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Hierarchical models are often considered to measure latent concepts defining nested sets of manifest
variables. Therefore, by supposing a hierarchical relationship among manifest variables, the general latent
concept can be represented by a tree structure where each internal node represents a specific order of
abstraction for the latent concept measured. In this paper, we propose a new latent factor model called
second-order disjoint factor analysis in order to model an unknown hierarchical structure of the manifest
variables with two orders. This is a second-order factor analysis, which—respect to the second-order
confirmatory factor analysis—is exploratory, nested and estimated simultaneously bymaximum likelihood
method. Each subset of manifest variables is modeled to be internally consistent and reliable, that is,
manifest variables related to a factor measure “consistently” a unique theoretical construct. This feature
implies that manifest variables are positively correlated with the related factor and, therefore, the associated
factor loadings are constrained to be nonnegative. A cyclic block coordinate descent algorithm is proposed
to maximize the likelihood. We present a simulation study that investigates the ability to get reliable
factors. Furthermore, the new model is applied to identify the underlying factors of well-being showing
the characteristics of the new methodology. A final discussion completes the paper.
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1. Introduction

Factor analysis (FA, Anderson &Rubin, 1956; Horst, 1965) is one of the most used models to
reconstruct manifest variables (MVs) through a set of latent variables. However, when the studied
latent concepts present a hierarchical structure, FA is not an appropriate method because it is not
able to model the hierarchical structure of the concepts; therefore, a model with a hierarchical
form is required. In psychometric studies, an epitome is the big five model, which is used to
measure the big five personality traits of individuals. It is worth mentioning that several studies
have stressed the hierarchical relations among such traits running from the more abstract to more
specific (Cattell, 1947; de Raad & Mlačić, 1970; Digman, 2015; Eysenck, 1990). Most typically,
hierarchies are studied in twoways: either following a bottom-up approach or a top-down approach
(Goldberg, 2006). In this paper, we will be focusing on the bottom-up approach, starting from the
MVs up to a general factor.

In multidimensional data analysis, two main classes of models were developed to analyze
the hierarchical structures of a multidimensional phenomenon: the higher-order factor models
(Cattell, 1948; Thompson, 1978) and the hierarchical factor models (Holzinger & Swineford,
1937). On the one hand, higher-order factor analysis provides a different hierarchical prospective
of the data (Thompson, 2004), where factors are supposedly correlated. A frequent procedure to
obtain higher-order factors consists of the sequential application of exploratory factor analysis
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(EFA) followed by an oblique rotationmethod. After performing EFA, an oblique rotationmethod
is applied in order to extract the simple structure (Thurstone, 1947) and the first-order factors.
This sequential application continues to operate on the correlation matrix of the factors from the
first-order upwards, until a single factor or an uncorrelated set of factors are identified (Gorsuch,
1983).Although the oblique rotation after EFA is used to identify the simple structure,Vichi (2017)
showed that this sequential approach may fail to find the simple structure, hence underlying that
a more specific methodology is necessary.

On the other hand, hierarchical factormodels are characterized by a single order of orthogonal
hierarchical factors usually obtained by applying the Schmid–Leiman transformation (Schmid
& Leiman, 1957) to the corresponding higher-order solutions. Therefore, higher-order models
identify the effect of the general factor on MVs only through the higher-order factors, whereas
the hierarchical models also identify a direct effect of the general factor on the MVs. However,
the link between the higher-order and hierarchical factor models was eventually established by
Yung et al. (1999) determining the conditions for their equivalence.

It is worth remarking that many hierarchical extensions of FAwere already proposed through-
out the years (Le Dien & Pages, 2003; Schmid & Leiman, 1957; Thompson, 1951; Wherry, 1959;
1975; 1984). However, all of these hierarchical extensions were developed as sequential analysis,
at times not even guaranteeing to obtain a simple structure, i.e., the partition in H classes of
variables where common relations in each class are represented by a single factor.

A hierarchical model which may consider a simple structure of the MVs is the Hierarchical
Confirmatory Factor Analysis (HCFA, Holzinger, 1944; Jöreskog, 1966; 1969; 1978; 1979). This
latter is often used to measure general latent concepts when the number of factors and the most
relevant relations between MVs and factors are known. However, such knowledge may also
represent a limitation. Firstly, because the researcher might not have the a priori information
concerning the relations between the different levels of factors and between variables and factors,
or, secondly, because the theory might turn out to be erroneous in some parts or at least in its
empirical application.

The researcher can overcome these issues accepting that each variable is related with a latent
construct only, without imposing what the relations between MVs and factors are. The result is to
obtain an exploratory simple structure model (SSM) where the relations betweenMVs and factors
are determined by the data. It is worth recalling that many researchers have investigated factorial
methods to obtain a simple structure. For instance, Hirose and Yamamoto (2014) developed a
FA with non-convex sparse penalty which can provide a simple structure. Vichi (2017) proposed
a model, named disjoint factor analysis (DFA), to identify the best SSM for the data, wherein
the maximum likelihood estimation allows to make inference on the number of factors, on the
relations between MVs and factors (i.e., loadings), and to assess the validity of the SSM for the
observed data. Adachi and Trendafilov (2018) also proposed a matrix-based procedure for sparse
FA such that each variable loads only on one common factor by obtaining a simple structure.

In this paper, we extend DFA, which is not appropriate to identify the hierarchical structure
of factors since it assumes that factors are orthogonal, that is, factors are not mutually related
and do not share common information that could be summarized by the general factor. Therefore,
we release the orthogonal constraint and assume that the correlation structure in the data has an
unknown second-order hierarchical form, where the first order indicates a reduced set of multidi-
mensional concepts described by disjoint subsets of MVs, while the second order, denoted root
or general level, represents the general factor. Gorsuch (1983) emphasized that the interpretation
of higher-order factor models should be based on the MVs, in order to avoid interpretations of
interpretations; this can be certainly achieved when disjoint classes of variables can be identified
with each class represented by a factor.

Finally, it is crucial to remark that the sequential application of theEFA followedby an oblique
rotationmethod cannot efficiently identify the block correlation structure, whereas a simultaneous

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 15:26:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


CARLO CAVICCHIA AND MAURIZIO VICHI 291

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1.
(50 × 50) Correlation matrix with a block diagonal structure in four blocks

and exploratory model can. To verify this, we generated a dataset of 500 observations according
to the block diagonal model 16 corresponding to second-order factor analysis. Correlations within
blocks are on average around 0.85, while correlations between blocks are around 0.35 (e.g., the
heatmap in Fig. 1). Four blocks of variables were considered: (V1−V14), (V15−V27), (V28−V35)
and (V36 − V50). Each variable was assigned to the factor with the highest loading resulting
from the sequential application of the EFA followed by an oblique rotation method. To assess
the similarities between two partitions, induced by disjoint blocks of variables, we computed
the adjusted Rand index (ARI, Hubert & Arabie, 1985) between the generated blocks and those
identified by the methodology. The ARI is the corrected-for-chance version of the Rand index
(Rand, 1971). This index has zero expected value in the case the identified partition is a random
one, and it is bounded above by 1 in the case of a perfect agreement between the identified and
the generated partitions. The ARI between the partition found by EFA followed by an oblique
rotation method and the generated one resulted equal to 0.78; our methodology, applied to the
same dataset, was able to perfectly detect the generated blocks (i.e., ARI = 1). To extend this
result to a reasonable number of examples, we generated 200 samples with the same four-block
structure. The ARI between the EFA followed by an oblique rotation method and the generated
data resulted equal to 1 for 115 times (57, 5%), whereas our methodology perfectly detected the
generated structure in 144 cases (72%). So far, our proposed model detected the true structure in
sensibly more times than EFA followed by an oblique rotation method, and the averages of ARI
resulted equal to 0.89 for our methodology and 0.45 for EFA followed by an oblique rotation
method.

The paper is organized as follows. In Sect. 2, we propose the Second-Order Factor Analysis
model. Section 3 includes an overview of disjoint models. Section 4 introduces the nonnegative
constraints of the factors necessary to specify consistent latent variables. A simulation study
is considered in Sect. 5. Section 6 shows an application about well-being. A final discussion
completes the paper in Sect. 7.

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 15:26:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


292 PSYCHOMETRIKA

2. Second-order factor analysis

Let x be the (J×1)multivariate random variable withmean vectorμx = [μ1, . . . ,μJ ]′ = 0J
without loss of generality, and J -dimensional variance–covariance matrix �x. Second-Order
Factor Analysis (2O-FA) is modeled as a new factor model that considers two typologies of latent
unknown constructs: (H ≤ J ) first-order factors and a single (nested) general factor identified by
the two simultaneous equations

x = Ay + w (1)

y = cg + u (2)

where A is the (J × H ) matrix of unknown first-order factors loadings, y is the non-observable
(H × 1) random vector denoting the first-order factor scores, and w is a non-observable (J × 1)
random vector of errors. It is assumed that y ∼ NH (0,�y), where �y is the correlation matrix of
the first-order factors, and w ∼ NJ (0,�x), where cov(w) = �x is the J -dimensional diagonal
positive definite variance–covariance matrix of the error of model (1) and cov(w, y) = 0.

Furthermore, g is a non-observable random variable normally distributed with mean 0 and
variance cov(g) = 1, and c is the (H ×1) vector of unknown general factor loadings. In addition,
u is a non-observable (H × 1) random vector of errors. It is assumed that u ∼ NH (0,�y),
where cov(u) = �y is the H -dimensional diagonal positive definite variance–covariance matrix
of the error of model (2). In addition, it is assumed that errors in the two models are uncorrelated
cov(w,u) = 0; and errors and factors are uncorrelated, i.e., cov(u, g) = 0.

Model (1) identifies H specific theoretical constructs by means of a common factor model
that identifies common information with H factors related to the MVs, while model (2) detects
the general latent construct by means of a one-factor model that identifies common information
with one general factor related to the H first-order factors.

Given these assumptions and including (2) into (1), the 2O-FA model for centered data is
defined

x = A(cg + u) + w. (3)

It can be derived that x ∼ NJ (0J ,�x), where the variance–covariance matrix �x is

�x = cov(Acg + Au + w)

= Ac cov(g)c′A′ + A cov(u)A′ + cov(w)

= Acc′A′ + A�yA′ + �x

= A�yA′ + �x (4)

with

�y = cc′ + �y. (5)

Matrix �y is a correlation matrix since first-order factors are standardized. Similarly to
exploratory factor analysis, 2O-FA (3) does not imply any a priori knowledge of relations between
MVs and factors. Although many hierarchical extensions of FA are present into specialized lit-
erature (e.g., Le Dien & Pages, 2003; Schmid & Leiman, 1957; Thompson 1951; Wherry, 1959;
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1975; 1984), the novelty of the proposal consists of the covariance structure given by the model
(4) and (5) and the simultaneous estimation of the parameters.

Let us consider a random sample of n > J multivariate observations xi = [xi1, . . . , xi J ]′,
i = 1, . . . , n drawn of x, with mean vector x̄, and J -dimensional variance–covariance matrix
Sx = 1

n

∑n
i=1 xix

′
i , the model (3) in matrix form corresponds to

X = gc′A′ + E (6)

where X = [x1, . . . , xn]′ is the (n × J ) matrix containing the n multivariate observations, g =
[g1, . . . , gn]′ is the non-observable (n×1) vector denoting the second-order (general) factor scores
andE = UA′ +W. In detail,W = [w1, . . . ,wn]′ with dimensions (n× J ) andU = [u1, . . . ,un]′
with dimensions (n× H) are matrices containing the non-observable errors related to (1) and (2),
respectively. The reduced log-likelihood (i.e., conditional on μx equal to the sample mean) is

L(A, c,�x,�y) = −nJ

2
log(2π) − n

2
{log |A(cc′ + �y)A′ + �x|

+Tr[(A(cc′ + �y)A′ + �x)
−1Sx]}. (7)

3. Disjoint Models

Disjoint orthogonal factor analysis (DFA, Vichi, 2017) assumes that observations can be
reconstructed by a non-observable (H × 1) random vector y denoting a reduced set of (H ≤ J )
common factors. DFA for centered data can be expressed via the following model

x = BVy + w (8)

with a covariance structure equal to (4), considering the loading matrixA restricted to the product

A = BV (9)

where V = [v jh] is a (J × H ) binary and row stochastic matrix identifying a partition of MVs
into H subsets corresponding to H factors; the H subsets of MVs are denoted as Ch , with
h = 1, . . . , H . If the j th MV belongs to the hth subset then v jh = 1, otherwise, v jh = 0;
whereas, B = diag(b1, . . . , bJ ) is a (J × J ) weighting diagonal matrix such that b2j > 0. If it

is allowed b2j ≥ 0, when b2j = 0 the DFA admits a model selection feature, that is, a MV is
assigned to a subset with a loading equal to zero. In this case, the MV j is discarded from the
model. Despite the fact that DFA assumes orthogonal factors, that is, �y = IH , in this paper
this condition is relaxed in order to allow a hierarchical structure of the data. Note that diag(·)
produces a diagonal matrix of a vector.

Therefore, formally, DFA corresponds to (1) with covariance structure given by (4) once the
loading matrixA is defined according to (9). The model is defined under the following constraints

V = [v jh ∈ {0, 1} : j = 1, . . . , J, h = 1, . . . , H ] (10)

V1H = 1J i.e.
H∑

h=1

v jh = 1 j = 1, . . . , J (11)
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B = diag(b1, . . . , bJ ) (12)

V′BBV = diag(b2·1, . . . , b2·H ) with b2·h =
∑

j∈Ch

b2j . (13)

In detail, if�y = IH (disjoint orthogonal factor analysis) the variance–covariance matrix�x
is block diagonal:

�x = blkdiag(�11, . . . ,�hh, . . . ,�HH ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 0 . . . . . . . . . 0
0 �22 0 . . . . . . 0
... 0

. . . 0 . . . 0
...

... 0 �hh 0 0
...

...
... 0

. . . 0
0 0 0 0 0 �HH

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

Each block is the variance–covariance matrix �hh of the MVs relating to the factor h,

�hh = Bh(1nh1
′
nh )Bh + �h = bhb′

h + �h (15)

where Bh = diag(bh), bh = [b1h, . . . , bnhh]′ and �h = diag(�h), �h = [�1h, . . . ,�nhh]′.
Note that nh is the number of MVs related to the latent factor h. Therefore, DFA assumes that a
relevant correlation among MVs related to the same latent factor is observed, while a negligible
correlation between MVs related to different latent factors is detected.

If�y has non-diagonal elements different from zero (disjoint non-orthogonal factor analysis),
the block diagonal variance–covariance disappears and �x has the form

�x =

⎡

⎢
⎢
⎢
⎣

�11 �12 . . . �1H
�21 �22 . . . �2H
...

... �hh
...

�H1 �H2 . . . �HH

⎤

⎥
⎥
⎥
⎦

(16)

where the generic matrix correlation between two subsets of MVs is constrained in

�hk = chckBh(1nh1
′
nk )Bk = chckbhb′

k (17)

and chck expresses the correlation between factor h and factor k.
It is worth noticing that in order to identify two distinct factors h and k with two associated

disjoint subsets of MVs defining matrices �hh and �kk , both a high correlation within these
matrices and a lower (or equal to, if and only if ch and ck are both equal to 1) correlation within
�hk need to be observed. In fact, if a high correlation is also observed in �hk , then a single factor
in the data is present, since the two subsets of MVs are not distinct and actually form a single
subset in which MVs are all highly correlated. Thus, (17) guarantees that correlations in �hk are
lower than correlations within �hh and �kk .
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Figure 2.
Example of second-order disjoint factor model

3.1. Second-Order Disjoint Factor Analysis

When in the 2O-FA some a priori substantial knowledge is incorporated in the form of
restrictions on the loading matrix, this usually improves the description of the latent factors and
leads to a parsimonious model with a simple loading matrix structure. Therefore, if in 2O-FA a
SSM is assumed observed for the data, this means that the factor loading matrix has the form
A = BV (Eq. 9) and 2O-FA becomes Second-Order Disjoint Factor Analysis (2O-DFA, Fig. 2).

Once the loading matrix A is defined according to (9), 2O-DFA is defined by (3), or alterna-
tively in matrix form by (6). It is worth observing that the maximization of (7) corresponds to the
minimization of

D(B,V, c,�x,�y) = log |BV(cc′ + �y)V′B + �x| + Tr{[BV(cc′ + �y)V′B + �x]−1Sx}.
(18)

3.2. Second-Order Disjoint FA algorithm

Given H , a cyclic block coordinate descent algorithm for the estimation of the model can be
described by five steps which are sequentially repeated until a stopping rule is satisfied.

Step 0 [Initialization] A random partition V̂ is generated from a multinomial distribution in
H categories each with equal probability, where categories are not empty. Matrices
�̂x = diag(Sx), �̂y = diag(ψ̂y1, . . . , ψ̂yH ), where each value ψ̂yh , h = 1, . . . , H is
generated from an uniform distribution U (0, 1), and vector ĉ = [̂c1, . . . , ĉH ]′, where
each value ĉh , h = 1, . . . , H is generated from an uniform distribution U (0, 1).

Step 1 Given V̂ = [̂v·1, . . . , v̂·H ], ĉ, �̂x and �̂y, the discrepancy function D(B, V̂, ĉ, �̂x, �̂y)

(18) is minimized with respect to Bh = diag(bh) by

b̂h = �̂
1
2
xhm1h(λ1h − 1)

1
2 h = 1, . . . , H (19)

where Sxh and �̂xh are the variance–covariance matrix and the current estimation of the
diagonal error variance–covariance matrix of MVs identified by v̂·h , respectively. λ1h

is the largest eigenvalue of �̂
− 1

2
xh Sxh�̂

− 1
2

xh and m1h is the associated eigenvector.
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Step 2 Given Â = B̂V̂, ĉ and �̂y theminimization of the discrepancy function (18) with respect
to �x is given by

�̂x = diag(Sx − Â(̂ĉc′ + �̂y)Â′). (20)

Step 3 Given Â = B̂V̂, �̂x and �̂y the minimization of the discrepancy function (18) with
respect to c is given by

ĉ = �̂
1
2
y p1(q1 − 1)

1
2 (21)

where q1 is the largest eigenvalue and p1 is the associated eigenvector of �̂
− 1

2
y (Â+(Sx−

�̂x)Â′+)�̂
− 1

2
y , and A+ denotes the Moore–Penrose inverse of a matrix A (i.e., A+ =

(A′A)−1A′).

Step 4 Given Â = B̂V̂, ĉ and �̂x theminimization of the discrepancy function (18) with respect
to �y is given by

�̂y = diag(IH − ĉ̂c′) (22)

where IH is the identity matrix of order H .

Step 5 Partition V̂ = [̂v·1, . . . , v̂·H ] is obtained row by row by assigning each j th MV to the
hth subset that most decreases the discrepancy function (18). Thus, formally

⎧
⎨

⎩

v̂ jh = 1 if h = argmin
h′=1,...,H

D(B̂, [̂v1·, . . . , v̂ j · = ih′·, . . . , v̂J ·]′, ĉ, �̂x, �̂y)

v̂ jh = 0 otherwise
(23)

where ih· is the hth column of the identity matrix of order H . Note that the update of
each row of V induces the update of the loadings of the two subsets of MVs that are
eventually changed. This means that the j th MV is assigned to the hth subset if Eq.
(18) is maximized by v̂ jh = 1. This step considers a constraint of non-emptiness for
each column: thus, the constraints guarantee that each column of V̂ is not empty and
the solution is feasible. In practice, the assignment of a MV is not allowed if this makes
a column of V̂ empty.

In order to better follow the different iterations, the algorithm is presented as follows:

Step 0 V(0), �(0)
x and �

(0)
y randomly generated as described in the initialization step.

For t = 0, . . . , T − 1, where T is the maximum number of iterations:

Step 1 B(t+1) as in themaximum likelihoodFA, according toEq. (19); andA(t+1) = B(t+1)V(t).
Step 2 �

(t+1)
x as we obtain the unique variances, according to Eq. (20).

Step 3 c(t+1) as in the maximum likelihood FA, according to (21).
Step 4 �

(t+1)
y as we obtain the unique variances, according to Eq. (22).

Step 5 V(t+1) according to Eq. (23).
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Step 1, 2, 3, 4 and 5 are therefore alternated repeatedly, and they form a coordinate descent
algorithm where, at each iteration (t), the discrepancy function decreases or, at least, it does not
increase (Zangwill, 1969). The algorithm continues to iterate until the reduction of the discrepancy
is larger than an arbitrary small positive constant and t < T (in our experiments T was set equal
to 100), otherwise the algorithm stops and is considered to have converged to a solution that is not
guaranteed to be a global minimum. To avoid the well-known sensitivity of the coordinate descent
algorithms to the starting values and to increase the chance of finding the global minimum, the
algorithm should be run several times starting from different initial estimates of V and retaining
the best solution. The algorithm generally stops after a few iterations (in our experiments and
simulation study less than 15). In order to assess the complexity of 2O-DFA, it is worth recalling
that the variance–covariancematrix�x has

J (J+1)
2 elements to be estimated. 2O-DFA reconstructs

this matrix in terms of 2J + H unknown free parameters in A = BV, �x and c. In detail, we
have to consider J H parameters in A, J parameters in �x and

H(H−1)
2 parameters in �y, which

is in turn estimated in terms of H parameters in c. Yet, in order to obtain a SSM, it is necessary to
include J (H −1) constraints inA (i.e., only one loading per row different from zero). Finally, the
effective number of unknown free parameters in 2O-DFA is obtained, and the degrees of freedom
are

ν = J (J + 1)

2
− J H − H − J + J (H − 1) = J (J + 1)

2
− (2J + H). (24)

There are many methods to estimate the factor scores that were proposed throughout the
years. For instance, we consider the weighted least square estimation of E(X|Y)

Ŷ = X�̂
−1
x Â(Â′�̂−1

x Â)−1 (25)

as proposed by Bartlett (1937), or simply the Thompson (1934) regression estimator

Ŷ = X(�̂
−1
x Â). (26)

4. Second-Order Nonnegative Disjoint Factor Analysis

2O-DFA can be considered to build statistically estimated (i.e., nonnormative) composite
indicators (CIs, OECD, 2008) for multidimensional phenomena, when the first-order factors rep-
resent specific CIs (one per subset of MVs) and the second-order factor is the general CI. This
approach guarantees to comply with certain good properties on which a CI should be based
(e.g., model-based with a two-order structure, scale-invariance, uni-dimensionality and reliabil-
ity). However, the presence of negative loadings can be a limitation since positive relationships
amongMVsmight be compensated by negative ones. First-order loadings show the importance of
eachMV into the definition of the related first-order factor, while second-order loadings represent
the importance of the first-order factors into the definition of the second-order factor; thus, the
researcher may constrain the loadings to be positive and consistent. If some or all MVs increase,
then also the corresponding first-order factor consistently increases. The same holds for the rela-
tionship between the first-order factors and the second-order factor. In order to ensure that loadings
remain a measure of importance, the aggregation method should not allow compensability (Greco
et al., 2019; Munda & Nardo, 2009; OECD, 2008). We therefore propose a constrained version
of 2O-DFA called Second-Order Nonnegative Disjoint Factor Analysis (2ON-DFA).
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Let us recall that the discrepancy function (18) is minimized with respect to Bh = diag(bh)

by (19), and that λ1h and m1h minimize ||�̂− 1
2

xh Sx�̂
− 1

2
xh − λ1hm1hm′

1h ||2, or equivalently

||Xh�̂
− 1

2
xh − √

λ1hyhm′
1h ||2 (27)

where Xh is the data matrix formed by MVs identified by v·h , and yh is the factor score vector.
The problem in (27) can be solved by an alternating least-squares algorithm that alternates the
solution of two regression problems. Given m̂1h , compute ŷh by

ŷh = Xh�̂
− 1

2
xh m̂1h(m̂′

1hm̂1h)
−1. (28)

Given ŷh , compute m̂1h by

m̂1h = �̂
− 1

2
xh x′

h ŷh (̂y
′
h ŷh)

−1. (29)

At each iteration of Step 1, 2, 3, 4 and 5, the discrepancy function (18) decreases or at least
does not increase. The algorithm stops when the discrepancy function (18) decreases less than
a positive arbitrary constant. It is now required that the vector m1h gets filled by nonnegative
elements, and, consequently, the algorithm based on (18), (19), (20), (21), (22) and (23) has to be
modified to include nonnegative constraints onm1h . The solution can be found by the nonnegative
least-squares algorithm (Lawson &Hanson, 1974, pp. 168–169), which is an active set algorithm.
The H inequality constraints are active if the regression coefficients m1h in the loss function
(27) are negative (or zero) when unconstrained estimated, otherwise constraints are passive. The
nonnegative solution of (18) with respect to m1h will simply be the unconstrained least-squares
solution using only theMVs corresponding to the passive set, imposing the regression coefficients
of the active set to zero. A similar step is used to constrain ĉ to be nonnegative.

5. Simulation study

In this section, a simulation study was implemented in order to assess the classification of
MVs and evaluate the reliability of the first-order factors. Moreover, 2ON-DFA was compared
with respect to EFA followed by rotations. Each simulated random sample of n > J multivariate
observations xi (i = 1, . . . , n) is generated according to X = Xt + E, where Xt ∼ NJ (0,Rx)

and E ∼ NJ (0, aIJ ), where a allows to set an error. The correlation structure Rx is modeled as
follows:

Rx = β(VV′ − IJ ) + ζ(1J1′
J − VV′) + IJ (30)

where β = 0.8 + 0.05δ, ζ = 0.35 + 0.05δ, with δ ∼ N (0, 1) and β > ζ . In detail, β represents
the correlation among MVs related to the same first-order factor (i.e., the elements in Eq. 15) and
ζ represents the correlation among MVs relate to different first-order factors (i.e., the elements
in Eq. 17).

In particular, the following scenarios were considered in the simulation study:

• number of MVs, J = 20, 50;
• number of the first-order factors, H = 5, 10;
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• different error levels, a = 0.33, 0.66, 0.85, 1, 1.33.

500 datasets containing 200 observations were generated for each setting and the data were
standardized. In addition, a different random membership matrix V, representing a random par-
tition of J MVs in H nonempty subsets, was generated for each dataset. In detail, the matrix
V = [v1, . . . , vJ ]′ was generated according to v j ∼ Multinomial(H : ph = 1

H , h =
1, . . . , H), ∀ j = 1, . . . , H . The algorithm was run from 30 random starting points to incre-
ment the possibility of obtaining the optimal solution, although it was observed that a few random
starting points were generally enough. Themodels’ performance was analyzed using ARI (Hubert
& Arabie, 1985), comparing the simple structure of the MVs generated by the true matrix V with
the V̂ estimated by the 2ON-DFA (with H first-order factors). In fact, ARI ranges between 0 and
1, where 1 implies that the estimated partition V̂ is identical to the true V.

We therefore counted the percentage of times that ARI is equal to 1 and the average of ARI
in the 500 experiments. The model was also evaluated with Bayesian Information Criterion (BIC,
Schwarz, 1978), Akaike’s Information Criterion (AIC, Akaike, 1973) and Root Mean Square of
Residuals (RMSR, Hooper et al., 2008) for the correlation matrix.

In Fig. 3, we showed examples of generated correlation matrices with different level of errors
in order to allow the reader to visually appreciate the meaning of low, medium and high errors.
As we can see, in Fig. 3a, b, f, g the correlation matrices were generated with low error and the
block diagonal structure is clearly visible, whereas in Fig. 3c, d, h, i the correlation matrices were
generated withmedium error and the block diagonal structure is less clear, but still visible. Finally,
in Fig. 3e, j the structure is entirely invisible.

Tables 1 and 2 report the performances of the model values of the following indices: the
average of ARI, BIC, AIC and RMSR on the 500 generated datasets and the percentage of ARI
equal to 1. On average, in Table 1, ARI decreases from 1 to 0.85 when the error increases, and the
model detects the real correlation structure most of the times for a equal to 0.33, 0.66, 0.85, 1.
Inferior performances in terms of % of ARI equal to 1 for a = 1.33 are recorded. Nevertheless,
the performances of the model in scenario n = 200, J = 20, H = 5 are appreciable even when
the block diagonal structure tends to be less visible. RMSR always indicates a good fit of the
model (i.e., values always lower than or equal to 0.08). In Table 2, ARI’s mean values are always
greater than 0.78. Thus, the performances of the model in scenario n = 200, J = 50, H = 10
are noticeable considering the average of ARI as figure of merit, even when the model identifies
the true partition only in 20% of all cases. RMSR never assumes a value higher than 0.09. Even if
BIC and AIC, as expected, show a decreasing performance of 2O-DFA as the error increases, the
slope of this decrement tends to reduce when the error increases. Additionally, BIC and AIC of
the optimal solution of 2O-DFA (BICopt and AICopt, respectively) were compared with BIC and
AIC of a random block diagonal structure of model (6) (BICrand and AICrand, respectively), i.e.,
with an initial random solution of model (6). This comparison was included because individual
AIC and BIC values are not interpretable as they contain arbitrary constants and are much affected
by sample size. A comparison was therefore imperative (Burnham & Anderson, 2002). Tables 1
and 2 show that BICrand and AICrand are approximately between 5.4 and 1.21 times worse than
BICopt and AICopt in all scenarios, showing how the optimal solution of 2O-DFA is different from
a random solution as the error increases.

The simulation study additionally examined the ability of the model to build reliable first-
order factors via Cronbach’s α (Cronbach, 1951), which can be seen as the expected correlation
between all pairs of MVs used to specify the concept (Chaouachi & Rached, 2012; Fornell &
Larcker, 1981; Kline, 2000). Cronbach’s α ranges between negative infinity and 1. Tables 3 and
4 show evaluations of internal consistency of the first-order factors estimated by the model.

The results in Table 3 could lead the reader to think that the proposed model does not provide
reliable first-order factors when a is equal to 1 and 1.33; but looking at Table 4, we can state
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Table 1.
Simulated datasets with n = 200, J = 20, H = 5 and different levels of error

Criterion a = 0.33 a = 0.66 a = 0.85 a = 1 a = 1.33

ARI 1 1 0.99 0.97 0.85
% ARI 100 100 92 72 26
BIC 1131 2155 2402 2523 2660
AIC 1314 2038 2285 2406 2543
BICrand/BICopt 5.1 2.11 1.64 1.44 1.21
AICrand/AICopt 5.4 2.17 1.67 1.45 1.22
RMSR 0.02 0.03 0.04 0.05 0.08

a sets the level of error; rand and opt represent the solutions of a random block diagonal structure model and
2O-DFA, respectively.

Table 2.
Simulated datasets with n = 200, J = 50, H = 10 and different levels of error

Criterion a = 0.33 a = 0.66 a = 0.85 a = 1 a = 1.33

ARI 1 0.99 0.98 0.96 0.78
% ARI 100 84 55 38 20
BIC 7140 8990 9621 10010 10327
AIC 6854 8703 9334 9723 10040
BICrand/BICopt 4.6 2.22 1.70 1.49 1.26
AICrand/AICopt 4.7 2.27 1.73 1.50 1.27
RMSR 0.02 0.04 0.04 0.06 0.09

a sets the level of error; rand and opt represent the solutions of a random block diagonal structure model and
2O-DFA, respectively.

Table 3.
Percentage of times Cronbach’s alpha (computed for each subset of MVs) > 0.9 with different scenario and different
levels of error

Scenario a = 0.33 a = 0.66 a = 0.85 a = 1 a = 1.33

n = 200, J = 20, H = 5 90.5 70.9 14.4 7.3 6.8
n = 200, J = 50, H = 10 85.3 84.2 33 28.2 21.7

Table 4.
Percentage of times Cronbach’s alpha (computed for each subset of MVs) < 0.7 with different scenario and different
levels of error

Scenario a = 0.33 a = 0.66 a = 0.85 a = 1 a = 1.33

n = 200, J = 20, H = 5 0 0 9.2 11.1 14.2
n = 200, J = 50, H = 10 0.4 0.5 6.2 8.3 10.8
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Table 5.
Comparison among methods to detect the SSM on 500 datasets

Methods a = 0.33 a = 0.66 a = 0.85 a = 1 a = 1.33

Scenario n = 200, J = 20, H = 5
Second-Order DFA 1 (100) 1 (100) 0.99 (95) 0.96 (69) 0.88 (31)
EFA + Varimax 1 (100) 0.99 (98) 0.95 (73) 0.91 (51) 0.69 (10)
EFA + Promax 1 (100) 0.99 (98) 0.95 (75) 0.90 (48) 0.67 (8)
EFA + Quartimin 1 (100) 0.99 (98) 0.95 (77) 0.92 (53) 0.69 (11)
EFA + Geomin 1 (100) 0.99 (98) 0.95 (76) 0.91 (53) 0.70 (10)
SSFA 1 (100) 0.95 (59) 0.76 (5) 0.59 (0) 0.35 (0)
FANC 1 (100) 1 (100) 0.96 (75) 0.92 (50) 0.85 (28)

Scenario n = 200, J = 50, H = 10
Second-Order DFA 1 (100) 0.99 (89) 0.99 (61) 0.95 (32) 0.79 (25)
EFA + Varimax 0.99 (99) 0.98 (65) 0.95 (24) 0.89 (3) 0.64 (0)
EFA + Promax 0.99 (99) 0.98 (70) 0.95 (29) 0.88 (4) 0.61 (0)
EFA + Quartimin 0.99 (99) 0.98 (72) 0.97 (53) 0.89 (21) 0.65 (6)
EFA + Geomin 0.99 (99) 0.99 (73) 0.97 (54) 0.90 (23) 0.66 (6)
SSFA 0.43 (0) 0.40 (0) 0.39 (0) 0.33 (0) 0.18 (0)
FANC 0.22 (0) 0.22 (0) 0.21 (0) 0.21 (0) 0.18 (0)

The results indicates the average of ARI (% of ARI equal to 1).

that Cronbach’s α, computed for each subset of MVs, is always higher than 0.70 in settings with
a = 0.33 and a = 0.66 for the scenario n = 200, J = 20, H = 5 and almost always for the
scenario n = 200, J = 50, H = 10. Overall, most of the time the method is able to get reliable
first-order factors, at least 85.8%.

We also conducted an additional study to assess the performance of the 2ON-DFA in detecting
a SSM, with respect to EFA followed by rotation, where each variable was assigned to the factor
with the highest loading (in absolute value) resulting from EFA followed by a rotation method.
For the rotation, we considered the four widely used methods: Varimax, Promax, Quartimin and
Geomin (Abdi, 2003; Browne, 2001). Moreover, 2O-DFA’s performance was compared with
the results obtained by SSFA (Adachi & Trendafilov, 2018) and FANC (Hirose & Yamamoto,
2014). SSFA was performed imposing the number of common factors equal to H , a convergence
tolerance equal to 105 and 50 different initial solutions for the loading matrix. Let us recall that
FANC is formulated as follows:

min
A,�y,�x

l(A,�y,�x) + ρPγ (A) (31)

where Pγ (A) penalizesA to have nonzero elements, with γ and ρ being tuning parameters. Since
finding the tuning parameters that provide sparsest loading matrices was exceedingly onerous,
FANC was performed imposing γ = 1.01 and with ρ selected according to BIC in order to have
a SSM to compare with the other methods.

The parameters considered in this Section were reused also for this comparison: 500 datasets,
n = 200, J = 20, 50, H = 5, 10 and a = 0.33, 0.66, 0.85, 1, 1.33. In Table 5, it is possible to
see that 2ON-DFA outperforms the other methods considering both the average of ARI between
the generated partition of variables and the partition predicted by the methodologies and the
percentage of ARI equal to 1 as figures of merit.
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It is evident that our proposal is able to detect the SSM better than both the sequential
application of EFA followed by rotation, SSFA and FANC, while also simultaneously estimating
the correlation between the first-order factors.

6. Application

Our proposal was applied on the OECD data on Better Life Index 2015, 1 an initiative started
in 2011 which focused on statistics that capture important aspects of life and that characterize the
quality of people’s lives. The dataset is formed by 34 countries and 24 variables which reflect two
pillars that OECD identified as essential to well-being:

Material Living Conditions (MLC) is specified by three dimensions (characterized by their
own sub-dimensions): Housing (Dwellings without basic facilities, Housing expenditure and
Rooms per person), Income (Household net adjusted disposable income andHousehold net finan-
cial wealth) and Jobs (Employment rate, Job security, Long-term unemployment rate andPersonal
earnings).

Quality of Life (QL) is identified by eight dimensions (characterized by their own sub-
dimensions): Community (Quality of social support network), Education (Educational attain-
ment, Student skills and Years in education), Environment (Air pollution andWater quality),Civic
Engagement (Consultation on rule-making and Voter turnout), Health (Life expectancy and Self-
reported health), Life Satisfaction (Life Satisfaction), Safety (Assault rate andHomicide rate) and
Work-Life Balance (Employees working very long hours and Time devoted to leisure and personal
care).

2ON-DFA is scale invariant, thus the model results equivariant under an affine transformation
of the data. In this application, MVs were standardized, yet the re-scaling normalization (also
known as Min-Max normalization, which converts MVs to the same scale and makes all the
values fall within the interval [0, 1]) could also be used obtaining exactly the same results.

Since 2ON-DFA identified a system of nonnegative loadings, the first application was used
to detect eventual MVs that could measure a negative component of the general latent construct,
in our case the well-being. The number of specific constructs H was fixed equal to the minimum
2. When MVs had positive loadings, it meant that they were positive dimensions of the general
latent construct.

However, if H is optimally chosen and there still is a MV with no significant loading, this
suggests discarding the MV from the analysis because it is irrelevant within the model; the MV
can actually be confounding for the analysis and it could be removed without incurring into a
significant loss of information. Finally, if someMVs have exactly zero loadings on the two factors
of the model, this means that they measure a negative component of the general latent construct
and therefore that they must be reversed.

In our analysis, MVs (1), (2), (7), (8), (14), (21), (22) and (23) loaded zero on the two factors
(i.e., a row with zero loadings for each of the above MVs was observed). In fact, these MVs
measured a negative component of well-being and therefore had no positive loadings to show;
thus, they were reversed by changing the sign (i.e., by multiplying each MV by −1). When
reapplying the model with H = 2, all MVs loaded on factors with a positive loading except for
MVs (2) (Housing expenditure) and (16) (Consultation on rule-making). Under the hypothesis
H = 2, the MVs (2) and (16) are, therefore, irrelevant in the model and were consequently
removed. The subsequent analyses were repeated without these two MVs.

In the first application of the model, the 22 MVs were constrained to define the MLC and
QL factors as indicated by the OECD. The results of the analysis are reported in Table 6 columns

1Available at https://stats.oecd.org/Index.aspx?DataSetCode=BLI2015.
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1 and 2. The methodology resulted in a second-order nonnegative disjoint confirmative factor
analysis because all MVs were forced a priori to load on the specified MLC and QL as indicated
by OECD, and all loadings were hence constrained to be nonnegative. BIC and AIC resulted
661.76 and 591.55, respectively. The two identified factors were not unidimensional constructs,
since the second largest eigenvalue of the variance–covariance sub-matrices related to the two
subsets of MVs were clearly larger than 1 and equal to 1.88 and 2.16. However, the reliability or
internal consistency of each factor measured by Cronbach’s α was good (Kline, 2000) and equal
to 0.87 for both subsets. The internal consistency is the extent to which MVs, associated with
a factor, measure a unique theoretical construct. The observed results suggested verifying if the
selectedmodel could be statistically confirmed by the data of 2015.A common approach formodel
selection is to use theory to specify an initial model, in our case the MLC and QL dimensions
defined by OECD, and then to use the likelihood ratio χ2

ν test to decide whether the model is
confirmed or should be simplified or expanded (Bollen, 1989). However, this test is problematic
in practice due to its sensitivity to the sample size and to its tendency to reject good models. This
situation is well-known in literature and for this reason Marsh, Balla and McDonald (1988) and
several other authors proposed more than 30 alternative measures. Among these, we considered
the two information criteria BIC and AIC that proved to work well on SEM and confirmatory
factor analysis problems (Raftery, 1995).

In order to examine how much the latent constructs MLC and QL change by considering a
less constrained model, the 2ON-DFA was repeated by forcing only a single MV for each of the
11 dimensions to load on MLC or QL as indicated by OECD. In practice, the MV that in the first
analysis had the maximal loading within its dimension was forced to load as indicated by OECD
on MLC or QL. The dimension Civic engagement (7) was characterized only by the MV Voter
turnout which had a low loading (0.21) in the OECD proposal. This MV was thus left free to
load on one of the two latent constructs, either MLC or QL. The 10 constrained MVs are reported
in bold in columns 3 and 4 of Table 6. The construct MLC has: Housing represented by Rooms
per person (3); Income by Household net adjusted disposable income (4); and Jobs by Personal
earnings (9). The construct QL has: Community represented by Quality of support network (10);
Education by Student skills (12); Environment by Water quality (15); Health by Life expectancy
(18); Life Satisfaction by Life Satisfaction (20); Safety by Homicide rate (22);Work-Life Balance
by Employees working very long hours (23). The rest of MVs was left free to load on one of the
two latent constructs.

After constraining 10 out of the 22 MVs to define MLC and QL as indicated by OECD,
it was expected that the new analysis confirmed that also the rest of the MVs followed the
two hypothesized latent constructs. This proved false for 7 of the remaining 11 MVs. In Table 6,
columns 3 and 4 show the optimal solution. In this second analysis, the values ofBIC andAICwere
considerably lower, and equal to 642.22 and572.01, respectively.According to the studyofRaftery
(1995), there is a “very strong” evidence that this model is better than the one proposed by OECD,
since there is a difference in BIC between models larger than 10 (BICOECD − BICCon = 20.54).
In this new application of our model, MVs Employment rate, Job security (reversed), Long-term
unemployment rate (reversed) showed to be better related to the Quality of Life, while Voter
turnout, Self-reported health and Assault rate (reversed) were better related to Material Living
Conditions. Therefore, the Quality of Life defined by this constrained model also included the
need for a secure and a long-term job, while theMaterial Living Conditions included the need for
a good personal health condition, personal safety and interest to become involved in the political
process.

It remained to understand if these two latent constructs defined could be further improved
by leaving all the MVs free to load on one of the two latent constructs. 2ON-DFA was therefore
applied for a third time, yet without constraints on the MVs. The best solution over 100 runs
was retained and the results were reported in Table 6, columns 5 and 6. Although the values of
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Table 6.
Analysis of different second-order factor analysis models for defining two dimensions of wellbeing: material living
conditions and quality of life

Column 1 2 3 4 5 6
OECD Constrained Unconstrained
MLC QL MLC QL MLC QL

First-order factors
1. Housing 1 0.61 0.62 0.64

2
3 0.80 0.81 0.82

2. Income 4 0.95 0.95 0.92
5 0.75 0.74 0.71

3. Jobs 6 0.63 0.85 0.85
7 0.27 0.42 0.45
8 0.33 0.39 0.41
9 0.94 0.94 0.96

4. Community 10 0.69 0.60 0.56
5. Education 11 0.62 0.58 0.54

12 0.68 0.55 0.44
13 0.62 0.53 0.54

6. Environment 14 0.56 0.52 0.48
15 0.78 0.95 0.99

7. Civic engagement 16
17 0.21 0.43 0.43

8. Health 18 0.59 0.55 0.70
19 0.29 0.52 0.53

9. Life satisfaction 20 0.44 0.62 0.71
10. Safety 21 0.63 0.38 0.39

22 0.67 0.42 0.38
11. Work-life balance 23 0.67 0.55 0.51

24 0.54 0.40 0.37
Second-order factor 0.88 0.89 0.91 0.88 0.88 0.88
Communality 3.95 4.87 3.59 5.28 5.61 3.29
Cronbach’s α 0.87 0.87 0.88 0.85 0.90 0.82
Unidimensionality 1.87 2.16 2.88 1.13 2.24 1.80
BIC 661.76 642.22 630.73
AIC 591.55 572.01 560.52
Discrepancy 192.50 140.54 134.16
Total communality 10.40 10.42 10.46

Constrained MVs are reported in bold in columns 3 and 4.

BIC and AIC decreased to 630.73 and 560.52, the reduction was not as strong as in the second
application of our proposal. However, the difference of BIC (BICCon−BICUnc = 12.65) was still
extremely relevant. Differently from the OECD model, Life Satisfaction, Community (Quality of
support network), Students Skills and Time devoted to leisure and personal care loaded on MLC
in the unconstrained model. Life expectancy—the other MV of theHealth dimension—loaded on
MLC. Therefore, the MLC construct of the unconstrained model also included Life Satisfaction,
Community and part ofWork-Life Balance. It is worth observing that the subsets of specific MVs
proposed by OECD to define the 11 dimensions were frequently “incoherent”, in the sense that
they loaded on different latent constructs. For example, the two MVs Employees working very
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long hours and Time devoted to leisure and personal care that defined the dimension Work-Life
Balance, actually loaded on MLC and QL, respectively. The same happens for Safety, Education
and Jobs. This thereby suggested that the proposed MVs, when considered all together, were not
coherent with the hypothesized theoretical construct.

6.1. The optimal number of dimensions for well-being

The analysis was repeated for different values of H in order to find the solution with the
lowest BIC and AIC and to understand if there were more than two pillar dimensions (MLC and
QL). For H = 5, BIC and AIC resulted as the lowest, with 590.07 and 515.27, respectively. Note
that MVs (2) and (16) were re-inserted in the analysis; however, these increased drastically BIC
and AIC and were discarded again.

The five factors were almost all unidimensional since the second largest eigenvalue of the
variance–covariance sub-matrices related to the five subsets was not strongly larger than 1 and, in
four subsets, it was actually lower (1.024, 0.619, 0.770, 0.795, 0.261). Cronbach’s α was equal to
0.88, 0.86, 0.82, 0.77, 0.85, respectively, thus confirming the good internal consistency of factors.
The results are reported in Table 7.

The first latent construct was mostly MLC including Civic Engagement (Voter turnout),
Health (Life expectancy), Life Satisfaction andWork-Life Balance. This factor was mainly formed
by a subset of MVs defining MLC in the unconstrained solution of the 2-factor model. It is
interesting to observe that there was another factor for MLC, the fifth, dedicated to the dimension
Jobswith Job insecurity (reversed) and Long-term unemployment rate (reversed). The other three
factors eventually split the QL into first-order factors. The second factor was formed by Education
(Educational attainment, Student skills) and Safety (Assault rate, Homicide rate both reversed)
and therefore measured the level of safety and education in Society as a relevant aspect of the QL.
The third factor measured theQuality of Society in terms ofCommunity (Quality of social support
network), Environment (Water quality), Years in education and Employment rate. Therefore, the
latter measured fundamental aspects for Society such as the quality of the social network support,
the quality of the water, the quality of education and the quality of working life. The fourth
factor measured the Quality of Habitat for Humanity based on Dwellings without basic facilities
(reversed), Air pollution (reversed), Self-reported health and Employees working very long hours
(reversed). The fourth factor, thus, focused on the quality of the habitat for the humanity based
on decent and affordable housing, good air quality, the perceived health in the habitat and the
working stability of the habitat.

7. Conclusion

Our proposal, Second-Order Disjoint Factor Analysis, allows modeling an unknown hierar-
chical structure of the MVs with two orders. It is a second-order factor analysis with a disjoint
structure for the MVs. Each subset of MVs is detected to be reliable, that is, MVs related to a
first-order factor consistently measure a unique theoretical construct. The second-order repre-
sents the general factor which summarizes the common information related to the H specific
first-order factors. A nonnegative version of the model is presented which entails that MVs are
concordant with the related factor and, therefore, the associated factor loadings are constrained to
be nonnegative. According to the distributional assumptions, the maximum likelihood estimation
of the models allows us to make inference on the parameters. Since the maximization of the likeli-
hood represents a discrete and continuous problem that cannot be solved by a quasi-Newton type
algorithm, the estimation of all parameters is simultaneously obtained following a cyclic block
coordinate descendent algorithm. An application about well-being presents the characteristics of
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Table 7.
Analysis of second-order factor analysis model for defining five dimensions of well-being

Column 1 2 3 4 5
MLC ES QS QSHH J

First-order factors
1. Housing 1 0.94

2
3 0.81

2. Income 4 0.94
5 0.72

3. Jobs 6 0.84
7 0.86
8 0.86
9 0.97

4. Community 10 0.56
5. Education 11 0.66

12 0.76
13 0.55

6. Environment 14 0.58
15 0.99

7. Civic engagement 16
17 0.44

8. Health 18 0.70
19 0.49

9. Life satisfaction 20 0.71
10. Safety 21 0.92

22 0.76
11. Work-life balance 23 0.70

24 0.35
Second-order factor 0.92 0.35 0.65 0.82 0.77
Communality 4.26 2.44 2.32 1.95 1.48
Cronbach’s α 0.88 0.86 0.82 0.77 0.85
Unidimensionality 1.02 0.62 0.77 0.80 0.26
BIC 590.07
AIC 515.27
Discrepancy 104.17
Total communality 15.11

the new methodology, which shows in detail the limitation of the confirmatory analysis when the
framework proposed is not respected by the data. Four models are proposed: a fully confirma-
tory analysis (framework and number of factors are given), a semi-confirmatory analysis (main
relations and number of factors are given), an exploratory analysis (only the number of factors
is given) and a full exploratory analysis (the number of factors is selected by an information
criterion). This latter shows the real potential of our proposal: the detection of the best partition
of MVs, and thus of the latent concepts and the related factors; and, moreover, their aggregation
into a second-order factor.

The paper, thus, provides a generalization of both hierarchical factor analysis and non-
orthogonal disjoint factor analysis, and proposes a constrained version with the additional request
of nonnegativity of loadings.
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Nevertheless, some further challenges are foreseen within our research. Our future goal is to
develop the inclusion of cross-loadings in the SSM in order to increase the fit of the model using
the work by Vichi (2017). Indeed, by applying 2O-DFA it may occur that sample covariance
matrix is block diagonal, but that there are relevant cross-loadings between blocks, i.e., some
variables belonging to different blocks are highly correlated. Here, the 2O-DFA should include
the estimationof cross-loadings and therefore define factors that are not disjoint.Moreover, another
important development consists of the introduction of a time dependence in order to provide a
model able to fit the phenomenon of study throughout the years. Two ideas are currently being
developed: the first is that of encompassing a time dependence in the loading matrices, as already
done by Maruotti and Vichi (2014) on the centroids matrices in their time-varying extension of
k-means. The second idea consists of the inclusion of a hidden Markov model (HMM) in order
to follow the evolution of MVs depending on both the first-order factors and on the general one
(i.e., the second-order factor).
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