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Abstract. Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real
analysis pay much attention to what is called either ‘Application Constraint’ (AC) or ‘Frege Con-
straint’ (FC), the requirement that a mathematical theory be so outlined that it immediately allows
explaining for its applicability. We distinguish between two constraints, which we, respectively,
denote by the latter of these two names, by showing how AC generalizes Frege’s views while FC
comes closer to his original conceptions. Different authors diverge on the interpretation of FC and
on whether it applies to definitions of both natural and real numbers. Our aim is to trace the origins
of FC and to explore how different understandings of it can be faithful to Frege’s views about such
definitions and to his foundational program. After rehearsing the essential elements of the relevant
debate (§1), we appropriately distinguish AC from FC (§2). We discuss six rationales which may
motivate the adoption of different instances of AC and FC (§3). We turn to the possible interpretations
of FC (§4), and advance a Semantic FC (§4.1), arguing that while it suits Frege’s definition of
natural numbers (4.1.1), it cannot reasonably be imposed on definitions of real numbers (§4.1.2), for
reasons only partly similar to those offered by Crispin Wright (§4.1.3). We then rehearse a recent
exchange between Bob Hale and Vadim Batitzky to shed light on Frege’s conception of real numbers
and magnitudes (§4.2). We argue that an Architectonic version of FC is indeed faithful to Frege’s
definition of real numbers, and compatible with his views on natural ones. Finally, we consider how
attributing different instances of FC to Frege and appreciating the role of the Architectonic FC can
provide a more perspicuous understanding of his foundational program, by questioning common
pictures of his logicism (§5).

In recent debates on Fregean and neo-Fregean epistemologies of mathematics, much in-
terest has been devoted to what is usually called ‘Application Constraint’. Very generally
speaking, this is the requirement that a mathematical theory be outlined in a way which
immediately allows accounting for its applicability. Arguably, Frege took this requirement
as an essential guide for his foundational endeavor, and this has made many Frege scholars
follow Wright (2000) in calling it ‘Frege’s Constraint’.

A large part of the recent discussion has focused on whether this requirement, in one or
another of its possible understandings, is able to adjudicate between rival conceptions of
the natural and/or real numbers. Our present purpose is not so much to add directly to this
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issue. Rather, we want to come back to the origins of the requirement and to explore how
different understandings of it can be, respectively, faithful to Frege’s views about natural
and real numbers, and/or to his logicist project.

In trying to clarify the matter, we suggest to distinguish a quite general requirement—
which will label ‘Application Constraint’ (‘AC’)—from a more specific one, which Frege
actually endorsed—which we consequently label ‘Frege’s Constraint’ (‘FC’). After con-
sidering how the latter can be retrieved from Frege’s views, we will survey different ra-
tionales that may motivate the former, discussing which among them could also drive
the latter. This will help us to better hem in FC, to offer a compact formulation of it
that will nonetheless allow for different possible specifications or instances, which may
be, respectively, motivated by different rationales, and stand out as appropriate as regards
different branches of mathematics.

Accordingly, we will submit that two different instances of FC—a semantic and an
architectonic one, as we will label them1—partly motivated by different rationales, can
be retrieved from Frege’s approaches to natural and real numbers, respectively. This will
bring us to argue that a careful consideration of the ways in which FC commands such
approaches leads to a more nuanced understanding of Frege’s foundational program than
many other interpretations suggest.

We will proceed as follows. In §1 we will rehearse how FC can be retrieved in Frege’s
writings; in §2, we will motivate and substantiate the distinction between AC and FC, by
clarifying why the latter can be seen as a specification of the former; in §3 we will discuss
some possible rationales for AC; in §4, we will focus on the semantic and architectonic
instances of FC and on their relations with Frege’s treatment of natural and real numbers;
finally, in §5, we will reconsider Frege’s foundational program in the light of these two
instances of FC.

§1. The origins of Frege’s Constraint. While Frege’s worry for requiring a satisfac-
tory account for applications in a principled way had already been made explicit in Frege
(1884), especially in connection with empiricist approaches, it is in Frege’s treatment of
reals in Frege (1903) that FC is most often detected.2 Here is how Hale summarizes the
philosophical import of Frege’s arguments (Hale, 2000, p. 104):

From a philosophical standpoint, the most striking and most important
features of Frege’s treatment of the reals are two: (i) the real numbers are
to be defined as ratios of quantities3 (§73, §157) and (ii) in regard to the

1 The second of these labels is borrowed from Gandon (2012), §6.3.
2 After having critically discussed at length a number of available definitions of the reals,

including Cantor’s, Dedekind’s, Heine’s, Stolz’s, Thomae’s and Weierstrass’s (Frege (1903),
§II.55–§II.155), Frege informally prospects an alternative definition, which should have identified
reals with “ratios of magnitudes [Grössenverhältnis]” (ibidem, §II.156–§II.164). Insofar as he
takes magnitudes to belong to different domains, he first proceeds by formally defining “domains
of magnitudes [Grössengebiete]” (ibidem, §II.165–§II.245). An additional part of his treatise
should have followed, where Frege should have proved the existence of such domains, and defined
real numbers as ratios on them, but he did never write it: volume II of Grundgesetze stops with
the definition of domains of magnitudes, followed by the well-known Nachwort suggesting a(n
illusory) way out from the contradiction, and no third volume ever followed.

3 Hale uses ‘quantity’ to denote what Frege calls ‘Grösse’. We prefer ‘magnitude’ (in line with
the English translators of the Grundgesetze: cf. Frege (2013)). This discrepancy also reappears in
cognate terminology.
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analysis of the notion of quantity, the fundamental question requiring to
be answered is not: What properties must an object have, if it is to be a
quantity? but: What properties must a concept have, if the objects falling
under it are to constitute quantities of a single kind? (§160–§161).

According to Hale, the first of these two features is, in turn, motivated by FC (ibidem):

[. . .][Frege’s] insistence that reals be defined as ratios of quantities de-
rives from his belief that the application of reals as measures of quan-
tities is essential to their very nature, and so should be built into an
adequate definition of them. It is this, more perhaps than any other single
consideration, which underlies his dissatisfaction with the theories of
Cantor and Dedekind, on which the applicability of the reals appears, in
Frege’s view, merely as an incidental extra.

A few passages from Frege’s discussion of the matter are usually quoted to support
such a reading. One is this, taken from his assessment of Cantor’s definition (Frege, 2013,
§II.75; Frege, 2013, pp. 862–872):4

Cantor takes it to be crucial [. . .] that by means of these abstract mag-
nitudes b, b′, b′′ . . . one can effect a precise quantitative determination
of concrete magnitudes proper, for example, a geometric line segment.
Thus, far from being merely a pleasing bonus, the application within ge-
ometry is crucial. However, if it is crucial, then this goes against Cantor’s
theory, since what is crucial does not occur in the definition of numerical
magnitude. It is only after b, b′, b′′ . . . are introduced that the determi-
nation of distances by means of numerical magnitudes is provided. The
earlier introduction of numerical magnitudes is purely arithmetical, but
does not contain what is crucial; the latter statement, how distances are
determined by numerical magnitudes, contains what is crucial, but it
is not purely arithmetical. And thus the goal that Cantor set himself is
surely missed.

Here is another, taken from Frege’s informal presentation of his own definition (Frege,
1903, §II.159; Frege, 2013, pp. 1562–1572):

So the path to be taken here steers between the old approach, still pre-
ferred by H. Hankel,5 of a geometrical foundation for the theory of the
irrational numbers and the approaches pursued in recent times. From the
former we retain the conception of a real number as a magnitude-ratio,
or measuring number, but separate it from geometry and indeed from all
specific kinds of magnitudes, thereby coming closer to the more recent
efforts. At the same time, however, we avoid the emerging problems of
the latter approaches, that either measurement does not feature at all, or
that it features without any internal connection grounded in the nature
of the number itself, but is merely tacked on externally, from which it
follows that we would, strictly speaking, have to state specifically for

4 Henceforth, we will adopt the standard contemporary translations of Frege’s works even if we
take the liberty to make minor changes when we think this may be needed in order to be more
faithful to the original.

5 Frege’s reference is to Hankel (1687).
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each kind of magnitude how it should be measured, and how a number
is thereby obtained. Any general criteria for where the numbers can be
used as measuring numbers and what shape their application will then
take, are here entirely lacking.

So we can hope, on the one hand, not to let slip away from us the ways
in which arithmetic is applied in specific areas of knowledge, without, on
the other hand, contaminating arithmetic with the objects, concepts, re-
lations borrowed from these sciences and endangering its special nature
and autonomy. One may surely expect arithmetic to present the ways in
which arithmetic is applied, even though the application itself is not its
subject matter.

The attempt will have to show whether our plan is executable. Here
the following concern may arise. If the positive square root of 2 is a
magnitude-ratio, then in order to define it, it seems necessary to supply
magnitudes which have this ratio to each other. But where should we
obtain them from, if appeal to geometrical or physical magnitudes is
forbidden? And yet we do indeed require such a magnitude-ratio, since
otherwise even the sign ‘

√
2’ may not be used.

The crucial role of FC in Frege’s treatment both of natural and reals has been
emphasized by Dummett. The following remark will be relevant in our discussion
(Dummett, 1991, pp. 272–273):

A correct definition of the natural numbers must, on his [namely, Frege’s]
view, show how such a number can be used to say how many matches
there are in a box or books on a shelf. Yet number theory has nothing
to do with matches or with books: its business in this regard is only
to display what, in general, is involved in stating the cardinality of the
objects, of whatever sort, that fall under some concept, and how the
natural numbers can be used for their purpose. In the same way, analysis
has nothing to do with electric charge or mechanical work, with length
or temporal duration; but it must display the general principle underlying
the use of the real numbers to characterize the magnitude of quantities
of these and other kinds. A real number does not directly represent the
magnitude of a quantity, but only the ratio of one quantity to another of
the same type; and this is in common to all the various types [. . .]. It is
what is in common to all such uses, and only that, which must be in-
corporated into the characterization of the real numbers as mathematical
objects: that is how statements about them can be allotted a sense which
explains their applications, without violating the generality of arithmetic
by allusion to any specific type of empirical application.6

6 Although Dummett’s remarks certainly emphasize the basic theoretical point Frege makes in the
passages quoted above, they are silent on another relevant aspect of the latter, namely on how
they locate Frege within the 19th-century discussion about the foundation of analysis. Just two
pages after the latter of these texts (Frege, 1903, §II.162), Frege extensively quotes a passage
from Gauss’s 1831 announcement of his Theoria residuorum biquadraticorum – Commentatio
secunda (Gauss (1831, p. 635)). This is part of a larger discussion about “general arithmetic
[allgemeine Arithmetik]” and the legitimacy of negative and imaginary numbers. Concerning the
former, Gauss argues that “Positive and negative numbers can find application only [. . . ] when

https://doi.org/10.1017/S1755020318000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000278


FREGE’S CONSTRAINT 101

The two passages quoted above, as well as others where Frege makes similar points,7 and
the very structure of Frege’s envisaged definition of real numbers,8 unquestionably justify
both Dummett’s and Hale’s claims about the centrality of FC regarding such definition.

what is counted are not substances (conceivable objects [denkbare Gegenstände]) but instead
relations between each two objects”, so that the positive vs. negative opposition does merely
concern “the members of the relation in such a way that if the relation [. . . ] from A to B counts as
+1, then the relation from B to A must be represented as −1” (Frege, 1903, §II.162; Frege, 2013,
pp. 1592). The reference to counting makes clear that Gauss is here thinking of integer numbers.
Frege expands his views to positive and negative magnitudes (considering it to be useless to take
absolute ones into account: see footnote 42, below), and builds on this remark to suggest that these
are to be considered as extensions of relations. This specific suggestion apart, his quoting this
passage emphasizes his attention to the question Gauss is discussing there, namely how to ascribe
some sort of (objective) “reality” (the terms is Gauss’) to items to be studied within “general
arithmetic”. The previous passages make Frege’s attitude towards this question clear. Surely, the
proposal to separate the “conception of a real number as a magnitude-ratio, or measuring number
[Auffassung der reellen Zahl als Grössenverhältnis oder Maasszahl]” from “all specific kinds of
magnitudes [allen besondern Grössenarten]” and to look for a general notion of a magnitude
(or, better, as we will see later, of a domain of magnitudes) is unquestionably reminiscent
of Riemann’s idea that different “notions of magnitudes [Grössenbegriffe] are only possible
where there is an antecedent general notion [ein allgemeiner Begriff ] which admits of different
specializations [Bestimmungsweisen]”, each of which “is capable of different measuring-relations
[Massverhältnisse]” (Riemann, 1866–1867, pp. 133–135; Riemann, 2016, pp. 31–32). It remains,
however, that Frege’s perspective is quite different from Riemann’s. Where Riemann delineates
an informal characterization of a “manifold [Mannigfaltigkeit]”, by distinguishing discrete from
continuous manifolds of different dimensions, and aims at identifying the conditions under which
a continuous n-dimensional manifold admits “measure-determinations [Massbestimmungen]”
(Riemann, 1866–1867, p. 138; Riemann, 2016, p. 34), using tools from differential geometry
(for a coeval similar approach, see also Helmholtz (1868)), Frege offers, as we will see, a formal
definition of an algebraic structure to be understood as the structure of domains of magnitudes, on
which real numbers are to be defined as ratios. Whereas Riemann’s (and Helmholtz’s) perspective
is that of a sort of generalized geometry, Frege’s is that of an algebraic enquiry, independent of
geometry and any other particular theory of specific magnitudes, but able to fix the structural
conditions that any domain of such magnitudes is to meet. Far from suggesting making geometry
a foundational ground for analysis (which is the position Frege also ascribes to Hankel), or
freeing analysis from any connection with geometry (as in the perspective of arithmetization
of analysis, which he is openly rejecting), Frege aims at connecting analysis and geometry
by means of an independent and separate theory of (domains of) magnitudes, algebraic in
nature.

7 The following one, from Frege’s discussion of Heine’s and Thomae’s definitions and their views
on “formal arithmetic”, is one of them (Frege, 1903, §II.92; Frege, 2013, p. 1012):

Part of the task [of the arithmetician] is [. . . ][to connect] a sense with his
formulae; and this sense will then be so general that with the assistance of
geometric axioms, and physical and astronomical observations and hypotheses,
multiple applications of it can be made in [. . . ] sciences.
This, it seems to me, can be demanded of arithmetic. For otherwise it could
happen that this science should treat its formulae merely as groups of figures
without sense; and that then, however, a physicist, wanting to make an
application of it, might straightaway presuppose, quite without justification, that
a thought had been proven to be true. At best an illusion of knowledge would be
created. The divide between arithmetical formulae and their applications would
not be bridged. For that, it is necessary that the formulae express a sense and that
the rules find their grounding in the reference of the signs.

8 Cf. footnote (2), above.
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It is, moreover, doubtless that something similar could also be said concerning his defini-
tion of natural numbers.9 Still, no clear self-contained formulation of FC is offered either
by Dummett and Hale or by Frege himself. The following, suggested by Wright (2000),
p. 324,10 has become the standard reference:

[. . .] a satisfactory foundation for a mathematical theory must somehow
build its applications, actual and potential, into its core—into the content
it ascribes to the statements of the theory—rather than merely “patch
them on from the outside”.

The first thing to be noticed about this formulation is that it presents the constraint as a
quite general requirement. The point here is merely that the way in which a mathematical
theory is founded should be apt to account for its applications. By a further generalization,
one could require that a mathematical theory be so shaped as to make directly clear what it
takes for it to be applied. This is certainly a requirement that Frege endorsed. But Frege’s
point appears to us much more idiosyncratic: it does not generally concern the way a
mathematical theory is founded or shaped; it rather concerns the nature which is ascribed
to the relevant mathematical objects by defining them in one way or another. Frege had
independent reasons and motivations for requiring that arithmetic and real analysis11 be
conceived as dealing with abstract objects, namely that natural and real numbers should be
conceived as such objects. His point was then that the way these objects are defined should
directly account for the applicability of these theories. Insofar as, for Frege, defining some
abstract objects does in no way coincide with creating them or bringing them into existence,
or anything like this, but merely reduces to identifying the relevant objects among those
that are there, his point could be expressed as the claim that only those objects whose nature
can explain the applications of arithmetic and real analysis could count as the natural and
the real numbers, respectively.

§2. The Application Constraint. As anticipated, let us then distinguish a general
constraint about mathematical applicability, namely AC—merely requiring, as just said,
that the way in which a mathematical theory is shaped be apt to account for its
applications—from the distinctive constraint endorsed by Frege, namely FC—which rather

9 The following passage from Grundlagen could, for instance, be quoted in support (Frege, 1903,
§19; Frege, 1950, p. 26, slightly modified translation):

[. . . ] surely we are entitled to demand of arithmetic that it provide the grounds
[Anknüpfungspunkte] for any application made of number [Zahl], even although
that application is not itself the business of arithmetic. Even in our everyday
sums, we must be able to rely on the science of arithmetic to provide the basis
for the methods we use. [. . . ] the number [Zahl] which gives the answer to
the question ‘How many?’ can answer among other things how many units are
contained in a length.

10 For other discussions of the way FC should be understood, some of which will be considered
later, cf. Hale (2002), Batitsky (2002), Shapiro (2000), Snyder, Samuels, & Shapiro (2018); and
a work in progress by one of the present authors, Sereni (Manuscript).

11 In what follows, we use, for short, the terms ‘arithmetic’ and ‘real analysis’ to merely refer to
the theories of natural and real numbers, respectively, thus implying (against a frequent use of
the former term, often adopted also by Frege, for example in the very title of Grundgesetze), that
arithmetic does not deal with real numbers, and avoiding to include the theory of real functions
and/or the calculus into real analysis.
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appears to us as a (quite) particular case of such a general constraint. We shall come back
later in more details on the latter. For the time being, let us focus on the former.

Let us begin by observing that as general as AC might be conceived to be, it should not
be as general as to admit as an instance whatever requirement about the way a mathematical
theory is shaped which is concerned with its applicability. In order to count as an instance
of AC, such a requirement should meet at least two conditions, both of which are motivated
by the purpose of being faithful to Frege’s views about the applications of mathematics,
although generalizing them.

The first condition is this: an instance of AC is to be concerned with applicability,
namely with what makes applications possible, rather than with actual applications.
A fortiori, no requirement about the way a mathematical theory should be shaped
in order to account just for some particular applications, however crucial, should count
as an instance of AC. Of course, nothing in principle could disqualify such a require-
ment, but this would not be in line with the way Frege understands the matter; such
requirement could then not plausibly count as an instance of a general pattern of which
his constraint, FC, could be seen as a particular case. This is because a requirement
like this would be subject to objections paralleling many of Frege’s accusations to rival
views, both in the case of natural numbers—e.g., Frege’s objections to empiricists, who
confuse “the applications that can be made of an arithmetical statement [. . . ] with the pure
mathematical statement itself” (Frege, 1903, §9; Frege, 1950, p. 13, slightly modified
translation; cf. also Frege, 1903, §II.137, footnote 2, on which cf. footnote 13 below.)—
and in the case of real numbers—e.g., his remark that a definition of them based on
“how [geometrical] distances can be determined” is inappropriate for lack of general-
ity (Frege, 1903, §II.75).12 It remains, however, that it would be plainly unreasonable
to require that any sort of application, even the most fortuitous or occasional, be ac-
counted for by the way a relevant theory is shaped. Natural numbers (or better the sym-
bols habitually used to denote them) are, for example, associated with soccer and other
players, in order to quickly identify them during a match. But it would be plainly un-
reasonable to require that the way arithmetic is shaped be apt to account for this use
of natural numbers (or the symbols denoting them). An obvious reason for this is that
the same purpose could be achieved with other means, alien to arithmetic. No doubt,
Frege was requiring nothing like this. To remain faithful to his conception, one could
then only require that the way a mathematical theory is shaped be apt to account for the
possibility of certain applications, namely canonical ones, to be taken, in some sense, as
more fundamental than others. It follows that the specification of an instance of AC, and
a fortiori of FC, should depend on the identification of the relevant class of canonical
applications.

How such canonical applications should be identified in any case is not easy to see.
Steiner (2005), p. 627, has for example suggested, though in a different context, that
applications of a mathematical theory should count as canonical “if the theory was de-
veloped in the first place to describe” them. Steiner distinguishes between empirical and
non-empirical canonical applications, depending on the mathematical theory at hand. What-
ever the merits of this suggestion, it is clear that alternative proposals are in the offing. One

12 Literally speaking, Frege rejects such a definition for not being “purely arithmetical”. It is
however clear that he is here using the adjective ‘arithmetical’ in a broad sense (cf. footnote 11,
above), to qualify a definition of real number depending on the consideration of no independent
particular scientific domain.
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may think, for example, that—independently of any specific application the theory was
originally conceived to be used for when it was first introduced—different applications
should count as canonical if they relate to essential features of the theory itself, i.e., features
that only this theory has, or features in absence of which a theory could not count as (a
variant of) this very theory. This has a direct bearing on our discussion, for an instance of
AC will be deemed appropriate or desirable only if it requires of a theory that it accounts
for applications which qualify as canonical with respect to some methodological or philo-
sophical motivations, which might, in turn, be related to, or equate the very motivations
one has for endorsing such an instance of AC. This should appear clearer in what follows.

The second condition concerns the sense in which we could say that a mathematical
theory is applied. Not any sense of application is relevant in the context of a discussion of
Frege’s view. Both Frege and all those taking part in the present debate about his views on
the applicability of mathematics are mostly interested in a sort of applicability pertaining
to the occurrence of mathematical statements (better: theorems) as premises in arguments
whose conclusions concern either some non-mathematical domain or a mathematical do-
main other than the one to which the relevant theory pertains to. In order for this to happen,
the relevant mathematical statements have to be somehow connected with other statements
proper to this domain. This connection can take various forms: it can, for example, hinge
on the intended meaning of the former statements, to be ascribed to them by the way the
relevant theory is shaped and linked with the received meaning of the latter; or it can depend
on appropriate bridge principles. In the latter case, the relevant arguments could take the
form of appropriate deductions; in the former, they should rather appeal to inferences
depending on the relevant meanings, either because of a subjacent formal semantics or,
much more frequently, in force of informal considerations or associations.

These simple remarks should be enough to make clear that this second condition is in fact
much less restrictive than it might appear at first glance, and indeed much less restrictive
that it might be suggested by the label ‘semantic applicability’ used by Steiner to denote
the relevant sense of ‘applicability’ (Steiner (1998), p. 16; but cf. also Steiner (2005)): all it
prescribes is that a requirement counting as an instance of AC be relative to the occurrence
of mathematical statements as premises within arguments other than those proper to the
very mathematical theory these statements pertain to.

Of course, one could retort that a mathematical theory is never (neatly) separated from
a bunch of applications: that the very distinction between pure and applied mathematics
is illusory, and that mathematics itself is so intimately unitary as to make it impossible
to establish borders among distinct mathematical theories. We don’t want to pursue this
suggestion here. It will be enough to remember that as worthwhile as such a view might
be taken to be, Frege would have not admitted it, so that discussing his views requires
assuming that appropriate distinctions can be made between pure mathematics and it ap-
plications, mathematical and non-mathematical domains, and a mathematical theory and
another to which the former can be applied (crucially between arithmetic or real analysis
and geometry or rational mechanics).

The two conditions just discussed are not independent, since one could argue that the
canonical applications of a mathematical theory are just those which depend on the occur-
rence of some (class of) statements of this very theory in arguments concerning some
domain stranger to it, possibly to some specified such domain. For example, the case
mentioned above, relative to the use of natural numbers (or of the symbols denoting them)
to quickly distinguish players in a match, could be taken as a case of non-canonical ap-
plication, since no arithmetical theorem is involved in it. But, of course, accepting or
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rejecting this option would also depend on endorsing or rejecting some methodological or
philosophical motivations, which, once more, could be strictly connected, or even coincide
with the very motivations for endorsing one or another instance of AC.

It is, then, relevant, before coming more specifically to FC, to consider which motiva-
tions one could have for endorsing AC or some instances of it.

A very broad one might be that meeting AC offers a neat way of keeping together an
account of our knowledge of pure mathematics with a suitable epistemology of applied
mathematics, and this is something that many (though not everyone) may see as welcomed.
Again, and still very broadly, meeting AC might offer a form of no-miracle argument: it
could allow arguing that the applicability of mathematics to non-mathematical domains is
no lucky accident, but is explained by the intrinsic features of mathematical theories. This
also helps locating mathematical knowledge in a general account of knowledge which also
includes scientific knowledge.

Again, an appropriate instance of AC might be used, together with other objections,
as a further wedge against views on mathematics such as Millian empiricism or some
form of formalism (since, according to the two foregoing conditions, it should require,
against empiricism, that applicability be explained at a sufficient level of generality and
independently of particular applications, and, at least in one of the senses in which the
second condition can be conceived, that arithmetical formulae have a meaning, rather than
being strings of uninterpreted signs, as a formalism might prescribe). Or it could also be
used to lend support to one or another definition of some relevant items. It can help, for
example, to decide between a (neo-)logicist account of natural numbers based on Hume’s
Principle, and a structuralist account based on axiomatic characterization of mathematical
structures.

More in general, a platonist taking a mathematical theory to be about a domain of objects
which exist prior to this very theory, could appeal to some instance of AC, in order to
warrant that their prior existence can in fact be posited, since such objects gets defined by
resources that do not specifically pertain to this theory and themselves explain why the
theory, when suitably characterized, applies to any domain which these resources allow
to deal with. A case in point is just that of logicists and neologicists on arithmetic (the
case of real analysis is much more puzzling, as we will see in §4), who take it to be about
objets defined either by logic alone—this being understood, as Frege repeatedly stresses
(cf. in particular Frege (1884), §14), as the most general science, endowed with the utmost
applicability (in the sense clarified above)—or, at least, by an extension of logic apt to
conserve its applicative generality, or minimize its loss (as neologicists take it to be the
case for Frege Arithmetic, the theory obtained by extending second-order logic by adding
Hume’s Principle to it as a new axiom).

§3. Possible rationales for the Application Constraint. These rather cursory con-
siderations should be enough to make clear that one could have various and quite different
motivations for endorsing (different instances of) AC. Delving into some of them in more
detail will help us both to better understand (by comparison and immersion in a larger set-
ting) Frege’s own motivation for endorsing FC, and to attain the most faithful formulation
of such a constraint in relation to the two (quite different) concerns it relates to in Frege’s
work, namely the definitions of natural and real numbers. At the same time, this will also
help understanding how delicate the task is of identifying an appropriate and sufficiently
clear instance of AC to be used as a guide in shaping a mathematical theory or in assessing
it from a philosophical perspective.
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We will consider and discuss six possible rationales underlying AC. We take an instance
AC to be a general requirement, expressed by a normative statement (either concerned
with mathematics as a whole or explicitly specifying its range of application). On the other
hand, a rationale for endorsing AC is better seen as a purpose that one could be willing
to attain by adopting a certain instance of AC. Advancing or clarifying such purpose does
not necessarily require having already specified such particular instance of AC. Typically,
things would rather go the other way around: only after that a rationale has been advanced
and clarified an instance of AC can be stated at its appropriate level of generality.

Notice that nothing forbids the same instance of AC to be in line with several purposes,
that is, that multiple rationales underlie the choice of the same instance of AC. As a matter
of fact, this will be the case for the instances of AC we will ascribe to Frege. Notice, also,
that some of the rationales we shall consider are outright alien to Frege’s (or neo-Fregeans’)
philosophical views. We will present them nonetheless, both for the sake of completeness
and in order to mark the comparison with these views.

3.1. Rationale I: Recovering everyday practice. One first possible rationale for en-
dorsing AC is the purpose of making (a certain portion of) mathematics as close as possible
to our everyday practice, at least for those aspects which somehow pertain to mathematics
itself. This would lead one to take as canonical those applications of a mathematical
theory (or at least of an elementary and possibly informal core of it) which occur in
ordinary contexts or in very basic scientific ones. These will likely involve the use of natural
language, although it may happen that some such applications, though inevitably simple in
nature, deploy some formal symbolic expressions. Be that as it may, the rationale requires
that most common applications of this sort be accounted for in the way the relevant theories
are shaped. This can be obtained in different (not necessarily alternative) ways, for example
by an appropriate choice of central definitions, or by favoring the establishment of certain
relations among the relevant theory and others.

Typically, such a rationale will concern rather basic and/or elementary mathematical
theories. But also in these cases, the mentioned criterion for selecting what is to count
as canonical applications can appear far from straightforward. Is, for example, mere fre-
quency a sufficient and/or necessary condition for a class of application to be taken as
canonical? Which community of users should be taken into account in making a choice?
What should actually count as an ordinary context? Moreover, even if an agreement is
reached on a selection of canonical applications, their analysis, and, then, the identification
of their structure or of the features that the relevant mathematical theory are to account
for can also be far from straightforward. Still, a major issue remains also beyond these
crucial questions, namely to decide whether the rationale is to be understood descriptively
or normatively.

According to the descriptive option, what is to be accounted for by the way the relevant
theories are shaped are, if not all, at least the most ordinary applications (assuming one is
able to identify some as such).

Against this, it can be retorted that ordinary applications may mislead as regards logical
form. Frege (1884), §57, famously argued, for example, that the widespread usage of
numerals in adjectival position betrays the correct logical form of numerical statements.
Moreover, he suggested that unreflectively paying attention to ordinary uses may lead us to
mistake pure mathematical content with particular applications, as Frege alleges Mill to do,
for instance, by taking the sign ‘+’ to stand for the actual operation of physical aggregation
rather than arithmetical sum (Frege, 1884, §9; Frege refers to Schiel’s translation of Mill’s
System of Logic, Bk. III, chap. XIV, §5; this translation counts several editions; possibly

https://doi.org/10.1017/S1755020318000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000278


FREGE’S CONSTRAINT 107

Frege’s reference is to the fourth edition appeared in 1877, translating the eight edition
of the original: Mill (1877); Mill (1872)).13 Again, mathematical expressions in non-
mathematical contexts are often used with a meaning that radically departs from their
proper mathematical one, and it would be nonsensical to require that such uses be ac-
counted for by mathematics. To stick to the same example, it would be wholly inappropriate
to require that arithmetic should account for the use of ‘adding’, or to uses of ‘and’ in
idiomatic expressions like ‘One litre and one litre make two litres’, in which they denote
the physical assemblage of, e.g., two liters of water, thus allowing that one plus one may
not always be two, as suggested by Mill.

According to the normative option, what is to be accounted for by the way the relevant
theories are shaped are, among ordinary applications, those which are taken to respect most
faithfully the essential features of the relevant system of mathematical concepts. Some
actual applications will be discarded as irrelevant or at best derivative on more fundamental
ones, and yet regimentation will aim at preserving those which are seen as pertaining to
basic uses of mathematical concepts, as displayed in ordinary discourse.

On this reading, the rationale nicely coheres with a project of conceptual analysis,
but is manifestly open to the opposite dangers of vacuity and circularity, unless an in-
termediate level at which this analysis is to be located is somehow identified: it cannot
be analysis of ordinary applications themselves, at the risk of conflating the normative
option with the descriptive one; but it cannot be analysis of mathematical theories either,
since then the essential features of mathematical concepts to be accounted for will be
just dictated by the theories themselves. Absent a general way of identifying such an
intermediate level, the problem can be solved case by case via more or less convincing
arguments.

Again, Frege’s work provides examples. His view that substantival uses of numerals
are fundamental over adjectival ones (cf. Frege, 1884, §57), and should be accounted for
in a regimented and rigorous analysis, is a neat example of this normative rationale. In
line with this, one can submit that we are usually familiar, prior to and independently of
our mature arithmetical education with procedures of counting, which, tough quite simple,
might be taken as examples of a codified and stable enough (ideal) procedure not affected
by the contingence and variability of uses. This might suggest that, if arithmetic is at
issue, the relevant conceptual analysis to be invoked by the rationale, under the normative
understanding, should be analysis of counting (in one or all of its distinct modalities,
such as transitive and intransitive counting: cf. Benacerraf (1965), pp. 49–50, and below,
pp. 116–117).14

13 Frege (1903, §137, footnote 2), raises similar criticisms to the views advocated by Hermann von
Helmoltz in Helmoltz (1887), though making no reference to Helmoltz ’s previous essay on “the
facts that underlie geometry” (Helmholtz, 1868), where the role of empirical considerations in
geometry is also emphasized:

Helmholtz wants to found arithmetic empirically, whether it bends or breaks.
So he does not ask: how far can one get without invoking experiential facts?
Rather he asks: what is the quickest way I can drag in some facts of sensory
experience? Anyone with this aspiration achieves it very easily in the same way,
by confounding the applications of the arithmetical propositions with the latter
themselves.

14 A possible motivation for endorsing HP somewhat related to the normative reading of Rationale
I is discussed by McCallion (2016), p. 318. McCallion argues that
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It is however clear that no similar strategy may be available for less elementary math-
ematical theories, for no equivalent practice—non-mathematical, yet codified and stable
enough to count as an ideal practice not affected by the contingency and variability of
uses—can be identified. Real analysis is a case in point: one might think (and Frege was
indeed thinking, as we shall see in §4) that measuring stands to it as counting stands to
arithmetic; but, when conceived as an everyday practice, measuring is by far less codified
and stable than counting, and it is far from manifesting a relation with real numbers as
straightforward as that which counting manifests with natural ones (we will come back on
this in §4.1.2). This should be enough to make clear that, even in its normative understand-
ing, the rationale is hostage to a serious limitation. As we will see, a similar objection can
be raised also with respect to rationales II and V below.

3.2. Rationale II: Tracking psychological adequacy. Suppose we are presented in
practice with a variety of applications of a given branch of mathematics. When asking
that an explanation of some of them be accounted for by the way the relevant theories
are shaped, we may expect that a given mathematical concept can be supplied to someone
lacking it by familiarizing one with such applications. This may be understood merely in
a spirit of rational reconstruction. But one may ask for more and require these theories to
be also psychologically adequate in some suitable sense, either because they keep track of
those elementary applications through which we actually acquire its basic concepts during
our psychological development, or because they reflect some biologically entrenched basic
mathematical skills. As such, this rationale can be suitable to empirical, cognitively in-
formed reconstructions of mathematics; for instance, it can discriminate between accounts
giving cognitive priority to either cardinal or ordinal insights in our mastery of natural
numbers, depending on what we take as the most empirically faithful description of our
relevant cognitive abilities. However, it may fall short of many philosophical purposes.

To begin with, it may be inapplicable beyond elementary theories, that is for all those
portions of mathematics in which the complexity at stake requires highly developed theo-
retical skills that may not have any direct grounds in our innate biological or neurological
make-up, and are not learnt without explicit mathematical training.

Second, a similar rationale is clearly alien to any philosophy of mathematics which
endorses Frege’s adamant principle “always to separate sharply the psychological from

One of the virtues of Hume’s Principle [. . .] is that it seems to be at least close to
something like a conceptual truth with respect to the ordinary concept cardinal
number. That’s one way in which there can be a close conceptual connection
between ordinary arithmetic and the reconstruction based on Hume’s Principle,
but it’s not the only way. We might also consider relationships between concepts,
in particular conceptual dependencies. Perhaps the value of abstracting from
Hume’s Principle lies in the fact that it produces some desirable conceptual
dependencies. [. . .] we might understand rational reconstruction in such a way
that the conceptual dependencies amongst our ordinary concepts are taken into
account. [. . .] the more the existing patterns are preserved, the better the rational
reconstruction.

A reconstruction of arithmetic via Hume’s Principle may fare better than others in so far as
the concept ‘the number of’ (which McCallion considers to be concerned with applications, i.e.
with the attribution of cardinality to concepts) “is given a fundamental role: grasp of the concept
natural number depends upon a prior grasp [of] the concept the number of ”. According to
McCallion, neo-logicists may motivate reliance on FC on two claims: that “Rational reconstruction
requires (maximal) preservation of conceptual dependencies”, and that “Conceptual dependencies
are (maximally) preserved if and only if the applications constraint is met”.
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the logical, the subjective from the objective” (Frege, 1903, Einleitung, p. X; Frege, 1950,
p. XXII), his clear statement that “mathematics is not concerned with the nature of our
mind, and the answer to any question whatsoever in psychology must be complete indif-
ferent to it” (Frege, 1884, §93; Frege, 1950, p. 105), or his claim that “a [. . .] description
of the internal processes which precede the forming of a number judgment, even the most
accurate, can never replace a genuine definition of the concept” since “the number is no
more an object of psychology or a product of psychic processes than the North Sea is”
(Frege, 1884, §26; Frege, 1950, p. 34). Thirdly, and relatedly, those who endorse such a
rationale may be charged of confusing the grasping of thoughts with thinking processes,
thought with judging, objective with subjective, and so on.

These objections will be presumably immaterial to those who don’t share Frege’s an-
tipsychologistic attitude. However, the rationale is clearly inadequate for any constraint
that, like FC, is meant to be Fregean in spirit and somehow retrievable from Frege’s
writings.

3.3. Rationale III: Granting meager applicability. Another possible rationale for en-
dorsing AC is the purpose of getting theories so shaped as to be at least able to provide their
central concepts with some context of application, whatever this be. No explicit intent to
retrieve common, established, or somehow basic classes of applications from ordinary or
scientific practice, nor from cognitive development or biological make-up, would, then,
be advanced. One would merely require that these theories be so shaped as to deal with
concepts which are not entirely incapable of being applied.

As weak as such a requirement might appear, it may still be seen as essential to block
any formalistic approach in Frege’s sense (Frege, 1903, §II.86–§II.137): on the assumption
that application is conceived in the sense explained above (pp. 104–104), no mathematical
theory conceived as Frege’s targeted formalists conceive it will be able to explain any
application at all, as Frege himself laments (Frege, 1884, §II.91), since such theories would
merely deal with meaningless symbols suitable for appropriate manipulation, and not with
signs expressing any concept, nor, a fortiori, any concept capable of being applied.

Indubitably, Frege’s criticism of formalistic approaches is based on a conception of
formalism, and what a formal theory is, which are hardly tenable in light of late develop-
ments in (philosophy of) logic. Still, a similar point can also be plausibly made today: one
could distinguish between different ways of formalizing a certain portion of mathematics
according to their respective capacity of rendering a certain net of concepts. From such
a perspective, the requirement, in this first weak reading, would be that a satisfactory
formalization should appropriately render those concepts which are involved in one or
another application.

This suggests a slightly more substantial reading of the rationale. Suppose we had a pre-
vious familiarity with a variety of contexts of application for some informal mathematical
notions. In the process of formally rendering these notions, we could select just one or
another among these contexts to be accounted for by the relevant (formal) theory.

Despite being in line with Frege’s views, in the former reading the rationale appears too
weak to provide, in general, any real guidance in selecting, among rival actual formaliza-
tions, those having a relevant philosophical significance: for in most cases, all competitor
candidates will comply with it. To make just one example, it would be unable to discrimi-
nate between rival abstractive definitions. For every abstraction principle will determine
at least one context of application: it will be enough to consider how the equivalence
relation on its right-hand side partitions the relevant domain in equivalence classes, and
the concept introduced will have immediate applications to members of those equivalence
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classes (just like numbers are numbers of, and apply to, equinumerous concepts, directions
are directions of, and apply to, parallel lines, and so on).15

In the latter reading, however, the rationale appears justifiable only if some reason is
provided for the choice of the relevant context of application, which cannot be done without
advancing a further rationale. Under this reading, the rationale appears, then, to be either
immaterial, or empty, if taken alone.

3.4. Rationale IV: Encoding applicability in the nature of mathematical objects. A
much stronger rationale for endorsing AC consists in requiring that the applicability of a
mathematical theory be somehow accounted for by the very nature of the mathematical
objects this theory deals with.

This rationale relies, of course, on the presupposition that mathematics deals with ob-
jects. Usually, these will be taken to be both abstract and mind- and language-independent.
Beyond this, however, the presupposition is neutral as to how these objects are to be
conceived. We can thus distinguish two readings of it.

On one reading—the restrictive reading, as we shall call it—the presupposition includes
the assumption that these mathematical objects have an intrinsic nature, a proper haec-
ceity, which is given by (some of) their individual, non-relational properties. This is the
conception usually associated with platonist views à la Frege.

On the second, more relaxed reading—the liberal reading, as we shall call it—the pre-
supposition is, instead, uncommitted to any specific feature of mathematical objects; it
merely consists in granting that mathematics deals with objects, and is thus also consistent
with the idea that mathematical objects are merely specified by a set of relational prop-
erties, or more generally by a number of conditions the relevant mathematical theory is
required to establish. Moreover, it is consistent with the idea that the objects a mathematical
theory deals with are not individual objects (e.g., natural numbers), but structural objects
(e.g., the abstract structure of progression). On this reading, the rationale is consistent with
structuralist views like ante rem structuralism (Shapiro, 1997).

In the former reading, the rationale nicely coheres with Frege’s conception of numbers,
both natural and real, as it is displayed, for example, when he laments that in some rival
definitions of real numbers applicability lacks “any internal connection grounded in the
nature of the number itself” (Frege, 1903, §II.159; Frege, 2013, p. 1572).

Beyond Fregean exegesis, the rationale, even in its liberal reading, may however be
charged of being too strong or biased. Under its restrictive reading, it will only support
instances of AC which can be endorsed by those who share its presupposition, so that any
understanding of a mathematical theory as not dealing with (abstract) objects endowed
with a proper haecceity will be immediately ruled out. Under the liberal reading, it will
also support instances of AC that could be endorsed by those who take mathematics to
deal with structural objects, but it would remain incompatible with non-platonist views,
denying that mathematics deals with (abstract) objects of any sort at all. Although we

15 Thanks to Roy Cook for drawing attention to this point in conversation. Notice that there is clearly
another very minimal sense of applicability which is delivered by the case of simple predication:
a concept F is applicable in this minimal sense if it is possible, given an entity of the appropriate
level α, to establish whether it is or it is not the case that F(α). On this minimal sense, any
concept (be it sortal or not) for which such conditions of application are given will turn out as
applicable, i.e., arguably any concept which is not blatantly defective. Therefore, any definition
of a non-blatantly defective concept will determine at least one basic context of application, given
by simple predication. Clearly, here we have in mind applications that go beyond this minimal
sense of applicability.

https://doi.org/10.1017/S1755020318000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000278


FREGE’S CONSTRAINT 111

will not explore the issue here, it may be argued that versions of AC which are backed
by either readings of this rationale are unwarranted exactly in so far as their underlying
metaphysical presupposition bans a vast number of philosophical accounts of mathematics
from the start.16

3.5. Rationale V: Mirroring concept formation. Yet another rationale is suggested by
the following remark by Wright (2000), pp. 328–329:

Frege’s Constraint17 is justified, it seems to me, when—–and I am tempted
to say, only when—we are concerned to reconstruct a branch of math-
ematics at least some—if only a very basic core—of whose distinctive
concepts can be communicated just by explaining their empirical appli-
cations.

This suggests that one motivation for endorsing AC could be the purpose of fashioning
some (presumably elementary) mathematical theories so as to directly reflect those ap-
plications which are either paradigmatically employed in conveying some basic concepts
involved in these very theories to those who lack them, or are, at least, such that no
proper understanding of these concepts could be obtained without reflecting on them.
Such a rationale would, then, motivate instances of AC requiring that a mathematical
theory be shaped so as to account for applications that—in so far as they are capable
of introducing the relevant mathematical concepts—are available or familiar before any
explicit mathematical theorizing, being rather what such theorizing is meant to reconstruct
and systematize.

As Wright’s passage suggests, this rationale would not be appropriate with respect to
any mathematical theory, since it would be quite odd to suppose, let alone require, that any
such theory involve concepts which are either paradigmatically conveyed by some of their
applications, or even only understandable by looking at these applications. Indeed, Wright
makes his remark in order to show that is just not the case for real analysis (more on this
in §4.1.3).

This rationale should not be conflated with Rationale II. The latter concerns the way
a mathematical theory should be shaped in relation to our psychological processes or
cognitive abilities; the former concerns the way such a theory should be shaped in re-
lation to the very nature of the relevant concepts. In the former case the focus is on
psychological adequacy and cognitive skills, up to possibly suggest a (psychologically or
cognitively) appropriate choice of concepts in shaping the relevant mathematical theories;
in the latter, the focus is on the relations that some mathematical concepts (which are
taken to be) intrinsically involved in these theories (are taken to) have with some of their
applications.

Also this rationale can be given two different readings. One restrictive reading follows
Wright in focusing on empirical applications. As will be discussed at more length in §4.1.3,
this is what motivates Wright’s belief that AC is justified in the case of naturals but not in
the case of reals. For while there may clearly be basic applications of natural numbers in
counting empirical collections which can be familiar before any full-fledged mastery of

16 An exploration of instances of AC which are supposed to escape this charge is offered in Sereni
(Manuscript).

17 Remember that Wright employs the term ‘Frege’s Constraint’ to refer to the requirement stated
in the passage quoted above, p. 102, namely to what we labeled ‘AC’.
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arithmetic, there are no such applications of real numbers available in simple empirical
contexts before (at least partial) mastery of a systematic theory of real numbers.

However, on a more liberal reading, one may rather focus on basic extra-theoretical
applications generally, be they empirical or not. For instance, one may take the apprehen-
sion of the very notion of a real number to hinge on some relatively simple geometrical
constructions. A similar attitude seems to be in line with Frege’s views, since, in speaking
of applications of real analysis he seems to be thinking also (if not generally: we will come
back on this in §4.3 and §4.2) to geometrical applications. The passages quoted above
(pp. 99–100), respectively, taken from §II.75 and §II.159 of the Grundgesetze, are explicit
on this respect.

In this liberal reading, the rationale seems then to be able to support instances of AC
suitable for both theories of natural and real numbers, and arguably for any mathematical
theory, since applicability of mathematics on itself is not only pervasive, but also distinctive
of it.

3.6. Rationale VI: Tracking the architecture of mathematics. An entire chapter of
Gandon’s book on Russell’s (and Whitehead’s) treatment of geometry and the “theory of
quantity” in The Principles of Mathematics (Russell, 1903) and Principia Mathematica
(Russell & Whitehead, 1913), is devoted to the role of AC in the latter book, namely what
Gandon calls its “architectonic use” (Gandon, 2012, chap. 6, especially §6.3). Gandon’s
basic point is that AC is not intended there “as a substantive demand for connecting
two bodies of knowledge [. . .] which are conceived as distinct”, but rather “as a tool for
delineating the outlines of a concept or theory, whose content is not considered as already
fixed” (Gandon, 2012, pp. 12–13). Here is how Gandon explains the point:

Far from being regarded as a given datum, the division of the mathe-
matical field into well-defined, distinct branches is a task that the logical
analysis is supposed to perform. And [. . .][AC] is instrumental in the
fulfillment of this work: to look at different contexts of use is a means
of probing different ways of carving out the mathematical content and
to make definite the borders of the different disciplines. There is thus
a feedback effect in the [. . .] use of [. . .][AC]: the examination of the
applications of a particular concept gives information on its content.
Russell and Whitehead did not see [. . .][AC] as a principle allowing
them to relate two already separated fields of knowledge, but as a device
enabling them to locate the joints at which mathematics must be carved.

This might be seen as being in contrast with the second condition for AC expounded in
§2, in particular with the acknowledgement of a clear-cut divide between distinct mathe-
matical theories. But it is not, in fact. For the point, here, is not that Russell and Whitehead
denied such a divide, but that they did not take it as given prior to their reconstructive work,
and rather conceived it as an outcome of such work.

This suggests a new rationale for endorsing AC, namely using it as a guide for appropri-
ately connecting mathematical theories either to each other or with some non-mathematical
ones, by shaping them accordingly. The aim, here, is less that of letting these theories
deliver a picture of mathematics in line with some general ontological, epistemological or
metaphysical views, than that of organizing mathematics in a way that corresponds to a
suitable geography of knowledge.

It may come as a surprise that we consider here the case of possible connections between
mathematical and non-mathematical theories. Apparently, this is not a case Gandon was
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thinking of, when advancing his remark. Admitting this possibility is however crucial in
order to take this rationale as relevant for our discussion of FC in relation to real numbers.
As we have said below, Frege’s basic idea was to define reals as ratios of magnitudes,
namely as measures of them. In §4.3, we will contend that taking such a definition to
comply with (an instance of) FC is tantamount to subscribing to this rationale. But this
could not be the case if connections with non-mathematical theories were left out. The
reason, briefly, is the following (we will come back on this in §4.2).

To the purpose of offering that definition, Frege previously offered a formal definition
of domains of magnitudes,18 which can be viewed as a way of establishing a formal
theory of such domains. Defining real numbers as ratios of magnitudes would have, then,
ipso facto led to connect real analysis to this theory. Arguably, this latter theory should
count as a non-empirical theory, but it should also be able to reflect the relevant struc-
tural features of any particular domain of magnitudes, either mathematical magnitudes,
like geometrical ones (including segments or curves length, surfaces area, solids volume,
angles amplitude, or non-(purely)-mathematical ones, like length (of physical bodies),
mass, light intensity, electric charge, etc.19 Hence, connecting real analysis to a formal
theory of domains of magnitudes would have the effect of connecting it to other theories
too, both mathematical (namely geometry or its relevant branches), and non-mathematical
ones.

3.7. The many roles of the Application Constraint. The foregoing rationales are not
meant to be mutually exclusive. Nor they are required to be satisfied conjunctively. Nor it
is the case that a single instance of AC, satisfying one or more of these rationales, should
apply across the board to definitions of any mathematical theory. Several combinations are
therefore possible. A given instance of AC may comply with more than one rationale. Or
it can comply with one of them, and disregard others. Finally, it may happen that some
instance of AC (complying with some but not necessarily all of rationales I–VI) inform
some mathematical theories, while other instances inform other theories.

In what follows, we’ll consider how these different rationales may be at play in Frege’s
reflections on applications and applicability, in relation to definitions of both natural and
real numbers.

§4. How to interpret Frege’s Constraint. The rationales discussed in the previous
section fit with AC in its full generality; as such, the instances of AC they underwrite do
not force any particular way of shaping the relevant theories.

Only Rationale IV is a little more specific in this regard, since it compels the relevant
instances of AC to grant that the relevant theories deal with abstract objects. Even though
this primarily concerns the way these theories are understood—since the very same theory
can be taken, from different philosophical perspectives, either to deal with abstract objects

18 Cf. footnote (2), above.
19 Here is what Frege writes in discussing Cantor’s definition of real numbers (Frege, 1903, §II.73;

Frege, 2013, p. 842, §II.73):

What then is the substance of the assertion that number-signs designate
quantities? Let us look at the applications of arithmetical laws in geometry,
astronomy, physics. Here, indeed, numbers occur in relation to magnitudes, such
as length, mass, light intensity, electric charge [. . .].
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or not—it remains that it would be hard to admit that a theory deals with objects if it in-
volves no (explicit or implicit) definition of (a domain of) first-order items. A quite natural
way of conforming with this rationale is, then, to endorse instances of AC advancing a
specific requirement on the definitions involved the relevant theories, namely that at least
some of them define first-order items, and that in doing so they ascribe to these items
an appropriate (intrinsic or relational) nature. Since there is little doubt to us that Frege
understood FC (or the different instances of it that he endorsed) in exactly this way (i.e.,
as a principle imposing specific constraints on how definitions should reflect the nature of
first-order items), we can safely assume that the instances of AC which may be suggested
by Rationale IV will conform to Frege’s way of conceiving AC.

We can, then, take FC to be a general pattern for those instances of AC which—by
complying with Rationale IV in one of its readings (or in both)—take it for granted that
the relevant theories include definitions of first-order items, liable to be understood as the
(presumably abstract) objects this theory is about, and advance requirements relative to
these very definitions. This leads to the following general formulation of FC:

[FC] Suitable definitions of the mathematical objects (or first-order items)
a mathematical theory is about must be such that its canonical applica-
tions be built into the very nature that these definitions ascribe to these
objects, that is, into features of them which are immediately manifested
in the definitions themselves.

We take an instance of FC to be any constraint that specifies this general requirement one
way or another.

It is certainly possible to specify this general constraint in ways which Frege would not
have accepted. For example, it is possible to imagine instances of this general constraint
which comply with the liberal reading of Rationale IV but license definitions of mathe-
matical objects as objects which only possess a relational or structural nature; clearly, this
would be alien to Frege’s view. However, this has to do more with the way in which any
particular instance is specified, than with its being an instance of this general requirement.
Therefore, there appears to be no further room for specifying FC as a particular case of
AC just on considerations concerning its form. The fact that any version of FC complies
with Rationale IV does in no way entail that an instance FC could not also comply with
any other of the rationale above. The rationales, by themselves, are neutral as to whether
an instance of AC complying with them should also count as an instance of FC. It follows
that different instances of FC can be endorsed depending on which among the rationales
I–IV one is driven by. In the present section, we will explore this matter with respect to
Frege’s views.

4.1. Semantic Frege’s Constraint. By itself, FC does not presuppose that there are
applications of a mathematical theory, in particular canonical ones, that can be identified
independently of the theory itself, or independently of the theory when it is so shaped as
to agree with such constraint. For FC to be a satisfactory requirement, all it takes is that
one can look at the theory, shaped in a certain way, and identify its canonical applications
(applications which can also be made available once the theory itself is formulated, or
by the fact that it is shaped in a certain way), and evaluate whether what explains these
applications is or is not built into the definitions used in the theory as shaped in that
particular way.

A theory, however, may happen to be somehow available even before being shaped in
some particular way. It may for instance be available as an informal theory which is used
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in practice even before a proper formalization is advanced. Or it may be a formal theory
which nonetheless admits of alternative formalizations. This is actually a typical situation
which foundational projects in the foundation of mathematics are confronted with. To
make the simplest example, there is no doubt that arithmetic can be taken as given and,
as such, can have practical applications, also independently of whatever formalization of
it, or, a fortiori, of this or that formalization. In such cases, the canonical applications of
the theory may be identified independently of any particular way of shaping it, as those
applications which are available for the theory even before it is shaped in that particular
way. When referring to this case, we will say that these applications are inherent to the
theory.

But it can also happen that these applications have (or acquire, with time and practice) a
sort of autonomy from the theory itself, however it is shaped. They employ some elements
of the vocabulary proper to this theory, or of one of the ways it is fashioned (typically terms,
predicates or functors), but they do so in the framework of some codified practice which
has the effect of letting such elements acquire a meaning independently of the theory itself,
in any of its ways of being shaped, or at least independently of its hard core (assuming this
has somehow been identified). Let us, then, say that this sort of applications are external to
the theory.20

Supposing, as said above, that a mathematical theory include definitions of first-order
items, liable to be understood as the objects this theory is about, one could then require that
these definitions identify these objects as those which these external applications appeal to
(although accessing to them in a different way).

Such a requirement would, however, be in order only if one also granted that the relevant
external applications actually appeal to objects that a mathematical theory can be about,
presumably (or better, certainly, in a Fregean setting) abstract ones. One might judge this
condition too strong, since even a platonist arguing that the relevant mathematical theory
deals with self-standing objects could plausibly refrain from taking this to be the case
also for its external applications. This suggests weakening the requirement by simply
demanding that the relevant definitions ascribe, to the terms denoting the objects they
define and to the predicate designating the property of being one of them, a meaning which
is apt to recover, within the theory they belong to, the meaning they have when used in
these applications. Provided that these applications be taken as canonical, one would get,
then, a possible specification of FC.

Under the instances depending on this specification, FC is a semantic constraint. Call,
then ‘Semantic FC’ (‘SFC’), the general pattern these instances obey to. In them, the
relevant definitions are meant to reflect the use that is made of the relevant terms and
predicates in the external applications of the relevant theory, if there are any which count
as canonical.

Whether a certain mathematical theory might be taken to have some external applica-
tions or not is however outside the range of the requirements an instance of AC (and a
fortiori of FC) can advance: it depends on facts and conceptions which are independent
of any choice that AC can suggest or be a guide for. If this mathematical theory is taken
to have external applications, then an instance of SFC concerned with it can require these
applications to count as canonical. But if this mathematical theory is not taken to have

20 In §4.1.1 and §4.1.2 a case will be made for the possibility of conceiving some applications both
of arithmetic and real analysis as external ones. This will involve examples that should help to
better clarify what we mean by external applications of a mathematical theory.
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such applications, any putative instance of SFC concerned with it would be completely
pointless, and the same will hold for any putative instance of SFC concerned with a theory
which were taken to have external applications, which wouldn’t nonetheless be identified as
its canonical ones. No such instance of SFC could, then, comply with any of the rationales
presented above. We shall then consider a requirement akin to SFC to be well stated only if
it is concerned with a theory which is taken to have external applications and if it identifies
these applications as the canonical ones.

The very fact that the canonical applications of a certain mathematical theory, considered
in an instance of SFC, are (taken to be) external suggests they could be just those which
occur in ordinary contexts or in very basic scientific ones. If this is so, the relevant instance
of SFC does not only comply with Rationale IV in one its readings (or in both), but also
with Rationale I, in its descriptive reading, at least. Though not significantly, indeed, any
instance of it will also comply with Rationale III. Its complying or not with rationales II,
V and VI depends, instead, on further, more specific factors.

The question we are mainly interested with is whether some instances of SFC can be
ascribed to Frege. It is clear that, for it to be the case, such instances are to comply with
Rationale IV in its restrictive reading. If we take this to be the case, we get a different
answer in the case of natural and real numbers. Let us consider these two cases at once.

4.1.1. Semantic Frege’s Constraint for natural numbers. A quite natural instance of
SFC concerning (the theory of) natural numbers and complying with Rationale IV in its
restrictive reading could be the following:

[SFC(Nattc)] Suitable definitions of natural numbers, as objects arith-
metic is about, must be such as to ascribe an intrinsic nature to each of
these numbers, and do it in such a way that the applications of arithmetic
pertaining to transitive counting be built into this very nature in so far
as these applications are external, and the meaning both of numerals
and of the predicate designating the property of being such a number
(respectively as terms and a predicate used within arithmetic itself) be
apt to recover, within (the relevant version of) arithmetic, the meaning
these very terms and this predicate acquire when used in these (external)
applications.

Here the presupposition is made both that applications of arithmetic pertaining to tran-
sitive counting are external and count as canonical, and that their outcome is correctly
expressed using (the same) numerals (as those at work in arithmetic). This might be debat-
able. But the point here is not whether this presupposition is correct, but rather whether it
fits with Frege conceptions.

This largely depends on how transitive counting and arithmetical applications pertaining
to it are conceived of. Benecerraf takes transitive counting to consist in counting “the
elements of some k-membered set b [. . .][by establishing] a one-to-one correspondence
between the elements of b and the elements of [. . .][the set of the natural numbers] less
than or equal to k” (Benacerraf, 1965, p. 50). Taken literally, this suggests that performing
transitive counting depends on mastering relatively advanced mathematical notions, which
would entail that no application of arithmetic pertaining to it could count as external.
Still, less demanding accounts are possible: in particular, accounts which make transitive
counting depend on mastering no arithmetical notion at all.

Consider a cognitive subject Lalo which is able to distinguish some items (possibly
objects) from each other, and to delimit them, so as to also distinguish them from any other
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item. Suppose also that Lalo is able to take advantage of these abilities in considering these
items one at a time, by also keeping track of those already considered. These seem to be
abilities a cognitive subject must have to perform any form of transitive counting, though
possibly still not enough for making one able to perform even a rather rudimentary form
of it. But if Lalo did proceed this way alternatively on two distinct lots of items (namely,
by considering an item of one lot, then an item of the other lot, then coming back to the
former lot and considering an other item of it, and so forth), by also being able to evaluate
whether the two lots run out at the same stage, or one of them runs out when the other still
does not, it might be in order to take him as being actually performing transitive counting.
Unless one of the lots were given by an initial segments of numerals, taken in their order,
no resource somehow pertaining to arithmetic would be at work here, and it would hard to
take this as an application of it. But if we suppose instead that the elements in one lot are
indeed numerals, taken in their order, one could take this procedure as an application of
arithmetic, and presumably as an external one, since, within a practice like this, the relevant
numerals would acquire a meaning that only depends on their being considered at a certain
stage of the procedure, and is then wholly independent of arithmetic itself, in any of its
ways of being shaped. The order of numerals is, indeed, as such, purely lexicographic,
depending on their compositional properties and relations (which are in no way proper
to natural numbers themselves), and is, then, merely fixed by a number of appropriate
linguistic rules. Lalo’s familiarity with these rules, and his consequent capacity of uttering
numerals in their order up to the end of the procedure, for whatever given other lot of items,
would make him able to associate a numeral to such a lot (that uttered at the last stage of
the procedure), while his capacity to repeat the procedure in a number of other relevant
circumstances would make him acquire, from this association, a quite useful information
for many practical purposes. Were him able, for example, to repeat the procedure both
on a lot of oranges, to each of which a price of one dollar is attributed, and to a wad of
1$ dollar notes, he could be able to buy the oranges and pay the right prices. His further
capacity of compositing numerals by addition and multiplication (as defined and conceived
as operations on numerals themselves) would not essentially change the situation. Had him
also this further capacity, he could use numerals in most of the usual ways they are used
in our every-day life and generally conceived as depending on transitive counting, still
without ascribing to them a meaning perfectly independently of (any version of) arithmetic
itself. A way to support this last point could be by observing that Lalo could act in the way
just described without having any idea of the infinity of numbers, or even of numerals, and
even by being perfectly unaware that they could be used to name non-compositional items
forming a progression, namely natural numbers.

So conceiving transitive counting makes it plausible to take it not only as pertaining to
external applications of arithmetics, but also as the very source from which elementary
arithmetical notions come from, and then to take SFC(Nattc) not only as well stated,
but also as complying, not only with Rationale IV and, presumably, Rationale I in its
descriptive reading, but also with Rationale V, and, possibly, Rationale I, in its normative
reading, too.

There is no direct evidence suggesting that Frege would have conceived transitive count-
ing this way, but it seems clear that, under this conception, SFC(Nattc) comes to require
that arithmetic include definitions of natural numbers and of the predicate designating the
property of being such a number which conform to a conception of these numbers as
(abstract) objects associated with collections of items in such a way that the same cardinal
is associated with two such collections if and only if a bijective relations can be defined
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among the items in these collections. In Frege’s views, the relevant collections of items
should be taken as those formed by the objects falling under (first-level) concepts (or, if you
prefer, as the extension of these concepts), so that this requirement becomes that of defining
natural numbers as cardinals of finite (first-level) sortal concepts, so as to provide a measure
of their cardinality conforming with Hume’s Principle. This is perfectly in line both with
his basic claim that “a statement of numbers contains an assertion about a concept” (Frege,
1903, §46, §55, §57; Frege, 1950, pp. 59, 67–68, slightly modified translation), and with
his well-known definition of natural numbers (Frege, 1903, §68, §74, §77, §83; Frege,
1903, §I.41–§I.42, §I.46), and his proof of Hume’s Principle from this definition (Frege,
1884, §73; Frege, 1903, Theorems 32 and 49). This suggests that, in so far as arithmetical
applications pertaining to transitive counting are conceived of as just said, Frege actually
endorsed SFC(Nattc), according to a conception of transitive counting close to the one
expounded above, and, even, that this is just the instance of FC which is actually at work
in Frege’s definition of natural numbers.

In the Grundlagen, Frege mentions an alleged geometrical definition of numbers, in-
cluding natural ones, which he ascribes to Newton, then he makes the following remark
(Frege, 1884, §19; Frege, 1950, p. 26):

[. . .] we should [. . .] remain in doubt as to how the number defined
geometrically [. . .] is related to the number of ordinary life, which would
then be entirely cut off from science. Yet surely we are entitled to de-
mand of arithmetic that its numbers should be adapted for use in every
application made of numbers, even although that application is not itself
the business of arithmetic. Even in our everyday sums, we must be able
to rely on the science of arithmetic to provide the basis for the methods
we use.

Here Frege seems to take “ordinary life” to involve “applications [. . .] of number” as
defined in arithmetic. It is still quite doubtful that one could take the everyday-life use
of numerals to depend on a conscious application of whatever version of arithmetic, under-
stood as a genuine mathematical theory. Requiring that arithmetic define natural numbers
so as to make them “adapted for use” in “ordinary life” seems much more plausibly the
same as requiring that its definitions conform to an independent use of numerals, which is
in agreement both with SFC(Nattc) and with the foregoing account of transitive counting.
This is the way we suggest this passage is to be understood.

In Frege’s view, logic provides a general theory of sortal concepts and objects. Hence,
aiming at defining natural numbers as objects associated with finite such concepts naturally
leads, in his view, to trying to define them within logic, and then to intimately connect-
ing arithmetic to it. There is, then, room to argue that Frege’s foundational program just
hinges on this, namely that it was not logicism which led him to his conception of natural
numbers as cardinal numbers and to the corresponding definition of them, but, rather,
in the other way around, his conception of natural numbers as cardinal numbers, driven
by SFC(Nattc), which led him to try to get arithmetic within a system of logic. If this
is granted, SFC(Nattc) might also be taken to comply with Rationale VI (but on this,
later).

4.1.2. Is there an instance of the semantic Frege’s Constraint for real numbers? Once
it is admitted that Frege’s definition of natural numbers obeys to SFC(Nattc) as the rele-
vant instance of FC, a natural question arises: would Frege’s envisaged definition of real
numbers have obeyed to some other instance of SFC?
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If the answer were openly positive, we would be entitled to submit that FC plays a role
in Frege’s foundational program under the form of a semantic requirement, namely SFC.
A negative or more nuanced answer would rather suggest that Frege did not conceive of FC
in the same way in relation to the tasks of defining natural and real numbers, respectively.
Moreover, if one also admits, as we think one should do, in agreement with Dummett and
Hale, that Frege did not merely conceive FC as a pertinent requirement his definitions of
both sorts of numbers should better meet than don’t, but rather as a crucial, if not essential
one, namely as a mandatory guide for these definitions, such an answer might even have
consequences on the way Frege’s foundational program is understood.

In the present subsection we will argue in favor of a quite nuanced, if not negative
answer. In next §4.3 we will suggest an alternative way to specify FC so as to make
Frege’s envisaged definition of real numbers comply with it. Finally, in §5 we will con-
sider which consequence this might have on the understanding of Frege’s foundational
program.

If FC actually played a role in orienting Frege’s ideas about the way real numbers should
have been defined, the relevant canonical applications would certainly concern the measure
of magnitudes. Hence, if an instance of SFC provided a guide for his envisaged definition
of these numbers, it would be as follows:

[SFC(Realmm)] Suitable definitions of real numbers, as objects real
analysis is about, must be such as to ascribe an intrinsic nature to (each
of)21 these numbers, and do it in such a way that the applications of
real analysis pertaining to the measurement of magnitudes be built into
this very nature in so far as these applications are external, and the
meaning both of numerical terms purportedly referring to these numbers
and of the predicate designating the property of being such a number
(respectively as terms and a predicate used within real analysis itself) be
apt to recover, within (the relevant version of) real analysis, the meaning
these very terms and this predicate acquire when used in these (external)
applications.

The problem is whether this could count as an instance of SFC or should rather be taken
to be ill-stated. Doubtless, real analysis has inherent applications pertaining to measure-
ment of magnitudes. But is there room for taking these applications also as external ones,
and, then, for claiming that the numerical terms used within this theory to purportedly refer
to real numbers (such as ‘

√
2’, ‘π ’, but also ‘ 2

3 ’ or ‘3’, if used to name real numbers, rather
than merely rational or natural ones) and the predicate used there to designate the property
of being such a number can, in these applications, acquire a meaning independently of this
very theory, in any of its ways of being shaped?

To answer this question, let us begin by wondering what should one take a magnitude
to be when speaking of applications of real analysis pertaining to the measurement of
magnitudes.

One could think Frege could have answered that it should be an element of a domain of
magnitudes as he himself defined it. As we know, his definition depends on an inconsistent
theory, and this could be taken to be enough for rejecting this answer. We also know,

21 One could doubt that it be reasonable to demand that each item among non-countable many ones
could be endowed with an intrinsic nature, and even doubt that Frege would have required this.
This is a difficult question which we neither want nor need to address here.
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nonetheless, how to amend this definition so as to make it immune from inconsistency.22

We could, then, easily offer a modified answer by taking a magnitude to be an element of
a domain of magnitudes as it is defined by a consistent rephrasing of Frege’s definition.

This consistent rephrasing certainly involves essential ingredients also involved in an
appropriate consistent rephrasing of Frege’s envisaged definition of real numbers. How-
ever, the former would be, as such, perfectly independent of the latter. At most it would be
a rephrasing of Frege’s envisaged proof of existence of appropriate domains of magnitudes
that would depend on the definition (or construction) of a domain of items (defined on the
basis of natural numbers) which share the same structure as that of the real numbers.23

Such consistent rephrasing of Frege’s definition of domain of magnitudes could, then, be
taken as a way to establish a general theory of magnitudes independent of real analysis,
and so apt to also identify magnitudes, at least structurally, independently of real numbers.
Definitions of (domains of) magnitudes similar to Frege’s (although consistent) have been
advanced by others in different ways, and different occasions.24

Getting such a general theory of magnitudes, and the ensuing (structural) identification
of magnitudes leaves, however, the problem open of explaining how magnitudes so defined
could be measured. Frege’s envisaged solution depends on ipso facto identifying their
measure with real numbers, just defined as ratios on them, which is in open contrast
with the very idea that the applications of a theory of real numbers to the measurement of
magnitudes could be external, since it makes it in principle impossible to speak of measure
of magnitudes without invoking this very theory. Are there other strategies that can be
followed to solve the problem independently of any appeal to this very theory, and thus
to foreshadow some sort of external applications of it? This seems quite doubtful, unless
one appeals to unnatural and unnecessary duplicates of real numbers (which, by the way,
would differ from them only nominally, but not structurally).

This is an obvious consequence of the fact that any general theory of magnitudes what-
soever, be it in line or not with Frege’s, cannot but be structural (that is, merely depending
on fixing a structure). According to Frege’s definition of domains of magnitudes, these
are identified with value-ranges of permutations satisfying some appropriate structural
conditions. For the sake of consistency, such value-ranges should be replaced with those
permutations themselves. But permutations on what? If one wants to identify magnitudes
as the subject-matter of some putative external applications of real analysis, not depending
on structurally indistinguishable duplicates of these numbers, one needs to answer to this
last question. Still, this is something that neither Frege’s original definition, nor any con-
sistent rendering of it can make, simply because of its being a structural definition. And,
mutatis mutandis the same holds for any other definition depending on a general (and, then,
necessarily structural) theory of magnitudes.

One could argue that there is another way of establishing what should a magnitude be
taken to be, in the context of an enquiry about the nature of the applications of real analysis

22 A way of doing it within a system of third-order logic is suggested in a co-authored work in
progress by one of the present authors, cf. Boccuni & Panza (Manuscript).

23 Cf. again the work mentioned in footnote (22), above.
24 O. Hölder advanced, for instance, such a theory two years before the second volume of the

Grundgesetze (Hölder, 1901; Dummett, 1991, pp. 281–283), and a much more recent alternative
(rendering, in a modern setting, the basic ideas of Eudoxus-Euclid’s theory of proportion) has
been advanced by D. Scott in an unpublished document, mentioned and summarized in Peacocke
(2015, pp. 371–374), where a “straightforwardly realistic attitude to the ontology of magnitudes”
(ibidem, p. 362) is also argued for.

https://doi.org/10.1017/S1755020318000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000278


FREGE’S CONSTRAINT 121

to measurement of magnitudes, which is still in line with Frege’s definition of domains of
the latter. It would simply consist in taking a magnitude to be an element of whatever
system which exemplifies the structure Frege attributes to such domains. One could argue
that this answer would parallel that which should be given, in Frege’s spirit, if it were
asked what it is that one should take to be counted in transitive counting when speaking of
applications of arithmetic pertaining to it. As observed above, the answer would be that it
counts objects falling under sortal concepts.

There is, however, an essential difference among these two answers, which is made
manifest by the fact that the latter is directly understandable by anyone who is able to
understand the basic notions on which Frege’s system of logic is grounded, whereas un-
derstanding the former requires understanding a quite convoluted (structural) definition.
True: this definition can be performed within a quite weak system of third-order logic (so
weak as to include only second-order comprehension).25 However, whereas understanding
this definition, and then having a clear idea of what a magnitude is, requires being familiar
with this very system of logic, no familiarity with any system of logic is required to have
a clear idea of what transitive counting counts, in general, even if we accept Frege’s idea
that it counts objects falling under sortal concepts. The general notions of an object and a
sortal concept ground our understanding of Frege’s system of logic (and, possibly of any
modern system of higher-order logic), not the other way around (if this were not the case,
the applications of arithmetic pertaining to transitive counting would not be external, and
SFC(Nattc) would be ill-stated and could not count as the instance of SFC that is at work
in Frege’s definition of natural numbers).

The situation, thus, seems to be significantly different from what happens for the canon-
ical applications of arithmetic, as depicted in SFC(Nattc), and for Frege’s definition of
natural numbers. For here the very identification of the subject-matter of the canonical
applications of real analysis, as depicted in SFC(Realmm), depends, in Frege’s spirit, on
essential ingredients involved in his envisaged definition of real numbers.

Though symptomatic, this difference has, as such, no direct consequence on the question
of deciding if such applications are external. The reason is, once again, that, although
Frege’s definition of domains of magnitudes involves essential ingredients which are also
involved in his envisaged definition of real numbers, the former is intrinsically perfectly
independent of the latter. It remains, however, that taking a magnitude to be an element
of a system exemplifying the structure of domains of magnitudes is by itself not enough
for identifying a way of measuring the elements of such a system which does not depend
on the availability of structurally indistinguishable duplicates of real numbers, if such a
system is not explicitly identified.

This suggests an alternative strategy, namely arguing that the identification of the subject-
matter of putative external applications of real analysis pertaining to measurement of mag-
nitudes depends on specific inquiries, typically empirical, geometrical or mechanical (in
the sense of being proper to rational mechanics, conceived as a branch of mathematics).
This would make the very explanation of what counts as such an application also hinge on
these specific enquiries, which could not but be quite different to each other. Though this
would be openly alien to Frege’s thought, inspecting this strategy will be instructive.

Whatever the relevant enquiries might be, they should be adequate to fix identity condi-
tions for the magnitudes they are concerned with. And, insofar as what is here in question
is a sort of measurement which should be apt to be rendered as measurement by real

25 Cf. the work mentioned in footnote (22), above.
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numbers, these conditions should be such that a is the same magnitude as b only if the
same real number measures both a and b. But suppose that a magnitude identified though
an empirical enquiry is measured by empirical means. There would be no way to determine
a single real number which measures it, since, for any such number r which one could
take as the result of an empirical measurement of such a magnitude, there would be a
neighborhood of r (which would vary with the methods and conditions of measurement,
but would be always nonnull), such that it would impossible to discriminate, empirically,
wether the result of such a measurement is actually r or any other real number included in
such a neighborhood.

Another, more general, way to tell the story is this: no domain formed by items empiri-
cally identified—by empirical magnitudes, to speak briefly—can meet all the conditions a
domain of magnitudes should meet in order for it to be possible to take something akin to
a real numbers (that is, something that could be appropriately rendered by a real number)
as a univocal measure of it, and this simply because these items could never be enough,
and their domains could never display the necessary structural stability, in order to make it
possible.26

The same difficulties would not arise for non empirical means of measurement of em-
pirical magnitudes. One could, for example, take the distance among two points on a plot
of land to measure

√
2 km, on ground that it counts as the diagonal of a square taken on

this same plot of land of side 1 km. But in this way one would actually not measure a
physical distance, but the length of a geometrical segment27 associated with it on grounds
of considerations which fall under the same considerations made above for empirical
measures. We would not actually measure a magnitude identified through an empirical
enquiry, but a geometrical magnitude associated with an empirical one by appealing to
empirical considerations.

But what about geometrical or mechanical magnitudes taken as such? It seems clear that
measuring them through some sort of numbers, namely associating a(n exact) measure to
them expressed by a numerical term, necessarily requires appealing to the theory of real
numbers itself. Geometry and rational mechanics could certainly take on them, indepen-
dently of any consideration coming from real analysis itself, the task of identifying what
is to be measured, but not that of fixing what is to count as a measurement of it, if this is
required to be a nongeometrical or mechanical item, in turn.

26 Cf. on this matter, the discussion raised by Hale (2000), among V. Batitsky and Hale himself,
contained in Batitsky (2002) and Hale (2002), on which we will come back later, in particular
Batitsky (2002), §5, and Hale (2002), §4.

27 Notice that Frege would not have taken a segment to be itself a magnitude. Only its length
would have been one. This is perfectly in line with his taking magnitudes to be value-ranges
of permutations forming an algebraic structure akin to a group, but conflicts with at least some
usual understanding of the term ‘magnitude’ in geometry and its history. To consider only the
most obvious example, in books V and VI of Euclid’s Elements, segments (as well as the other
geometrical items studied in the first four books) are themselves taken to be magnitudes (μεγέτη),
and this is also so in the whole long history of the theory of proportion up to the early modern
age. The conflict depends on the introduction of length (as a separate item) as a third element
between the segment and the real number: in absence of length (as a separate item), a real number
is directly the measure of a segment, while in its presence, a real number is rather a measure
of the segment’s length; in the former case, there is no bijection between what is measured
(segments) and what measures (real numbers, or, possibly, positive ones if non-positive segments
are discarded), in the latter there is a bijection instead, since a real number only measures a
single length, though this might be, of course, the length of several segments. As relevant as this
difference might be taken to be, none of the points we are raising here essentially depends on it.
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One could finally argue that a suitable account of measurement, in particular of empir-
ical measurement, by something akin to real numbers, does not require that the relevant
magnitudes exemplify a domain of magnitudes as rich as (or isomorphic to) the domain
of real numbers themselves. All that is required is that some empirical objects exemplify,
together with a certain attribute of them (of which they can have different amounts of), a
much weaker structure, namely a “measurement structure”, whose general characterization
and possible refinements are studied in measurement theory (as expounded in Krantz,
Luce, Suppes, & Tversky, 1971–1990, for example). The basic idea here (as described
in Batitsky (2002, p. 290 ) and Díez (1997, p. 238)) is that measurement by real numbers
is possible if the structure 〈A, �A, ⊕A〉—formed by the domain A of these objects, the
binary relation �A and the binary operation ⊕A over them, to be interpreted, respectively,
as the relation of having less or equal amount of this attribute than, and as a composition,
combination or concatenation operation—can be embedded into the structure 〈R, ≤, +〉
by a structure-preserving mapping (or homomorphism) f : A → R. The existence of
this function is stated by a “representation theorem”, a proof of which would, then, be all
that is needed to warrant that the objects in A, or, better, the amounts of their relevant
attribute, can be measured by real numbers. So conceived, measurement by something
akin to real numbers essentially depends on these very numbers, however, since it is
nothing but a sort of mirroring into them of an empirical system exemplifying the relevant
structure. In a sense, this is an eliminative conception, since it accounts for measurement
without appealing to magnitudes conceived of as intermediary entities, as it were, among
appropriate physical objects and their measures. At most, one can take these very objects
to be magnitudes (though without necessarily exemplifying such a rich structure as that of
domains of magnitudes as defined by Frege).28

All these considerations seem to suggest that, even if it were admitted that magnitudes
(in one sense or another, but in any case conceived as that which is measured) could be
precisely identified as such, it would remain that no actual measurement of them (apt to
univocally associate a single measure to a magnitude) would be possible, which would not
essentially involve real analysis itself. Should we conclude, then, our inquiry, by recognis-
ing that applications of real analysis pertaining to the measurement of magnitudes cannot
be taken as external?

To further support this conclusion, one could also observe that real numbers outnumber
any collection of terms that could be used to communicate the result of a measurement.
Of course, we have terms available for this purpose, generally belonging to the vocabulary
of real analysis, but no system of terms can be fixed apt to denote the result of whatever
measurement of a magnitude, if this measurement were to be considered as measurement
by something akin to real numbers.

There are, however, other available understandings of the very idea of an external appli-
cation of real analysis pertaining to the measurement of magnitudes. In order to see this,
it is enough to look at how the terms most commonly used today to denote a real number
have initially been employed. These terms have been, indeed, largely used in mathematics

28 One should more properly call these objects ‘quantities’ then. This situation parallels that
described in footnote (27) for geometry, though the relevant geometrical structures are isomorphic
with R or with a closed interval in it, provided, of course, either that their elements are taken to
be appropriate equivalence classes of quantities, rather than quantiles themselves, or that, in the
definition of these structures, the identity is replaced by the relevant equivalence relation (so as
to admit, for example, that a group includes several neutral elements, all equivalent to each other,
or several inverses of each of its elements, also all equivalent to each other).
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before disposing of any theory of real numbers in their totality (and even without having
any clear idea of what such a totality might look like). These terms have also been, in many
different ages of the history of mathematics, pervasively used to denote measures of some
magnitudes, typically geometrical ones, or, even, these very magnitudes,29 conceived as
“given in magnitude [δεδομένα τῷ μεγέθει]” (to use Euclid’s classical expression: Menge,
1846, Definition 1; Taisbak, 2003, p. 17). Still, no such use can be taken to presuppose that
those terms denote real numbers understood as we do today, that is, as the element of
a totally ordered and complete field. One might, then, argue that this pervasive practice
in the history of mathematics, that continued up to the very moment in which different
definitions of (the field of) real numbers were given, in the second half of 19th-century,
prefigured a sort of external application of real analysis, though, as it were, a partial one.

If this were admitted, SFC(Realmm) should not only be considered as well-stated, but
should also be taken as an instance of FC which is at work in Frege’s envisaged definition
of real numbers.

There is a precise reason for speaking of ‘an instance’, rather than ‘the instance’, how-
ever. It is the following. Though this way of conceiving an external application of real
analysis is certainly plausible, its intrinsic historical character—namely the fact that it
appeals to an obsolete mathematical practice, today considered as essentially unjustified, or
poorly justified, rather than to a non-mathematical current practice—makes the semantic
nature of SFC(Realmm) quite doubtful, if it is related to such an external application.
One could certainly require that an appropriate definition of real numbers has such an
obsolete mathematical practice built into itself, in so far as such definition is able to justify
post festum that practice. Still, in this case, the requirement would so much be that of
ascribing to the relevant terms a meaning apt to recover the one they have within this
practice, but rather that of making the definition identify real numbers with the items
these terms should denote if such practice has to be directly justified by the definition
itself. In other terms, more than a semantic requirement, this becomes a requirement about
the relations a theory of real numbers should bear with another theory (or other theories)
recovering, in turn, the treatment of the magnitudes (essentially geometrical ones) involved
in this practice. But, then, what becomes relevant is not SFC(Realmm), but rather an-
other more appropriate instance of FC, which SFC(Realmm) can only mimic if related
to the mentioned historical understanding of the idea of an external applications of real
analysis.

We shall come back in §4.3 to such a more appropriate instance of FC, which Frege’s
envisaged definition of real numbers seems to comply with. Before this, it is useful to
further clarify the foregoing considerations about the possibility of identifying external
applications of real analysis pertaining to the measurement of magnitudes, by comparing
them with other similar considerations made by other scholars on a similar matter. This is
the purpose of the next §4.1.3 and §4.2.

4.1.3. Wright’s rejection of Frege’s Constraint for real numbers. In §3.4, we have
quoted a passage from Wright (2000) suggesting that Rationale V is not appropriate for
definitions of real numbers. It is in order, here, to come back to the argumentative context
of this passage.

Just after having stated AC,30 Wright claims (Wright, 2000, p. 325):

29 Cf. footnote (27), below.
30 Cf. the quote at p. 102.
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What is it to observe Frege’s Constraint?31 To insist that the general
principle governing the application of a type of number be built into their
characterization from the start is in effect just to insist such numbers be
characterized by reference to a principle which explains what kind of
entities they apply to—are of —and what it is for such entities to be
associated with the same or different such numbers. And of course that
is exactly what a suitable abstraction principle will do.

When compared with Wright’s own quite broad statement of AC, this remark can appear
quite strange, since it rather assigns a thoroughly specific nature to this requirement. In our
terminology, we might say that, after having stated AC, in its most general form, Wright
speaks of it as if he were speaking of FC. This becomes even clearer when he observes that
the requirement involves “the thought that the objects of, for example, the classical theories
of the natural and real numbers, or of classical geometry, have an essence which transcends
whatever is shared by the respective types of models of even categorical (second-order)
formulations of those theories” (ibidem, p. 325). This is just what a structuralist view
denies. Hence, Wright continues (ibidem, p. 326):

whether the abstractionist should respect Frege’s Constraint in recover-
ing a given region of mathematics depends on whether we should think
of that region structurally or not.

But when should we not do so? Wright’s answer it that we should not when “there is a
kind of a priori [. . .] knowledge which flows from an antecedent understanding of the way
[. . .] [the relevant] concepts are applied” (ibidem, p. 327). Wright further explains this as
follows:

It is not that pure knowledge comes first, as the apprehension of an a
priori truth about structures, with the applicability of the knowledge so
acquired only dawning on one after one has grasped how certain empiri-
cal situations can be viewed as, in effect, modeling aspects of that struc-
ture. Rather, the content of the a priori knowledge in question already
configures concepts drawn directly from the applications [. . .][so that
knowledge] is induced precisely by reflection upon sample, or schematic,
applications.

According to Wright, this is just what happens with arithmetic, but not with real analysis
(ibidem, pp. 328–329):

[. . .] it is simply not the case that the distinctive concepts of real analysis
can be grounded in their applications after the fashion in which, at least
in principle, arithmetical concepts and simple geometrical concepts can.
For instance, [. . .] no real number can ever be given as the measure of
any particular empirically given quantity.32 There is simply no such thing
as determining a real value of a quantity by measurement or indeed by
any other empirical procedure—any set of measurements we take will
be finite, and even in the best case there will be no empirical distinction
between their convergence upon a particular real value as opposed to

31 Cf. footnote (17), above.
32 Wright is here conforming with Hale’s use of the term ‘quantity’ to denote what we rather denote

by ‘magnitude’: cf. footnote (3), above.
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uncountably many others sufficiently close to but distinct from it. [. . .]
the fact is that both our concepts of the identity of particular real numbers
and, more importantly, the entire overarching conception of continuity,
as classically conceived—the density and completeness of the range of
possible values within a parameter determined by measurement—are
simply not manifest in empirical applications at all. Rather, so one would
think, the flow of concept-formation goes in the other direction: the
classical mathematics of continuity is made to inform a nonempirical
reconceptualization of the parameters of potential variation in the empir-
ical domains to which it is applied.

This does not only make any instance of FC appropriate for real analysis unable to
comply with Rationale V, in its restrictive reading. What is much more important here,
is that this also makes SFC(Realmm) ill-stated, if the relevant applications are intended
to concern empirical magnitudes. Regarding this particular case—which Wright seems to
consider as the only relevant one, indeed—, the point he makes seems to be essentially the
same we have made above in questioning the possibility that applications of real analysis
pertaining to the measurement of magnitudes cannot be external.

Wright goes, however, much farther than this. First, he presents his argument about
measurement of magnitudes by real numbers only as an example, but seems then to address
his remarks to any (sort of) application of real analysis. Second, he openly dismisses AC
(and, then, FC) as an advisable guide for a suitable definition or real numbers. Both points
exceed our present proposal. The first entails that no application of real analysis can be
external, which is not something we argue for. The second implies that either Frege was
wrong in endorsing FC in relation to his envisaged definition of these numbers, or possibly
that he did not do it, in fact, whereas we would tend to exclude both possibilities. On
the one side, it seems, indeed, unquestionable to us that Frege endorsed FC regarding
real numbers. On the other side, although Frege could certainly have been wrong in this
respect (as in others), he needs not be as wrong as Wright’s remarks suggest, since none of
Wright’s arguments seem to exclude the possibility that either SFC(Realmm) be conceived
as suggested at the end of §4.1.2, above, and that, when so conceived, it results in an
admissible requirement, or that some other instance of FC could provide an appropriate
guide for a definition of real numbers.33

4.2. Real numbers and empirical magnitudes: The Batinsky-Hale debate. On the
last point, Wright openly differs from his frequent coauthor Hale, who holds that (Hale,
2002, p. 307)

Frege was ‘substantially right’34 in his belief that the application of reals
as measures of quantities is essential to their very nature, and so should
be built into an adequate definition of them.35

33 Critical discussions (beyond those to be recalled in the next section) of Wright’s argument,
both as regards the ensuing interpretation of Frege’s views and the role of FC, and as regards
the additional claim, argued for by Wright in the same article, that ability of meeting FC can
discriminate between neo-logicist and (ante rem) structuralist characterizations of natural and
real numbers, can be found in Hale (2016), Snyder et al. (2018), Sereni (Manuscript).

34 The quotations marks signal a quotation from Hale (2000, p. 104).
35 It is a further question whether Hale and Wright understand FC in the same way.
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This claim is made in an article which appeared two years later than that quoted at the
beginning of §1.

The main proposal of the older article is to advance a (consistent) definition of real
numbers which complies with FC and follows Frege’s indications by being based on a
preliminary definition of domains of magnitudes and by identifying real numbers with
ratios on such domains, though being different from Frege’s in many relevant aspects. One
difference concerns the way domains of magnitudes are fixed. It is possibly to emphasize
this difference that Hale labels them, when defined in his own way, ‘complete quantitative
domains’, and define them by stages by identifying a number of stricter and stricter condi-
tions characterizing different structures for different sorts of “quantitative domains” (Hale,
2000, pp. 106–108). Though this terminology is not Frege’s, it will be convenient to adopt
it here, for the sake of clarity. From now on, we shall call, then, ‘complete domains of
magnitudes’ those domains allowing to define real numbers as ratios on them (up to now
merely called, after Frege, ‘domains of magnitudes’), in order to single them out among a
larger variety of domains of magnitudes.

The new article is a reply to Batitsky (2002), who had criticized Hale’s definition of
real numbers by retorting that his endorsement of FC leads him to two untenable commit-
ments: “that there can be no satisfactory explanation of measurement application of real
numbers to basic ontologies from which reals cannot be constructed by suitable logicist
abstractions”—for example finite ontologies or infinite ones which display a structure
weaker than that of complete domain of magnitudes—and and that the “existence of at
least one” such domain is “necessary and a priori”, since so is “the existence of reals (at
least for logicists)” (ibidem, p. 289).

Batitsky is of course right in judging the former commitment untenable, but he is also
wrong in arguing that endorsing FC leads to it: requiring that a definition of real numbers
have built into it the applications of real analysis pertaining to the measurement of magni-
tudes is of course not the same as denying that these applications might be accounted for
in alternative ways, for example, as Batisky maintains, through representation theorems, in
line with measurement theory (cf. pp. 122–123, above).

As regards the latter commitment, things are subtler. Batitsky takes it to be manifestly
untenable since he takes for granted (in agreement with Wright, apparently) that magni-
tudes cannot but be empirical items, which is completely alien both to Frege’s and Hale’s
views: so much alien that both believe it is possible to prove that a complete domain of
magnitudes necessarily exists by showing how to construct it (a priori) based on natural
numbers (Frege, 1903, §II.164; Hale, 2000, §3). Moreover, such a commitment follows
from FC only in the presence of supplementary metaphysical assumptions, which Frege
certainly endorsed but which are, as such, independent of it (at least if it is taken to be
motivated by Rationale IV in its liberal reading).

What is more relevant for our proposal is, however, not this nor, more generally, the way
Hale (convincingly) responds to Batitsky’s allegations. It is rather that these allegations
force Hale to acknowledge that in his older article he had “made no attempt to elucidate or
defend Frege’s Constraint” (Hale, 2002, p. 307), and to try to fill the gap. Here is where he
starts from (Hale, 2002, pp. 309–310):

There is, of course, a more-or-less obvious price to be paid for so char-
acterizing quantitative domains that it is not only impossible to show
that physical quantities of any kind—such as lengths, masses, etc.—
constitute such a domain [. . .], but virtually certain that they do not do
so. For it is an immediate and unavoidable consequence of this negative
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point that any explanation of the applications of reals (defined as ratios
of elements of a quantitative domain) in the measurement of physical
quantities must be considerably less straightforward than the explanation
that is rendered possible by the introduction of cardinal numbers by
means of Hume’s principle of their empirical applications.

This remark points in the same direction as Wright’s: it emphasizes that there is a strik-
ing asymmetry between the way arithmetic and real analysis, respectively, relate to their
canonical applications, at least if those of the latter pertain to measurement of empirical
magnitudes. Still, whereas Wright takes this asymmetry as a sufficient ground for accepting
FC for natural numbers but not for real ones, Hale considers it as a reason for looking for
an elaborate enough way for explaining measurement of empirical magnitudes by reals
based on the definition of them as ratios of magnitudes.

He begins with distinguishing “three possible readings” of FC (Hale, 2002, p. 312):

There is, first, an entirely anodyne reading on which the Constraint de-
mands no more than, and would be met in full by, the availability of
representation theorems of the kind proved in standard measurement
theory. Second, there is the exorbitant reading which requires, if the reals
are to be defined by abstraction, that the abstraction should be over an
equivalence relation or relations holding among suitably chosen actual
lengths, masses, etc. Third, there is a reading on which the Constraint
requires more than the first but appreciably less than the second: that an
adequate definition of the reals must, as Dummett puts it,36 “display the
general principle underlying the use of the real numbers to characterise
the magnitude of quantities of these and other kinds” [. . .].

It is of course the third reading that interests us. Hale motivates as follows his claim that
FC, on this reading, is met by his own definition of real numbers while still considering this
definition as apt to explain the application of real analysis to the measurement to empirical
magnitudes (Hale, 2002, pp. 313–314):

[. . .] any explanation of the use of real numbers in measuring [. . .][physical
quantities37] must, if the reals are defined as ratios of elements of a do-
main, be more or less indirect. [. . .] How, then, are empirical applications
of the reals to such quantities to be explained? In a nutshell, [. . .] quite
simply: by observing that whilst physical quantities of any given kind
do not—and arguably could not—exhibit the abstract structure of even a
minimal, much less a, quantitative domain, this does not mean that they
cannot constitute a partial realisation of it.

Hale illustrates what he means by ‘partial realization’ by considering the example of
masses. In short, he takes a kind of empirical magnitude, e.g., mass, to be defined through
an abstraction principle of the form

‘∀x, y
[
φA (x) = φA (y) ⇔ x is just as A as y

]
’,

where ‘x’ and ‘y’ vary over appropriate empirical objects, A is an appropriate attribute of
these objects, and φA is the kind of magnitude to be defined; and seems to argues that,

36 Cf. the passage from Dummett (1991) quoted in §1.
37 Cf. footnote (3), above.
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whatever kind of magnitudes φA might be, these objects and attribute are (because of the
very notion of a kind of magnitudes) such that a structure

〈
φA, �φA , ⊕φA

〉
can be defined,

which is homomorphic with a complete domain of magnitudes.38 According to him, this
is enough to explain the applicability of real numbers to the measurement of φA’s.

It is not important here to assesses whether this account is appropriate, in general (we
leave this to be decided by experts in the measurement). What is important is the basic idea
it seems to convey, which seems to conform with Frege’s views (which certainly did not
depend on a more accurate analysis of the general notion of a magnitude: Dummett, 1991,
pp. 278–291): according to FC, real numbers are to be defined as ratios over complete
domains of magnitudes; provided that it is “virtually certain” that no empirical magni-
tudes can “constitute” such a domain, this means that real numbers are to be defined as
ratios of nonempirical magnitudes; on the one side, this is enough to directly explain their
application to the measurement of (non-empirical) magnitudes forming such a domain;
on the other side, this provides a basis for indirectly explaining their application to the
measurement of empirical magnitudes, by showing that they form a structure homomorphic
to a complete domain of magnitudes.39

But, if this is so, the crucial point in the explanation of the applications of real analysis
pertaining to measurement of magnitudes rests, also for Hale, on the proof of appropri-
ate representation theorems establishing an homomorphism among two structures, one of
which—that of a complete domain of magnitudes—is fixed and prescribed by the very
structure that real numbers are expected to form, namely by the requirement that it be
appropriate for allowing for a definition of these numbers as ratios on it. This makes the
difference between Hale’s neo-Fregean account and that of the partisans of the measure-
ment theory quite thin: where the latter take the relevant representation theorems to directly
connect structures defined on the basis of empirical objects with real numbers, the former
takes these theorems to connect these structures—as well as other ones involving non-
empirical objects or defined on the basis of them—with the structure of a complete domain
of magnitudes, which is, in turn, connected to real numbers by the definition of these
numbers as ratios on such a domain. In the latter account, then, real numbers directly enter
the game only in connection to the single structure of complete domains of magnitudes, and
it is only with respect to their applications to the measurement of (non-empirical) magni-
tudes complying with this structure that their definition is to be judged. Since, if the nature
this definition ascribes to these numbers makes it possible, in itself, to (directly) justify

38 Of course, if we take here (as it seems we should do) the relevant magnitudes to be the different
values that the function φA can take, rather than the empirical objects themselves on which
this function is defined, then these magnitudes are abstract objects. Calling them ‘empirical’
could, then, be questioned. Still, one can take this to be licensed by the fact that our capacity
of establishing whether an (empirical) object a is just as A as another (empirical) object b, and,
then, whether φA (a) is the same magnitude as φA (b), depends on our implementing empirical
procedures.

39 No clear effort is done here to elucidate the notion of a magnitude, in general. Hale seems
to take it for granted both that nonempirical magnitudes are just the elements of a domain of
magnitudes (which would make the very notion of nonempirical magnitudes not forming such a
domain nonsensical), and that empirical ones are always elements of a structure

〈
φA,+φA , <φA

〉
homomorphic to such a domain, by leaving to empirical enquiries the task of identifying both the
(empirical) objects over which empirical magnitudes of a certain kind are defined by abstraction,
and the relevant attribute of them, as well as that of explaining how a statement like ‘a is just as
A as b’ (where a and b are whatever objects having the attribute A) is to be understood in any
particular case, and that of fixing the truth-conditions of such a statement.

https://doi.org/10.1017/S1755020318000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000278


130 MARCO PANZA AND ANDREA SERENI

their application to measurement of these (non-empirical magnitudes), it will also make
possible to (indirectly) justify their application to measurement of empirical magnitudes,
because of the homomorphism holding between the relevant structure involving these latter
magnitudes and that of complete domains of magnitudes.40

This suggests taking FC to require, in the case of real numbers, that their definition be
such to make these numbers intimately connected to a (non-empirical) theory of complete
domains of magnitudes, since, according to such an account, this theory could be taken as
a general theory of (any sort of empirical and non-empirical) magnitudes, at least if the aim
of such a theory were taken to be that of fixing the general notion of a magnitude in relation
to its being a possible object of measurement. If such requirement is met, real analysis
would be connected not only to this very general theory, but also, via its intermediary,
to geometry and rational mechanics (for the magnitudes they deal with form complete
domains of magnitudes), and to any empirical theory presiding over the measurement of a
certain kind of empirical magnitudes.

4.3. Architectonic Frege’s Constraint. More generally, this suggests an alternative
specification of FC as complying with Rationale VI in so far as this prescribes an ap-
propriate architectonic of (a portion of) mathematics, according to which the canonical
applications of a certain theory are explained by the way this theory is connected to another
because of the definition of the very objets it deals with.

According to such a specification, FC would appear as the requirement that the relevant
definitions be such that the canonical applications of the relevant theory be built into the
very nature they ascribe to the objects they define in so far as they make these objects
result from ingredients involved in an antecedent (and, then, more basic) theory providing
the elements for a general characterization of the subject-matter of these applications.

Call ‘Architectonic FC’ or ‘AFC’ for short, the general pattern that the instances of FC
depending of this specification obey to.

4.3.1. Architectonic Frege’s Constraint for real numbers. If we take the canonical
applications of real analysis to be those pertaining to measurement of magnitudes, the
appropriate instance of AFC for real numbers would be the following:

[AFC(Realmm)] Suitable definitions of real numbers, as objects real
analysis is about, must be such to ascribe an intrinsic nature to (each
of)41 these numbers, and to do it in such a way that the applications of
real analysis pertaining to the measurement of magnitudes be built into
this very nature in so far as they make these objects specified based on a
general theory of magnitudes, so that they work as measures of whatever
sort of magnitudes.

Needless to say: Frege’s envisaged definition of real numbers perfectly complies with
this constraint. One could even consider that it does that too perfectly, as it were, namely,
that this constraint is stated ad hoc in order to make this definition comply with it. This
would be so, however, only if the foregoing account of the way in which a general theory of
magnitudes, providing a characterization of complete domains of magnitudes, enters an ex-
planation of the measurement of any sort of magnitudes by real numbers were blanked out.

40 Cf. footnote (39), above.
41 Cf. footnote (21), above.
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As we have already said, it is not our purpose, here, to support such an account. What is
relevant is just that it can be plausibly taken to reflect Frege’s views on the matter.42

This does not only suggest that Frege actually endorsed AFC(Realmm), but also that this
is just the instance of FC which is at work in Frege’s envisaged definition of real numbers.
It is moreover easy to see that, once external applications of real analysis are conceived
as said at the end of §4.1.2, AFC(Realmm) agrees with SFC(Realmm), so that the latter
might be seen, as it were, as an alias of the former.

It is, then, fair to say that Frege conceived FC, in relation to a definition of real numbers,
as requiring not only that these numbers be defined as ratios on, and then measures of,
(non-empirical) magnitudes, but, just because of this, he also maintained:

i) that these numbers be, by definition, both distinct from the magnitudes they measure
(though he also envisaged to define them so as to make they form a complete domain of
magnitudes: Frege (1903, §II.245)),43 and independent of natural numbers (though he
also envisaged, as observed above (p. 127), to prove that appropriate complete domains
of magnitudes necessarily exist by constructing one of them based on natural numbers);

ii) that real analysis have a quite precise place in the architectonics of mathematics,
namely that it be connected from above with a general theory of magnitudes, thus being
rather essentially independent of arithmetic, though sharing with it a subjacent system
of logic.

42 After having lamented that “what a magnitude is surely has never been stated satisfactorily”
(Frege, 1903, §II.160; Frege, 2013, p. 1572, §II.160), having observed that this depends on having
asked “the wrong question”, and having suggested that the good one is “how must a concept be
constituted in order for its extension to be a domain of magnitudes” (Frege, 1903, §II.161; Frege,
2013, p. 1582; cf. Hale’s passage quoted at p. 98, above), Frege abruptly cuts down the discussion
by admitting that “since our initial concern is to obtain a foundation just for the theory of the
real numbers, we will simplify the matter by leaving absolute magnitudes out of consideration,
focusing only on those domains of magnitudes in which there is an opposition corresponding to
that between the positives and negatives for the measuring numbers” (Frege, 1903, §II.162; Frege,
2013, p. 1592). This suggests that Frege was thinking that a definition of complete domains of
magnitudes acquiescing with this abrupt simplification would have provided a general framework
to which other cases could be reduced (on this matter, cf. Dummett (1991, pp. 278–281)), which
is in line with Hale’s account. An important proviso has to be made, however. Both Frege’s and
Hale’s definitions of domains of magnitudes are structural in the sense that they merely fix the
structural conditions that such domains are to meet as a whole, without also fixing the ultimate
nature of the elements of such a domain. Still, while, for Hale, such elements are unspecified
objects meeting these structural conditions, when taken all together, Frege requires, as said in
§4.1.2, that these elements be extensions of permutations, and suggests that in a consistent faithful
rephrasing of his definitions these elements will be permutations (cf. footnote (22), above).
Frege’s original definition advances no requirement about the specific nature of the objects which
these permutations are supposed to act on, and so it will be for a consistent rephrasing of it: this
is just what makes these definitions structural. Still, one should not forget that, in proposing this
requirement, Frege advances a condition that is absent from Hale’s definition. For this condition
to be met, Hale’s characterizations of a kind φA of empirical magnitudes and of the corresponding
structure should be appropriately amended. It is not important, here, to consider how this could
be done. What is important is to observe that this would have no consequences on the aspects of
the foregoing account which are relevant for our present purpose.

43 According to Frege’s original definition, this would require defining also real numbers as
extensions of permutations, which can only be done thanks to a trick making their definition
far from natural: cf. Dummett (1991), p. 291.
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iii) that a pervasive practice in history of mathematics, up to the second half of the
19th century, consisting in using numerical terms to denote measures of geometric
magnitudes, or these very magnitudes, be recovered and justified post festum.

§5. Rethinking Frege’s foundational program. After having argued that AC played
an essential role in Frege’s foundational endeavor in the form of appropriate instances of
FC, in §4.1, we have wondered which instances of this last constraint could have been at
work as guides for his definitions of natural and real numbers, respectively. Our enquiry has
led us to conclude that whereas the instance FC guiding the former definition is an instance
of SFC, namely SFC(Nattc), no instance of SFC could have guided the latter definition, if
not under an understating that makes it mimic a non-semantic requirement. This definition
should have rather been guided by an instance of AFC, namely AFC(Realmm)44—which
is just the requirement mimicked by the relevant instance of SFC for real numbers. It is
now time to ask whether this difference reflects itself on how Frege’s foundational endeavor
is depicted in the two cases.

This endeavor is generally seen as governed by a unique foundational program, labeled
‘logicism’, and often depicted as a primarily philosophical enterprise, essentially con-
cerned with accounting for the nature of mathematical objects via semantic considerations,
aimed at justifying our epistemic access to such objects.

Both this label and this picture might be questioned, and this both concerning Frege’s
definitions of natural and real numbers.45 Here we would like, however, to focus only on
their appropriateness in relation to the latter definition, and on the way a faithful under-
standing of the motivations guiding this latter definition might reverberate on our under-
standing of the motivation guiding the former.

At the end of §4.1.1, we have already observed that there is room for taking Frege’s
proposal of getting arithmetic within a system of logic as prompted by SFC(Nattc), rather
than the other way around, which makes this last constraint comply with Rationale VI. But
what about Frege’s envisaged definition of real numbers and the instance of FC that should
have guided it, namely AFC(Realmm)?

In so far as Frege’s definition of domains of magnitudes is entirely achieved within his
system of logic (at least in so far Basic Law V is taken to be a law of logic, and to be, then,
part of this system), AFC(Realmm) certainly prescribes to connect real analysis to logic.
This is possibly enough for maintaining that the label ‘logicism’ fits with his definition of
real numbers. But it is much more doubtful that AFC(Realmm) could be taken, also in

44 That Frege could not have intended FC just in the same way for natural and real numbers had
been already suggested by G. Currie (Currie, 1986, p. 361):

[. . .] we see an essential difference between the account of the applicability of the
natural numbers and that of the real numbers. The explanation of the applicability
of a natural number n is local; it depends only on what concepts fall under the
concept of which n is an extension. But the explanation of the applicability of
a real number r is global; it depends upon the existence of a mapping from the
real numbers into the structure which is the particular magnitude kind we are
considering.

This characterization of the difference is misleading, but the basic idea is correct, we think. What we
have tried to make is to give more substance to it.
45 Concerning the former numbers, this matter is the object of a seperate article of one of us: Panza

(2018). A larger article tackling the question for both sorts of numbers is in preparation.
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Frege’s perspective, as prescribing a definition of real numbers as logical objects. There
are different reasons for that.

Two of them are rather technical.
Here is the first. One could observe that, whereas Frege defines natural numbers in such

a way that each one of them is identified with a particular and univocally specified object—
namely, with the extension of the concept of being the extension of a(first-level) concept
equinumerous with a certain finite first-level concept: Frege (1903, §I.40–§I.46)46—, he
does not define (complete domains of) magnitudes in such a way that this also happens for
each (element of such a domain of) magnitude(s), just because his definition is structural
in nature.47 It follows that, in Frege’s perspective, magnitudes cannot be, at the same
time, univocally specified and logical objects: if they are taken to be logical objects, they
have to be taken to be merely structural objects, places in a structure; if they are taken
to be univocally specified, they have to be taken to be elements of a particular system
exemplifying, possibly partially, the structure of domains of magnitudes (this should have
been already clear from what we have said at the beginning of §4.1.2).48

This has a consequence for the very nature of ratios of magnitudes, that is, for what Frege
prescribes real numbers to be. The way he envisaged defining them would have made any

46 The definition suggested in the Grundlagen is slightly different, as it is well-known. This
difference does not affect our present point, however.

47 Cf. footnote (42), above.
48 It is interesting to notice that this way of conceiving Frege’s purported definition of real

numbers—also according to what specified in footnote (42)—echoes some of Frege’s objections
to Hilbert’s treatment of the axioms of Euclidean Geometry. In Frege (1903, pp. 374–375), Frege
observes that what Hilbert has really accomplished with his purported axioms, in his Grundlagen
der Geometrie, is not to define first-level concepts, e.g., the concept of a point, thus giving means
for identifying the nature of specific geometrical objects, but rather to introduce a number of
characteristics for such first-level concepts (cf. also Frege’s letter to Hilbert of 6.1.1900, in Frege,
1976, pp. 73–74). In Frege’s technical sense, “a characteristic of a concept is a property an
object must have if it is to fall under that concept” (Frege, 1903, p. 373; Frege, 1971, p. 35).
Characteristics can be attributed to concepts of any level, and will select properties of objects,
if they are characteristics determined by first-level concepts, and properties of concepts of level
n if they are characteristics determined by concepts of level n + 1. According to Frege, what
Hilbert has at most accomplished is to introduce certain characteristics of first-level geometrical
concepts, i.e., characteristics that different first-order concepts of, for instance, point must satisfy
in order to fall under a given second-level concept, a concept like that of being a concept of point’
(Frege does not explicitly mention this, although he of course laments the confusion engendered
by Hilbert in using ‘point’ to denote both concepts: Frege, 1903, p. 374; Frege, 1971, p. 37).
Such definition does not also provide characteristics of the first-level concepts of point, i.e., the
properties that geometrical objects, i.e., points, must possess in order to fall under such first-level
concept.

One way of reading this is to say that by giving definitions of second-level concepts under
which first-level geometrical concepts fall, Hilbert has not managed to identify points with
specific objects, but merely to say how different concepts of such objects must behave in order to
be among concepts of one or other geometry. Arguably, something similar is what has been said
above about Frege’s definition of domains of magnitudes. To repeat ourselves, Frege’s definition
of domains of magnitudes is structural in the sense that it merely fixes the structural conditions
that such domains are to meet as a whole, but does not also determine the ultimate nature of the
elements of such a domain: in other words, it only establishes the properties that concepts of
magnitudes must have in order to fall under the concept of domain of magnitudes.

This is not the place to explore the consequences of such an analogy. However, it is remarkable
to see Frege criticizing Hilbert for giving a definition of geometrical concepts which so much
resembles his own definition of domains of magnitudes.
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ratio on a particular system exemplifying the structure of domains of magnitudes identical
with a ratio on another such system. But if the elements of these systems are not logical
objects, how might their ratios be so? And, analogously, if magnitudes as logical objects
are not univocally specified, how might their ratios be so?

Here is the second. For real numbers to be able to be defined at the same time as ratios
of magnitudes and as objects existing a priori, at least a domain of magnitudes is to
be warranted to exist a priori. Still Frege’s (as well as Hale’s) definition(s) of domains
of magnitudes cannot warrant, as such, that a non-empty such domain, and, a fortiori
a complete one, exists. This makes a definition of real numbers as ratios of magnitudes
require an independent existence proof (which is not at all the case for Frege’s definition
of natural numbers as cardinals of concepts). But, how might objects whose definition
requires an independent existence proof be logical objects?49

But there are also more general arguments concerned with Frege’s conception of logic.
For Frege, logic is characterized by its generality. Still, this can be understood in differ-

ent ways. According to Goldfarb, logic is general, for Frege, since, for him, its “business
[. . .] is to articulate and demonstrate [. . .] logical laws” and these are “universal”, for
“they are applicable to any subject matter”, and they are “general, not in being about
nothing in particular [. . .], but in using topic-universal vocabulary to state truths about
everything”, even “supremely general”, for, “aside from variables, all that figure in them
[. . .] figure in discourse on any topic whatsoever” (Goldfarb, 2001, p. 26). According to
MacFarlane, instead, “the kind of generality that distinguishes logic [. . .] is a generality
in the applicability of the norms it provides”, and comes from its being “normative for
thought as such” (MacFarlane, 2002, pp. 37–38), or, as Frege himself says in the foreword
of Grundgesetze, from its “prescribing how to think wherever there is thinking in general”
(Frege, 1903, Vorwort, p. XV; Frege, 2013, p. XV1).

Now, whichever of these two (in a sense, opposite) accounts one favors, it seems clear
that no statement about magnitudes can be taken to be a law of logic, simply because of its
lacking the sort of generality which logic requires.50

Indeed, Frege’s definition of complete domains of magnitudes is certainly achieved
within his system of logic (provided Basic Law V be taken to be part of it), but, as
observed by Shapiro, this system is used “to recapitulate something sufficiently resembling

49 On this matter, more is said in Boccuni & Panza (Manuscript).
50 Despite the fact that Frege provides a formal definition of domains of magnitudes entirely within

his formal system, and that this definition can be consistently rephrased within a quite weak
system of third-order logic (see Boccuni & Panza (Manuscript)), this is, and could not but be,
a definition of the pure structure that domains of magnitudes are supposed to meet, not of these
very domains. The characterization of each of the latter cannot, indeed, but depend on nonlogical
resources. Moreover, from the mere fact that this structure can be defined within a system of logic
it does not follow at all that it is logical in nature. Its definition within this system merely appeals
to structural properties of binary relations (their being invertible, composable, and the fact that
identity is among them) to mimic the conditions to be met by appropriate groups of permutations.
But this is certainly not enough to make the notion of such a group as general as a logical notion
should be (at least according to a Fregean conception of logic). At most, one could follow Kant
in arguing that “the concept of a magnitude” is “the consciousness of a homogeneous manifold in
intuition in general, in so far as through it the representation of an object first becomes possible”
(B, 203; Kant, 1998, p. 287), and then conclude that a priori judgements about magnitudes are
a necessary condition for sensible intuition. But it seems that one could hardly maintain that
these judgments are “applicable to any subject matter” or that they are “normative for thought as
such”.
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metatheory”, for, here, “Frege anticipated a technique now attributed to Ramsey” according
to which “one replaces an axiomatization with an explicit definition of a second-level
concept, that is, a relation on relations” (Shapiro, 2000, p. 345). To be more precise, Frege
defines a complete domain of magnitudes as the extension of a concept so shaped that under
it fall extensions of permutations that, when taken all together, meet some appropriate
conditions, all expressible in terms of the operator of inversion of a binary relation and of
the operation of composition of two such relations. In this way, he transforms algebraic
axioms (characterizing an appropriate group) in an explicit definition. This allows him to
avoid any existential assumption and so to give to his definition the external appearance of
a logical definition. But this does not change the substance of what he does (as showed, by
the way, from the fact that an independent existence proof is needed, as observed above): he
fixes a particular structure, so departing, in fact, from the prerogatives of logic. Moreover,
passing from complete domains of magnitudes, so defined, to ratios on them, namely
to real numbers, requires adopting a new appropriate abstraction principle (presumably
rephrasing Euclid’s definition of proportionality, that Frege shows to be familiar with,
since he mentions it in the Grundlagen: Euclid, Elements, Definition V.5; Frege, 1903,
§19; Simons, 1987, p. 40; Dummett, 1991, pp. 290–921), which could hardly be taken, in
turn, as a logical law.

All this suggests that, if some form of logicism encompasses both Frege’s definition
of natural numbers and the envisaged one of real numbers, this is quite different in the
two cases. True: both the former definition and a preliminary, though essential, part of the
latter are articulated within the same formal system, which Frege considered as a system of
logic. Still, while the former defines natural numbers as objects fixed by genuinely explicit
definitions (Basic Law V being taken for granted and apt to license the appeal to extensions,
this preliminary part of the latter has merely the external form of an explicit definition, and
it does define, in any case, no univocally specified object.

This difference can be explained by coming back to rationale VI. We have suggested
that Frege’s definition of natural numbers could be seen as prompted by SFC(Nattc), and
that this can, in turn, be taken to comply with this rationale, since it requires that these
numbers be defined within a general theory of sortal concepts and objects (cf. the end of
§4.1.1, above). In so far as this is certainly also the case of AFC(Realmm), which can be
taken to prompt Frege’s envisaged definition of real numbers, this results in acknowledging
that the two definitions have this in common: both are intended to meet a requirement that
is (partially, at least) motivated by this rationale, i.e., both aim to realize an appropriate
architectonics of mathematics, both in itself, and within knowledge as a whole. On this
respect the essential difference is this: while the definition of natural numbers is aimed
at including their theory within logic, conceived as a general theory of sortal concepts
and objects, that of real numbers merely uses logic as a convenient tool to articulate the
relations of the theory of these numbers with a general theory of magnitudes, or theory of
complete domains of magnitudes, on the one side, and with geometry, rational mechanics
and empirical enquiries, on the other.

This is confirmed by a counterfactual remark, as it were. Had Frege aimed to include
also real analysis within logic, he would have plausibly chosen a much simpler road: that
of defining these numbers as arithmetical objects, for example as pairs composed by a
natural number and a set of natural numbers.51 In sketching the existence proof that a
non-empty complete domain of magnitudes exists (Frege, 1903, §II.164), he envisaged,

51 For such a definition, cf. von Kutschera (1966), and, for a variant of it, Panza (2016), pp. 415–419.
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indeed, to have recourse to such pairs,52 which suggests he considered them, if not as
logical objects, at least as objects whose existence is warranted by logic, or, in any case
a priori. This would have made, however, real analysis result from arithmetic, rather than
from a general theory of magnitudes, or theory of complete domains of magnitudes, so
contravening to SFC(Realmm).

Would this also have contravened any other possible instance of FC? Possibly not.
After having briefly indicated the road he would have followed to define complete

domains of magnitudes (Frege, 1903, §II.162), Frege illustrates his idea by the example
of distances on a straight line, or rectilinear length (ibidem, §II.162). This is, of course, a
quite specific, and very simple case, which is of no help in getting a general notion of a
magnitude (Dummett, 1991, p. 280), but the fact that Frege considered it suggests that he
took it as representative enough.

Let, then, A be a domain of objects having an attribute A from which a kind of magnitude
φA can be somehow extracted, conforming, for its structural properties, to this example
(one could take the elements of A to be segments of straight lines, polygons, periodic
intervals of time, or mass bodies, and φA rectilinear length, area, time duration and mass,
respectively). Let also ‘≺A’ and ‘⊕A’ denote, respectively, an appropriate strict-order
relation and an appropriate operation of composition or concatenation on A (from the
former of which external multiplication can be defined by kx = x ⊕A x ⊕A . . . ⊕A x︸ ︷︷ ︸

k times

and 1
k x = y ⇔ ky = x , were x and y are any element of A and k any natural number). A

quite natural way to measure an element a of A is by ascribing to it a value of φA in the
form of an infinite sum of rational numbers, proceeding this way:

• Choose another element u of A, to be used as a unity of measure, and look for a
natural number n such that na ≺A a �A (n + 1) u;

• Look for an element r1 of A such that a = nu ⊕A r1, and put

φA (a)[u] = n + φA (r1)[u] ;
(by then admitting that, for any two elements x , y of A, φA (x ⊕A y)[u] =
φA (x)[u] + φA (y)[u]);

• Evaluate whether r1 �A
1
2 u or 1

2 u ≺A r1 �A u, look for an element r2 of A such
that a = nu ⊕A r2, in the former case, or a = nu ⊕A

1
2 u ⊕A r2, in the latter case,

and put, respectively

φA (a)[u] = n + 0 + φA (r2)[u] or φA (a)[u] = n + 1

2
+ φA (r2)[u] ;

• Continue indefinitely this way, so as to get the equality:

φA (a)[u] =
∞∑

i=0

λi
1

2i
,

with

λ0 = n ; λi =
{

0 if ri �A
1
2i u

1 if 1
2i u ≺A ri �A

1
2i−1 u

(i = 1, 2, . . .).

52 What is called ‘set’ here is called ‘class [Klasse]’ by Frege and identified with the extension of a
concept.
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Let, now, � be the set of (positive) natural numbers {i : λi = 1} (or, in Frege’s terminol-
ogy, the extension of the concept of being a positive natural number i such that λi = 1).53

It is easy to see that the (Cauchy) series of the form
∞∑

i=0
λi

1
2i , providing measures for the

elements of A (relative to u), are in bijection with the pairs like 〈n, �〉. These pairs are
just those involved in Frege’s envisaged existence proof. Hence, defining real numbers as
such pairs would have permitted to explain a priori the application of these numbers to
the measurement of magnitudes behaving as rectilinear length (which Frege himself seems
to take as paradigmatic), and, thus, to meet a plausible instance of FC for these numbers,
concerned with their application to measurement of magnitudes.

Still, as plausible as such an instance of FC might be, it would not have prescribed
a definition connecting real analysis with a general theory of magnitudes, or theory of
complete domains of magnitudes, and, through it, to geometry, rational mechanics and
empirical theories: the explanation of its applications pertaining to measurement of mag-
nitudes which it would have allowed would have only involved an informal account of the
way measures of magnitudes could be expressed by Cauchy series of rational numbers, in
important but still particular cases.

And, if we understand well his point (his argumentation, here, is far from crystal-clear),
this is just the main objection Frege makes to Cantor’s definition of real numbers through
Cauchy series of rationals (Frege, 1903, §II.68–§II.85; Dummett, 1991, pp. 263–276).

Frege seems here to reject the very idea that a series of rationals could be taken to
be a number, as he would have possibly also rejected that this could be the case for a
pair like 〈n, �〉: at most they could be associated with numbers, which would require an
independent identification of the (real) numbers to which they would be associated. This
line of thought is not entirely convincing, however: why should one be licensed to take
natural numbers to be extensions of concepts, and real ones to be ratios of magnitudes, and
not to take the latter to be pairs like 〈n, �〉?

It seems, therefore, that the crux of Frege’s rejection of the aforementioned option, as
well as of Cantor’s definition, cannot be here. His point is rather that, if real numbers
were so defined, there would be no general explanation of their being essentially measures
of magnitudes. Since a procedure as the foregoing can intelligibly result in associating a
Cauchy series of rationals, or a pair like 〈n, �〉 to the relevant magnitude of a, only in so far
as it is already clear what a magnitude of an element of A is; and this series can intelligibly
provide a measure of this magnitudes, only in so far as it is already clear how a series of
rationals can provide a measure of a magnitude. But how could both things be made clear
without a general theory of magnitudes and a consequent definition of their measures as
ratios on them?

Here is how Frege makes the point, just with reference to the measure of a rectilinear
distance by a Cauchy-series (Frege, 1903, §II.76; Frege, 2013, p. 881):

First we must know the magnitude-ratios, the real numbers; then we can
discover how to determine ratios by means of fundamental series [i.e.,
Cauchy series][. . .]. Enlisting geometry is crucial since it is in this way
that one appropriates the content at which all endeavors are directed. The
crux is then to be found in geometry, however, and Cantor’s theory is in
no way purely arithmetical.

53 Cf. footnote (52), above.
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And here is how it is resumed by Dummett (Dummett, 1991, p. 276):

Cantor has not only assumed the principal notion to be explained, but
it has assumed it without sufficient generality. What is required is an
explanation, not of a specific notion of a ratio of distances, but of the
general notion of a ratio of quantities [or magnitudes, in our terminology]
of some one type: real numbers can be presented as precisely such a ratio,
without importing anything into the definition from outside arithmetic.54

Because Cantor’s construction of the real numbers does not present them
as ratios of quantities [better: magnitudes], he can no more than illustrate
their use to give the magnitude of a quantity [better: the measure of a
magnitude] case by case; and this has the consequence that he has to
appeal to nonarithmetical notions (in his example to geometrical ones).

Taking real numbers to be pairs like 〈n, �〉 would have, possibly, served the case of the
inclusion of real analysis within logic, but, just as it happens with Cantor’s definition, it
would have appeared too quick to Frege. However ingenious it might be, such a definition
could not throw any light on the fundamental concern of explaining in general the intimate
relation between real analysis and theories of magnitudes; nor would it help accounting
for centuries of mathematics spent trying to understand how numbers and magnitudes are
reciprocally related.

This seems, indeed, the very aim of Frege: not including as much mathematics as possi-
ble within logic, but reconstructing mathematics, in connection to logic, so as to do justice
to its millenarian vocation: that of providing us with a rigorous clarification of some basic
scientific notions and of their mutual relations.

§6. Concluding remarks. The attempt at giving a correct interpretation of Frege’s
foundational program has a long and very entangled history, which cannot be even cursorily
surveyed here. It would, then, be illusory to try to conclude our article by situating our
suggestion in such a large and intricate discussion. Just a few remarks are in order.

A useful way of recapitulating this debate is offered by Jeshion (2001). Jeshion recon-
structs from the literature and then surveys three rationales that may have motivated this
program (ibidem, pp. 939–940). Two of them, respectively, ascribed to Kitcher (1979) and
Weiner (1984, 1990), make it an eminently philosophical program: one takes its purpose to
be that of “demonstrating the epistemological superiority of arithmetical knowledge”, under
the assumption that “the logical source alone is capable of producing knowledge possessing
self-evidence, certainty, and clarity”; the other takes its purpose to be that of “determining the
epistemological sources of our arithmetical knowledge”, thereby establishing whether they
are a priori or a posteriori, analytic or synthetic. The third, ascribed to Benacerraf (1981),
makes it an eminently mathematical program, aiming at proving “whatever admits of proof”,
under the assumption that if a truth admits of proof it “ought to be proved”.

Jeshion argues that these rationales are all either partial or incorrect, mainly because
they make no case of Frege’s twofold conception of self-evident, both as “selbstverstan-
dlich”, namely “foundationally secure” (neither “grounded on other truths” nor “in need
of proof”), and as “einleuchten”, namely such that “grasping their content” is sufficient for

54 Here Dummett seems to take arithmetic to be a general theory of numbers, including real ones,
and not just the theory of natural numbers.
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“rational recognition of their truth” (Jeshion, 2001, p. 939). Integrating this concern leads,
according to Jeshion, to conclude that Frege’s program is motivated by a more articulated
rationale, that she labels ‘Euclidean’, namely by the aim of making “primitive truth of
mathematics” both selbstverstandlich and einleuchten, and the “relations of epistemic jus-
tification in a science” apt to mirror “the natural ordering of truths” (Jeshion, 2001, pp. 944
and 961). Jeshion takes this rationale to be both mathematical and epistemological: she
takes Benacerraf to be correct “in holding that Frege’s interests in establishing logicism
were in many ways on a par with his mathematical contemporaries’ interest in foundational
projects”, but also submits that “there is no denying that Frege had serious independent
epistemological motivations” (ibidem, p. 944).

It would surely be dangerous to deny the latter, and it is far from our purpose to contra-
dict Jeshion’s analysis of Frege’s notion of self-evidence (cf. Shapiro (2009) for a discus-
sion). Let us notice, however, that in the light of Frege’s actual formal achievements—the
definition of natural numbers and of complete domains of magnitudes, and the proofs of
the fundamental theorems of arithmetic—the only relevant testing bench for the claim that
Frege was guided from Jeshion’s Euclidean rationale concerns Basic Law V (unless one
were willing to ascribe to Frege the though that explicit definitions are primitive truth: a
view that, in any case, could not be incorporated in this rationale without much further
work), which is, indeed, quite problematic for this view.55

What we want to focus on, however, is not so much Basic Law V, but rather the way
Frege should have defined real numbers, in agreement with the idea that they are ratios of
magnitudes. As we have already observed above (p. 135), even supposing that he could
have appropriately proved that a domain of magnitudes necessarily exists, no explicit
definition could have brought him from his definition of such domains to the introduction
of ratios on them: this would have required an abstraction principle, that is, a new law
having the same logical form of Basic Law V, presumably rephrasing Euclid’s definition of
proportionality.

Would Frege have considered this new law both selbstverstandlich and einleuchten?
This would have been quite strange, in light of the more than bi-millenary discussion
about the suspected inappropriateness of this definition as a ground for the theory of
proportions.

Would he rather have bet for future clarifications or future selbstverstandlich and ein-
leuchten ways to define real numbers as ratios of magnitudes?56 It may be quite pretentious
to deny this (there are, after all, more things in heaven and earth than dreams in any
philosophy). But even if this was the case, it would be just enough to suggest that what
moved Frege was more to be able to provide an appropriate architecture of mathemat-
ics connecting real analysis to a general theory of magnitudes, or theory of domains of

55 To be honest, Jeshion acknowledges this last point and tries to accommodate for it in a way
which, we must confess, we find not wholly convincing. In particular, she takes on herself to
explain how Frege could have admitted, under the pressure of Russell’s paradox, to have “never
concealed from [. . .] [himself] that [. . .] [Basic Law V] is not as einleuchtend as must properly be
required of a logical law” (Frege, 1903, Nachwort, p. 253; Frege, 2013, p. 2532; Jeshion, 2001,
p. 970), and allegedly solves the problem by suggesting both that “Frege could have held that
the coincidence in sense of ἐ.Fε= ἐ.Gε and ∀x (Fx ⇔ Gx) would, in time, come to seem as
obvious as the other axioms” (Jeshion, 2001, pp. 970–971), and that he “could have regarded his
Grundgesetze system as a first, yet necessary, step toward the development of a genuine logical
foundation” (ibidem, p. 971).

56 Cf. footnote (55), above.
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magnitudes, than to wait for the happy time in which an epistemically appropriate alterna-
tive (with respect to his general philosophical criteria) would have appeared.

This seems to us to reinforce the idea that Frege’s motivation for suggesting to define real
numbers as ratios of magnitudes was, primarily, a mathematical one. Does this bring grist
to Benacerraf’s mill? Possibly. But only if this mill is more meticulously built. For it seems
to us a little too weak to argue that Frege merely wanted to prove what is both probable and
in need of proof. Surely, he wanted this. But how? And is this all that he wanted? After all,
he famously remarked, just at the beginning of Grundlagen, that “after we have convinced
ourselves that a boulder is immovable, by trying unsuccessfully to move it, there remains
the further question, what is it that supports it so securely?” (Frege, 1903, §2; Frege, 1950,
p. 2). His (mathematical) problem, we suggest, was not only (and not primarily) that of
proving truth, but also (and mainly) that of organizing and structuring theories.

The important question was how this should and could be done. Philosophy alone seems
unable to provide the answer. It surely can (and has to) give general criteria for the choice.
But, then, specific insights are necessary for implementing those criteria in particular cases.
By way of example, consider how Dedekind describes, in his letter to Lipschitz of July
22th, 1876, the aim of his essay on real numbers (Dedekind, 1888; ?, vol. III, p. 476):

The whole tendency of my essay [on irrational numbers] [. . .] is to use
cuts [. . .] to prove that on the sole basis of the foundation of the arith-
metic of rational numbers, and also with no appeal to the rather obscure
and complicated concept of magnitudes, irrational numbers can be de-
fined at once and, what is most important, in their ness (continuity).

For him, the notion of a magnitude was so “obscure and complicated” to convince him
to undertake an important foundational effort (possibly resulting in the most influential
foundational achievement of modern mathematics) in order to avoid appealing to it. For
Frege, elucidating it—by avoiding to define continuity (which essentially characterizes
magnitudes) by means of some artificial construction based on rational numbers—was the
crucial task that an appropriate foundation of real analysis required.

Is there any philosophical (epistemic, metaphysical, ontological) criterion for deciding
who was right, if any? Founding mathematics, in its deepest essence, means to make and
(mathematically) motivate choices like this. What we have tried to show here, is that this
was a (mathematical) game that Frege definitively played.
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