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A new class of time series models is used to track the progress of the COVID-19 epidemic in the UK in early
2021. Models are fitted to England and the regions, as well as to the UK as a whole. The growth rate of the
daily number of cases and the instantaneous reproduction number are computed regularly and compared
with those produced by SAGE. The results from figures published each day are compared with results based
on figures by specimen date, which may be more accurate but are subject to substantial revisions. It is then
shown how data from the two different sources can be combined in bivariate models.
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1. Introduction

The application of classical time series methods to data on epidemics is relatively undeveloped. Most of
the emphasis has been on building models to simulate the path of an epidemic under different
assumptions about behaviour and policies, and the forecasting performance has often been unimpres-
sive; see Avery et al. (2020) and Ioannidis et al. (2020). Here, we show how a new class of time series
models can be used to track the progress of an epidemic and forecast key indicators. The methods draw
much of their inspiration from econometrics, but take into account the special characteristics of time
series for epidemics.

The univariate time series model described in Harvey and Kattuman (2020a)—hereafter HK—fits a
trend to the logarithm of the growth rate of the cumulated series of the target variable, which is usually
new cases, hospital admissions or deaths. Allowing this trend to be time-varying introduces flexibility
which, in the context of an epidemic, enables the effects of changes in policy and population behaviour to
be tracked. Such stochastic trend models are a standard econometric tool, and they are easily handled
within a state-space framework. Application of the Kalman filter (KF) enables nowcasts and forecasts of
variables of interest, such as the growth rate of the daily number of cases and the instantaneous
reproduction number, to be made. Estimation of the models is by maximum likelihood and goodness
of fit can be assessed by standard statistical test procedures.

This article describes our experience tracking the progress of the COVID-19 epidemic in the UK in
early 2021. This period is of considerable interest, because a new variant of the virus appeared in the
south-east of England in December 2020 and started to spread throughout the country. The lockdown of
5 January 2021 was partially in response to this new variant. The number of new cases quickly rose to a
peak around the beginning of the new year and then started to fall. The ability of models to respond to
these movements in a timely fashion is clearly important. Here, we investigate how our models fared by
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showing how the response, as captured by both nowcasts and forecasts, adapted to observations available
on a daily basis.1

We first examined the results for the country as a whole before moving on to monitor the regions.
Regional variation is significant, because in October, some areas of the country, such as north-west
England, were particularly hard hit, whereas the big rises in December came primarily from the new
variant and were mainly in the south-east. There are systematic movements in daily observations
according to the day of the week with the figures for the weekend tending to be lower. Our model is
able to take account of these movements without using 7-day moving averages (MA7s) which tend to
result in a delayed response when there are rapid upward or downward movements.

Multivariate state-space models can combine information in different series. There are two data
sources for new COVID cases. One is the figure published each day, whereas the other is by specimen
date. The second series is subject to substantial revisions as new data are processed and the series only
settles down after about 3 days. However, itmay be a better indicator of the spread of the epidemic, and so
the question arises as to whether the information it contains can be combined with that in the published
data. This is essentially a question of combining different ‘vintages’, something which is often done with
economic data. Sometimes, the observations are made in a different way and at different frequencies, for
example, by surveys; see Harvey and Chung (2000) and, more recently, Anesti et al. (2021). Our
treatment of published and specimen data owes much to this literature, but there are some novel
features, primarily concerned with time-varying slopes and the notion of balanced growth. Themethods
may be generalised to deal with leading indicators as in Harvey (2020).

Section 2 of the paper reviews the model and explains how estimates of the growth rate of daily
numbers can be made and how these yield corresponding estimates of instantaneous reproduction
number, Rt: Our experience with UK data in January is reported in Section 3, and the multivariate
models are described and implemented in Section 4.

2. Forecasting and nowcasting with the dynamic Gompertz model

The observational model uses data on the time series of the cumulated total of confirmed cases or deaths,
Yt , t¼ 0,1,…,T , and the daily change. HK show how the theory of generalised logistic growth curves
suggests models for lnyt , where yt ¼ΔYt ¼Yt �Yt�1, and the logarithm of the growth rate of the
cumulated series, lngt , where gt ¼ yt=Yt�1 orΔ lnYt: For the special case of the Gompertz growth curve,
the implication is that lngt follows a downward linear trend. However, additional flexibility is needed to
cope with situations where there are recurrent waves. This may be achieved by a stochastic, or time-
varying, trend, so that

lngt ¼ δt þ εt , εt �NID 0,σ2ε
� �

, t¼ 1,2,…,T , (1)

where2

δt ¼ δt�1þ γt�1þηt , ηt �NID 0,σ2η

� �
,

γt ¼ γt�1þ ζ t , ζ t �NID 0,σ2ζ

� �
,

(2)

1This methodology forms the basis for the weekly projections of new cases and the R number for the UK, its constituent
nations and the regions of England, published weekly byNIESR from 18 February 2021 (https://www.niesr.ac.uk/latest-weekly-
covid-19-tracker).

2HK had a negative sign in front of γ in (1) and (2), because, in a growth curve, the growth rate is always falling, so it is more
convenient to let γ be positive. This ceases to be the case once there are second waves.
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and the normally distributed irregular, level and slope disturbances, εt , ηt and ζ t , respectively, are
mutually independent. When σ2ζ is positive but σ

2
η ¼ 0, the trend is an integrated random walk (IRW).

HK found the IRW trend to be particularly useful for tracking an epidemic, and it will be adopted in the
applications here. The speed with which a trend adapts to a change depends on the signal–noise ratio,
which for the IRW is q¼ σ2ζ=σ

2
ε ; the trend is deterministic when q¼ 0:

Allowing γt to change over time means that the progress of the epidemic is no longer tied to the
proportion of the population infected as it would be if Yt followed a deterministic growth curve. Instead,
themodel adapts tomovements brought about by changes in behaviour and policies. If γt falls to zero, the
growth in Yt becomes exponential, whereas a positive γt means that the growth rate is increasing.

Stochastic trend models can be estimated using techniques based on state-space models and the KF;
see Durbin and Koopman (2012) and Harvey (1989). The computations for the multivariate model were
performed using the STAMP package of Koopman et al. (2020), whereas the results reported in Section 3
were obtained with a new program in the R language specifically written for this project. The KF outputs
the estimates of the state vector δt ,γtð Þ0: Estimates of the state at time t, conditional on information up to

and including time t, are denoted δt|t ,γt|t
� �0

and given by the contemporaneous filter while the

predictive filter outputs δtþ1|t ,γtþ1|t

� �0
: The smoother estimates the state at time t based on all T

observations in the series and is denoted δt|T ,γt|T
� �0

. Estimation of the unknown variance parameters is

by maximum likelihood. Tests for normality and residual serial correlation are based on the one-step
ahead prediction errors, vt ¼ lngt �δt|t�1, t¼ 3,…,T:

Additional components, such as day of the week effects, can be added to (1). These may be
deterministic or stochastic. Stationary autoregressive or ARMA components may also be included as
may explanatory variables, including interventions. However, isolated outliers aremost easily handled by
treating them as missing observations.

Remark 1.When the observations on daily cases or deaths are small, a negative binomial distribution
for yt , conditional on past observations including Yt�1, may be appropriate. HK show how the model may
be modified to deal with this possibility for a univariate time series. Software can be found in Lit et al.
(2020). Estimates of the state based on small numbers are likely to be unreliable, but if the KF is to operate
during periods when numbers are small, as they were for COVID-19 cases in the summer of 2020, it may be
better to set vt ¼ gt exp �δt|t�1

� ��1 rather than to treat the observation as missing.

2.1. Forecasting and nowcasting the growth rate of daily observations and R

The direction inwhich an epidemic ismoving is best tracked by nowcasts and forecasts of gy,t , the growth
rate of yt . Harvey and Kattuman (2020b) construct the nowcast of gy,t from the filtered estimates in the
state-space model [(1) and (2)]. Thus, gy,t∣t ¼ gt∣t þ γt∣t . These estimates can be translated into estimates
of the instantaneous reproduction numberRt , in a number of ways, as described inWallinga and Lipsitch
(2007). Harvey and Kattuman (2020b) argue that the most useful for COVID-19 are

eRt,τ ¼ 1þ τgy,t∣t and eRe
τ,t ¼ exp τgy,t∣t

� �
, (3)

where τ = 4; τ is the generation interval, that is, the number of days that must elapse before an infected
person can transmit the disease. The nowcasts of yt peak when gy,t∣t ¼ 0, corresponding to eRt,τ ¼ eRe

τ,t ¼ 1:
For tracking and forecasting the epidemic, all that is needed are estimates of gy,t: The estimates of Rt

are a by-product. Despite being dependent on assumptions about the generation interval, estimates of Rt

have become the main metric for reporting the state of the epidemic.
Predictions of gy,t , and hence of Rt , are given by

gy,Tþℓ∣T ¼ expδTþℓ∣T þ γTþℓ∣T ¼ exp δT∣T þ γT∣Tℓ
� �þ γT∣T , ℓ¼ 1,2, :… (4)
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If γT∣T is zero, the growth of yt is exponential, and it is helpful to characterise it by the doubling time,
ln2=gy,T∣T ¼ 0:693exp �δT∣T

� �
:

When expδT∣T þ γT∣T > 0, so that the nowcast egy,T∣T is positive and the estimates of RT given by (3)
are greater than one, there is still a saturation level so long as γT∣T is negative; correspondingly, as ℓ!∞,eRe
τ,Tþℓ∣T!exp τγT∣T

� �
< 1:Hence, a negative γT∣T signals a flattening of the curve and an upcoming peak

in yt:
Remark 2. The basic forecasts are made with the estimates of δT and γT . However, alternative scenarios

in which γt is assumed to evolve in a certain way, perhaps to reflect changing behaviour and policies, may
also be envisaged. If a future scenario arises in terms of a time path for RTþℓ∣T , it can easily be translated
into one for γTþℓ∣T . The time path for γTþℓ∣T leads directly to the forecasting equations of (10), and so no
simulations are needed for the predictions of yTþℓ.

2.2. Sampling variability of nowcasts and forecasts

Harvey and Kattuman (2020b) show that the conditional distribution of nowcasts of gy,t can be
approximated by the conditional distribution of γt , which is normal with mean γt∣t and variance σ2γ,t∣t ,
both of which are produced by the KF.

When eRt,τ is defined as 1þ τgy,t , its distribution, conditional on current and past observations, can be

treated asN gy,t∣t

�
, τ2σ2γ,t∣tÞ. On the other hand, the conditional distribution of eRe

τ,t is lognormal withmean

Et eRe
τ,t

� �
¼ exp τ gt∣t þ γt∣t þ τ=2ð Þσ2γ,t∣t

� �� �
(5)

and standard deviation

SDt eRe
τ,t

� �
¼ Et eRe

τ,t

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expτ2σ2γ,t∣t �1

� �r
: (6)

Note that expτ2σ2γ,t∣t �1≃τ2σ2γ,t∣t , so when Et eRt,τ
� �

is close to one, SDt eRe
τ,t

� �
≃SDt eRt,τ

� �
: The

probability that Rt exceeds one is Pr gy,t∣t > 0
� �

, and this does not depend on τ or the formula used to
estimate Rt from gy,t∣t .

Remark 3. For the Spanish flu dataChowell et al. (2007), discuss two approaches to estimating Rt based on
Susceptible-Exposed-Infectious-Removed models, the more complex one having eight nonlinear differential
equations. They also use the Bayesian method of Bettencourt and Ribeiro (2008). Estimates of Rt obtained
from the model discussed at the end of this section are not out of line with those reported by Chowell et al.
(2007), and they are simpler, more transparent and open to diagnostic checks on the statistical assumptions.

As with nowcasts, the predictive distribution of gy,Tþℓ, and hence of RTþℓ, can be approximated from
the conditional distribution of γTþℓ given observations up to and including timeT:This is Gaussian with
mean γT∣T and variance σ

2
γ,Tþℓ∣T :These estimates are produced by the predictive equations of the KF as in

Harvey (1989, eq. 3.5.5, p. 147). For an IRW trend, it can be shown that

VarT gy,Tþℓ

� �
≃VarT γTþℓ

� �¼VarT γTð Þþℓσ2ζ ¼ σ2γ,T∣T þℓqσ2ε (7)

when the effect of the daily component is not included. The factor by which the variance of an ℓ step
ahead forecast of Rt ¼ 1þ τgy,t is inflated above that of the variance of the corresponding nowcast is the
same as it is for gy,t: For example, when q¼ 0:005, σ2γ,T∣T ¼ 0:001 and σ2ε ¼ 0:02, expression (7) indicates
that the SDs of gyt and Rt will increase by 30 per cent for ℓ¼ 7 and 55 per cent for ℓ¼ 14:

The probability that RTþℓ > 1 is Pr gy,Tþℓ > 0
� �

≃Pr z>�gy,Tþℓ∣T=SDy,Tþℓ∣T

� �
, where z�N 0,1ð Þ

and SDy,Tþℓ∣T is the square root of (7). Thus, for new cases in England by date of publication, the nowcast
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made on 18th January was �0:048, whereas the 14-day forecast was �0:054. The value of σ2γ,T∣T for

q¼ 0:005, and a daily effect included, was 0:0004, while σ2ε was estimated to be 0:014: These values give

Pr RT > 1ð Þ≃Pr z> 0:048=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0004

p� �¼ Pr z> 2:40ð Þ¼ 0:008 and Pr RTþ14 > 1ð Þ≃Pr z> 1:30ð Þ¼ 0:10:
The ability to make predictions offers a way to deal with reporting delay, as described in Abbott et al.

(2020, pp. 3–4). If the observation for time t�k is not available until time t, the current Rt is better
estimated by a k-step ahead forecast. Taking the parameter values of the previous paragraph gives an
increase in the SD of 14 per cent for k¼ 3:

2.3. Moving averages

In the UK, the current level of new infections or deaths is usually reported together with theMA7, which
is more stable than the daily figure and irons out the daily effects. The moving average figure is often
divided by 100,000 so as to give a standardisedmeasure. Estimates of gy,t andRt can be calculated directly
from the moving average. For example,

bRt,k,τ ¼
Pk�1

j¼0 yt�jPkþτ�1
j¼τ yt�j

¼
Pk�1

j¼0 yt�jPk�1
j¼0 yt�τ�j

¼ 1þ τbgy,t , (8)

where the sum in the denominator starts at a lag of τ and the sums in the numerator and denominator
may overlap. The lag of τ reflects the generation interval, which is number of days that elapse before an
infected person can transmit the disease. The Robert Koch Institute (RKI) estimator3 has τ¼ 4, and k¼ 4
or 7; setting k¼ 7 has the advantage of smoothing out the daily effect.

Following on from (8), estimates of gy,t can be calculated directly from the moving average. However,
because the observations are best captured by a location/scale model in which the level is proportional to
scale, estimates formed from the level have poor statistical properties. A better approach would be to take
logarithms before averaging. Harvey and Kattuman (2020b, Section 3.3) show that doing so would give a
result much closer to that obtained from the model.

A disadvantage of using simple moving averages to track the epidemic is that they give the last seven
observations equal weights and so can be slow to respond to upward or downward movements. By
contrast, the model deals directly with day of the week effects and so is able to gradually discount past
observations. Hence, it can respondmore quickly. Figure 1 shows the nowcasts of the underlying trend in
new cases produced by the model for Germany (European Centre for Disease Prevention and Control
[ECDC] data), together with the MA7. The attraction of the model is clear, and, of course, it also has the
advantage of being able to produce forecasts. Lagging theMA7 so it is centred at t�3 would shift it more
in line with the observations but at the cost of losing the last three observations.

2.4. Forecasting the trend in future observations

The forecasts of the trend in future values of lngt in the dynamic Gompertz model are given by δTþℓ∣T ¼
δT∣T þ γT∣Tℓ, ℓ¼ 1,2,…, where δT∣T and γT∣T are the KF estimates of δT and γT at the end of the sample.
Forecasts of the trend in the daily observations, yt , may be obtained from a recursion for the trend in their
cumulative total, Yt , namely

μTþj∣T ¼ μTþj�1∣T 1þ gTþj∣T

� �
¼ μTþj�1∣T 1þ expδTþj∣T

� �
, j¼ 1,2,…,ℓ, (9)

with μT∣T ¼YT . The trend in the daily figures is then

3There is some prior nowcasting to account for reporting delays; the methodology is based on Höhle and an der Heiden
(2014).

114 Harvey, Kattuman and Thamotheram

https://doi.org/10.1017/nie.2021.12 Published online by Cambridge University Press

https://doi.org/10.1017/nie.2021.12


μy,Tþℓ∣T ¼ gTþℓ∣TμTþℓ�1∣T , ℓ¼ 1,2, :…

Combining the above equations gives

μy,Tþℓ∣T ¼YT expδTþℓ∣T
Yℓ�1

j¼1

1þ expδTþj∣T
� �

, ℓ¼ 2,3,…,

μy,Tþ1∣T ¼YT expδTþ1∣T :

(10)

Daily effects can be added to δt: In this case, forecasts of the observations themselves, that is, byTþℓ∣T
and bYTþℓ∣T , are given by adding the filtered value of the daily component to the trend component,
δTþℓ∣T .

The conditional distribution of future values of the trend, δTþℓ, in lngTþℓ is Gaussian. The
conditional distribution of expδTþℓ is therefore lognormal, but, for more than one-step ahead, the
distribution of the corresponding trend in the observations is not lognormal because of the presence of
the unknown cumulative total in our equation for the underlying trend which is μy,Tþℓ ¼ gTþℓYTþℓ�1,
ℓ¼ 2,3, :…However, since Yt changes relatively slowly, it may be possible to ignore its effect by treating
it as fixed.

An alternative to working with the distribution of the trend of the observations is to convert a
prediction interval for lngTþℓ into one for μy,Tþℓ by replacing δTþj∣T in (9) by δTþj∣T � z:σδ,Tþj∣T , where

σ2δ,Tþj∣T is the conditional variance of δTþj and z is a constant such as one or two. Again, withYt changing

slowly, there may be a case for simply constructing a prediction interval from (10) by replacing δTþℓ∣T by
δTþℓ∣T � z:σδ,Tþj∣T for ℓ¼ 1,2,3,…: If a prediction interval for the observations themselves is wanted,

the standard deviation σδ,Tþj∣T may be replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2δ,Tþj∣T þσ2ε

q
in the preceding formulae. Allowance

may also need to be made for a daily component.

MA(7) Nowcast GermanNewCases

2020-3-29 4-5 4-12 4-19 4-26 5-3 5-10 5-17 5-24 5-31 6-7 6-14 6-21

1000

2000

3000

4000

5000

6000
MA(7) Nowcast GermanNewCases

Figure 1. (Colour online) German new cases from 29th March to 26th June (data sourced from ECDC) showing nowcasts from model
and 7-day moving averages
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2.5. Nowcasts of the trend in daily observations

The nowcast for the trend in yt is

μy,t∣t ¼Yt�1 expδt∣t , t¼ t0,…,T:

Using the current rather than the lagged cumulative total, that is, Yt expδt∣t , makes virtually no
difference once Yt has become relatively large. Since δt is conditionally Gaussian, expδt is lognormal,
and a credible interval may be produced if required.

Example Daily cases of influenza4 in San Francisco during the worldwide outbreak of Spanish flu in
1918 show exponential growth in the upward phase; see Chowell et al. (2007). Consequently, a plot of the
logarithm of the growth rate (LDL) shows very little downward movement at first. Fitting the Gaussian
dynamic Gompertz to the whole series gives q¼ 0:05: The slope in LDL adapts, so it is close to zero in early
October and then falls so as to capture the downward phase. Figure 2 contrasts the nowcasts with anMA7,
which lags behind the observations throughout.

3. COVID-19 in the UK and regions

Our empirical focus is on trends in new cases in the UK, its nations and English regions. We concentrate
on early 2021, when the new strain of COVID-19 was the leading cause of increase in infection rates,
initially in the south-east of England.

The daily counts of COVID-19 cases are based on the results of laboratory-based or swab tests for the
presence of SARS-CoV-2 virus in specimens taken from people, as well as results of antibody serology
tests. The new cases’ data are available by the date the specimen was collected (the specimen date series)
and by the date the testing process was completed and the case was first included in the published totals

New Cases 
Nowcast
MA(7)

1918-9-29 10-6 10-13 10-20 10-27 11-3 11-10 11-17 11-24

250

500

750

1000

1250

1500

1750

2000

2250 New Cases 
Nowcast
MA(7)

Figure 2. (Colour online) Nowcasts and 7-day moving averages for San Francisco flu from 29 September to 24 October 1918

4The data are supplementary material to the article by Chowell (2007; https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2358966).
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(published date series). A key issue is how information in the specimen date series can be combined with
that in the published date series. There are pronounced daily effects in the specimen date series, which,
however, can be accommodated in a model with seasonal effects. More importantly, the specimen date
series is subject to substantial reporting delays and revisions. Figure 3 illustrates the extent of revisions
over time of the specimen date series, with reference to the same data as revised 3 weeks in the future by
when revisions are almost complete and very small. To be precise, let y vð Þ

t denote the v-day ahead update
(or vintage) for yt , the specimen cases recorded on date t. Thus, the current vintage of the data is given by

the series: y tð Þ
t , y tð Þ

t�1,…,y tð Þ
1 . The date r revision to the current vintage of specimen cases for date i is

defined as: rev rð Þ
i ¼ y rð Þ

i � y tð Þ
i . Figure 3 presents the revisions 3 weeks ahead for the last four entries of the

current vintage, rev tþ21ð Þ
t ,…,rev tþ21ð Þ

t�3 . It is evident that except in the neighbourhood of Christmas day
andNewYear’s daywhen data qualitywas very poor, revisionswere substantially complete within 3 days.

A technical issue led to a large number of infections that occurred between 25 September and
2 October 2020 going unrecorded and then being assigned to 3rd and 4th October, thereby creating an
artificial spike. Rather than attempting to reallocate observations, we start our analysis with data
published on 5 October 2020. Cases by specimen date were not affected by the above issue. On
27 November 2020, another technical issue led to the total number of people who tested positive being
revised down.

We fit models to the logarithm of the growth rate of new cases asmeasured by the specimen date up to
and including time t�3 and report nowcasts and forecasts of gy,tþh and eRe

tþh for h =�3, 0, 7 and 14. For
models fitted to new cases measured by published date, we report nowcasts and forecasts for h¼ 0,7 and
14. Note that the published data for time t are actually released at tþ1.

The forecasts we generate make no assumptions about the effects of measures imposed to control the
spread of the epidemic. Thus, the forecasts made at the start of the year overshoot the eventual numbers.
As the restrictive measures begin to bite, the forecasts made by the model adapt.

0
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(t+21)
revt−1
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Figure 3. (Colour online) Differences between new cases in the specimen date series at t and the same data revised 3 weeks in the future
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3.1. Nowcasts and forecasts in January 2021

Tables 1 and 2 present, at weekly intervals starting on 28 December 2020, nowcasts and forecasts of the
growth rate of new cases, gy,t ,gy,tþ7 and gy,tþ14, and of the reproduction numbers, Rt ,Rtþ7 and Rtþ14, for
England. Table 1 uses the publication date series, whereas table 2 is for the specimen date series. The
projections from both series are based on trends without daily effects, and show broadly similar patterns
of accelerating growth rates before Christmas that increased through the New Year to the first
observations in 2021. The lock down of 5 January 2020 brought both sets of growth rates and
reproduction numbers down to the same broad range within a week. The growth rates estimated from
both the publication date series and the specimen date series have continued to be negative since then.

Figure 4 gives the forecasts of new cases based on publication date series for England, including the
daily effect. Figure 5 gives the forecasts based on the specimen date series. Vertical dashed lines denote
the end of the estimation sample. These figures demonstrate that once past the imposition of the January
lockdown, the model adapted quickly to the change in the series and in a relatively stable environment
provided accurate forecasts.

3.2. Forecast accuracy

We assess forecast accuracy using mean absolute percentage error (MAPE) over the 14-day period from
the date on which the data are released. For the publication date series, we evaluate forecasts against
subsequent realisations of the same series, whereas for specimen date series, we evaluate forecasts against
the first vintage with a release date that allows the first major revisions to vanish from the evaluation
sample. This alsomaintains a fixed number of days for each evaluation date relative to the forecast origin
for revisions to enter the evaluation sample. Thus, evaluation data for the specimen data series with
vintage dated t require evaluation data of vintage (v) from y vð Þ

t�2 to y vð Þ
tþ14, because we truncate the

estimation sample at y tð Þ
t�3. We choose a vintage of v¼ tþ17 to allow for the discarding of the heavily

Table 1. England: gy,tþh and eRetþh based on publication date series

t

h

0 7 14

gy

2020-12-28 5.25 5.76 6.40

2021-01-04 5.47 6.04 6.76

2021-01-11 �1.31 �1.66 �1.95

2021-01-18 �4.78 �5.17 �5.43

2021-01-25 �7.02 �7.31 �7.48

2021-02-01 �4.99 �5.16 �5.27

R

2020-12-28 1.23 1.26 1.29

2021-01-04 1.24 1.27 1.31

2021-01-11 0.95 0.94 0.92

2021-01-18 0.83 0.81 0.80

2021-01-25 0.76 0.75 0.74

2021-02-01 0.82 0.81 0.81
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revised data at tþ15 to tþ17:Where this is not possible due to lack of data, we set v equal to the last date
upon which data are available (which in figure 5 is 23 February 2021). For publication date series ending
at time t, we require evaluation data from y jð Þ

tþ1 to y
jð Þ

tþ14. As the publication data are just the first release of
the specimen data, this results in the evaluation sample y tþ1ð Þ

tþ1 ,…,y tþ14ð Þ
tþ14 .

Table 3 reports the MAPE for the forecasts of new cases based on the publication date series. Recall
that data on new cases at t become available at tþ1 in the publication date series. Table 4 reports the
corresponding forecasts for the specimen date series. Accuracy is comparable for nowcasts and forecasts
generated from the two series. Once the shocks to data quality over Christmas and the New Year are past
and the initial effect of the January lockdown has worked through, both the 7- and 14-day ahead forecasts
become more accurate.

3.3. Comparison with R published by DHSS and SAGE

The benchmarks for our results are the estimates of the growth rate and R values published jointly by the
Department of Health and Social Care and the Scientific Advisory Group for Emergencies, based on
contributions by different modelling groups using a variety of data sources. Estimates can vary between
different models and are presented as ranges. For example, on 5 February 2021, the published range
estimates for England were 0:7,0:9½ � for Rt and �5%,�2%½ � for the growth rate. Note that due to time
delays, estimates reflect transmission of the disease over the past few weeks.

Figure 6 presents themodel-based estimates ofR for England using the publication and specimen date
series, and for comparison, the empirical estimate ofR based on the RKI estimator (Section 2.3), as well as
the range estimates of R published by SAGE, is obtained from https://www.gov.uk/guidance/the-r-
number-in-the-uk. The model-based estimates of R are quicker to reveal the effect of the January
lockdown on infection transmission than the SAGE estimates.

Table 2. England: gy,tþh and eRetþh based on specimen date series

t

h

�3 0 7 14

gy

2020-12-28 2.02 2.03 2.06 2.10

2021-01-04 4.24 4.37 4.73 5.13

2021-01-11 �2.39 �2.60 �3.01 �3.31

2021-01-18 �3.96 �4.14 �4.46 �4.68

2021-01-25 �4.35 �4.47 �4.70 �4.85

2021-02-01 �4.62 �4.70 �4.85 �4.95

R

2020-12-28 1.08 1.08 1.09 1.09

2021-01-04 1.18 1.19 1.21 1.23

2021-01-11 0.91 0.90 0.89 0.88

2021-01-18 0.85 0.85 0.84 0.83

2021-01-25 0.84 0.84 0.83 0.82

2021-02-01 0.83 0.83 0.82 0.82
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Analysis and results corresponding to the above for the UK, other nations and the regions of England
are presented in an online supplement to this paper.

4. Combining observations by publication date and specimen date

Methods of dealing with preliminary observations and observations at different vintages have long been
employed in econometrics. Our treatment of published and specimen data owes much to this literature,
but there are some novel features, primarily concerned with time-varying slopes and the notion of
balanced growth. The techniques may be generalised to deal with situations where growth may not be
balanced. Similar techniques may be employed when one series is a leading indicator of the other.

The bivariate model has observations on the first variable (published series), which is effectively a
leading indicator, available at time t, whereas the second (specimen series) is only observed after k
periods. Thus, at time t, the observations on lng2t are missing for t�kþ1,…, t. The model is

lng1t ¼ δt þψ1t þ ε1t , t¼ 1,…,T ,

lng2t ¼ δt þδþψ2t þ ε2t ,

ψjt ¼ ϕ jψ j,t�1þηjt , ηjt �NID 0,σ2ηj

� �
:

(11)
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Figure 4. (Colour online) England: forecasts of new cases based on publication date series

120 Harvey, Kattuman and Thamotheram

https://doi.org/10.1017/nie.2021.12 Published online by Cambridge University Press

https://doi.org/10.1017/nie.2021.12


where δ is a constant term; δt will contain a constant that can be (arbitrarily) assigned to series one. As in
the univariate models of the last section, the trend, δt , is an IRW that contains the information needed to
estimate the underlying movements in the growth rate of the target series, g2,y,t . All disturbances,
including ε1t and ε2t , are Gaussian and assumed to be mutually as well as serially independent. Provided
∣ϕ j∣< 1, j¼ 1,2,…, the series are co-integrated of order (2,2), that isCI 2,2ð Þ, with balanced growth. The
difference lng1t � lng2t is a stationary ARMA(2,2) process, but setting ϕ1 ¼ ϕ2 gives anAR(1) plus noise.
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Figure 5. (Colour online) England: forecasts of new cases based on specimen date series

Table 3. England: accuracy (mean absolute percentage error) of forecasts of publication date series of new cases

t

h

1 7 14

2020-12-28 4.8 3.7 28.6

2021-01-04 15.9 47.7 119.1

2021-01-11 20.8 21.7 36.1

2021-01-18 2.5 11.7 9.7

2021-01-25 3.9 17.5 24.8

2021-02-01 1.0 5.1 6.5
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The KF provides the (filtered) state estimates needed to compute the nowcasts for g2,y,T , RT and y2T:
As new observations become available, these nowcasts are updated by the KF. Smoothed estimates of
variables from t¼T�kþ1 to t¼T�1 can be computed if needed. Forecasts of the state beyond timeT
are made by the predictive KF, and corresponding forecasts of Rt and y2t can be formed. Daily effects are
included in the applications and are handled in (11) by adding a ‘seasonal’ component.

A modified version of the model confines the AR(1) component to the first variable, so that

lng1t ¼ δt þψt þ ε1t , t¼ 1,…,T ,

lng2t ¼ δt þδþ ε2t ,

ψt ¼ ϕψt�1þη1t , ηt �NID 0,σ2η

� �
:

(12)

Table 4. England: accuracy (mean absolute percentage error) of forecasts of specimen date series of new cases

t

h

�2 0 7 14

2020-12-28 27.7 25.8 31.4 22.2

2021-01-04 21.3 12.2 47.0 102.1

2021-01-11 3.9 5.9 9.2 16.1

2021-01-18 0.5 3.4 5.7 5.1

2021-01-25 4.2 13.1 6.6 6.0

2021-02-01 5.0 2.8 4.3 6.0
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Figure 6. (Colour online) Estimates of R based on publication and specimen date series vis-a-vis R ranges published by SAGE
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An advantage of this simplification is that the signal–noise ratio in the target can be compared with that
of a univariate model and, if desired, set to a preassigned value.

Nowcasts of the trend in observations are obtained from recursions similar to those in Section 2.4,
except that filtered estimates of δt are replaced by smoothed ones. Thus,

μT�kþℓ∣T ¼ μT�kþℓ�1∣T 1þ gT�kþℓ∣T

� �
¼ μTþℓ�1∣T 1þ expδT�kþℓ∣T

� �
, ℓ¼ 1,2,…,k (13)

with μT∣T�k ¼YT , so

μy,Tþℓ∣T ¼ gTþℓ∣TμTþℓ�1∣T , ℓ¼ 1,2,…,k:

The recursions can be continued to give forecasts. The difference is that when ℓ> k, the δ0T�kþℓ∣Ts are
forecasts, not smoothed estimates.

The bivariate model (12) was fitted to data available on 19th January. The observations start on 4th
October and finish on 18th January for the published series and on 15th January for specimen series. The
Christmas day and New Year specimen observations were treated as missing. The reasons for omitting
the last three specimen dated figures were set out in Section 3. Estimation details can be found in
Appendix B.

The estimates of gy,T and Re
4T for the specimen dated series are �0:040 0:026ð Þ and 0:85 0:10ð Þ,

respectively. These are the same (to two decimal places) as the estimates for the univariate series. Figure 7
shows nowcasts, from 16th to 18th January, and forecasts, from 19th, of the trend in specimen data. The
prediction interval for the observations on lngt is one standard deviation either side of its predicted
trend. (A daily effect was not included in the model.)

5. Conclusions and future directions

This article has demonstrated the way in which our new time series models are able to track the progress
of the COVID-19 epidemic in the UK in early 2021. Themodels are not only simple and transparent, but
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Figure 7. (Colour online) Forecasts of trend in specimen cases made with observations up to 15 January 2021 but using published
data up to 18 January 2021
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are able to adapt quickly to changes in key series. This ability to respond in a timely fashion is illustrated
by the comparison of our estimates of the current R number with those produced by SAGE. The
complexity of the behavioural response to lockdown and the restrictive measures imposed by the Tier
system in different areas in late 2020 makes a formal structural modelling difficult. The roll out of the
vaccine adds yet more complexity. Our models track these changes and project forward to make short-
term forecasts of the situation over the next fewweeks. Models are estimated for the four UK nations and
for the regions within England. All the models have the same form.

We show howmultivariate generalisations of ourmodels can combine information in different series,
some of which are subject to substantial revisions. The approach derives from econometric techniques
for handling different vintages, but there are some novel technical features. The methods are new to
epidemiology. We demonstrate that joint modelling of published and specimen dated observations on
new cases can be accomplished without too much difficulty. The methods may be adapted to use some
time series as leading indicators for others. Further work on using new cases as a leading indicator of
admissions and deaths is currently underway.

Supplementary Materials. To view supplementary material for this article, please visit http://dx.doi.org/10.1017/nie.2021.12.
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Appendix A. Data sources

The data for the UK were obtained from Public Health England’s (PHE) Coronavirus toolkit (https://
coronavirus.data.gov.uk/developers-guide). Archived, or, real-time data are currently not available in
the first release, ‘v1’, of their application programming interface (API). Discussion of access to archived
data is summarised in this GitHub ticket: https://github.com/publichealthengland/coronavirus-
dashboard/issues/241. Towards the latter part of 2020 PHE released an experimental version, ‘v2’, of
their API which has archived data from 12 August 2020 onwards. All archived data are taken from this
endpoint: https://api.coronavirus.data.gov.uk/v2. It is worth restating their disclaimer that this is an
experimental endpoint and ‘subject to active development and may become unstable or unresponsive
without prior notice’.

Appendix B. Estimation for bivariate model for publication and specimen data series

The prediction error variances for specimen and published were 0.0134 and 0.0172, respectively, with a
correlation of 0.077. The slope variances were constrained to be the same, and q was set at 0.015 for the
specimen series. The estimated AR coefficient in the published series was 0.672, and its variance was
0.0056. The irregular variances for specimen and published were 0.0082 and 0.0091, respectively, with a
correlation of �0.190.

Figure 8 shows the residual autocorrelation functions (ACFs) and histograms. The diagnostic
statistics were5 as follows for specimen: r 1ð Þ¼ 0:20, Q 18ð Þ¼ 25:41, BS¼ 9:87 and H¼ 3:95, and for
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Figure 8. (Colour online) Residuals from bivariate model fitted to data up to 19 January 2021

5r(1) is the autocorrelation at lag one, Q(P) is Box–Ljung statistic with P autocorrelations, BS is the Bowman–Shenton
normality statistic and H is a heteroscedasticity statistic constructed as the ratio of the sum of squares in the last third of the
sample to the sum of squares in the first third.
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published: r 1ð Þ¼�0:07, Q 18ð Þ¼ 20:21, BS¼ 0:38 and H¼ 0:90. There is some remaining serial
correlation, but not a great deal. Fitting an AR(1) to the specimen series as well as to the published
series may reduce r 1ð Þ: The greater stability in the published series is reflected in the smaller BS
normality test statistic.

The output for the state vector shows that the slopes on 18th January are almost identical for the two
series; for specimen data, it is�0:0506 0:0260ð Þ, and for published, it is�0:0502 0:0261ð Þ. The difference
arises because, although STAMP is able to constrain the variances of the slopes to be the same, it is
currently unable to set the deterministic parts of the slope to be equal.

Cite this article: Harvey, A., Kattuman, P. and Thamotheram, C. (2021), ‘Tracking the mutant: Forecasting and
nowcasting COVID-19 in the UK in 2021’, National Institute Economic Review, 256, pp. 110–126. https://doi.org/10.1017/
nie.2021.12
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