσ ($, q, q3). (7.37)

Substitution of (3.18) for the Green function and (4.4) for the velocity correlator
result in factorization of the integrand,

Iαβ =D(q)Pαµθ(k)
9∑

i=1

T i
µθβRi, (7.38)

where the tensorial and scalar terms are given in the appendix A. Note that the scalar
terms are frequency dependent only.

7.2.1. Frequency integration
Altogether, functions Ri have 9 poles determined by various products of the

expressions (A 19)–(A 21) in the denominators of (A 10)–(A 18) given in the
appendix A. Those poles are:

$1,2 =±
√

f2 + iωk−q, (7.39)

$3,4,5,6 =±
√

f1 ± iωq, (7.40)
$7,8 =±i( f3 +ωq), (7.41)
$9 = i( f4 +ωk−q), (7.42)

where f2, f3 and f4 are defined in (A 24)–(A 26).
Six of these poles are in the upper half-plane while the other three are in the lower

half-plane. The frequency integration is performed over the lower half-plane yielding

R i(q, q3, k, k3)=
∫

Ri($, q, q3, k, k3)
d$
2π

, (7.43)

where the expressions for R i(q, q3, k, k3) expanded up to O( f 2) are given in the
appendix A.

After frequency integration, expression (7.38) reduces to

Iαβ =D(q)Pαµθ(k)
9∑

i=1

T i
µθβR

i. (7.44)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.568


QNSE theory of turbulence with solid body rotation 403

7.2.2. Spectral gap approximation and integration over the shell D>

Since the integrand (7.38) is calculated up to O(k2) and Pαµσ (k) = O(k), only
the terms up to O(k) need to be retained in the product T i

µθβR
i in (7.44). By

expanding this product in powers of k and contracting the result with Pαµθ(k) using
the properties of the Kronecker delta and projection operators, (7.44) can be brought
to an expression that can be integrated in the horizontal plane qh and over q3. Upon
completing this final step, we collect all the terms into groups proportional to k2δαβ ,
k2

3δαβ , k2P3α(k)δ3β and k2
3P3α(k)δ3β and take the limit 1Λ→ 0 which yields a coupled

system of four ordinary differential equations for ν, δνz, δν3 and δν3z,

dν
dΛ
=− AdD

ν2Λ5

(
1− δνz

νn
− 1

6
δν3

νn
− 11

126
δν3z

νn
− 11

21
Ro−2

)
, (7.45)

dδνz

dΛ
=− AdD

ν2
nΛ

5

(
1
3
δνz

νn
− 5

6
δν3

νn
− 23

126
δν3z

νn
+ 2

7
Ro−2

)
, (7.46)

dδν3

dΛ
=− AdD

ν2
nΛ

5

(
2
3
δνz

νn
− 2

3
δν3

νn
− 1

9
δν3z

νn
+ 2

7
Ro−2

)
, (7.47)

dδν3z

dΛ
=−7

9
AdD
ν2

nΛ
5

δν3z

νn
. (7.48)

Although this system is self-contained, it is needed to complete the system (7.26)–
(7.27) for a passive-scalar diffusion.

Equation (7.48) is solved first. By substituting νn(Λ) from (7.28), we obtain the
equation

dδν3z

dΛ
=−28

27
δν3z

Λ
(7.49)

whose solution is δν3z=CΛ−28/27. Since δν3z=0 at the start of scale elimination, C=0
and so δν3z = 0 for any Λ.

For practical applications, the solutions for the eddy viscosities and eddy diffusivities
need to be expressed in terms of the observable variables such as the dissipation rate
ε. This can be done by finding a relationship between ε and the forcing amplitude
D which enters equation (7.28). This relationship is elaborated in the next section.

8. The forcing amplitude
It is relatively straightforward to determine the forcing amplitude D in (3.14)

in the non-rotating case in which the velocity correlation tensor is Uαβ(k, ω) =
|G0(k, ω)|2D(k)Pαβ(k) and the 3-D energy spectrum is

E0(k)= (2π)−3k2
∫

Uαα(k, ω) dω= 0.26D2/3k−5/3 (8.1)

(E0(k) denotes the energy spectrum in a non-rotating flow). Let kc be the dynamic
dissipation cutoff bounding the range of eliminated (or implicit) modes p > kc. The
effective viscosity νn(kc) is a result of this scale elimination. It acts on the resolved
(explicit) modes in such a way as to ensure that the energy loss in the range 0<p< kc
is equal precisely to the dissipation rate ε,

ε = 2νn(k)
∫ kc

0
p2E0(p) dp. (8.2)
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404 S. Sukoriansky and B. Galperin

Substituting (7.28) and (8.1) into (8.2), we find

D' 13.1ε, (8.3)

which makes it possible to relate the eddy viscosity and the energy spectrum of non-
rotating turbulence to ε,

νn(k)' 0.46ε1/3k−4/3, (8.4)
E0(k)=CKε

2/3k−5/3, (8.5)

where the Kolmogorov constant CK ' 1.46. This value agrees well with the
experimental high Reynolds number estimate, CK=1.5±0.15, reported by Sreenivasan
(1995). Variation of ε due to rotation will be considered in § 13.

9. Eddy viscosities, eddy diffusivities and flow regimes in rotating and stably
stratified turbulence
The solution δν3z = 0 simplifies (7.26), (7.27) and (7.45)–(7.47) which now can

be solved analytically in the lowest order of Ro(k)−1. Designating the independent
variable as k (instead of Λ) one obtains the scale-dependent eddy viscosities,

νh

νn
= 1− 41

252
Ro(k)−2 = 1− 0.77(k/kΩ)−4/3, (9.1)

νz

νn
= 1− 73

1260
Ro(k)−2 = 1− 0.27(k/kΩ)−4/3, (9.2)

ν3

νn
= 1− 37

1260
Ro(k)−2 = 1− 0.14(k/kΩ)−4/3, (9.3)

ν3z

νn
= 1+ 19

252
Ro(k)−2 = 1+ 0.36(k/kΩ)−4/3. (9.4)

With no rotation, i.e. in the limit Ro−1 → 0, the flow becomes isotropic,
νh = νz = ν3 = ν3z. For k/kΩ & 10, the deviations of νh, νz, ν3 and ν3z from their
values in non-rotating flows are within 5 %. On larger scales, rotation causes gradual
decrease of the first three ratios, νh/νn, νz/νn and ν3/νn, and the increase of the
fourth one. The decreasing viscosities, especially νh → 0, point to a decreasing
energy flux to small scales. The concurrent energy redirection to large scales can be
interpreted as energy backscatter or the inverse cascade. From (9.1)–(9.3) one infers
that the horizontal viscosity decreases at the fastest rate and may become zero at
k/kΩ = O(1). Numerical solution of the system (7.45)–(7.48), which can be carried
out for larger values of Ω than it is feasible in the weak rotation approximation,
indicates that νh→ 0 at considerably smaller values of k/kΩ . This result is consistent
with numerical simulations by Smith & Waleffe (1999) and Lindborg (2005) who
showed that at kξ/kΩ ' 0.01, kξ being the wavenumber of the forcing, a 3-D flow
develops strong inverse energy cascade and acquires features of a ‘negative viscosity
phenomenon’ (Starr 1968).

Have we reached a dead end by arriving at the negative eddy viscosity? The answer
is ‘no’ because, as explained in Galperin et al. (1993), Sukoriansky et al. (1996)
and Sukoriansky, Galperin & Chekhlov (1999), the negative Laplacian viscosity in
quasi-2-D flows represents only part of the physics. The other part can be gleaned
from figure 2 showing that, on smaller scales, the effect of the negative viscosity is
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compensated by a biharmonic and, possibly, higher-order dissipative hyperviscosities.
Thus emerging SGS parameterization was coined a stabilized negative viscosity,
or SNV by Sukoriansky et al. (1996) and Sukoriansky et al. (1999). The negative
Laplacian viscosity in SNV assumes the role of the unresolved subgrid-scale forcing
which otherwise would be unaccounted for in estimating the large-scale eddy kinetic
energy and the global energy balance. It is well possible that an SNV representation
can be developed within the QNSE formalism for 3-D flows to alleviate the problems
posed by the use of the spectral gap approximation as elaborated in § 5.

As was already noted, νh decreases faster than νz and ν3 with the increasing scale.
This result is consistent with the experiments by Jacquin et al. (1990). Numerical
simulations by Yeung & Zhou (1998) demonstrated that the spectral energy transfer
in the direction of rotation is similar to that in non-rotating flows, but in the normal
direction, the transfer weakens significantly. The ratios, νz/νh and ν3/νh,

νz

νh
= 1+ 11

105
Ro(k)−2 = 1+ 0.495(k/kΩ)−4/3, (9.5)

ν3

νh
= 1+ 2

15
Ro(k)−2 = 1+ 0.63(k/kΩ)−4/3, (9.6)

can be viewed as another evidence of increasing flow two-dimensionalization as they
are related to the increase of the vertical correlation length scale compared to its
horizontal counterpart. The anisotropization of the integral length scale tensor in the
physical space was detected in simulations by Yeung & Zhou (1998). As they put
it, ‘. . . the large-scale motions are lengthened along the axis of rotation but are more
compact within the plane orthogonal to this axis’.

Equations (9.1)–(9.3) make it possible to solve (7.26) and (7.27) analytically and
derive expressions for the horizontal and vertical eddy diffusivities in the limit of weak
rotation,

κh

νn
= α + 0.049Ro(k)−2 = α + 0.23(k/kΩ)−4/3, (9.7)

κz

νn
= α − 0.001Ro(k)−2 = α − 0.0049(k/kΩ)−4/3, (9.8)

where α= κn/νn=Pr−1
t0 ' 1.39 is the inverse turbulent Prandtl number in non-rotating

flows (Yakhot & Orszag 1986; Sukoriansky et al. 2005).
On the first sight, the increase of the horizontal diffusivity versus the decrease of

its vertical counterpart seems to contradict the data. For instance, using analytical and
numerical tools, Cambon et al. (2004) and Rodriguez Imazio & Mininni (2013) show
that in rotating flows, the vertical diffusivity increases while the horizontal diffusivity
decreases; eventually, their ratio attains the value of approximately 2. Their analysis,
however, pertains not to scale-dependent eddy diffusivities, such as κh(k) and κz(k),
but the total eddy diffusivities obtained by averaging over all fluctuating scales.
Those diffusivities grow with the integral scales in the respective directions. Since the
integral length scale is larger in the vertical direction (Yeung & Zhou 1998; Müller
& Thiele 2007; Godeferd & Moisy 2015), the total vertical diffusivity may become
larger than the horizontal one.

The increase of the horizontal spectral diffusivity in rotating flows undergoing two-
dimensionalization pointed to by (9.7) can be better understood by comparing the
values of κh in isotropic turbulence with 2-D versus 3-D geometry. Solving (7.30) for
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d= 2 and d= 3 and taking a note that for d= 2, Ad = (16π)−1 and Kd = (4π)−1, one
derives

κ2D
n

κ3D
n

= 3(
√

17− 1)(5π)1/3

2(
√

129− 3)
≈ 1.4, (9.9)

such that κ2D
n /νn is approximately 1.4 times larger than κ3D

n /νn = α ∼ 1.4. In other
words, the ratio κh/νn increases from α = 1.39 to approximately 2 with increasing
scale and expanding two-dimensionalization.

Figure 3 compares the behaviours of the eddy viscosities and eddy diffusivities in
rotating versus stably stratified flows as analysed by Sukoriansky & Galperin (2013).
Immediately obvious is the similarity between the scalings with k/kΩ in the former
and k/kO in the latter which highlights the affinity between the Woods and Ozmidov
scales in flows with different extra strains.

On relatively small scales, the effect of either extra strain is miniscule and
practically not felt by the flow. Rotational effects become sizeable at respective
scales of approximately 0.1 LΩ and 0.1 LO where one observes increasing with
scale anisotropization of both flows. The tendencies to anisotropization expressed by
the horizontal and vertical eddy viscosities and eddy diffusivities under the action
of rotation and stable stratification are switched around as νh/νn decreases with
decreasing k/kΩ in the former case and increases with decreasing k/kO in the latter.
On the other hand, while κz/νn stays nearly constant with k/kΩ , it decreases and
tends to zero with k/kO. These differences are stipulated by the action of different
types of extra strains whose directions of zero frequency are orthogonal.

On larger scales, while the horizontal viscosity in rotating flows decreases due
to inverse energy cascade, the eddy diffusivities always remain positive definite
regardless of the direction of energy transfer (e.g. Kraichnan 1976). The increase in
κh/νn from approximately 1.4 to approximately 2 confirms the tendency towards flow
two-dimensionalization under the action of rotation, and is quantitatively consistent
with (9.9). On the other hand, the ratio κz/νn is almost Ω-independent.

Although QNSE implies the arbitrarily small molecular viscosity, consideration of
the viscous effects is necessary for practical purposes. On very small scales, of the
order of the Kolmogorov microscale, LK = (ν3

0/ε)
1/4, both rotating and stably stratified

flows are strongly impacted by the effect of the molecular viscosity. For the latter
class of flows, the range of scales between LO and LK is quantified by the buoyancy
Reynolds number Reb (also known as the isotropy index, Thorpe 2005),

Reb ≡ ε

ν0N2
=
(

LO

LK

)4/3

. (9.10)

The value Reb' 102 is an approximate threshold below which the viscous dissipation
becomes increasingly anisotropic (e.g. Galperin & Sukoriansky 2010, and references
therein).

A similar parameter can be introduced for rotating flows,

ReΩ ≡ ε

ν0f 2
=
(

LΩ
LK

)4/3

, (9.11)

where ReΩ can be referred to as the rotational Reynolds number. It is plausible
to assume that the threshold of the viscous dissipation anisotropization in rotating
flows is about the same as in stratified flows, i.e. ReΩ ' 102. Since ReΩ � Reb in
geophysical flows, this criterion is of little consequence. It may be important in
computer simulations of rotating flows, however, where the Reynolds numbers are
still relatively low.
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FIGURE 3. Vertical and horizontal eddy viscosities and eddy diffusivities normalized
with νn for turbulence with rotation (a) and stable stratification (b) (after Sukoriansky
& Galperin 2013). Horizontal and vertical eddy viscosities and vertical eddy diffusivities
exhibit opposite tendencies.

10. Dispersion relation for inertial waves in the presence of turbulence

Consider now the effect of turbulence on inertial waves. Sukoriansky et al. (2005)
showed that turbulence modifies the classical dispersion relation for linear internal
waves and it is important to know whether or not turbulence has a similar effect on
the inertial waves. This can be done using the Langevin equation (3.13) that describes
a linear, forced, stochastic oscillator and whose eigenfrequencies are given by the real
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parts of the roots of the secular equation

det[G−1
αβ ($, k)] = 0. (10.1)

These roots are the poles of the Green function Gαβ($, k) given by (7.40).
Recalling (7.7), one writes the eigenfrequencies as

ω=<($)=<(±√f1 ± iωk)=ω0, (10.2)

where

ω0 = f cos θ, (10.3)

θ being the angle between the wave vector k and the vertical axis, is the classical
dispersion relationship for linear inertial waves (Landau & Lifshitz 1993). Thus,
turbulence does not change the linear wave frequency. The imaginary part of $
is related to turbulent dissipation and, as elaborated by Galperin, Sukoriansky &
Dikovskaya (2010) in the appendix A, it broadens the spectral peak associated with
the wave.

The dispersion relationship (10.2) underscores the difference between the inertial
and internal waves. Recall that in the case of stable stratification, turbulence does
modify the linear wave frequency. Moreover, internal waves are completely eradicated
on scales where turbulence contribution renders ω imaginary (Sukoriansky et al.
2005).

We emphasize that even though turbulence does not shift the frequency of the
inertial waves in the QNSE theory, turbulence and waves are considered as one
entity in exactly the same fashion as it was done in the case of flows with stable
stratification (Sukoriansky et al. 2005).

We also notice that though turbulence affects the dispersion relation for internal
waves, their range of existence, ω 6 N, remains the same as in the case of purely
linear waves. As shown above, turbulence does not affect the dispersion relation for
inertial waves at all. Therefore, the range of existence of the mixed internal–inertial
waves, f 6 ω 6 N (Phillips 1977), should remain the same as in the case of linear
waves even if the waves coexist with turbulence.

11. Spectra of kinetic energy and scalar variance
Laboratory experiments, numerical simulations, ocean currents and various layers

of the atmosphere exhibit a remarkable and ubiquitous vertical spectrum of the
horizontal velocity obeying a spectral law E1(kz)∝ N2k−3

z (Smith, Fritts & VanZandt
1987; Galperin & Sukoriansky 2010; Sukoriansky & Galperin 2013). The horizontal
layering in such flows can be associated with modes with zero frequency, i.e. slow
modes (e.g. Sagaut & Cambon 2008). This spectrum is peculiar because, while being
aligned in the direction of zero frequency, it nevertheless depends on N. In fact, this
spectrum depends on N and kz only and is, thus, independent of the forcing, seasons
and altitude, if the atmospheric realization is considered (Smith et al. 1987). In QNSE,
this spectrum was derived in the approximation of weakly stratified turbulence which
reduces to Kolmogorov turbulence on small scales. Since the large-scale spectrum
also depends on N and kz only, the QNSE results appear applicable well beyond
their domain of validity. The importance of this result is underscored by the fact
that the non-dimensional coefficient in the spectrum expression turned out to be
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invariant across the scales. In fact, this is the only existing theoretical derivation
of this coefficient. Note also that the QNSE theory attributes this spectrum to the
interaction between turbulence and internal waves rather than accepting the traditional
view that the spectrum is a product of internal wave saturation (see e.g. Dewan 1979;
Dewan & Good 1986).

In analogy to turbulence with stable stratification, various 1-D and 3-D spectra
of turbulence with rotation will be derived in the approximation of weak rotation.
Being a product of interaction between turbulence and inertial waves, they are of
considerable interest, particularly if they also turn out to be applicable beyond the
domain of their derivation.

In computing the spectra, we follow the nomenclature in Monin & Yaglom (1975)
and define by E1(k1) a 1-D longitudinal spectrum of the velocity component v1,
while E1(k2) and E1(k3) are the transverse spectra of v1 in the horizontal and vertical
directions. In the case of weak rotation, all 1-D spectra can be calculated analytically.
For instance, for the 1-D longitudinal horizontal spectrum E1(k1) one finds

E1(k1) = 4
π

∫ ∞
0

∫ ∞
0

dk2dk3

(2π)2

∫ ∞
−∞

dω
2π

U11(ω, k)

= 0.47ε2/3k−5/3
1 + 0.0926f 2k−3

1

= 0.47ε2/3k−5/3
1

[
1+ 0.197

(
k1

kΩ

)−4/3
]
. (11.1)

Generally, any other 1-D spectrum Ei(kj) can be computed in a similar way by
integrating the spectral tensor Uii(ω, k), no summation over i is implied, over the
frequency ω and the two wavenumbers different from kj.

Those other 1-D spectra are

E1(k2) = 0.626ε2/3k−5/3
2 + 0.240f 2k−3

2

= 0.626ε2/3k−5/3
2

[
1+ 0.385

(
k2

kΩ

)−4/3
]
, (11.2)

E1(k3) = 0.626ε2/3k−5/3
3 + 0.144f 2k−3

3

= 0.626ε2/3k−5/3
3

[
1+ 0.230

(
k3

kΩ

)−4/3
]
, (11.3)

E3(k1) = 0.626ε2/3k−5/3
1 + 0.059f 2k−3

1

= 0.626ε2/3k−5/3
1

[
1+ 0.095

(
k1

kΩ

)−4/3
]
, (11.4)

E3(k3) = 0.47ε2/3k−5/3
3 + 0.037f 2k−3

3

= 0.47ε2/3k−5/3
3

[
1+ 0.079

(
k3

kΩ

)−4/3
]
. (11.5)

Note that the effect of rotation on the vertical velocity component is weaker than
that on the two horizontal ones.
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The 3-D energy spectrum is computed as

E(k) = 1
2

k2
∫ ∞
−∞

dω
2π

∫
∂S

dΣ
(2π)3

Uαα(ω, k)

= 1.458ε2/3k−5/3 + 0.564f 2k−3 = E0(k)+ δE(k)

= 1.458ε2/3k−5/3

[
1+ 0.387

(
k

kΩ

)−4/3
]
, (11.6)

where E0(k) is given by (8.5) and δE(k) is the lowest-order correction to E0(k) due to
rotation. Here,

∫
∂S dΣ denotes integration over the surface of a 3-D unit sphere. These

equations demonstrate that within QNSE, rotation provides positive contributions to all
Kolmogorov 1-D and 3-D spectra; they are all proportional to the respective factors
f 2k−3

i , i= 1, 2, 3.
Comparing these results with numerical simulations recall that turbulence

isotropization on scales smaller than the Woods scale was observed by Mininni
et al. (2012) and Sen et al. (2012). The relevance of the Coriolis term-related
additions ∝ f 2k−3

⊥ to the isotropic Kolmogorov horizontal spectra can be assessed
via comparison with computer simulations. Two factors ought to be kept in mind
in making such comparisons. (i) It is well known that physical and spectral space
characteristics of rotating turbulence profoundly depend on the way it is being forced
(e.g. Smith, Chasnov & Waleffe 1996; Bourouiba et al. 2012; Sen et al. 2012). The
QNSE formalism developed in this paper implies isotropic ‘bare’ forcing which
is then projected onto isotropic ‘dressed’ modal forcing specified by (3.14). Thus,
numerical results based upon isotropic forcing are most suitable for comparison with
QNSE predictions. In principle, QNSE could be extended to anisotropic and other
types of forcing by modification of (3.14) but this is a separate effort which is outside
the scope of the present study. (ii) The resolution of simulations performed to date
was sufficient to attain only relatively small values of the rotational Reynolds number,
ReΩ . 70, and oftentimes, they were much smaller. QNSE, on the other hand, implies
arbitrarily large ReΩ such that some differences in flow regimes are unavoidable.

Early simulations by Smith & Waleffe (1999) provided evidence of the k−3
⊥ spectral

scaling but the transition to the small-scale Kolmogorov range was unresolved.
Mininni et al. (2012) performed simulations with the resolution of 30723 points

in which the Woods scale was more than an order of magnitude larger than the
dissipation scale thus allowing for the ranges of the large-scale inverse energy cascade,
direct cascades of energy and helicity, and the Kolmogorov cascade to small-scale
dissipation to be resolved reasonably well. Even though these simulations employed
the Beltrami forcing that evokes a helical flow regime, they presented clear evidence
of flow three-dimensionalization and establishing the Kolmogorov k−5/3

⊥ spectral laws
for both energy and helicity on scales smaller than LΩ .

Sen et al. (2012) investigated rotating flows with inverse cascade at a fixed small
Rossby number and a linear resolution of 384 points. They considered a flow in a
periodic box with the aspect ratio of unity and employed both helical and non-helical
forcing functions. To attain reasonably high Reynolds numbers, they employed LES
in which the EDQNM-based SGS parameterization included the effect of helicity.
Following Mininni et al. (2012), this model assumed that turbulence returns to 3-D
isotropy on scales smaller than LΩ . In addition, following Baerenzung et al. (2008),
it included energy backscatter. The simulated large-scale energy spectrum attained
either the k−5/3

⊥ power law consistent with the inverse energy cascade of quasi-2-D
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turbulence or a steeper k−3
⊥ slope in which 3-D modes release significant amount of

energy to 2-D modes. The spectral shape ultimately depended on forcing isotropy:
the k−5/3

⊥ law was associated with the forcing that selectively injected energy into
2-D modes while the k−3

⊥ law was more endemic to isotropic forcing.
Thiele & Müller (2009) found that turbulence, driven by a large-scale forcing,

exhibits a 1-D stationary scaling ∝ k−2
⊥ in the rotation-dominated inertial range. The

spectrum was computed in analogy to (11.1) or (11.2) with the integration over k3.
The individual spectra, without the integration over k3, exhibited the spectral slope
∝ k−3.

Generally, the horizontal spectra (11.1) and (11.2) are equivalents of the spectrum
E1(k3) in the case of stable stratification. Similar to the latter, they demonstrate the
transition from the Kolmogorov spectrum to a steeper spectrum ∝ f 2k−3

⊥ that depends
on f and k⊥ only. Unfortunately, almost no spectrum obtained in simulations and
exhibiting the k−3

⊥ slope was checked for the f 2 dependence as well and so the
nature of the k−3

⊥ scaling is difficult to ascertain even though it may be important for
explaining the horizontal spectra of atmospheric winds and ocean currents that often
exhibit such slopes.

One may also inquire about a possible connection between the present results
and studies of turbulence in the limit of fast rotation. For instance, Galtier (2003)
considered rotating turbulence in the limit of small Rossby number using weak
turbulence theory which yielded the energy spectrum in the form E(k) ∝ k−5/2

⊥ k−1/2
‖ .

This distribution is quite different from those obtained here. Note, however, that
Galtier (2003) considered a limit of weak turbulence and strong wave interaction
while the regime considered here implies strong turbulence and weak wave interaction.
The former regime does not converge to Kolmogorov turbulence for Ω→ 0 and for
this reason, there is no analytical transition between the two limits.

Spectra of a passive-scalar variance (labelled with θ ) can be computed using the
passive-scalar Langevin equation (6.4) and scalar variance dissipation equation that,
in analogy to (8.2), equates the loss of the scalar variance due to the action of the
effective diffusivity κ(kc) in the resolved range 0< p< kc to the scalar dissipation rate
εθ ,

Eθ(k)=Cθεθε
−1/3k−5/3

[
1+C1

(
k

kΩ

)−4/3
]
, Cθ = 1.034,C1 =−0.11, (11.7)

Eθ(k3)=Cθ3εθε
−1/3k−5/3

3

[
1+C13

(
k3

kΩ

)−4/3
]
, Cθ3 = 0.62,C13 =−0.036, (11.8)

Eθ(k1)=Cθ1εθε
−1/3k−5/3

1

[
1+C11

(
k1

kΩ

)−4/3
]
, Cθ1 = 0.62,C11 =−0.0735. (11.9)

Unlike the energy spectra, all rotation-related terms in (11.7)–(11.9) are negative
such that all three spectra fall below the Kolmogorov law with increasing scale.
Rodriguez Imazio & Mininni (2011, 2015) advanced a simple phenomenological
scaling argument for rotating non-helical flows according to which, if the energy
spectrum follows a power law E(k) ∝ k−n, then the spectrum of a passive-scalar
variance is Eθ(k) ∝ k−m, where m= (5− n)/2. Accordingly, since all energy spectra,
(11.1)–(11.6), undergo the transition from the Kolmogorov k−5/3 to k−3 power law
with the increasing scale, then the slope of the corresponding scalar variance spectra
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can be expected to flatten from the k−5/3 to k−1 which indeed (11.7)–(11.9) may be
indicative of since the coefficients C1, C13 and C11 are all negative. The results do not
extend far enough, however, to determine whether or not the k−1 slope is attained.

12. The anisotropy of spectral energy transfers

Equations (11.1)–(11.5) make it possible to analyse the energy transfers between
different directions and different velocity components in rotating turbulence. One
observes that contributions to the horizontal spectra exceed those to their vertical
counterparts, which is true for both the transverse, i.e. E1(k2) > E1(k3), and the
longitudinal, i.e. E1(k1)>E3(k3), spectra. These tendencies are produced by turbulence
energy redistribution between different directions and concentration in the equatorial
plane in the spectral space. This concentration is consistent with the Taylor–Proudman
constraint that causes the appearance of columnar vortices or ‘cigars’. The coherence
inside these ‘cigars’ increases while vertical gradients diminish leading to decimation
of the vortex stretching and development of the inverse cascade on large scales in
the horizontal planes. Even though the flow remains three-dimensional, in the sense
that it possesses all three velocity components, it virtually depends on two horizontal
coordinates and develops properties of 2-D turbulence. This behaviour is opposite
to the case of stable stratification in which the energy concentrates inside vertically
aligned cone and the slow modes are comprised of horizontal sheets, or ‘pancakes’
with strong gradients between them. These gradients enhance vortex stretching and
facilitate vorticity generation on ever smaller scales thus precluding the development
of the inverse energy cascade. Extensive studies of the energy redistribution in rotating
and stably stratified flows was undertaken over the years by the scientists of the Lyon
group (see extensive reviews by Sagaut & Cambon 2008; Godeferd & Moisy 2015);
their results are schematically presented in figure 4 adopted from Sagaut & Cambon
(2008).

13. Direct and inverse energy transfers

The tendency of the rotating flows to develop the inverse energy cascade on
large scales is so prolific that doubts have been raised as to whether or not the
large-scale energy of the atmospheric and oceanic circulation can ever be delivered
to the scales at which it can become involved in the direct cascade and dissipate
(Pouquet & Marino 2013). On the other hand, the co-existence of the direct and
inverse cascades in rotating flows has been known at least since the early studies
by Smith et al. (1996). It was also evident in simulations of oceanic flows by Klein
et al. (2008). Pouquet & Marino (2013) showed that a dual, direct and inverse,
energy cascade at constant rates εD and εI , respectively, can develop in rotating
stratified turbulence. Furthering these findings, Marino, Pouquet & Rosenberg (2015)
performed high-resolution DNS of rotating stratified flows and identified a double
cascade of the kinetic and potential energies to large and to small scales. All these
efforts alleviate the paradox of the small-scale mixing in the presence of the inverse
energy cascade. QNSE results provide an additional framework that can be used to
analyse this paradox from a different viewpoint.

Denote the energy dissipation in the non-rotating case, (8.2), as

ε0 = 2νn(k)
∫ k

0
p2E0(p) dp. (13.1)
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g

g(a) (b)

(c) (d )

Conical region 
in which toroidal 

energy concentrates

Conical region 
in which energy 

concentrates

Slow manifold

Polar axis

Polar axis
(1D VSHF mode)

Equatorial plane
(2D manifold)

Equatorial plane

FIGURE 4. (Colour online) Angular energy drain for stably stratified (a) and rotating (c)
turbulence; spectral transfers (a,c) versus structures in physical space (b,d). (After Sagaut
& Cambon (2008); reprinted with the permission of Cambridge University Press.)

In the lowest order in Ro(k)−1, the total energy flux through a wavenumber k can
be computed as a sum of two terms,

ε = ε0 + δε = ε0 + 2
∫ ∞

k
p2[δν(p)E0(p)+ νn(p)δE(p)] dp

= ε0

[
1− 0.39

(
kΩ
k

)4/3
]
, (13.2)

where δE(k)=E(k)−E0(k) is the correction to the total spectrum as defined in (11.6)
and δν(p)= ν(p)− νn(p). While ε0 is computed by integration over the interval (0, k)
as it quantifies the energy transfer from the explicit to the implicit, or SGS domain
(k,∞), the correction δε is computed by integration over the interval (k,∞) as it
quantifies the energy transfer from the implicit to explicit domain. Since δε < 0, one
infers that it effectively quantifies energy backscatter due to rotation which, in fact, is
the k-dependent rate of the inverse energy cascade.

Based upon the other two corrections to the vertical viscosity, we can compute the
angular and component-wise redistributions of the energy flux,

εz(k)= 2
∫ ∞

k
p2δνz(p)E0(p) dp'−0.28ε0

(
kΩ
k

)4/3

, (13.3)
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and

ε3(k)= 2
∫ ∞

k
p2δν3(p)E0(p) dp'−0.05ε0

(
kΩ
k

)4/3

. (13.4)

Note that both εz(k) and ε3(k) are negative meaning that the energy is withdrawn
both from the vertical component and the z (or k‖) direction of all components. The
energy loss of the third component (which is rather minor, (13.4)) is the gain of the
two other horizontal components. More significant is the energy transfer from the
k‖ direction to the horizontal plane (for which k‖ = 0) given by (13.3). This picture
agrees well with the process of energy redistribution as presented schematically on
figure 4. This analysis also indicates that while the direct cascade diminishes with
the increasing scale, the inverse cascade gradually increases, consistently with the
evidence of the dual cascade discussed in Pouquet & Marino (2013) and Marino
et al. (2015). Clearly, this reasoning is qualitative only and valid for νh > 0.

14. Discussion and conclusions
The QNSE theory has been extended to include the case of forced rotating flows

in a steady state. The process of small-scale elimination produces componentality
which manifests via eddy viscosities acting in different ways on different velocity
components and in different directions. In fact, the eddy viscosity ν3 acting on the
vertical velocity component alone has been obtained here for the first time. All
but ν3z eddy viscosities decrease with increasing scales compared to their values
in non-rotating flows. In the vicinity of the Woods scale, LΩ , the horizontal eddy
viscosity, νh, tends to zero and the process of successive scale elimination cannot
proceed beyond that point. The decrease in eddy viscosities is associated with
gradual reorientation of the energy flux from small to large scales, i.e. increasing
energy backscatter or inverse energy transfer inherent to turbulence with rotation.
This behaviour of the eddy viscosities sets apart QNSE results for the cases of
stably stratified and rotating turbulence. While in the former, the QNSE procedure
produced positive viscosities for any stratification and so it could be carried out to
any scale, in the latter, the procedure can only be used in the limit of weak rotation
for as long as νh > 0. The results are nevertheless important because they provide an
analytical closed-form description of the transition from the isotropic 3-D Kolmogorov
turbulence to anisotropic, rotation-dominated, quasi-2-D, three-component flow field
emerging under the action of rotation. With regard to the frequencies of the inertial
waves, turbulence appears not to affect them and so they remain unchanged compared
to the linear case.

The QNSE-generated eddy viscosities and eddy diffusivities can be used as SGS
parameterization for rotating flows on scales with positive eddy viscosities. Several
LES studies of rotating turbulence used the EDQNM formalism to develop the SGS
parameterization. Since the spectra in this approach are unknown, it was assumed
that in the SGS range the deviations from the Kolmogorov spectrum are small (e.g
Baerenzung et al. 2008; Sen et al. 2012; Pouquet et al. 2013). QNSE could possibly
improve such SGS schemes because it provides simple analytical expressions for the
response functions needed by EDQNM. Furthermore, an adequate resolution of the
Kolmogorov inertial subrange in simulations of turbulence with rotation requires that
the values of the rotational Reynolds number, Ref = ε/(ν0f 2), be relatively large, well
in excess of 102. QNSE perfectly addresses this requirement as it implies an arbitrarily
large Ref . Clearly, QNSE offers many advantages which are yet to be tested within
EDQNM.
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Planetary rotation and density stratification significantly influence the dynamics
of the Earth’s atmosphere and oceans as well as many other planetary circulations
(Read 2011). Their combined effect is scale dependent and can be characterized
in terms of the ratio of the Ozmidov and Woods scales, LO/LΩ = ( f /N)3/2, where
f /N is sometimes referred to as the Prandtl’s ratio (e.g. Dritschel & McKiver 2015).
The paramount role of this ratio in the dynamics of the Earth’s atmosphere was
elaborated by Charney (1971). The complicated and often opposing tendencies of the
rotation- and stratification-affected eddy viscosities and eddy diffusivities shown in
figure 3 can be expected to have different and even opposing effects on flows on
different scales. Recent numerical investigation by Marino et al. (2013) showed that
the energy transfer from 3-D to 2-D modes is most efficient for 1/2 6 f /N 6 2, or
0.35. LO/LΩ . 2.8. Within this interval, the stratification is most effective at creating
large-scale structures and facilitating inverse energy cascade. On the other hand, the
inverse cascade diminishes when stratification becomes predominant.

One of the most important outcomes of the competition between the effects of
rotation and stratification is the behaviour of the energy spectra. As was elaborated
in Galperin & Sukoriansky (2010), in the case of stratification with no rotation, a
flow tends to develop a universal spectrum ∝ N2k−3

z for the horizontal velocity in
the vertical direction, i.e. the direction along which the phase speed of the internal
waves is zero. It is quite possible that a similar universal spectrum emerges for the
horizontal spectrum of the horizontal velocity in rotating flows. Note in this respect
that the energy spectral laws and changes in the power laws exponents are often
explained in terms of cross-overs between 3-D and 2-D turbulence. For the Earth’s
atmosphere and ocean, f /N ∼ 10−2, and so, according to Marino et al. (2013), such
a transition would be quite inefficient. In addition, the dimensional cross-overs, if
such exist, are difficult, if at all possible, to capture within the paradigms of isotropic
or geostrophic turbulence. The QNSE formalism is free from this difficulty because
it operates with the full set of 3-D Navier–Stokes and continuity equations with
extra strains; no approximations regarding the character of a flow are made. In this
3-D framework, the emergence of flow two-dimensionalization and inverse energy
cascade originate from anisotropic energy transfers reflected in the anisotropization
of the Green function and velocity correlation tensor, the basic processes within the
anisotropic turbulence paradigm. This paradigm has also been promoted by Schertzer
& Lovejoy (1985) and Lovejoy et al. (2009) for atmospheric flows.
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Appendix A. Tensorial and scalar terms used in derivation of the effective
viscosities

In § 7.2 equations for effective viscosities have been derived. These derivations
involved lengthy and cumbersome expressions for the tensorial (Tabc) and scalar (R)
terms which are given below.

T 1
µθβ = Pµσ (q)[(kσ − qσ )Pθβ(k− q)− qβPθσ (k− q)], (A 1)
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T 2
µθβ =Qµσ (q)[(kσ − qσ )Pθβ(k− q)− qβPθσ (k− q)], (A 2)

T 3
µθβ = P3µ(q)P3σ (q)[(kσ − qσ )Pθβ(k− q)− qβPθσ (k− q)], (A 3)

T 4
µθβ = Pµσ (q)Sθν(k− q)[(kσ − qσ )Pνβ(k− q)− qβPνσ (k− q)], (A 4)

T 5
µθβ =Qµσ (q)Sθν(k− q)[(kσ − qσ )Pνβ(k− q)− qβPνσ (k− q)], (A 5)

T 6
µθβ = P3µ(q)P3σ (q)Sθν(k− q)[(kσ − qσ )Pνβ(k− q)− qβPνσ (k− q)], (A 6)

T 7
µθβ = Pµσ (q)P3θ(k− q)[(kσ − qσ )P3β(k− q)− qβP3σ (k− q)], (A 7)

T 8
µθβ =Qµσ (q)P3θ(k− q)[(kσ − qσ )P3β(k− q)− qβP3σ (k− q)], (A 8)

T 9
µθβ = P3θ(k− q)P3µ(q)P3σ (q)[(kσ − qσ )P3β(k− q)− qβP3σ (k− q)], (A 9)

and the scalar terms are

R1 = (i$ +ωk−q)($
2 + f1 +ω2

q)/D1, (A 10)

R2 = 2f$($ − iωk−q)($
2 +ω2

q)/(D1D2), (A 11)

R3 =−2δω3q(i$ +ωk−q)ωq/D1, (A 12)

R4 =−if ($ − iωk−q)( f1 +$ 2 +ω2
q)/(D1D3), (A 13)

R5 =−2f 2$($ 2 +ω2
q)($ − iωk−q)/(D1D2D3), (A 14)

R6 = 2f δω3qωq(i$ +ωk−q)/(D1D3), (A 15)

R7 =−δω3,k−q($
2 + f1 +ω2

q)/D1, (A 16)

R8 = 2if δω3,k−q$($
2 +ω2

q)/(D1D2), (A 17)

R9 = 2δω3,k−qδω3qωq/D1, (A 18)

where

D1 = [ f2 − ($ − iωk−q)
2][−f1 + ($ − iωq)

2]
× [−f1 + ($ + iωq)

2], (A 19)

D2 = [$ 2 + ( f3 +ωq)
2], (A 20)

D3 = i$ + f4 +ωk−q, (A 21)

δω3q = δν3q2 + δν3zq2
3, (A 22)

δω3,k−q = δν3|k− q|2 + δν3z(k3 − q3)
2, (A 23)

f2 = [1− P33(k− q)] f 2, (A 24)

f3 = δω3qP33(q), (A 25)

f4 = δω3,k−qP33(k− q). (A 26)

The scalar functions Ri are integrated over the frequency $ using standard contour
methods. The results of this integration, schematically shown by (7.43) and expanded
up to O( f 2), are as follows:

R1(q, q3, k, k3)= {1+ f 2[−2+ P33(k− q)+ P33(q)]/d2
1}/(2ωqd1), (A 27)

R2(q, q3, k, k3)=−f /(d1d2d3), (A 28)
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R3(q, q3, k, k3) = δωq
{−ω2

q(ωk−q +ωq)
2(ωk−q + 2ωq)

+ f 2
{[1− P33(k− q)]ω2

q(ωk−q + 4ωq)

+ [1− P33(q)](ωk−q + 2ωq)(ω
2
k−q + 2ωk−qωq + 2ω2

q)
}}
/(2ω4

qd4
1),

(A 29)

R4(q, q3, k, k3)=−f /(2ωqd1d4), (A 30)

R5(q, q3, k, k3)= f 2[P33(k− q)δωk−q + P33(q)δωq + 2(ωk−q +ωq)]/(d1d2d3d4d5),

(A 31)

R6(q, q3, k, k3) = f δωq [P33(k− q)δωk−qωk−q +ω2
k−q + 2P33(k− q)δωk−qωq

+ 4ωk−qωq + 3ω2
q] /(2ω2

qd2
1d2

4), (A 32)

R7(q, q3, k, k3)=−δωk−q{1+ f 2[−4+ P33(k− q)+ 3P33(q)]/d2
1}/(2ωqd2

1), (A 33)

R8(q, q3, k, k3)= f δωk−q[P33(q)δωq + 2ωk−q + 2ωq]/(d2
1d2

2d3), (A 34)

R9(q, q3, k, k3) = δωk−qδωq
{
ω2

q(ωk−q +ωq)
2(ωk−q + 3ωq)

+P33(q)f 2(ω3
k−q + 5ω2

k−qωq + 10ωk−qω
2
q + 10ω3

q)

− f 2
{
ω3

k−q + 5ω2
k−qωq + [11− P33(k− q)]ωk−qω

2
q

+ 5[3− P33(k− q)]ω3
q

}}
/(2ω4

qd5
1), (A 35)

where

d1 =ωk−q +ωq, (A 36)
d2 = δωqP33(q)+ωk−q +ωq, (A 37)

d3 = δωqP33(q)+ 2ωq, (A 38)
d4 = P33(k− q)δωk−q +ωk−q +ωq, (A 39)

d5 = P33(k− q)δωk−q + P33(q)δωq +ωk−q +ωq. (A 40)

The tensorial terms T i
µθβ are $ -independent and only affect the angular integration.
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