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ASSET PRICING WITH
BORROWING CONSTRAINTS AND
EX ANTE HETEROGENEITY

PAMELA LABADIE
George Washington University

In answer to the question “Will borrowing constraints necessarily intensify aggregate
fluctuations and aggregate cyclical variability?” it has been found that complete markets
equilibrium displays aggregate fluctuations that may be dampened when borrowing
constraints are introduced. Like others, I find that variability in the distribution of labor
productivity shocks amplifies aggregate fluctuations. I also find that allowing agents to
have different permanent incomes amplifies aggregate fluctuations, enriching the
asset-pricing implications of the complete contingent claims model when demand
aggregation is not possible. Although agents are able to equalize their intertemporal
marginal rates of substitution (IMRS) of consumption state-by-state, the IMRS of labor is
not equalized across agents, creating gains from specialization. To determine how frictions
affect aggregate variability, two types of borrowing constraints are studied. In the first
model, dividend payments are restricted and, in the second, nonhuman wealth is restricted
to be positive. Either type of borrowing constraint can dampen aggregate fluctuations.
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1. INTRODUCTION

In their seminal paper, Scheinkman and Weiss (1986, p. 37) ask the following
question: “Will borrowing constraints necessarily intensify aggregate fluctuations
and aggregate cyclical variability?” They construct a model with the property that
the complete contingent claims equilibrium displays no aggregate fluctuations.
There are two important features of their model: Agents are identical ex ante, or
equivalently have identical permanent incomes, and become differentiated over
time by the history of their idiosyncratic productivity shocks; and second, the
distribution of the labor productivity shocks is time and state invariant. In an
example in Appendix D of their paper, they show that allowing variability in the
distribution of the productivity shocks can give rise to aggregate fluctuations in the
complete contingent claims equilibrium, which are dampened when borrowing
constraints are imposed. I examine not only how variability in the distribution
of productivity shocks affects aggregate fluctuations but I also allow agents to
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have different permanent incomes. As in the Scheinkman and Weiss example, I
find that allowing variability in the distribution of labor productivity shocks gives
rise to aggregate fluctuations that are dampened when trade is restricted through
borrowing constraints. I also find that allowing agents to have different permanent
incomes can lead to the same result.

If agents have different permanent incomes but demand aggregation is possi-
ble, then a representative consumer can be constructed as described by Rubinstein
(1974). In model studied here, agents have linear disutility of labor so that the
first-order conditions for consumption and labor cannot be averaged over agents
to construct a representative agent, although a composite consumer can be con-
structed as described by Constantinides (1982). This point is related to an issue
raised by Constantinides and Duffie (1996). They study a model in which there
are uninsurable, persistent, and heteroskedastic labor income shocks. Each agent
initially faces an identical distribution of labor income. Over time, the sample path
of the ratio of an agent’s labor income to aggregate income is nonstationary. When
borrowing constraints are imposed in such a model, agents are no longer able to
insure against the persistent and heteroskedastic income shocks. Marginal rates of
substitution in consumption are not equalized state-by-state so that a representative
agent cannot be constructed. They demonstrate that incomplete consumption in-
surance and consumer heterogeneity greatly enrich the asset-pricing implications
of their model. In particular, the mean and variance of the stochastic discount factor
for asset pricing depend on the cross-sectional distribution of labor income.

The model that I examine has in common with the Constantinides and Duffie
model the features that a representative agent cannot be constructed and that dif-
ferences among agents persist over all sample paths. Whereas in Constantinides
and Duffie, agents are identical ex ante and the ratio of an agent’s income to ag-
gregate income is nonstationary, in my model, agents have different permanent
incomes and, hence are heterogeneous ex ante and the ratio of an agent’s income
to aggregate income is stationary. I find that allowing differences in permanent
income and variability in the productivity distribution enriches the asset-pricing
implications even when markets are complete because of the gains from trade and
specialization. Agents will equalize their intertemporal marginal rates of substi-
tution (IMRS) in consumption state-by-state but they do not equalize the IMRS
of labor. Several examples are provided to show how these features enrich the
asset-pricing implications of the model.

To determine whether borrowing constraints intensify or dampen aggregate fluc-
tuations when agents differ in permanent income, I examine several versions of
the model. If no trade is allowed—a severe form of a borrowing constraint—then
per-capita output is constant even if agents have different permanent incomes. In
the complete contingent claims equilibrium, if agents have different permanent
incomes, there are aggregate fluctuations in production. When dividend payments
are unrestricted, the complete contingent claims equilibrium can be used to deter-
mine equity prices. An agent can borrow against future income by issuing equity or
claims to a dividend stream paid out of his or her labor earnings. In Section 4, the
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implications for the economy are examined when dividend payments are restricted,
which is a form of a borrowing constraint. Dividend payments in the United States
are often subject to legal restrictions, such as state laws restricting payments so that
a firm is always solvent. In general, if agents have different permanent incomes,
the complete contingent claims equilibrium displays greater aggregate fluctuations
than the equilibrium with restricted dividend payments. When agents are identical
ex ante, however, restricting dividend payments intensifies aggregate fluctuations.

In Section 5, another type of borrowing constraint is examined. The model is
a discrete-time version of the Scheinkman and Weiss model. As in Scheinkman
and Weiss, an important determinant of aggregate economic activity is the cross-
sectional distribution of nonhuman wealth. In general, changes in this distribution
amplify aggregate fluctuations.

2. DESCRIPTION OF MODEL

The model is a discrete-time version of the Scheinkman and Weiss (1986) model.
There is a countable infinity of agents: a fraction 0≤ α1 ≤ 1 is type 1 and the restα2

are type-2.1 Each agent has time-additive preferences over consumption and leisure
streams. An agent can produce the consumption good using labor as an input, but his
or her productivity varies stochastically. Hence, in this economy, agents become
differentiated from each other as a result of their histories of productivity. The
production function for an agent is

y = θ`,

where` is the labor supply. The consumption good is nonstorable.
The realizations of the productivity shock across agent type and over time are

determined by a stochastic process{st }. The state space ofst is discrete, specifically,
let S≡ {1, 2}. If st = 1, then the productivity shock for a type-1 agent isθ1(1) = 1
whereas the productivity shock for a type-2 agent isθ2(1) = θ , where 0≤ θ < 1.
Whenst = 2, θ1(2) = θ andθ2(2) = 1. Under this specification, productivity
shocks across agent types are perfectly negatively correlated. The evolution ofst

over time is independent and identically distributed over time withπi denoting the
probability thats= i .

Each agent has preferences over stochastic sequences{ci,t , `i,t } of the form

E0

{ ∞∑
t=0

β t [U (ci,t )− `i,t ]

}
. (1)

Assumption 1. LetU :<+ → <+ be bounded, strictly concave, twice continu-
ously differentiable, and increasing, with limc→0 U ′(c)=+∞and limc→∞U ′(c) =
0. LetU ′(c)c be nondecreasing and concave inc so that relative risk aversion is
nondecreasing and less than or equal to unity.
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3. COMPLETE MARKETS AND HETEROGENEITY

In this section, the effects of differences in permanent income and variability in the
distribution of labor productivity are studied when markets are complete. Agents
may have different permanent incomes, depending on their type. Differences in
permanent incomes across agent types occur wheneverπ1 6= π2 so that the fre-
quency of being highly productive varies across agent types. A type 1 agent has
a probability of being productive that is different from the probability of a type 2
agent, and this difference persists along all time paths. Variability in the distri-
bution of labor productivity occurs wheneverα1 6= α2, so that the proportion of
agents who are highly productive varies over states.

3.1. Central Planner’s Problem

The model is initially formulated as a central planning problem because the con-
ditions for nonnegativity of labor supply are easily derived. The central planner
solves

max
{ci,t },{`i,t }

E0

2∑
i=1

(
ηi

{ ∞∑
t=0

β t [U (ci,t )− `i,t ]

})
, (2)

subject to
α1θ1(st )`1,t + α2θ2(st )`2,t = α1c1,t + α2c2,t , (3)

`i,t ≥ 0, (4)

whereηi > 0 is the Pareto weight of the type-i agent. Only stationary solutions
are examined. Letψ(s) denote the multiplier associated with (3) andµi (s) denote
the multiplier associated with (4) in states. The first-order conditions are

ηi U
′[ci (s)] = αiψ(s),

(5)
ηi = αi θi (s)ψ(s)+ µi (s),

for i = 1, 2. For a type-i agent who works,

ψ(s) = ηi

αi θi (s)

and

U ′[ci (s)] = 1

θi (s)
.

There are two possible outcomes—µi (s) = 0 orµi (s)>0—for each type of agent
in each state, two statess = 1, 2, and two types of agents, and so, there are 23

possible combinations of(µ1, µ2). For a givens, cases in whichµ1(s) > 0 and
µ2(s) > 0 can be ruled out because consumption is nonstorable so that some agent
must work each period. This restriction eliminates 7 of the 16 combinations. Cases
in which one type of agent never works or the other works in both states can be
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ruled out becauseηi > 0 and preferences are identical, eliminating two cases. The
case in which both types of agents work in both states can be ruled out by noting
that the condition for both types to work in states,

η1

α1θ1(s)
= η2

α2θ1(s)
,

cannot hold simultaneously for both states, under the assumption that the produc-
tivity shocks are perfectly negatively correlated across agent types. This leaves six
possible combinations of multipliers.

For the remaining cases, solve (5) forµi to obtain the restriction thatηi ≥
αi θi (s)ψ(s) if µi ≥ 0. This restriction can be used to rule out three cases for
which the values of(η1, η2) fail to satisfy the condition

1

θ
≥
(
α2

α1

η1

η2

)
≥ θ, (6)

and hence violate the nonnegativity ofµ. There are three possible solutions:

(1) Agent 1 works in both states and agent 2 works only in state 2 when

1

θ
= α2

α1

η1

η2
.

(2) Agent 1 works only in state 1 and agent 2 works in both states when

α2

α1

η1

η2
= θ.

(3) Equation (6) holds as a strict inequality in both directions and each agent specializes
by working only in the period in which he or she is most productive.

To proceed further, it is useful to examine the associated contingent claims equilib-
rium because the Pareto weights(η1, η2) can be conveniently linked to the model’s
parameters.

3.2. Contingent Claims Equilibrium

At time zero, all agents trade in the market for claims to consumption and labor
supply contingent on states at timet . Only stationary equilibria are considered.
Definep(t, s)as the price of a right to delivery of one unit of consumption in states
at time t for all ands ∈ S. In a complete markets equilibrium, a representative
type-i consumer maximizes (1) subject to the single budget constraint

∞∑
t=0

{
2∑

s=1

p(t, s)(ci,t − θi (s)`i,t )

}
≤ 0 (7)

and nonnegativity constraint
`i,t ≥ 0. (8)

https://doi.org/10.1017/S1365100597003064 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003064


             

428 PAMELA LABADIE

Let λi denote the Lagrange multiplier associated with the budget constraint (7)
for a type-i agent and letφi,t denote the Lagrange multiplier associated with the
nonnegativity constraint (8). The first-order conditions with respect toci,t and`i,t

for an agent of typei are

β tπsU
′(ci,t ) = λi p(t, s), (9)

β tπs = λi θi (s)p(t, s)+ β tπsφi,t . (10)

Notice thatλi does not vary over time or overs. The contingent claims equilibrium
and the solution to the central planning problem are equivalent if

η1 = (α1/λ1),

η2 = (α2/λ2).

For the type-i agent that works in states, (10) implies that

p(t, s)

β t
= πs

λi θi (s)

and

U ′[ci (s)] = 1

θi (s)
.

Denoteg as the function

g(x) = (U ′)−1(x),

which is well defined because utility is twice continuously differentiable and
strictly concave. Denotex ≡ λ1/λ2. The market-clearing conditions fors= 1, 2
are

α1`1(1)+ α2θ`2(1) = α1g(1)+ α2g(1/x), (11)

α1θ`1(2)+ α2`2(2) = α1g(x)+ α2g(1). (12)

The expected present value of lifetime earnings of a type-1 agent is

∞∑
t=0

[∑
s

p(t, s)θ1(s)`1(s)

]
=
∞∑

t=0

β t

[
π1`1(1)

λ1
+ π2θ`1(2)

λ2

]

= 1

1− β
1

λ1
[π1`1(1)+ xπ2`1(2)θ ], (13)

and the expected present value of his or her consumption expenditures is

∞∑
t=0

∑
s

p(t, s)c1(s) = 1

1− β
1

λ1
[π1g(1)+ π2xg(x)]. (14)
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Equate (14) to the expected present value of type 1’s earnings (13), solve for
`1(1), substitute into market-clearing condition (11), and simplify to obtain

(π2/π1)x[g(x)− θ`1(2)] = (α2/α1)[g(1/x)− θ`2(1)]. (15)

As described in the central planning problem, there are three possible cases.

(1) In the first case, the type-1 agent works in both states, the type-2 agent works only in
state 2 andx = θ . In (15), setx = θ, `2(1) = 0, and solve for̀ 1(2) to obtain

θ`1(2) = g(θ)− (α2/α1)(π1/π2)(1/θ)g(1/θ). (16)

Recall that 0< θ < 1 so thatg(θ) > g(1/θ) becauseg′> 0. For`1(2) > 0 to obtain,
the following condition must hold:

θg(θ) >

(
α2

α1

π1

π2

)
g

(
1

θ

)
. (17)

(2) In the second case, the type-2 agent works in both states, the type-1 agent works only
in state 1, andx = 1/θ . Set`1(2) = 0 in (15) and solve for̀ 2(1) to establish a
nonnegativity constraint oǹ2(1) analogous to (17) of the form

1

θ
g

(
1

θ

)
>

(
α1

α2

π2

π1

)
g(θ). (18)

(3) The final case, in which each agent specializes, can be determined as follows. Set
`1(2) = `2(1) = 0 in (15) to obtain(

α1

α2

π2

π1

)
xg(x) = g

(
1

x

)
. (19)

Under Assumption 1, the left side of (19) is decreasing inx and the right is increasing
so that there is a unique solutionx̂[(α1/α2)(π2/π1)].2 For this to be the solution to
the problem,̂x must satisfy

θ < x̂

(
α1

α2

π2

π1

)
<

1

θ
. (20)

Output is

α1`1(1) = α1g(1)+ α2g(1/x),

α2`2(2) = α1g(x̂)+ α2g(1).

It is straightforward to show that̂x(a) is increasing ina, so thatx is increasing inα1

(decreasing inα2) and increasing inπ2 (decreasing inα1). This implies thatα1`1(1)
is increasing inx andα2`2(2) is decreasing inx.

For any utility function satisfying Assumption 1 and set of parameters(α1, α2, β,
π1, π2), only one of the three conditions will be satisfied.

The same set of conditions for specialization in labor supply can be derived using
the expected present value of consumption and earnings for a type-2 agent and the
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market-clearing condition fors= 2. For a type-2 agent, the expected present value
of labor income is

∞∑
t=0

[∑
s

p(t, s)θ2(s)`2(s)

]
= 1

1− β
1

λ2

[
π1θ`2(1)

x
+ π2`2(2)

]
(21)

and the expected present value of his or her consumption is

∞∑
t=0

∑
s

p(t, s)c2(s) = 1

1− β
1

λ2

[
π1

1

x
g

(
1

x

)
+ π2g(1)

]
. (22)

Equate (21) to (22), solve for̀2(2), substitute into (12), and simplify to obtain an
equation that will result in the identical set of conditions that depends on the value
of the multipliersφi .

In the examples studied below, the parameter values are chosen so that the last
case, in which each agent works only when he is most productive, is the solution
to the model.

Example 1: Scheinkman and Weiss economy

Suppose thatπ1= 1
2 and thatα1= 1

2. Each period, one-half of the agents is pro-
ductive so that the distribution of labor productivity is invariant over states and
each type of agent expects to be productive with the same probability as any other,
so that permanent incomes are identical across agents. Under these assumptions,
a stationary solution isλ1= λ2 because (15) reduces tog(x)= xg(x−1). In this
case, all agents consume a constant amount, equal tog(1), at all dates and in all
states, regardless of type. Output is constant and equal to 2g(1). Prices are also
constant and the real interest rater satisfies

Et

(
pt+1

pt

)
= 1

1+ r
= β.

This is the case of complete insurance in which the opportunities to pool risk enable
all agents to consume a fixed amount regardless of the particular time path of their
earnings stream. Agents have identical permanent incomes and each specializes in
labor supply, working only in those states in which he or she is most productive.
Each agent’s consumption is perfectly correlated with aggregate output. This is
referred to below as the “benchmark case.”

Example 2: Differences in permanent income

Suppose now thatπ1= 2
3 but retain the assumption thatα1= 1

2, so that the distri-
bution of labor productivity is state invariant. Although one-half of the agents is
productive at each point in time, just as before, notice that the expected present
value of the lifetime earnings for a type-1 agent is greater than that of a type-2
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agent. Equation (15) now becomes

1
2g(x)x = g(1/x).

Suppose utility displays constant relative risk aversion so thatU ′(c) = c−γ . Al-
though this utility function violates Assumption 1, a unique, positive, and finite
real solution can be found as long asγ 6= 2. Solve (15) to obtainx = ( 1

2)
γ/(2−γ )

.
Whens = 1, type-1 agents consumeg(1) and type-2 agents consume( 1

2)
1/(2−γ )

.
Whens = 2, type-2 agents consumeg(1) and type-1 agents consume 21/(2−γ ).
Per-capita output in state 1 and state 2 is

`1(1) = 1+ ( 1
2

)1/(2−γ )
,

`2(2) = 1+ 21/(2−γ ).

The real interest rater1 when type-1 agents are productive(s= 1) is(
1

1+ r1

)
= β[π1+ π2(2)

− γ

2−γ
]
,

and the real interest rater2 when type-2 agents are productive(s= 2) is(
1

1+ r2

)
= β[π1(2)

γ

2−γ + π2
]
.

Hence, both agents experience fluctuations in consumption over time, depending
on the realization of the state variable. Each agent works only in the state in which
he or she is most productive, so that the labor participation profile over states is
identical to that of the benchmark economy, although the amount of labor supplied
varies. The economy experiences aggregate fluctuations in output, prices, and real
interest rates because agents are no longer identical in expected present value of
lifetime earnings. There is no market incompleteness here and all risks are pooled.

The fluctuations in output in this example reflect the gains from trade when
agents are heterogeneous. To see this, consider the behavior of output when agents
are prohibited from borrowing or writing contingent claims contracts. The type-i
agent will maximize (1) subject to the constraint

θi (s)`i,t ≥ ci,t .

The solution is

U ′(ci,t ) = 1

θi (st )
,

`i (s) = 1

θi (s)
g

[
1

θi (s)

]
,
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for all states. Per-capita output each period is

α1g

[
1

θ1(s)

]
+ α2g

[
1

θ2(s)

]
,

and, as long asα1 = α2, per capita output is constant across states even ifπ1 6= 0.5.
Both type of agents will work in both states. The severe borrowing constraint pre-
vents an agent from substituting labor effort intertemporally, and has the effect of
smoothing an agent’s labor market participation over time relative to the complete
markets equilibrium. When borrowing is allowed, the relative price of leisure (the
disutility of labor) falls when agents are able to specialize in production.

Example 3: Variability in the distribution of labor productivity

Suppose thatπ1 = 1
2 but thatα1 = 2

3, so that the distribution of labor productivity
varies over states, with23 of the agents highly productive whens= 1 and only1

3 of
the agents highly productive whens= 2. In the case of constant relative risk aver-
sion,x= ( 1

2)
γ/(γ−2)

. When type-1 agents are productive, type-2 agents consume
21/(2−γ ) whereas type-1 agents consumeg(1). When type-2 agents are productive,
they consumeg(1) and type-1 agents consume 21/(γ−2). Not surprisingly, the time
path of consumption, labor, and interest rates vary because the fraction of agents
that are productive is stochastic. This result is similar to the result of Scheinkman
and Weiss (1986, Example 1, Appendix D).

This model provides a convenient framework to show how permanent income
effects and variability in the distribution of the productivity shock are important
when the conditions for aggregation do not hold, whether or not markets are
complete. Conditions for demand aggregation are described by Rubinstein (1974).
Demand aggregation fails in this model because of the linear disutility of labor.
The pair of first-order conditions cannot be averaged over agents to construct a
representative agent whose first-order conditions for utility maximization results
in the same contingent claims prices as the model under study. To see this, multiply
the first-order condition for labor byαi for agenti and sum over both agents to
obtain

1= p(s, t)

β tπs
[α1λ1θ1(s)+ α2λ2θ2(s)] +

2∑
i=1

αiφi .

Under the conditions onx such that each agent works only in the period in which
he or she is most productive, this condition reduces to

p(1, t)

β tπ1
= λ−1

1 in s= 1

and
p(2, t)

β tπ2
= λ−1

2 in s= 2.
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Rewrite the first-order conditions for consumption by raising each side of the
equation to the (1/γ ) power, multiply byαi , sum overi , and rewrite to obtain

α1c1(s)+ α2c2(s) =
(
α1λ
− 1
γ

1 + α2λ
− 1
γ

2

)[ p(t, s)

β tπs

]− 1
γ

.

The left side is per-capita or average consumption. Fors= 1 and substituting for
the contingent claims price, the equation above simplifies to(

α1+ α2x−
1
γ

α1+ α2x
1
γ

)−γ
= 1.

Notice that this equation does not hold in general unlessx= 1, which is the bench-
mark case. Hence, demand aggregation is not possible in this model, except for
this special case. Although agents will equalize their equal IMRS state-by-state,
the IMRS is not equal to that of a representative agent.

The consumption of a representative agent equals per-capita outputy(1) =
α1+ α2g(1/x) in state 1 andy2 = α1g(x)+ α2 in state 2. The expected IMRS for
the representative agent in each state is

Mr (1) = β
[
π1+ π2(y2/y1)

−γ ],
Mr (2) = β

[
π1(y1/y2)

−γ + π2
]
.

A composite consumer can be constructed by maximizing the weighted sum of
individual utilities subject to aggregate feasibility conditions, where the weight for
a type-i agent is equal toλ−1

i ; see Constantinides (1982) for a discussion.
In Table 1, the effect of differences in permanent income on the mean and

standard deviation of output and the IMRS in consumption is reported for various
values of the parameterγ when utility is assumed to display constant relative risk
aversion. These results should be compared to the benchmark case in which output
and the IMRS are constant across states and agents.

In Panel A of Table 1, the distribution of productivity shocks over the population
is fixed, with one-half productive each period. Type-1 agents have a higher per-
manent income than type-2 agents becauseπ1 = 0.6, so that type 1 have a greater
frequency of being more productive. Output and the expected IMRS fluctuate
because of the gains from specialization when agents have different permanent
incomes. In Panel B, variability in the distribution of productivity shocks gives
rise to aggregate fluctuations, as in Scheinkman and Weiss (1986). In Table 1, the
labor participation profile of an agent remains the same as the case with identical
permanent incomes in that each agent works only in the period in which he or she
is most productive. Notice that the mean and the standard deviation of output and
the IMRS are not monotonic in the risk aversion parameterγ . The consumption
by each type of agent continues to be perfectly correlated with aggregate output.
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TABLE 1. Complete markets equilibrium (β = 0.99)

γ

0.5 0.75 1.5 3.0 4.0

Panel A:π1 = 0.6, α1 = 0.5

Mean of output 1.045 1.059 1.264 1.010 0.9899
SDa of output 0.1340 0.1617 0.4422 0.2040 0.1000
Mean of IMRS 0.994 1.004 1.387 1.387 1.155
SD of IMRS 0.0648 0.1162 0.6655 0.8276 0.4715

Panel B:π1 = 0.5, α1 = 0.6

Mean of output 1.045 1.059 1.000 0.9898 0.9897
SD of output 0.1404 0.1703 0.2020 0.1000 0.1000
Mean of IMRS 0.9945 1.004 1.404 1.162 1.155
SD of IMRS 0.0671 0.1215 0.7620 0.4469 0.4715

aSD= Standard deviation.

3.2.1. Pricing equity shares.A complete contingent claims equilibrium can
be used to price any security and, in this section, the focus is on pricing equity
shares. The model is solved below for several parameter values by allowing the
technology shock to be serially correlated but retaining the assumption that the
shock is perfectly negatively correlated across agents at a point in time. Letπi j

denote the conditional probability of moving from statei to statej in one step.
Assume that each agent acts as a firm and issues claims to a dividend stream,

payingdi (s) in dividends when the agent is productive and nothing otherwise.
There is one equity share outstanding for each agent. This trading mechanism
allows each agent to borrow against future income. The representative type-i agent
maximizes (1) subject to

θi (s)`i (s)+
2∑

j=1

zj
i,t [Qj (s)+ dj (s)] ≥ ci,t +

∑
j

zj
i,t+1Qj (s)+ Di (s)

αi
, (23)

whereQj (s) denotes the price of a type-j share when the current state iss, zj
i,t

denotes the shares of typej equities held by a type-i agent at timet , andDi (s)
is treated as exogenous by the type-i agent. Letψ̂ denote the Lagrange multiplier
for (23) and letµ̂ denote the Lagrange multiplier on the nonnegativity constraint
for `. The first-order conditions are

U ′(ci,t ) = ψ̂ i,t , (24)

1= ψ̂ i,tθi (s)+ µ̂i,t , (25)

ψ̂ i,t Q j,t = βEs[ψ̂ i,t+1(Qj,t+1+ dj,t+1)]. (26)
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TABLE 2. Results of model for pricing equity shares (β = 0.99)

α1 = 0.5 α1 = 0.45

π11= 0.6, π22= 0.5 π11= 0.5, π22= 0.5 π11 = 0.6, π22 = 0.5

Panel A:γ = 0.75
SDa of output 0.0892 0.0799 0.1688
SD of equity return 0.0605 0.0286 0.1130
Equity premium 0.0037 0.0037 0.0165
SD of risk-free rate 0.0607 0.0302 0.1130
SD of consumption 0.0871 0.0493 0.2006

for 1
SD of consumption 0.0741 0.0449 0.1429

for 2

Panel B:γ = 3.00
SD of output 0.1118 0.1020 0.2214
SD of equity return 0.3394 0.3235 0.8025
Equity premium 0.1191 0.0975 0.4541
SD of risk-free rate 0.3005 0.2951 0.5363
SD of consumption 0.0994 0.0909 0.1716

for 1
SD of consumption 0.1242 0.1111 0.2622

for 2

aSD= Standard deviation.

The nonnegativity of ˆµ restrictsψ̂ such that

ψ̂ i ≤
1

θi (s)
.

The equilibrium derived in the complete contingent claims model can be replicated
by settingd1(2) = d2(1) = 0, Di (i ) = di (i ), z

j
j = 0, zj

i = 1/αi for i 6= j , and

d1(1) = α2g(1/x),

d2(2) = α1g(x).

The stationary equilibrium equity prices satisfy

Q1(1) = β

U ′
[
g
(

1
x

)] {π11U
′[g(1/x)][d1+ Q1(1)] + π12U

′[g(1)]Q1(2)},

Q2(2) = β

U ′[g(x)]
{π21U

′[g(1)]Q2(1)+ π12U
′[g(x)][d2+ Q2(2)]}.

Table 2 reports the results of solving the model for a variety of parameter values.
Recall that in the benchmark case, whereα1 = 0.5 andπ11 = π22 = 0.5,

there are no fluctuations in endogenous variables and consumption is constant
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over time and equal across agents. The case in whichα1= 0.5, reported in column
2, highlights how differences in permanent income can give rise to aggregate
fluctuations (the permanent income effect) and illustrates some of the implications
for asset prices. Notice that, asγ increases, the standard deviations of output
and asset returns increase but that the standard deviation of asset returns increase
proportionately more. Columns 3 and 4, in whichα1 = 0.45, is the case in which
the distribution of labor productivity varies over states. Whenπ11 = π22, each
agent expects to be as productive as often as any other, but the fluctuation in
the fraction of productive agents affects each agent’s trading opportunities and,
hence, his or her ability to smooth consumption intertemporally. The last column
combines both the permanent income effect and variability in the distribution of
labor productivity.3 The conclusion is that differences in permanent income and
variability in the distribution of labor productivity can give rise to richer asset-
pricing dynamics, even in a complete markets setting.

4. RESTRICTIONS ON DIVIDEND PAYMENTS

Dividend payments are often subject to legal restrictions. For example, if a firm
enters into a debt contract by issuing a bond, the debt contract may restrict dividends
to protect the assets available to service the debt contract. There are also state laws
in the United States restricting dividends if the payments would make the firm
insolvent. Restricting dividend payments in this model limits the ability of agents
to borrow against future income and, in this sense, is a form of a borrowing
constraint.

The effects of restricting dividend payments on equilibrium output and prices
can be studied by maximizing (1) subject to the budget constraint (23), resulting
in the set of first-order conditions (24)–(26). As described in the central planning
problem, cases can be ruled out in which a particular agent works in neither state
or where neither agent works in a particular state.

In the discussion below, I examine only the steady state by assuming thatzj
j = 0

and zi
j = 1/α j for i 6= j . A general proof of existence and uniqueness of a

stationary equilibrium would require that equilibrium prices and allocations be
determined for any feasible allocation of equity claims, or any(zj

1, z
j
2) such that

zj
i ≥ 0 andα−1

1 zj
1 + α−1

2 zj
2 = 1 for j = 1, 2. To show that an outcome in which

both types of agents work in both states cannot be an equilibrium, examine the
first-order conditions for equity shares. For a type-1 agent, the first-order condition
for holding a type-j equity in state 1 is

Qj (1) = β
{
π1[Qj (1)+ d1(1)] + π2

θ
[Qj (2)+ dj (2)]

}
, (27)

and the first-order condition for a type-2 agent is

Qj (1) = β{π1[Qj (1)+ d1(1)] + π2θ [Qj (2)+ dj (2)]}. (28)
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Under the assumption that 0< θ < 1, the first-order conditions for the two agents
cannot hold simultaneously; a similar argument can be constructed fors = 2;
hence, an equilibrium in which each agent type works in both states can be ruled
out. Similar arguments can be constructed as in the central planning problem to
eliminate all but the following three cases.

(1) For the case where agent 1 works in both states and agent 2 works only in state 2 to be
an equilibrium, the restrictions on the equilibrium dividend payments can be derived
as follows. For a type-1 agent to work ins = 2, the dividend payment received by
type 1 in state 2 must satisfy

1

θ
< U ′

[
d2(2)

α1

]
; (29)

otherwise, the type 1 agent will not work whens= 2. Agent 2 will not work ins= 1
as long as

U ′
[

d1(1)

α2

]
<

1

θ
. (30)

The first-order condition for equity shares of a type-1 agent satisfies (27) and, for
agent 2, the condition is

Qj (1) = β
{
π1[Qj (1)+ dj (1)] + π2

U ′
[
α−1

2 d1(1)
] [Qj (2)+ dj (2)]

}
. (31)

For the first-order conditions to hold simultaneously,

U ′
[

d1(1)

α2

]
= θ. (32)

(2) For the case where agent 2 works in both states and agent 1 works only in state 2, the
dividend payment to agent 1 ins= 2 must satisfy

U ′
[

d2(2)

α1

]
<

1

θ
; (33)

otherwise, agent 1 will work. For agent 2 to work ins = 1,

U ′
[

d1(1)

α2

]
>

1

θ
. (34)

Examining the first-order conditions for equity share prices for the two types of agents
restricts dividends such that

U ′
[

d2(2)

α2

]
= θ, (35)

for the conditions to hold simultaneously.
(3) For the final case, in which each agent works only in the period in which he is most

productive, the equilibrium dividends must satisfy (30), (33),

θ < U ′
[

d1(1)

α2

]
,

θ < U ′
[

d2(2)

α1

]
,
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and
1

U ′
[

d2(2)
α1

] = U ′
[

d1(1)

α2

]
. (36)

Suppose thatπ1 = 0.5 andα1 = 0.5, parameter values that correspond to the
benchmark case, and setθ = 0.5. Dividend payments can be restricted by picking
d1(1) to satisfy

g

(
1

θ

)
<

d1(1)

α2
< g(1) < g(θ).

Under this restriction on dividends paid by type-1 agents to their shareholders,
type-2 agents will not work. The equity prices will satisfy the first-order condition
(31) for type-1 agents and the first-order condition for type-2 agents is

Qj (1) = β
{
π1[Qj (1)+ dj (1)] + π2U

′[α−1
1 d2(2)

]
[Qj (2)+ dj (2)]

}
. (37)

For both first-order conditions to hold simultaneously, the dividend payments must
satisfy

d2(2)

α1
= g

{
1

U ′
[
α−1

2 d1(1)
]}.

The effects of restricting dividend payments are reported in Table 3.
Panel A of Table 3 shows output and the IMRS whenπ1 = π2 andα1 = α2.

When markets are complete, this is the benchmark case in which there are no
aggregate fluctuations. Clearly restricting dividend payments gives rise to aggre-
gate fluctuations. Panel B of Table 3 should be compared to Panel A of Table 1,
which reports the same set of statistics for complete markets. For values of the risk
aversion parameterγ < 1, output is more variable when dividends are restricted,

TABLE 3. Restricted dividend payments (β = 0.99)

γ

0.5 0.75 1.5 3.0 4.0

Panel A: α1 = 0.5,π1 = 0.5
Mean of output 1.027 1.012 1.003 1.000 1.002
SDa of output 0.1653 0.1092 0.0543 0.0271 0.0203
Mean of IMRS 0.9917 0.9937 1.005 1.050 1.098
SD of IMRS 0.0403 0.0605 0.1219 0.2510 0.3441

Panel B: α1 = 0.5,π1 = 0.6
Mean of output 1.060 1.034 1.014 1.006 1.005
SD of output 0.1620 0.1070 0.0532 0.0266 0.0199
Mean of IMRS 0.9916 0.9935 1.004 1.048 1.094
SD of IMRS 0.0398 0.0600 0.1223 0.2577 0.3592

aSD= Standard deviation.
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but the IMRS is less so than the complete markets case. Asγ increases, the vari-
ability of output and the IMRS in the complete markets case rise by more than
the restricted payments model. This demonstrates that borrowing constraints can
dampen aggregate fluctuations that would otherwise occur in a model of complete
markets and ex ante heterogeneity.

5. BORROWING CONSTRAINTS

Under the complete markets specification, if there is variability in the distribu-
tion of productivity shocks or if agents have different permanent incomes, then
the economy will display aggregate fluctuations. The effects of borrowing con-
straints on equilibrium allocations and prices are now studied in a version of the
Scheinkman and Weiss model. In the discussion below, setθ = 0 so that, each
period, one type of agent is productive while the other is not.

Suppose that there is a durable and nondepletable asset that is fixed at one unit
in per-capita supply. The asset is bought and sold at a real priceqt at timet . Let
xi,t denote the asset holdings of the average typei at the beginning of periodt .
Because the supply of the asset is fixed at unity, market clearing requires that

α1x1,t + α2x2,t = 1. (38)

From (38),x2 can be determined oncex1 is known and conversely. Definex̂1(x2) as
the value ofx1 satisfying (38) givenx2 and definêx2(x1) analogously. Hence, the
state of the system is summarized by the pair(s, x1) or (s, x2). The state variables
for an individual agent consist of the system state variables and his or her initial
asset holdingszi .

The representative type-i agent, for i = 1, 2, chooses stochastic sequences
{ci,t , `i,t } to maximize (1) subject to the set of constraints

zi,t+1− zi,t = [θi (st )`i,t − ci,t ]

qt
, (39)

and the nonnegativity constraints

zi,t+1 ≥ 0, `i,t ≥ 0. (40)

There are two features worth noting about this problem. First, it rules out complete
insurance of idiosyncratic risk by ruling out the existence of prices to consumption
contingent on any possible history. One possible reason for idiosyncratic risk to
be uninsurable is that the shocks to an individual’s productivity are not publicly
observable. Second, the above problem assumes that individuals in this economy
face borrowing constraints. The borrowing constraints are introduced through the
constraint that the asset holdings of the consumer must be nonnegative at all dates
and all states, orzi,t+1 ≥ 0.
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The consumer’s problem is now studied as a dynamic programming problem.
The average type-i agent who begins the period with asset holdingsz solves

Vi (z, x, s) = max
{c,`,z′}

[U (c)− `+ βEsVi (z
′, x′, s′)], (41)

subject to the constraints (39) and (40), the initial conditions, and the law of motion
for x. Letωi,t denote the multiplier on the nonnegativity constraint forzi,t+1 in (40),
letµi denote the Lagrange multiplier on the nonnegativity constraint for labor, and
let ξi,t denote the Lagrange multiplier for the budget constraint. The first-order
conditions for the representative type-i agent are

U ′(ci,t ) = ξi,t/qt , (42)

1= θi (st )ξi,t

qt
+ µi,t , (43)

ξi,t = βEs

(
∂Vi

∂zi,t+1

)
+ ωi,t . (44)

The envelope condition is
∂Vi

∂zi,t
= U ′(ci,t )qt . (45)

Assume thatz ∈ Z = [0, z̄] where 1< z̄ < ∞ and` ∈ [0, L], whereL < ∞.
Under Assumption 1, the utility function is bounded. Also assume thatxi ∈ Z for
i = 1, 2. DefineS ≡ Z × S. Let Q be the set of functionsqi : S → <+, i = 1, 2,
such that{qi : 0 < qi (x, s) < ∞, (x, s) ∈ S} . Notice that ifqi (x, s) is strictly
positive, then the set of values{c, `, z′} satisfying (39) and (40) can be denoted
φ(z, x, s); this set is compact and convexed valued. Ifq is continuous, then under
Assumption 1,φ is continuous ins. Let V be the space of bounded, continuous,
real-valued functionsVi (z, x, s) onZ×S with the norm||Vi || = sup|Vi (z, x, s)|.
Given any continuous, strictly positive price, it is straightforward to show that there
exists a unique value function satisfying (41). This summarizes the information
needed for the individual agenti .

The next step is to construct an equilibrium. A formal definition of the equi-
librium is contained in the Appendix. Ifθi (s) = 0, thenµi,t = 1, otherwise if
θi (s) > 0, then

ξi,t

qt
= 1

θi (st )
= 1

andU ′(ci,t ) = 1. For the unproductive agent, consumption satisfies

U ′(ci,t ) = ξi,t

qt
.

Recall that if we knowx1, then we can determinex2 from the market-clearing
condition (38). Without any loss of information, defineξi (xi , s) as the equilibrium
multiplier on constraint (39) for the representative type-i agent when the average
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holdings of the durable asset by type-i agents at the beginning of the period isxi .
Each period, one type of agent is productive and from the first-order conditions
define

q(x1, 1) = ξ1(x1, 1)

whens= 1 and
q(x2, 2) = ξ2(x2, 2)

whens = 2, so that the asset price is a function of the current state and the asset
holdings of the productive agent in that state.

Recall thatg is a function satisfyingU ′[g(k)] = k such thatg′(k) = (U ′′)−1 < 0
andg′′(k) = −U

′′′
/(U ′′)3 > 0. Market-clearing conditions for states 1 and 2 are

α1θ1(1)l1(x1, 1) = α1g(1)+ α2g

[
ξ(x2, 1)

ξ1(x1, 1)

]
, (46)

α2θ2(2)`2(x2, 2) = α1g

[
ξ1(x1, 2)

ξ2(x2, 2)

]
+ α2g(1). (47)

In equilibrium, an agent who is productive is never constrained in borrowing so
that if s = 1, ω1,t = 0 and, ifs = 2, ω2,t = 0. For the unproductive agent who
is constrained in borrowing, consumption satisfiesci,t = xi,tqt . For convenience,
define

ξ̂1(x2, s) ≡ ξ1[ x̂1(x2), s],

ξ̂2(x1, s) ≡ ξ2[ x̂2(x1), s].

The equilibrium multiplier for the unproductive agent, who is type 1 in state 2 and
type 2 in state 1, satisfies

ξ1(x1, 2) = max{U ′[x1ξ̂2(x1, 2)]ξ̂2(x1, 2), βEξ1(x
′
1, s
′)}, (48)

ξ2(x2, 1) = max{U ′[x2ξ̂1(x2, 1)]ξ̂1(x2, 1), βEξ2(x
′
2, s
′)}. (49)

For i = 1, 2, the solution(ci , `i ) to equations (42) and (43) can be used in the
budget constraints (39) to solve for the average asset holdings next periodx′i of
type-i agents.

A proof of existence and uniqueness of the equilibrium is contained in the
Appendix for a more general version of the model. The unique equilibrium(ξ ?1 , ξ

?
2)

satisfies

ξ?1(x1, s) =
βEξ?1

{
x1+ α2

ξ?1(x1, 1)
g

[
ξ̂ ?2(x1, 1)

ξ ?1(x1, 1)
, s′
]}

if s= 1

max

((
U ′
[
x1ξ̂

?
2(x1, 2)

]
ξ̂ ?2(x1, 2), βEξ?1

{
x1− α1

α2ξ̂
?
2(x1, 2)

g

[
ξ?1(x1, 2)

ξ̂ ?2(x1, 2)

]
, s′
}))

if s= 2,

https://doi.org/10.1017/S1365100597003064 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003064


                  

442 PAMELA LABADIE

ξ?2(x2, s) =

βEξ?2

{
x2+ α1

α2ξ
?
2(x2, 2)

g

[
ξ̂ ?1(x2, 2)

ξ ?2(x2, 2)

]
, s′
}

if s= 2

max

((
U ′
[
x2ξ̂

?
1(x2, 1)

]
ξ̂ ?1(x2, 1), βEξ?2

{
x2− α2

α1ξ̂
?
1(x2, 1)

g

[
ξ?1(x1, 2)

ξ̂ ?2(x1, 2)

]
, s′
}))

if s= 2.

In the Appendix, I show that the functionξ?i is nonincreasing and concave in its
first argument. This property and the market-clearing conditions can be used to
derive the following comparative dynamic results.

• An increase in the equilibrium asset holdings of the productive agent decreases out-
put, raises asset prices, and lowers the consumption of the unproductive agent. As
in Scheinkman and Weiss, the cross-sectional distribution of asset holdings is an
important determinant of aggregate variability.
• An increase inπ1, the probability thats = 1, which causes permanent income to

differ across agents, will lower production whens= 1. This suggests that borrowing
constraints dampen aggregate fluctuations by limiting the gains from trade.

6. CONCLUSION

The standard representative agent model in which there are no frictions and infor-
mation is complete has been unable to explain a variety of empirical regularities
in asset prices; see Kocherlakota (1996) for a discussion and review of recent lit-
erature. This type of model provides complete consumption insurance and agents
equalize their IMRS state-by-state. One promising departure from this framework
is to assume that some idiosyncratic risks are uninsurable so agents are unable
to smooth consumption or equalize their IMRS across states. There is a substan-
tial and growing literature that considers the effects of borrowing constraints and
other frictions on asset price behavior. Examples include the papers by Aiyagari
and Gertler (1991), Heaton and Lucas (1992), and Telmer (1993). In a model with
no aggregate uncertainty and with i.i.d. shocks across agents, Aiyagari and Gertler
(1991) find that borrowing constraints fail to generate enough volatility in asset
returns. This result is similar to the findings of Heaton and Lucas (1992) who study
the effects of incorporate transactions costs, short-sales constraints, and borrow-
ing constraints. Related papers are by Danthine et al. (1992), Heaton and Lucas
(1995), and Telmer (1993).

Constantinides and Duffie (1996) have observed that, in many of these models,
the idiosyncratic labor income shocks are i.i.d. so that the permanent income of
agents is nearly equal, despite imperfect risk sharing. Hence, the opportunities
afforded by a risk-free bond to smooth consumption are almost enough to allow
agents to equalize their IMRS over states. To construct a model with asset-pricing
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dynamics rich enough to explain certain empirical regularities, they argue that
idiosyncratic shocks must display persistence and heteroskedasticity to prevent
agents from smoothing consumption.

I show that when demand aggregation is not possible and agents are hetero-
geneous, either because they have different permanent incomes or else there is
variability in the distribution of labor productivity shocks, the asset-pricing dy-
namics are much richer, whether or not markets are complete. This is demonstrated
by examining several versions of the model. Adding borrowing constraints or other
market frictions in this model dampens aggregate fluctuations and, in some cases,
reduces the variability of the IMRS, which is related to Appendix D of Scheinkman
and Weiss (1986). To determine how borrowing constraints affect aggregate fluctu-
ations, two types of borrowing-constraint models are presented. In the first model,
dividend payments are restricted. Agents equalize the IMRS of consumption across
states, but the gains from trade and specialization are mitigated, dampening ag-
gregate fluctuations. In the second model, which is a discrete-time version of the
Scheinkman and Weiss model, a borrowing constraint is imposed such that agents
are no longer able to equalize the IMRS of consumption state-by-state. I find that
the cross-sectional distribution of the asset is an important determinant of produc-
tion and that the borrowing constraint may dampen output fluctuations relative to
a complete markets version of the model in which agents have different permanent
income.

NOTES

1. The assumption that there is a countably infinity of agents is made to avoid measurability
problems that can arise when a continuum of agents on the unit interval is assumed. See Feldman and
Gilles (1985) for a discussion.

2. By definition of the functiong, g′ = (1/U ′′) < 0. Under Assumption 1,

∂xg(x)

∂x
= g(x)+ xg′(x)

= g(x)[1+ (U ′/cU′′)] < 0.

The functiong(x−1) is increasing inx. Hence, the left side of (19) is decreasing inx while the right
side is increasing so that there is a unique solution.

3. For most parameter values, the model resulted in a risk-free interest rate that is positive in one
state and negative in the other, the exception being the case in which agents have identical discounted
present value of income (soα1 = 0.5, π11 = π22 = 0.5) resulting in risk-free rates that are constant
across states. The state in which the real rate is negative depends on whetherγ is greater than or less
than 1 and whetherα1 differs from 0.5.

4. The proof is based on that of Theorem 3 in Deaton and Laroque (1992).
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APPENDIX

Let current utility be
U (c)−W(`).

Assumption A.1. Let W: [0, L] → <+ be linear or quadratic withW′′ ≥ 0, and
W(0) = 0.

Define a vector-valued functionθ : S → [θ, θ̄ ] × [θ, θ̄ ], indexed byi ∈ I . Assume
that

θi (s) = θ1(s) if i is type 1 (A.1)

andθi (s) = θ2(s) otherwise. For a given(t, s), this structure allows the productivity shocks
θ̂1 andθ̂2 to take any correlation, including the perfect negative correlation studied earlier.
Productivity shocks also may be serially correlated and there is no presumption that the
unconditional probabilities51 and52 are equal so that the expected permanent incomes of
agents differ across types. Lets be a stationary first-order Markov process with stationary
transition functionF . Let F have the Feller property.

Letϕi denote the partial derivative of the value function with respect to its first argument,
or ϕi (xi , s) = V ′i (xi , x, s). Defineqi (xi , s) = qj (xj , s), for all i, j ∈ I . The equilibrium
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first-order conditions for the representative type-i agent are

U ′[ĉi (x, s)] = ξi (xi , s)

qi (x, s)
, (A.2)

W′[ ˆ̀
i (x, s)] = θi (s)ξi (xi , s)

qi (x, s)
, (A.3)

ξi (xi , s) = βEsϕi (x
′
i , s
′)+ ωi (xi , s). (A.4)

The envelope condition is

ϕi (xi , s) = U ′[ĉi (xi , s)]qi (xi , s). (A.5)

Whenωi > 0, the maximum amount that an agent can consume isci = xi q. Hence the
multiplier ξi obeys

ξi (xi , s) = max{U ′[xi qi (xi , s)]qi (xi , s), βEsξi (x
′
i , s
′)}. (A.6)

To construct the equilibrium, I start by fixing the marginal valuation function for the asset,
which is equal to the Lagrange multiplier on the budget constraint. The price that clears
the market is then determined. The next step is to hold the market-clearing price fixed to
solve then for the marginal valuation function. The method of proof in this step follows
that of Deaton and Laroque (1992). I then show that the marginal valuation functions are
increasing and concave in the market-clearing price. In the final step, I show that there exists
a unique price function that is used to construct the marginal valuation function and that
also clears the market.

DEFINITION A.1. A stationary equilibrium is a set of functions qi :Z × S → <+ for
i = 1, 2, ci (z, x, s), `i (z, x, s), and zi (z, x, s), defined onZ × S, such that

(i ) ĉi (xi , s) = ci (xi , xi , s), ˆ̀
i (xi , s) = `i (xi , xi , s), and ẑi (xi , s) = zi (xi , xi , s) solve

(41)subject to the constraints(39)and(40);
(ii ) q1(x1, s) = q2(x2, s);

(iii ) markets clear; i.e.,

1= α1z1(z1, x, s)+ α2z2(z2, x, s) (A.7)

and

α1θ1(s)`1(z1, x, s)+ α2θ2(s)`2(z2, x, s) = α1c1(z1, x, s)+ α2c2(z2, x, s),

and x′1 = z1(x1, x, s) and x′2 = z2(x2, x, s), where the last pair of equations deter-
mines the law of motion for the system variables x.

Define the functionh by
h(k) ≡ (W′)−1(k),

for k ≥ 0 so thath :<+ → [0, L]. Recall that the definition of the functiong is g ≡ (U ′)−1

so thatg :<+ → [0, Ȳ]. Given(x, s), for fixedξi ≥ U ′(xq)q andq > 0, equations (A.2) and
(A.3) are four equations(i = 1, 2) in four unknowns(c1, c2, `1, `2)whereξi = ξi (xi , s) and
q = qi (xi , s). The values(ci , `i ) satisfyci = g(ξi /q) and`i = h[(ξi θi )/q]. For notational
convenience, define the functionH as

H(k, θ) ≡ h(θk)− g(k).
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PROPOSITION A.1.Under Assumption1, H1 > 0 and H11 < 0, where Hi denotes
the partial derivative with respect to the ith argument. Also,limk→0 H(k, θ)→ −∞ and
limk→∞ H(k, θ) = L.

It is straightforward to verify these properties under Assumption 1. Notice thatg is a func-
tion satisfyingU ′[g(k)]= k such thatg′(k)= (U ′′)−1< 0 andg′′(k) = −U ′′′ / (U ′′)3> 0;
also,W′′ ≥ 0 andW′′′ = 0. Fori = 1, 2, the solution(ci , `i ) to equations (A.2) and (A.3)
can be used in the budget constraint (39) to solve for the average asset holdings next period
x′i of type-i agents.

So far, we have established that, for fixed(xi , s) and givenq > 0 andξi > 0, equations
(39) and (A.2) and (A.3) form a system of six equations in six unknowns(ci , `i , z′i ). I
now fix only the functionsξi and determine the value of the priceq such that markets clear;
essentially this adds one equation and one unknown. Using the budget constraint and setting
`i = ˆ̀

i (xi , s), ci = ĉi (xi , s) andθi = θi (s), the market-clearing price satisfies

1 = α1

(
θ1`1 − c1

q
+ x1

)
+ α2

(
θ2`2 − c2

q
+ x2

)
= 1+ α1

(
θ1`1 − c1

q

)
+ α2

(
θ2`2 − c2

q

)
.

Subtract 1 from both sides and substitute in the functionH , taking as given the values
ξi = ξi (xi , s) for fixed (xi , s), to obtain

α1H

(
ξ1

q
, θ1

)
+ α2H

(
ξ2

q
, θ2

)
= 0. (A.8)

THEOREM A.1. Under Assumption1,for fixed xi ∈Z and s∈ S and givenξi = ξi (xi , s)
such thatξi > 0, there exists a unique solution̂q : S×<+ × <+ → <+ that is strictly
positive and continuous. Moreover, q is increasing and jointly concave inξ1 andξ2.

Proof. Under Assumption 1, the proof of Proposition A.1 can be used to show that

lim
q→0

H

(
ξ

q
, θ

)
= L

and

lim
q→∞

H

(
ξ

q
, θ

)
= −∞.

From Proposition A.1, it also follows that the left side of A.8 is decreasing inq and the
right side is increasing. Asq increases,h− g decreases. Hence, as an application of the
implicit function theorem, there is a function̂q : S×<+ × <+ → <+. Moreover, because
H is continuous inξ,q is continuous inξ .

Let H ′i denote the derivative ofH [ξi /q, θi (s)] with respect to its first argument. Totally
differentiateq̂ with respect toξ1 to obtain

α1
H ′1
q
=
(
α1H ′1

ξ1

q2
+ α2H ′2

ξ2

q2

)
∂q̂

∂ξ1
.
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BecauseH ′ > 0, it follows thatq̂ is increasing inξi . Let A denote the bracketed expression
on the right side of the equation immediately above. The second partial derivative is

A
∂2q̂

∂ξ2
1

= −
(

2
∂q̂

∂ξ1

)[
α1

(
H ′1
q2
+ H ′′1

ξ

q

)(
1− ξ

q

∂q̂

∂ξ1

)2

+
(
∂q̂

∂ξ1

)(
α2ξ

2
2

q2

)(
H ′2 + H ′′2

ξ2

q

)]

= α1
H ′′1
q

(
1− ξ1

q

∂q̂

∂ξ1

)2

+ α2
H ′′2
q

(
1− ξ2

q

∂q̂

∂ξ1

)2

≤ 0.

A similar argument applies toξ2 so thatq̂ is jointly concave in(ξ1, ξ2).

Defineq1(x1, s)≡ q̂[s, ξ1(x1, s), ξ̂2(x1, s)] andq2(x2, s)≡ q̂[s, ξ̂1(x2, s), ξ2(x2, s)].
LetQ(S) be the space of functions{q ∈ Q(S) : 0 < q(x, s) <∞} that are continuous

in (x, s). Next, I holdq ∈ Q(S) fixed. In the discussion below, I drop the index of the agent
type for convenience. DefineC(S) as the space of continuous bounded functions with the
sup norm that take nonnegative values defined on the state spaceS and letD(S) ∈ C(S)
be the subspace of continuous functions that are nonincreasing in their first argument. The
spaceD(S) is a Banach space.

LEMMA A.1. Let ξ ∈ D(S) so thatξ is nonincreasing in its first argument. Fix q∈
Q(S). Define p≡ q(x, s) and letψ ∈ <+ and let the function G:<+ × S → <+ be
defined by

G(ψ, x, s) ≡ max

[
U ′(xp)p, β

∫
S

ξ

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
. (A.9)

Then G is nonincreasing inψ and x; also, limψ→0 G(ψ, x, s)= Ḡ and limψ→∞
G(ψ, x, s) = G.

Proof. The assumptions onξ andq ensure thatG is nonincreasing in its first argument.
An increase inψ increasesH(ψ/p, θ), which decreasesξ in (A.9), and henceG is nonin-
creasing in its second argument. Note that limψ→∞ H(ψ, θ) = L and thatξ is decreasing
and bounded below by 0, as isU ′(xp)p. Hence,

G(x, s) ≡ lim
ψ→∞

G(ψ, x, s)

= max

[
U ′(xp)p, β

∫
S

ξ

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
≥ 0.

Asψ → 0, H →−∞ andξ tends to its upper bound̄ξ . Under Assumption 1,U ′(xp)p is
bounded above by zero so thatG is the maximum of two bounded functions and hence is
bounded.

Let f be a solution to

f (x, s) = G[ f (x, s), x, s]

= max

[
U ′(xp)p, β

∫
S

ξ

(
x + 1

p

{
H

[
f (x, s)

p
, θ

]}
, s′
)

F(s, ds′)

]
. (A.10)
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Defineϒ as the operator that assigns the solutionf to the functionG so that

f = ϒG.

LEMMA A.2. Assume thatξ ∈ D(S) so that G as defined in(A.9) satisfies the condi-
tions of Lemma(A.1). For fixed q such that q∈ Q(S), let f :S → <+ be the solution to
(A.10). Then,

(i ) there exists a unique f? ∈ C(S) satisfying(A.10);
(ii ) the solution function satisfies f? ∈ D(S) so thatϒ : D(S)→ D(S);
(iii ) if G1 ≥ G2 for all (ψ, x, s), thenϒG1 ≥ ϒG2.

Proof. Under the conditions of Lemma (A.1),G(ψ, x, s)−ψ is continuously and strictly
decreasing inψ . For a fixed(x, s), H(ψ/p, θ) is increasing inψ . ForG ∈ D, letψ satisfy

ψ = G(ψ, x, s)

= max

[
U ′(xp)p, β

∫
S

ξ

{
z+ 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
. (A.11)

Clearly, the left side is increasing inψ which, under the assumption thatG ∈ D, implies
that the right side is decreasing inψ . Asψ → 0, the left side tends to zero and the right
side tends to a finite upper bound. Asψ increases, the left side increases and the right side
tends toG ≥ 0. Hence, there exists a uniqueψ that satisfies (A.11).

It also follows that

max

[
U ′(xp)p, β

∫
S

ξ

{
z+ 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
− ψ

is continuous and strictly decreasing inψ . Therefore, f ? is continuous andf ?(x, s) is
decreasing in its first argument. Suppose thatξ1 ∈ D andξ2 ∈ D and thatξ1 > ξ2, where

Gi (ψ, x, s) ≡ max

[
U ′(xp)p, β

∫
S

ξi

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
,

so thatG1(ψ, x, s) ≥ G2(ψ, x, s). Letψi be the solution to the equation [0= Gi (ψi , x, s)−
ψi ]. If G1 ≥ G2, thenG2(ψ1, x, s)− ψ1 ≤ 0 so thatψ1 ≥ ψ2. Hence,ϒG1 ≥ ϒG2.

For a fixedq∈Q(S) andp=q(x, s), let the operatorTq : D(S)→ D(S) be defined by

ξn+1(x, s) = (Tqξ
n
)
(x, s)

= max

[
U ′(xp)p, β

∫
S

ξn

{
x + 1

p
H

[(
T2ξ

n
)
(x, s)

p
, θ

]
, s′
}

F(s, ds′)

]
.

(A.12)

THEOREM A.2. Let q ∈ Q(S) be fixed and let Tq : D(S) → D(S) be defined by
(A.12).Under Assumption1, Tq is a contraction.
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Proof. For an initial guess,ξ0 ∈ D(S),

β

∫
S

ξ0

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

is an element ofD(S) for fixedψ such that 0≤ ψ <∞. Under the conditions of Lemma
A.2, the solution

f ?(x, s) = max

[
U ′(xp)p, β

∫
S

ξ0

(
x + 1

p

{
H

[
f ?(x, s)

p
, θ

]}
, s′
)

F(s, ds′)

]
is also an element ofD(S).

Let ξ1, ξ2 ∈ D(S) and assume thatξ1 > ξ2. For fixedψ , it follows that

max

[
U ′(xp)p, β

∫
S

ξ1

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
≥ max

[
U ′(xp)p, β

∫
S

ξ2

{
x + 1

p

[
H

(
ψ

p
, θ

)]
, s′
}

F(s, ds′)

]
.

Under the conditions of Lemma A.2, it follows that

Tqξ1(x, s) = max

[
U ′(xp)p, β

∫
S

ξ1

(
x + 1

p

{
H

[
Tqξ1(x, s)

p
, θ

]}
, s′
)

F(s, ds′)

]
≥ max

[
U ′(xp)p, β

∫
S

ξ2

(
x + 1

p

{
H

[
Tqξ2(x, s)

p
, θ

]}
, s′
)

F(s, ds′)

]
.

Hence,Tqξ1 ≥ Tqξ2 so thatTq is monotone.
Let 0< a <∞. To show thatTq has the discounting property, notice that

β

∫
S

(ξ + a)

(
x + 1

p

{
H

[
(ξ + a)(x, s)

p
, θ

]}
, s′
)

F(s, ds′)

≤ β
∫

S

(ξ + a)

(
x + 1

p

{
H

[
ξ(x, s)

p
, θ

]}
, s′
)

F(s, ds′)

≤ β
∫

S

ξ

(
x + 1

p

{
H

[
ξ(x, s)

p
, θ

]}
, s′
)

F(s, ds′)+ βa,

so thatTq has the discounting property. Hence,Tq is a contraction with unique fixed point
ξ?q .

The next step is to study how the unique fixed pointξ ?q varies withq. This is accomplished
by studying how the fixed point varies asp varies, wherep = q(x, s) as before. If one starts
in the subspace ofD(S) consisting of increasing and concave functions inq and shows that
the operatorTq maps those functions into other functions in the same subspace, because of
uniqueness, then we know that the fixed point is a function that is concave inq4.

PROPOSITION A.2.Under Assumption1, ξ? is increasing and concave in p.
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Proof. Fix q ∈ Q(S). Recall that

∂a(x,q, s)

∂q
= − 1

q2

[
H

(
ψ

q
, θ

)
+ ψ

q
H1

(
ψ

q
, θ

)]
< 0,

wherea(x, p, s) = x+ (1/p)H [ψ/q, θ(s)]. Hence, the assumption thatξ lies in the space
of functions that are decreasing in the first argument is consistent with the assumption that
ξ lies in the subspace of functions that are increasing inp. Suppose thatξ ∈ D(S) and that
ξ is concave inp. For fixeds, define the function̂G by

Ĝ(ψ, x, s, p) = max

{
U ′(xp)p, β

∫
S

ξ

[
x + 1

p
H

(
ψ

p
, θ

)
, s′
]

F(s, ds′)

}
.

Under Assumption 1,U ′(xp)p is increasing and concave inp and, by assumption,ξ is
increasing and concave inp. Hence,Ĝ is the maximum of two increasing and concave
functions inpand is itself increasing and concave inp. Let p1 < p2 and letψi be the solution
to [Ĝ(ψi , x, s, pi )−ψi = 0]. Then 0= Ĝ(ψ1, s, x, p1)−ψ1 ≤ Ĝ(ψ1, x, s, p2)−ψ1, and
henceψ1 ≤ ψ2. To show thatĜ is concave inψ , notice thatH ′ > 0 andH ′′ < 0. Hence,
the first argument ofξ is increasing and concave inψ . A property of concave functions is
that, if ξ is increasing and concave and ifg is concave, thenξ ◦ g is concave. BecausêG is
concave in(ψ, p), the solution to [̂G(ψ, x, s, p)− ψ = 0] is also concave.

For q2∈Q(S), let (T2ξ) be the solutionψ to the equationĜ(ψ, x, s, p2) − ψ = 0.
Let δ ∈ [0, 1] and letx1, x2 ∈ X. Defineψ1= Tq1ξ(x1, s) andψ2 = Tq2ξ(x2, s). Then,
Ĝ(ψ1, x1, s, p1) − ψ1 = Ĝ(ψ2, x2, s, p2) − ψ2 = 0. BecauseĜ is jointly concave in
(ψ, p),

Ĝ[δTq1ξ(x1, s)+ (1− δ)Tq2ξ(x2, s), δx1 + (1− δ)x2, x, s, δp1 + (1− δ)p2]

− [δTq1ξ(x1, s)+ (1− δ)Tq2ξ(x2, s)] ≥ 0.

BecauseĜ is increasing in its first argument, it follows thatTqξ is concave inq if ξ is
concave inq.

Although we have found a fixed pointξ?q for a givenq and determined the market clearing
priceq̂ for givenξ1 andξ2, we have not shown thatq = q̂. In fact, we must address the issues
of whether a solution exists and, if it exists, whether it is unique. LetÄi q denote the fixed
point of Tq for type-i agents evaluated at(x, s), wherex denotes the equilibrium holdings
of type-1 agents. Letν satisfyν = q̂[s, Ä1q(x, s),Ä2q(x, s)], where q̂ was defined in
Theorem A.1, or

α1

{
H

[
Ä1q(x, s)

ν
, θ1(s)

]}
+ α2

{
H

[
Ä2q(x, s)

ν
, θ2(s)

]}
= 0. (A.13)

PROPOSITION A.3.The market clearing pricêq is an increasing and concave function
of q ∈ Q(S).

Proof. Under the conditions of Proposition A.2Ä1 andÄ2 are increasing and concave in
q for q ∈ Q(S). The proof of Theorem A.1 can be used to show thatq̂ is jointly increasing
and concave in its second and third arguments. A property of concave functions is that,
if f andg are increasing and concave, thenf ◦ g is increasing and concave. Hence,q̂ is
increasing and concave inq.
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LetQ(S)be the space of continuous and bounded functions{q∈Q(S) : 0<q(x, s)≤ B}
and define the operator9 :Q(S)→ Q(S) by

q(x, s) = 9q(x, s) = q̂[s, Ä1q(x, s),Ä2q(x, s)]. (A.14)

THEOREM A.3. Under Assumption1,9 :Q(S)→ Q(S) has a unique fixed point q?.

Proof. Notice that if

α1

{
H

[
Ä1q(x, s)

q
, θ1(s)

]}
+ α2

{
H

[
Ä2q(x, s)

q
, θ2(s)

]}
> 0,

thenν > q, whereas if

α1

{
H

[
Ä1q(x, s)

q
, θ1

]}
+ α2

{
H

[
Ä2q(x, s)

q
, θ2

]}
< 0,

thenν < q. Recall thatU ′(xq)q is increasing inq and that(1/q)H(ψ/q) is decreasing in
q. BecauseU is increasing, concave, and bounded,U ′(c)c is bounded above bȳU . For a
fixedψ such that 0< ψ <∞ and fixedx, s we have

lim
q→∞

Äq = β
∫

S

ξ?

{
x + 1

q
H

[
ψ

q
, θ(s)

]
, s′
}

F(s, ds′) = Ḡ.

As q→∞, H [Ḡ/q, θ(s)] →−∞. Then, there is somēQ such that, for anỹq(x, s) ≥ Q̄,

α1

{
H

[
Ḡ

q̃(x, s)
, θ1(s)

]}
+ α2

{
H

[
Ḡ

q̃(x, s)
, θ2(s)

]}
> 0

and9q ≤ Q̄ ≤ q̃. Asq→ 0, H(ψ/q)→ L andx′ → ∞, so thatξ → G. As G/q→∞,
H → L. Hence, there is someε > 0 such that

α1

{
H

[
G

ε
, θ1(s)

]}
+ α2

{
H

[
G

ε
, θ2(s)

]}
> 0,

so that90 > 0. Hence,9 : [0, Ū ] → [0, Ū ]. Brower’s Fixed-point Theorem then can be
used to show that there exists a fixed pointq = 9q. To establish uniqueness,q̂ is concave
in its second and third arguments. Because9(0) > 0, 9 Q̄ < Q̄, and9 is concave inq,
the fixed point is unique.

The fixed point9q(x, s) was constructed holding the state(x, s) fixed, so that we can
define the functionq(x, s). This function has the properties that markets clear, and the fixed
point of the marginal valuation function was constructed holding the functionq fixed. This
is the unique stationary equilibrium.
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