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A steady two-dimensional boundary layer subject to an adverse streamwise pressure
gradient usually separates. In this paper, we investigate how free-stream vortical
disturbances (FSVD) of moderate level prevent the separation in such a boundary
layer over a plate or concave wall. The focus is on physically realisable FSVD with
sufficiently long wavelength (low frequency) as they have the most significant impact on
the boundary layer. The FSVD intensity ε is taken to be small but nevertheless strong
enough that the streaks or Görtler vortices generated in the boundary layer are fully
nonlinear and can alter the mean-flow profile by an order-one amount. The excitation
and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady
boundary-region equations supplemented by appropriate initial (upstream) and boundary
(far-field) conditions, which describe appropriately the action of FSVD on the boundary
layer. The flow variables are decomposed into two parts: the steady spanwise-averaged
and the unsteady or spanwise-varying components. These two parts are coupled and are
computed simultaneously. Numerical results show that the separation is eliminated when
the FSVD level exceeds a critical intensity εc. It is inferred that the strong nonlinear
mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents
the separation. The critical FSVD intensity εc depends on the streamwise curvature, the
pressure gradient and the frequency of FSVD. The value of εc decreases significantly
with the Görtler number, indicating that concave curvature inhibits separation. A higher
εc is required to prevent the separation in the case of stronger adverse pressure gradient.
Interestingly, unsteady FSVD with low frequencies are found to be more effective than
steady ones in suppressing the separation.

Key words: boundary layer separation, boundary layer receptivity, boundary layer stability

† Email address for correspondence: x.wu@ic.ac.uk

© The Author(s), 2021. Published by Cambridge University Press 920 A14-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

44
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:x.wu@ic.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.441&domain=pdf
https://doi.org/10.1017/jfm.2021.441


D. Xu and X. Wu

1. Introduction

A steady laminar boundary layer over a smooth surface separates when it encounters
a strong enough adverse pressure gradient. This induces a so-called laminar separation
bubble (LSB), the flow in which may undergo laminar–turbulent transition. LSBs are
distinguished as short and long ones, based on the bubble length relative to the chord
length of an aerofoil (Owen & Klanfer 1953), or whether their impact on the pressure
distribution is local or global (Tani 1964). LSBs appear in many practical flows such as
those around aerofoils and turbine blades, and have a remarkable effect upon aerodynamic
behaviours, causing performance penalties, such as drag increase or even stall. It is
therefore necessary to predict, reduce and if possible prevent, LSBs. This effort can be
aided by investigating the relevant physical mechanisms generating and suppressing the
separation, which are still not completely understood due to their complexity.

The physical nature of steady laminar flows over solid boundaries at high Reynolds
numbers can be explained and described by the classical boundary-layer theory (Prandtl
1904), which asserts that the viscous effect plays a leading-order role in a thin layer
near the surface while being negligible elsewhere. The inviscid part of the flow can be
considered first to obtain the slip velocity and pressure gradient, which drive the viscous
flow in the thin boundary layer. The equations governing the viscous flow are parabolic
and hence can be solved using efficient marching methods to calculate the quantities of
aerodynamic interest, e.g. the drag, when the boundary layer does not separate. However,
the downstream marching becomes problematic when the skin friction approaches zero
(Cebeci & Cousteix 2005), which signals separation. A detailed analysis of the asymptotic
behaviour near a point of vanishing skin friction, xs, showed that the skin friction τ and
the boundary-layer thickness δ in general behave like τ = O((xs − x)1/2) and δ = O((xs −
x)1/2) as x → x−

s , and accordingly the viscous effect induces a transpiration velocity
v∞ = O((xs − x)−1/2) (Goldstein 1948); this set of results is referred to as Goldstein
singularity. In the classical boundary-layer theory, the inviscid flow is not influenced
at leading order by the displacement effect of the viscous boundary-layer flow. That
hierarchical structure no longer holds, and the theory loses its validity when separation
occurs due to the large displacement-induced transpiration velocity. Stewartson (1970)
included the boundary-layer displacement effect on the outer inviscid flow at leading order,
but unfortunately a separation singularity of Goldstein type cannot be eliminated solely
by this local viscous–inviscid interaction. In this case, the separation bubble is actually
large enough to disrupt the inviscid flow at large distances upstream. The mathematical
description for the latter must instead account for the global effect of the grossly separated
boundary layer (Sychev 1972). The interactive boundary-layer method, which is a heuristic
finite-Reynolds-number reformulation of the high-Reynolds-number asymptotic theory,
has also been employed to study the separation phenomenon (Carter & Wornom 1975;
Veldman 1981; Hsiao & Pauley 1994).

Typically, the degree of the adverse pressure gradient is controlled by a parameter, e.g.
the angle of attack of an aerofoil. When the parameter reaches a critical value, the skin
friction τ predicted by the classical boundary-layer equations vanishes at xs, in the vicinity
of which τ is weakly singular (i.e. non-analytic), τ ∼ |x − xs|, and a short separation
bubble forms (Ruban 1981). This is the so-called marginal separation. Ruban (1982) and
Stewartson, Smith & Kaups (1982) formulated a high-Reynolds-number asymptotic theory
describing a marginal separation. In this theory, the displacement effect of the viscous
boundary layer induces a pressure perturbation in the outer inviscid flow, which also acts
on the viscous part of the flow. This local inviscid–viscous interaction eliminates the weak
singularity representing the flow on the verge of separation even when the controlling
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parameter, e.g. the angle of attack, exceeds the critical value. Local inhomogeneities
influence marginal separation. An isolated three-dimensional surface-mounted obstacle,
in the form of a sufficiently high slender hump, is an effective means to force reattachment
of an oncoming two-dimensional marginally separating boundary layer. Servini, Smith
& Rothmayer (2017, 2018) studied the impact of a two-dimensional dynamic roughness
element on a separating boundary layer. Recently, Karp & Hack (2020) showed, by
numerical simulations, reduction of separation bubble size by the so-called optimal
disturbances. The optimal three-dimensional disturbances were calculated by a numerical
optimisation procedure according to chosen objective functions, but it remains unclear how
such perturbations could be produced within the boundary layer at the required streamwise
location by a viable actuator in laboratory.

1.1. Laminar separation and instability
Laminar boundary-layer separation and transition to turbulence, two of the most subtle
phenomena in fluid mechanics, are often closely related because a boundary layer that
is separated or undergoing separation becomes unstable, while at the same time the
instabilities and resulting transition impact the separation. The topic has received much
attention. Earlier studies were reviewed by Dovgal, Kozlov & Michalke (1994), and
much progress has been made since. It is well-known that a two-dimensional or weakly
three-dimensional essentially inviscid Kelvin–Helmholtz (K–H) instability operates and
dominates in the fore portion of a LSB, but viscous Tollmien–Schlichting (T–S) instability
may occur upstream of the separation point if the Reynolds number is large enough
(Häggmark, Bakchinov & Alfredsson 2000; Marxen et al. 2003), in which case a K–H
instability wave may be considered as the continuation of an upstream T–S mode (Rist &
Maucher 2002; Diwan & Ramesh 2009; Marxen, Lang & Rist 2012). In the well-separated
and reattached regions, the streamwise gradient of the transverse velocity of the base flow,
∂VB/∂x, could be significant, and since it plays a similar role to the familiar centrifugal
force induced by wall curvature, a centrifugal instability may operate, leading to spatial
growth of steady or low-frequency perturbations akin to Görtler vortices (Marxen et al.
2009; Marxen & Henningson 2011). By means of controlled excitation in experiments
(Watmuff 1999; Kurelek, Lambert & Yarusevych 2016) and direct numerical simulation
(DNS) (Marxen et al. 2003, Marxen, Rist & Wagner 2004; Marxen, Lang & Rist 2013),
it has been demonstrated that, through nonlinear development, K–H modes roll up,
forming predominantly spanwise vortices, which undergo spanwise modulation (Michelis,
Yarusevych & Kotsonis 2018). With harmonic forcing at appropriate frequencies, the size
of the LSB is reduced because the resulting earlier transition to turbulence shifts the
reattachment point upstream, and in certain cases the separation point moves downstream
as well (Rist & Augustin 2006; Yarusevych & Kotsonis 2017). Impulsive forcing was found
to cause the bubble to shrink first, followed by elongation (bursting) (Michelis, Yarusevych
& Kotsonis 2017).

Within a LSB, two types of primary absolute instabilities were identified: one is
supported by the mean flow with a sufficiently strong reverse flow (Hammond & Redekopp
1998; Rist & Maucher 2002; Embacher & Fasel 2014), while the other is a bi-global
‘elliptic’ or ‘centrifugal’ instability with the mode being three-dimensional and trapped
in the recirculation zone (Theofilis, Hein & Dallmann 2000; Gallaire, Marquillie &
Ehrenstein 2007; Rodríguez & Theofilis 2010); here, the instabilities are deemed ‘absolute’
because they manifest as amplification of persistent disturbances in space without being
swept away, which is a more general notion than the usual absolute instability established
for a parallel or locally parallel flow according to a zero group velocity. These instabilities
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may lead to self-sustained oscillations and three-dimensionalisation of a LSB respectively
when the reverse flow exceeds the respective thresholds (Rodríguez, Gennaro & Juniper
2013). The height and length of the LSB may also be important factors controlling the
instabilities, but a recent study suggests that the onset of the absolute instability of the
first type is associated with the inflection point of the mean velocity profile just moving
into the recirculation zone (Avanci, Rodríguez & Alves 2019). Furthermore, new states
emerging from the primary instabilities may be susceptible to secondary instabilities. The
time-periodic base flow associated with the saturated K–H rollers undergoes secondary
high-frequency absolute instability, through which the rollers break down into small-scale
turbulence (Alam & Sandham 2000; Jones, Sandberg & Sandham 2008; Embacher &
Fasel 2014). Interestingly, the time-periodic state appears to exhibit also a steady or
low-frequency secondary instability, leading to quasi-exponential spatial amplification of
streak-like disturbances (Hosseinverdi & Fasel 2018, 2019). The latest work of Rodríguez,
Gennaro & Souza (2021) shows that the nonlinear saturated state originated from
the bi-global three-dimensional stationary instability may support secondary absolute
instability to time-dependent perturbations.

1.2. Role of free-stream disturbances
In practical applications, naturally present external disturbances may excite convectively
unstable modes, thereby impacting the separation. The effects of free-stream acoustic
waves have been studied extensively; see Dovgal et al. (1994) for relevant references.
Free-stream turbulence (FST) has a significant influence on LSBs also. As the FST level Tu
is increased, the length of the LSB reduces, primarily because the mean reattachment point
shifts upstream (Istvan, Kurelek & Yarusevych 2017; Simoni et al. 2017), but appreciable
downstream movement of the mean separation position has also been observed (O’meara
& Mueller 1987; Olson et al. 2013; Istvan & Yarusevych 2018). The height of the LSB
is reduced as well. When Tu exceeds a threshold of approximately 2 %, the separation
may be eliminated completely (Simoni et al. 2016, 2017; Istvan & Yarusevych 2018),
and remarkably this occurs with the flow remaining laminar (Simoni et al. 2016). The
precise threshold Tu was found to depend on the Reynolds number and flow configuration
(Simoni et al. 2017). DNS broadly confirmed the experimental finding that FST inhibits the
size of the LSB (Wissink & Rodi 2006; McAuliffe & Yaras 2010; Balzer & Fasel 2016).
At low and moderate Tu levels, K–H modes are excited, undergo roll-up and spanwise
modulation and break down into small-scale turbulence. At high levels, low-frequency
components in FST entrain into the boundary layer to form streaks, which influence
separation and/or reattachment processes with (McAuliffe & Yaras 2010) or without
causing bypass transition (Balzer & Fasel 2016); in the latter case the streaks modulate the
shear layer and hence the K–H instability (Coull & Hodson 2011). Hosseinverdi & Fasel
(2018) performed DNS of separation and transition in the presence of both controlled
harmonic excitation and FST that is synthesised mathematically. The harmonic forcing,
which is fairly strong, reduces the LSB length significantly (to approximately 1/4 of
that in the uncontrolled case). FST at very low levels influences neither separation nor
reattachment. Nevertheless, it induces streaks of appreciable amplitude, which undergo
exponential amplification in the LSB. Transition occurs earlier than when FST is absent
but remains downstream of the reattachment. Without harmonic forcing, even very weak
FST was able to influence reattachment. Beyond a certain level of FST, streaks render
transition to take place before reattachment, and the latter shifts upstream as a result,
leading to reduction of the LSB length and height (Hosseinverdi & Fasel 2019). For all
the FST levels up to 3 %, a LSB persists with the mean separation point remaining fixed.
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Elimination of boundary-layer separation

It was suggested that the absolute instability due to the spanwise modulation of the shear
layer by streaks of sufficient amplitude may be operative, causing earlier transition and
reattachment (Rodríguez et al. 2021).

FST can influence separation through triggering convectively unstable modes via
receptivity (which remains poorly understood), or more directly by altering the overall
mean flow. The latter scenario will be the focus of the present study. In either of the
mechanisms, the process of FST entering, or interacting with, the separated or separating
boundary layer is of fundamental importance, and adequate understanding of this is a
prerequisite for an accurate prediction of separation and transition.

Leib, Wundrow & Goldstein (1999) presented a large-Reynolds-number theory to
describe how small-amplitude, low-frequency (long-wavelength) free-stream vortical
disturbances (FSVD) are entrained into the boundary layer over a flat plate. They assumed
that the turbulent Reynolds number rt = εRΛ � 1, where ε measures the FSVD intensity
and RΛ is the Reynolds number based on the spanwise wavelength Λ. A significant
finding is that O(ε) long-wavelength FSVD generate streaks with O(εRΛ) amplitude in the
boundary layer. The work of Leib et al. (1999) was extended by Wu, Zhao & Luo (2011)
to investigate excitation of Görtler vortices in the boundary layer over a concave wall. On
the other hand, Ricco, Luo & Wu (2011) studied the case where FSVD are of moderate
intensity with rt = O(1), for which the induced streaks may completely alter the base
flow. The resulting streaky boundary layer supports inviscid instability before the onset of
T–S instability. Marensi, Ricco & Wu (2017) considered nonlinear FSVD-induced streaks
in compressible boundary layers. These studies analysed the boundary-layer response to
the FSVD starting from the region close to the leading edge, and followed its subsequent
development. FSVD impact the boundary layer not only through the initial condition but
also by the far-field boundary condition. At the same time, the displacement effect of the
viscous streaky motion in the boundary layer affects the FSVD at the outer edge of the
boundary layer.

It should be noted that the initial and far-field conditions in the studies mentioned above
(Leib et al. 1999; Ricco et al. 2011; Marensi et al. 2017) are not continuous spectra of
the Orr–Sommerfeld (O–S) or Squire equations (Grosch & Salwen 1978). Because the
eigenfunction of a continuous spectrum does not vanish, and its phase speed is nearly
equal to the free-stream velocity, it has been proposed that the continuous spectra may be
used as the inlet and far-field conditions, representing the vortical disturbances present in
the free stream as well as entrained into the boundary layer (Jacobs & Durbin 2001), and
this practice has been followed by many researchers in their DNS of bypass transition,
receptivity (Durbin & Wu 2007) and separation (see below). The appropriateness of
these practices was called into question by Dong & Wu (2013), who showed that the
entrainment of physical FSVD into the boundary layer is influenced at leading order by
the non-parallel-flow effect, while this effect is completely ignored in the continuous
modes, leading to a number of non-physical features. Their work was for incompressible
boundary layers and for FSVD with a characteristic wavelength of the order of the local
boundary-layer thickness, and was subsequently extended to compressible boundary layers
and to FSVD with an even shorter wavelength, which is comparable to the width of the
so-called edge layer (Wu & Dong 2016).

Xu, Zhang & Wu (2017) extended the work of Ricco et al. (2011) by including the
centrifugal effect. The induced disturbances by FSVD undergo nonlinear saturation and
eventually evolve into Görtler vortices, the secondary instability of which was further
analysed. The predicted nonlinear development of Görtler vortices was found to be in
good agreement with experiments. Xu, Liu & Wu (2020) developed the theory for the
nonlinear excitation of streaks or Görtler vortices by FSVD in an attached boundary layer
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with a streamwise pressure gradient. In both of the above studies, the theories captured an
abrupt change of the skin friction, which is induced by nonlinear vortices. The mean-flow
distortion would increase the skin friction at all spanwise locations, whereas the influence
of harmonics on the skin friction depends on the spanwise location.

1.3. Objectives of the present study
The boundary-layer flows studied by Ricco et al. (2011) and Xu et al. (2017, 2020)
are subject to zero or a moderate adverse pressure gradient and thus remain attached.
Separation would take place with a further increase of the adverse pressure gradient.
By imposing elevated FSVD, the mean skin friction may rise significantly and hence
the boundary layer might be prevented from separating. In the present paper, we will
investigate this direct mechanism, which is simpler and perhaps more fundamental than
the indirect one involving excitation of short-wavelength instability modes. As was
mentioned above, experiments and DNS showed that streaks impact the reattachment
by changing the mean-flow characteristics. It is not unreasonable to expect that streaks
could influence separation in a similar way. A recent numerical study indicated that
steady three-dimensional optimal perturbations, which exhibit the character of streaks,
may reduce the LSB size by causing a mean-flow distortion (Karp & Hack 2020). A
case for the direct effect of FSVD may be made by discussing its role in separation
with respect to that of instabilities and the associated transition. Relevant instability
include boundary-layer instability in the pre-separation region, secondary instability of the
FSVD induced streaky flow and shear-layer instability when a LSB is present. Since these
instabilities are convective in nature and have relatively short characteristic wavelengths,
the modes need to be excited by viable receptivity processes, which require free-stream
disturbances in the relatively high-frequency bands as well as surface inhomogeneity
(e.g. roughness) over short scales. It is in principle possible to weaken the receptivity,
e.g. by maintaining an as smooth as possible surface and/or by damping the relevant
spectra in the free-stream disturbances, whereby the amplitudes of instability modes may
be made sufficiently low so that transition, although taking place, has a minimal effect
on the separation. It is thus meaningful to explore whether separation could be eliminated
without the action of short-wavelength instabilities or resulting turbulence. Experiments
showed that FST of sufficient intensity can completely eliminate separation with the flow
remaining laminar (Simoni et al. 2016, 2017; Zilli, Sutton & Lavoie 2017). A nearly
complete suppression of LSB at a rather moderate FST level was also observed (Istvan &
Yarusevych 2018). The direct mechanism of FSVD to be investigated would be relevant at
least to separation close to being marginal, since in that case the LSB is short and hence the
amplification of instability modes in the bubble would be rather limited while the required
FSVD intensity is rather low. Furthermore, Kalter & Fernholz (2001) observed that in an
already turbulent boundary-layer FST also reduces the size of a separation bubble and may
even eliminate it, suggesting that a mechanism alternative to excitation of instability and
transition might be at work. A candidate might be the direct modification of the mean flow
due to the streaks altering the Reynolds stresses since significant alterations were clearly
demonstrated in the measurements. Even in the case of instability modes being excited, the
effect on separation is exerted through the mean-flow distortion, generated by nonlinear
modal interactions (Marxen & Rist 2010). On the other hand, steady free-stream vorticity
aligned to the streamwise direction or normal to the leading edge may induce separation
in a nominally zero-pressure-gradient boundary layer (Goldstein, Leib & Cowley 1992;
Goldstein & Leib 1993).
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Obviously, it is of primary importance in theoretical and numerical modelling to
specify physically realisable perturbations and the corresponding inlet conditions if
the computation is performed in a truncated domain. A number of DNS (e.g. Balzer
& Fasel 2016; Hosseinverdi & Fasel 2018, 2019) represented free-stream and inlet
disturbances by continuous spectra of the O–S/Squire operators, which are shown to be
non-physical (Dong & Wu 2013; Wu & Dong 2016). On the other hand, McAuliffe &
Yaras (2010) employed a large domain extending to the uniform flow upstream, where
suitable perturbations can be specified. Simulations using the two treatments capture
the overall effects of FST qualitatively, but significant differences exist. With FST
and inlet conditions being specified in terms of continuous spectra, sizeable separation
bubble persisted at FST levels up to 3 %, whereas DNS using appropriate FST showed
that the separation bubble becomes rather benign at a lower level of 1.45 %, and a
complete elimination of the separation bubble is possible beyond a threshold level of
approximately 2 % as may be expected according to experimental observations (Simoni
et al. 2016, 2017; Istvan & Yarusevych 2018). It may be inferred that free-stream and inlet
disturbances represented by continuous spectra, and indeed more-or-less arbitrary steady
or low-frequency disturbances, can generate boundary-layer perturbations bearing gross
signatures of streaks or Klebanoff modes, which influence separation. Calculations using
those disturbances may capture the phenomena quantitatively. However, for quantitatively
correct predictions, it is important to impose physically realizable FSVD as well as the
consistent initial and boundary conditions.

The mechanisms of FST preventing separation are not all entirely clear. In the present
paper, we consider a possible mechanism by which physically realisable FSVD eliminate
separation through modifying the mean-flow characteristics, and a theoretical description
will be presented, which allows us to predict the threshold FSVD intensity required for the
removal of the separation. The present study builds on our previous work (Xu et al. 2020),
which provides the appropriate upstream and far-field boundary conditions describing
quantitatively the impact of low-frequency components in FST on the boundary layer. The
presence of an adverse pressure means that the inviscid flow is necessarily non-uniform,
and so the oncoming FSVD undergo distortion before entering the boundary layer. This
important physical process as well as the leading-order non-parallelism are ignored in
continuous spectrum representation, but are accounted for properly in our theory.

The rest of the paper is organised as follows. In § 2, we adapt the theory (i.e. the
initial-boundary-value problem) describing the excitation and nonlinear evolution of
streaks or Görtler vortices by FSVD (Xu et al. 2020) to boundary layers that would separate
if FSVD were absent. The total flow field is split into the steady spanwise-averaged part
and the unsteady or spanwise-varying parts. They are governed by a system of coupled
equations. In § 3, we describe the numerical procedure to solve this system. The results
for representative pressure gradients are presented in § 4; those of particular interest are
the threshold FSVD intensity for suppressing separation and its dependence on relevant
parameters such as the mean pressure gradient, wall curvature and the frequency of FSVD.
The conclusions and implications of the results are discussed in § 5.

2. Problem formulation

2.1. Scaling and governing equations
The flow of interest is an incompressible boundary layer that develops over a semi-infinite
flat or concave wall, and is subject to an adverse pressure gradient. The setting is
similar to laboratory experiments, where a pressure gradient is created by a ceiling
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of a suitable contour over the wall, starting from the leading edge, or some distance
downstream/upstream of it. For a concave wall, the characteristic radius of curvature
is r∗

0. Small-amplitude vortical fluctuations, with a characteristic length scale Λ, are
imposed on the uniform oncoming flow far upstream. They are taken to be of a simple
form: a pair of Fourier components with the same frequency but opposite dimensional
spanwise wavenumbers ±k∗

3. We focus on disturbances with low frequency, or equivalently
long streamwise wavelength 2π/k∗

1 � Λ, to which the boundary layer is most receptive,
where k∗

1 is the dimensional streamwise wavenumber. Our previous work indicates that
disturbances of the assumed form are capable of elucidating the key physical mechanism
of transition (Xu et al. 2017).

The flow is to be described in a curvilinear coordinate system (x∗, y∗, z∗), with the origin
at the leading edge of the wall, where x∗ and y∗ are in the directions along and normal to
the wall, respectively, and z∗ is along the span. Taking Λ and U∞ as the reference length
and velocity, respectively, we introduce non-dimensional coordinates and time variable,

(x, y, z) = (x∗, y∗, z∗)/Λ, t = U∞t∗/Λ, (2.1a,b)

where t∗ is the dimensional time. The Reynolds number is defined as

RΛ = U∞Λ/ν, (2.2)

where ν is the kinematic viscosity. We assume that RΛ � 1 so that viscous effects are
confined to a thin layer near the surface, and the flow physics can be analysed using the
technique of matched asymptotic expansion and multi-scale method.

The long-wavelength (low-frequency) FSVD and the induced streaks are described by
the slow streamwise and time variables, introduced as,

x̂ = x/RΛ, τ̂ = t/RΛ. (2.3a,b)

The disturbances in the far upstream region are passively advected by the uniform
background flow. It follows that the total velocity field, normalised by U∞, can be written
as (u∗, v∗, w∗)/U∞ = (1, 0, 0) + ũ∞, with the disturbance velocity ũ∞ taking the form

ũ∞ = εu∞(x̂ − τ̂, y, z) = ε(̂u∞
+ eik3z + û∞

− e−ik3z) exp[ik̂1(x̂ − τ̂ ) + ik2y] + c.c., (2.4)

where ε � 1 measures the disturbance intensity, û∞± = {û∞
1,±, û∞

2,±, û∞
3,±} = O(1) is the

scaled velocity, k = {k1, k2, k3} the wavenumber vector and k̂1 = k1RΛ = O(1). The
continuity condition implies that

k1û∞
1,± + k2û∞

2,± ± k3û∞
3,± = 0. (2.5)

Here, for simplicity FSVD are represented by a pair of oblique Fourier modes, but it
is straightforward to extend the ensuing analysis and calculations to a continuum of
components that are representative of true FST, as was done in Zhang et al. (2011).

The turbulent Reynolds number is defined as (Leib et al. 1999; WZL),

rt ≡ εRΛ = O(1). (2.6)

As was shown by Leib et al. (1999) for the flat-plate case and by Xu et al. (2017,
2020) for concave walls, the ensuing flow evolves through four asymptotic regimes as
is illustrated in figure 1. The inviscid region I has O(Λ) size in all three directions, and
the disturbance there is governed by the linear rapid-distortion theory (Goldstein 1978;
Goldstein & Durbin 1980). Beneath region I is the boundary layer (region II) with a
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y
x

z
I

II

Streaks or Görtler vortices

Adverse pressure gradients

LSB

IV

ΛRΛ ΛRΛ

O(εRΛ)

Λ

Λ

III

u = U∞î+εu∞ (x–t,y,z)

Figure 1. Schematic illustration of the physical problem and asymptotic structure.

thickness of O(R−1/2
Λ Λ), where viscosity plays a leading-order role but the centrifugal

force is negligible. A quasi-two-dimensional and a three-dimensional disturbance
are driven by the streamwise and spanwise components of the FSVD, respectively.
Downstream in region III, which has an O(Λ) thickness, the three-dimensional disturbance
driven by the FSVD develops into streaks or Görtler vortices, and is governed by the
nonlinear unsteady boundary-region equations (NUBRE). It should be noted that, in the
present work, the boundary layer is subject to an adverse pressure gradient, which may
induce a steady two-dimensional LSB in region III. Above region III is an outer region IV
with an O(RΛΛ) thickness, the disturbance in which interacts with that in region III.

As in Xu et al. (2020), an adverse pressure gradient can be created by placing the plate
in an expanding channel. The expansion ratio of the channel is

σc = a∗/b∗ = O(1), (2.7)

where a∗ and b∗ are the transverse dimensions of the upstream and downstream flow
passages, and the mean velocities there are denoted by U+ and U− respectively. The length
of streamwise non-uniformity is l∗ = O(a∗) = O(b∗). The disturbance near the leading
edge can be determined by the rapid-distortion theory.

In region III, the streaks or Görtler vortices are fully developed, and their streamwise
velocity has a magnitude greater than the normal and spanwise velocities by a factor of
O(RΛ), while the pressure normalised by ρU2∞ is of O(1) for the steady base flow, but
of O(R−2

Λ ) for the perturbation, where ρ is the fluid density. Therefore, we can write the
velocity and pressure fields, (u∗, v∗, w∗) and p∗, as

(u∗, v∗, w∗)/U∞ = (u, R−1
Λ v, R−1

Λ w), p∗/(ρU2
∞) = PB + R−2

Λ p, (2.8a,b)

where PB is the steady mean pressure associated with the steady inviscid outer flow.
Substitution of (2.3a,b) and (2.8a,b) with the Lamè coefficients, h1 = (r∗

0 − y∗)/r∗
0, h2 =

1 and h3 = 1, into the Navier–Stokes (N–S) equations gives, at leading order, the equations
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D. Xu and X. Wu

for the rescaled velocity u ≡ (u, v, w) and pressure p (Hall 1988),

∇ · u = 0, uτ̂ + (u · ∇)u + GΛχBu2j = (−PBx̂, −py, −pz) + (∂2
yy + ∂2

zz)u, (2.9)

where j is the unit vector in the wall-normal direction, and GΛ is the global Görtler
number, defined as

GΛ = R2
ΛΛ/r∗

0 . (2.10)

The term containing GΛ in (2.9) reflects the essential influence of the wall curvature, and
χB(x̂) is the scaled local radius of wall curvature. The term PBx̂(x̂) = −Ue(x̂)U′

e(x̂) is the
streamwise pressure gradient with Ue(x̂) being the inviscid streamwise slip velocity of the
steady flow, and the prime denoting the differentiation with respect to x̂.

In the previous work Xu et al. (2017, 2020), the total flow field in region III is
decomposed as a sum of the unperturbed base flow and the FSVD-induced perturbation.
This decomposition would be inappropriate in the presence of a strong adverse pressure
gradient that induces separation because the solution for the former terminates at a
Goldstein singularity. In order to avoid this dead end, and also to provide insight into the
mechanism of eliminating separation, in the present study the flow is decomposed instead
as a sum of two parts: (a) the steady spanwise-averaged components, and (b) the steady
and unsteady spanwise-varying components as well as the unsteady spanwise uniform
component, namely

{u, v, w, p} = {UB(x̂, η), VB(x̂, η), WB(x̂, η), PB(x̂)}
+ {û(x̂, η, z, τ̂ ), v̂(x̂, η, z, τ̂ ), ŵ(x̂, η, z, τ̂ ), p̂(x̂, η, z, τ̂ )}, (2.11)

where the second part has zero spanwise average for steady FSVD, but also contains an
unsteady spanwise uniform component if FSVD are unsteady. The present decomposition
is in line with the practice in DNS and experiments, where the steady and spanwise
uniform part of the flow is extracted from the instantaneous data by time and spanwise
averaging in order to characterise the mean property of the separation (Marxen &
Henningson 2011; Balzer & Fasel 2016; Simoni et al. 2016, 2017; Yarusevych & Kotsonis
2017). The resulting formulation will enable us to show that the boundary layer is attached
provided ε > εc, where the attached flow as well as εc, the critical FSVD intensity to
eliminate the separation, can be calculated.

With (2.11), the nonlinear terms in (2.9) are accordingly decomposed as

− (û · ∇)û − GΛχ û2j = (Q1, Q2, Q3)(x̂, y) + (q̂1, q̂2, q̂3)(x̂, y, z, τ̂ ). (2.12)

Substituting (2.11) into (2.9) and noting (2.12), we obtain the coupled system,

UBx̂ + VBy = 0, D̄UB = PBx̂ + Q1, D̄WB = Q3, (2.13a–c)

and
ûx̂ + v̂y + ŵz = 0,

Dû − UBx̂û − UByv̂ = q̂1,
Dv̂ − VBx̂û − VByv̂ − 2GΛχBUBû − p̂y = q̂2,

Dŵ − WBx̂û − WByv̂ − p̂z = q̂3,

⎫⎪⎬⎪⎭ (2.14)

where

D̄ = ∂2

∂y2 − UB
∂

∂ x̂
− VB

∂

∂y
, (2.15)

D =
(

∂2

∂y2 + ∂2

∂z2

)
− ∂

∂τ̂
− UB

∂

∂ x̂
− VB

∂

∂y
− WB

∂

∂z
. (2.16)
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Elimination of boundary-layer separation

The operator D accounts for the unsteadiness and the viscous diffusion in the y − z plane,
as well as the convection by the spanwise-averaged flow field. The governing equations
(2.13a–c)–(2.14) are almost the same as (4.2)–(4.3) in Wundrow & Goldstein (2001),
respectively, but here we include the streamwise curvature and pressure gradient. Note
that the spanwise-averaged flow is driven not only by the pressure gradient, but also
by the Reynolds stresses of the spanwise-varying part. As a result, a spanwise velocity
WB is present in general. On the other hand, the spanwise-averaged part influences the
spanwise-varying part through advection, as is reflected in the operator D. Such a coupling
leads to elimination of the separation when FSVD are strong enough. Note that (2.13a–c),
which govern the steady spanwise-averaged mean flow, remain the same for both steady
and unsteady FSVD, implying that the mechanism of eliminating the separation is the
same, namely, through the time- and spanwise-averaged Reynolds stresses.

The solution is of course not self-similar, but for numerical computations, it is
advantageous to use the similarity-like variable η, defined as

η = y/s with s =
√

2x̂/Ue. (2.17)

Despite the fact that FSVD are represented by a pair of oblique Fourier components, in the
present nonlinear regime the spanwise-varying disturbance consists of all harmonics (plus
the unsteady spanwise uniform part if FSVD are unsteady), and can be expressed as

(û, v̂, ŵ, p̂) = rt
∑

|m|+|n| /= 0

(s2ûm,n(x̂, η), sv̂m,n(x̂, η), ŵm,n(x̂, η)/k3, p̂m,n(x̂, η))Emn,

(2.18)

where Emn = exp(−imk̂1τ̂ + ink3z), and the factor s2 in the streamwise velocity is
introduced to offset the small divisor in numerical computations. As the physical quantities
are real, the Fourier coefficients are Hermitian, q̂−m,−n = (q̂m,n)cc, where q̂ stands for
any of {ûm,n, v̂m,n, ŵm,n, p̂m,n}, and the subscript cc indicates the complex conjugate.
Substituting (2.18) into (2.14), we obtain the equations for the Fourier coefficients

a. the continuity equation

2Bv ûm,n + s2 ∂ ûm,n

∂ x̂
− Bvη

∂ ûm,n

∂η
+ ∂v̂m,n

∂η
+ inŵm,n = 0; (2.19)

b. the x-momentum equation

[s2(−imk̂1 + n2k2
3) + 2BvUB + s2UBx̂ − BvηUBη + s2ink3WB]ûm,n + s2UB

∂ ûm,n

∂ x̂

+ (sVB − BvηUB)
∂ ûm,n

∂η
− ∂2ûm,n

∂η2 + UBηv̂m,n = −rts2 l̂m,n; (2.20)

c. the y-momentum equation

[s2(−imk̂1 + n2k2
3) + BvUB + sVBη + s2ink3WB]v̂m,n

+ (s3VBx̂ − sBvηVBη + 2s3GΛχBUB)ûm,n + s2UB
∂v̂m,n

∂ x̂

+ (sVB − BvηUB)
∂v̂m,n

∂η
− ∂2v̂m,n

∂η2 + ∂ p̂m,n

∂η
= −rts2êm,n; (2.21)
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D. Xu and X. Wu

d. the z-momentum equation

s2(−imk̂1 + n2k2
3 + ink3WB)ŵm,n + s2UB

∂ŵm,n

∂ x̂
+ (sVB − BvηUB)

∂ŵm,n

∂η

− ∂2ŵm,n

∂η2 + (WBx̂s2 − BvηWBη)k3s2û

+ s2k3WBηv̂ + s2(ink2
3)p̂m,n = −rts2ĥm,n, (2.22)

where Bv = (Ue − x̂U′
e)/U2

e with a prime denoting differentiation with respect to x̂. The
expressions for the nonlinear terms, l̂m,n, êm,n and ĥm,n, are given in Xu (2020). Equations
(2.19)–(2.22) are different from (2.47)–(2.50) in Xu et al. (2020) due to the extra terms
involving WB as well as to the fact that UB and VB are part of the solution to be found
instead of being the unperturbed base flow.

Before solving the NUBRE system, some remarks on its nature and relation to the
NPSE (nonlinear parabolised stability equations) (Herbert 1997) are in order. The latter
were derived for a perturbation to a given spatially varying base flow, and a key step
to characterising the fast spatial variation of the perturbation by defining a finite local
streamwise wavenumber, which is usually done by an ad hoc approximation. NUBRE
exhibit several key differences from the NPSE despite apparent similarity. First of all,
the most general NUBRE (2.9) are an appropriate asymptotic reduction of the N–S
equations. When the flow field is decomposed into a given base flow and a small-amplitude
perturbation about it, the resulting equations are akin to the NPSE, and indeed can be
considered as the special form of NPSE with the local streamwise wavenumber being
zero, and a natural one too in the sense that the zero streamwise wavenumber follows from
the asymptotic scaling rather than an ad hoc procedure. Historically, NUBRE had been
established (Hall 1988) before NPSE approach was. Secondly, NUBRE can describe the
evolution of perturbations that have a magnitude as large as the base flow and hence are
strongly nonlinear. Indeed, as is the case here, there is no need to prescribe an unperturbed
base flow. In contrast, NPSE are applicable only to weakly nonlinear small-amplitude
perturbations. Thirdly, NPSE can describe rather general forms of perturbations provided
that their streamwise length scales are long. As such they can be employed to study the
response (receptivity) to various forms of long-wavelength external disturbances such as
wall roughness and FSVD. NPSE are restricted to perturbations of a local modal form, and
cannot describe the receptivity to external disturbances. The required initial condition for
downstream marching must be provided by a separate means.

The system of coupled equations, (2.13a–c) and (2.14) or equivalently (2.19)-(2.22), is
to be solved subject to appropriate far-field (boundary) and upstream (initial) conditions,
which we shall present next.

2.2. Far-field condition: disturbances at the outer edge of the boundary layer
In the outer region IV, the disturbance is governed by the large-y limit of the NUBRE
(2.14). On noting that û and WB both tend to be zero in the limit y → ∞, the centrifugal
force and VBx̂û terms drop out of the wall-normal momentum equation in (2.14), which
reduces to

v̂τ̂ + Uev̂x̂ + Vev̂y + v̂Vey + v̂v̂y + ŵv̂z = −p̂y + v̂yy + v̂zz,
ŵτ̂ + Ueŵx̂ + Veŵy + v̂ŵy + ŵŵz = −p̂z + ŵyy + ŵzz,

v̂y + wz = 0,

⎫⎬⎭ (2.23)
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Elimination of boundary-layer separation

where Ve(x̂, y) characterises the behaviour of the wall-normal velocity at the outer edge of
region III. By integrating the continuity equation in (2.13a–c) with respect to y from 0 to
∞, we obtain

Ve → −U′
e(x̂)y + v̄0 as y → ∞, (2.24)

where v̄0 = (sUeδ̄)x̂ with δ̄ being the boundary-layer thickness δ̄, defined as

δ̄ = k3

2π

∫ 2π/k3

0

∫ ∞

0

(
1 − UB

Ue

)
dη dz. (2.25)

It transpires that v̄0 represents the transpiration velocity induced by the displacement effect
of the viscous motion in region III. The coupling of v̂ and ŵ with v̄0 in (2.23) can be
removed by the generalised Prandtl transformation (Xu et al. 2020),

ŷ = Uey − δ̂(x̂, τ̂ ), (2.26)

where δ̂ is chosen to remove the dependence on v̄0, and this requires that δ̂ satisfies the
equation,

δ̂τ̂ + Ueδ̂x̂(x̂, τ̂ ) = Ue(sUeδ̄)x̂. (2.27)
The appropriate ‘boundary condition’ is

δ̂(0, τ̂ ) = 0 for all τ̂ > 0, (2.28)

which corresponds to a vanishingly small displacement near the leading edge. It is noted
that for steady FSVD, the linear inhomogeneous equation (2.27) has the solution,

δ̂ = sUeδ̄. (2.29)

Equation (2.23) for v̂ and ŵ were rewritten in terms of ŷ and solved by Xu et al. (2020).
Using the solution and the matching principle, the far-field condition is constructed as

(ûm,n, v̂m,n, ŵm,n, p̂m,n) → (0, s−1v̂†
m,n, k3ŵ†

m,n, εRΛp̂†
m,n) as η → ∞, (2.30)

where
v̂

†
m,±1 = k3/Ueĉ∞Av[ei(ϕ1+k2Uey)φm + e−i(ϕ1+k2Uey)φ∗−m],
ŵ†

m,±1 = ∓k2ĉ∞Av[ei(ϕ1+k2Uey)φm − e−i(ϕ1+k2Uey)φ∗−m],

p̂†
m,±1 = 1

rt
p̂∞Av[ei(ϕ1+k2Uey)φm + e−i(ϕ1+k2Uey)φ∗−m],

p̂†
m,0 = −2(k2

3/U2
e )ĉ2∞A2

v[e2i(ϕ1+k2Uey)πm + e−2i(ϕ1+k2Uey)π∗−m],
p̂†

0,±2 = 2k2
2ĉ2∞A2

v.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.31)

Here, φm and πm are computed according to the Fourier transforms,

(eik̂1τ̂−ik2δ̂(x̂,τ̂ ), e2ik̂1τ̂−2ik2δ̂(x̂,τ̂ )) =
∑

m

(φm(x̂), πm(x̂)) e−imk̂1τ̂ . (2.32)

The notations in (2.31) are defined as

ĉ∞ = −û∞
3 (U2

e /χ2)(k2
2 + k2

3)/k2, p̂∞ = 2ik3(U2
e /χ2)U′

e(k
2
2 + k2

3)û
∞
3 ,

ϕ1 = k̂1

∫ x̂

0
(1/Ue) dx̂, Av = exp

{
−
∫ x̂

0

1
Ue

(U2
e k2

2 + k2
3) dx̂

}
,

χ = [(k1/Ue)
2 + (k2Ue)

2 + k2
3]1/2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.33)

All other components v̂†
m,n = ŵ†

m,n = 0 (n /=±1), and p̂†
m,n = 0 (n /= 0, ±1, ±2). Note

that the entrainment process is interactive with the mutual influence between the streaky
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D. Xu and X. Wu

boundary layer and the FSVD in the outer region IV being facilitated through (2.25), (2.27)
and (2.30) with (2.32).

2.3. Initial condition
In the upstream limit x̂ → 0, the solution of the NUBRE (2.19)-(2.22) can be constructed
in the form of power series of s, and the solution in the region covering y = O(1) up to
1 � y < RΛ, was constructed in Xu et al. (2020). Using these solutions, the composite
initial condition for the spanwise-varying components can be expressed as

û1,±1 → q±(2x̂/s2)(U0 + sU1), (2.34)

v̂1,±1 → q±
{

V0 + sV1 + iAv exp{i(ϕ1 − Uek2sβ)}
(Uek2 − i|k3|)s (eiUek2sη − e−|k3|sη)

+ e−|k3|sη
(

β

4
+ sc1

)
− v̄c

}
, (2.35)

ŵ1,±1 → ∓iq±
{

W0 + sW1 + Uek2Av exp{i(ϕ1 − Uek2sβ)}
(Uek2 − i|k3|) (eiUek2sη − e−|k3|sη)

+ e−|k3|sη
[

1 − β

(
iUek2 − |k3|

4

)
s
]

− w̄c

}
, (2.36)

as x̂ → 0, where

q± = ±i|k3|(k2
2 + k2

3)(Ueû∞
3,± ± iû∞

2,±)Ue/χ
2 = (±i|k3|/k2)(k2

2 + k2
3)(k2Ue − i|k3|),

v̄c = −η + β

4
+ s

[
− i

2
(Uek2 + i|k3|)η2 + β

(
iUek2 − |k3|

4

)
η + c1

]
, (2.37)

w̄c = 1 + s
[

i(Uek2 + i|k3|)η − β

(
iUek2 − |k3|

4

)]
. (2.38)

The constant c1 is obtained numerically along with Uk, Vk and Wk (k = 0, 1) by solving
(B1)–(B8) of Leib et al. (1999) provided that the κ2 in (B7) is replaced by k2

3.

3. Numerical methods

The coupled system, (2.13a–c) and (2.19)–(2.22), the far-field condition (2.30) with (2.31)
and the initial condition (2.34)–(2.36) all together form the initial-boundary-value problem
that describes the development of the streaky boundary layer under the influence of FSVD.
It is solved numerically using the methods described in this section.

3.1. Steady spanwise-averaged velocities
The boundary-layer equations (2.13a–c) governing the spanwise-averaged velocities, UB
and VB, can be rewritten in terms of x̂ and η as

∂UB

∂ x̂
− ηBv

s2
∂UB

∂η
+ 1

s
∂VB

∂η
= 0,

UB

(
∂UB

∂ x̂
− ηBv

s2
∂ÛB

∂η

)
+ VB

s
∂UB

∂η
= −dPB

dx̂
+ 1

s2
∂2UB

∂η2 + Q1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.1)
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Elimination of boundary-layer separation

Introduce the streamfunction ΨB such that UB = ΨB,y and VB = −ΨB,x̂. Let

ΨB = UesF(x̂, η), (3.2)

where F(x̂, η) is introduced for simplification. It follows that

UB = ΨB,y = Ue
∂F
∂η

,

VB = −ΨB,x̂ = −
(

dUe

dx̂
sF + Ue

ds
dx̂

F + Ues
∂F
∂ x̂

− Ueη

s
Bv

∂F
∂η

)
.

⎫⎪⎪⎬⎪⎪⎭ (3.3)

Substituting (3.3) into (3.1), we obtain the equation for F,

F′′′ + m + 2
2

FF′′ + m(1 − F′2) = 2x̂
(

F′ ∂F′

∂ x̂
− ∂F

∂ x̂
F′′ − Q1

U2
e

)
, (3.4)

where m = s2U′
e and a prime on F denotes the differentiation with respect to η. In the

upstream limit x̂ → 0, F satisfies the Blasius equation,

F′′′ + FF′′ = 0, (3.5)

and the boundary conditions are

F′ = F = 0 at η = 0, F′ = Ue(x̂) as η → ∞. (3.6a,b)

For convenience of numerical integration, we recast (3.4) into a system of first-order
equations by introducing new variables U(x̂, η) and G(x̂, η),

U = F′, G = U′. (3.7a,b)

The ordinary differential equations (3.7a,b) are discretised using the finite-difference
scheme centred at the midpoint (x̂n, ηj−1/2),

Un
j + Un

j−1

2
=

Fn
j − Fn

j−1

�ηj
= Un

j−1/2,
Gn

j + Gn
j−1

2
=

Un
j − Un

j−1

�ηj
= Gn

j−1/2, (3.8a,b)

where (x̂n, ηj) stands for a mesh point. Similarly, the partial differential equation (3.4)
is approximated by a finite difference centred at the midpoint (x̂n−1/2, ηj−1/2), which is
done in two steps. In the first, we discretise (3.4) in the streamwise direction at (x̂n−1/2, η)
without specifying η (Cebeci & Cousteix 2005), and the resulting equation is discretised
with respect to η centred at (x̂n−1/2, ηj−1/2) to obtain

�η−1
j (Gn

j − Gn
j−1) + α1(FG)n

j−1/2 − α2(U2)n
j−1/2

+ αn(Gn−1
j−1/2Fn

j−1/2 − Fn−1
j−1/2Gn

j−1/2) = Rn−1
j−1/2 − 4x̂n−1/2

Qn−1/2
1,j−1/2

(U2
e )

n−1/2
j−1/2

, (3.9)

where

αn = 2x̂n−1/2

�x̂
, α1 = mn + 2

2
+ αn, α2 = mn + αn, (3.10a–c)

Rn−1
j−1/2 = −Ln−1

j−1/2 + αn[(FG)n−1
j−1/2 − (U2)n−1

j−1/2] − mn, (3.11)

Ln−1
j−1/2 =

[
�η−1

j (Gj − Gj−1) + m + 2
2

(FG)j−1/2 + m[1 − (U2)j−1/2]
]n−1

, (3.12)

920 A14-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

44
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.441


D. Xu and X. Wu

for j = 1, 2, . . . , J − 1 with J being the number of mesh points in the wall-normal
direction. The boundary conditions (3.6a,b) at x̂ = x̂n give

Fn
0 = Un

0 = 0, Un
J = 1. (3.13a,b)

The system of nonlinear algebraic equations, (3.8a,b) and (3.9), is solved by using
Newton’s iteration, the detail of which is relegated to Appendix A.

After Newton’s iteration yields the convergent solution for UB and VB, we seek the
solution for WB, the equation for which in (2.13a–c) can be recast into a first-order system,

WBη = H,

UB

(
∂WB

∂ x̂
− ηBv

s2 H
)

+ VB

s
H = 1

s2 Hη + Q3.

⎫⎬⎭ (3.14)

Discretisation of (3.14) at (x̂n−1/2, ηj−1/2) gives the difference equations,

(Wn
j − Wn

j−1) − �ηj

2
(Hn

j + Hn
j−1) = 0,

S1Wn
Bj + S1Wn

Bj−1 + 1
2 (S−

2 Hn
j + S+

2 Hn
j−1)

= S1Wn−1
Bj + S1Wn−1

Bj−1 − 1
2 (S−

2 Hn−1
j + S+

2 Hn−1
j−1 ) + (Q3)

n−1/2
j−1/2 ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.15)

where

S1 = 1
2�x̂

Un−1/2
Bj−1/2, S±

2 =−
(

ηBv

2s2 UB

)n−1/2

j−1/2
+
(

VB

2s

)n−1/2

j−1/2
± 1

s2
n−1/2�ηj

. (3.16a,b)

The initial and boundary conditions are

W0
j = 0 (j = 0, 1, . . . , J), Wn

0 = Wn
J = 0. (3.17a,b)

The solution to (3.15) is obtained again by using the block elimination method.

3.2. Unsteady or spanwise-varying velocities and pressure
We define the solution vector U = (û, v̂, ŵ, ûη, p̂, ŵη) and recast (2.19)–(2.22) into a
system of first-order equations,

∂U
∂η

= C0U + C1
∂U
∂ x̂

+ f (U), (3.18)

where the subscripts ‘m, n’ are omitted for brevity, f (U) stands for nonlinear terms and
the constitute elements of the coefficient matrices C0 and C1 are given in Appendix B.

For unsteady spanwise uniform components with n = 0 but m /= 0, û and v̂ are
decoupled from ŵ, and the system (2.19)–(2.22) can be simplified to three equations for û,
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v̂ and f̂ ≡ ûη :

ûη = f̂ , v̂η = −2Bv û + Bvηf̂ − s2ûx̂,

f̂η = [s2(−imk̂1) + 2BvUB + s2UBx̂ − BvηUBη]û

+ UBηv̂ + (−BvηUB + sVB)f̂ + s2UBûx̂ + rts2 l̂m,0;

⎫⎪⎪⎬⎪⎪⎭ (3.19)

and two equations for ŵ and ĝ ≡ ŵη,

ŵη = ĝ,

ĝη = (WBx̂s2 − BvηWBη)k3s2û + WBηk3s2v̂ + s2(−imk̂1)ŵ

+ (−BvηUB + sVB)ĝ + s2UBŵx̂ + rts2ĥm,0.

⎫⎪⎪⎬⎪⎪⎭ (3.20)

The streamwise parabolic NUBRE (3.18) can be solved by a marching procedure
in x̂-direction. As in Xu et al. (2017, 2020), the two-point compact scheme of Malik
(1990) and the second-order backward finite-difference scheme are applied in the η and
streamwise directions, respectively. Grouping all the terms at the streamwise location
n + 1 on the left-hand side (except the nonlinear terms), we end up with the discrete
equations,[

I − h
2

cj+1

]
Un+1

j+1 +
[
−I − h

2
cj

]
Un+1

j = h
2

[gj+1 + gj] + h
2

[ f (Un+1
j+1 ) + f (Un+1

j )],

(3.21)
where I is the unit matrix, and we have put

f (Un+1
j ) = (0 0 0 − l̂, −Bvηl̂ + ê, −ĥ)n+1

j , (3.22)

cj+1 = C0,j+1 + 3
2�x̂

C1,j+1, gj+1 = C1,j+1

(
−2Un

j+1 + 1
2

Un−1
j+1

)
/�x̂. (3.23a,b)

On introducing the discrete solution vector,

Φn+1 = (Un+1
J , Un+1

J−1, · · · , Un+1
1 , Un+1

0 )T, (3.24)

the system of nonlinear algebraic equations, (3.21), is written in the matrix form,

LΦn+1 = A + Nn+1, (3.25)

where L is the ‘linear’ operator, A stands for the terms whose values are evaluated at
upstream positions and Nn+1 denotes the nonlinear terms. Discretisation of (3.19) and
(3.20) leads to algebraic systems similar to (3.25). The so-called 3/2-rule is followed
in order to eliminate the aliasing error (Kim, Moin & Moser 1987). Seventeen Fourier
modes are retained for capturing nonlinear effects, but more Fourier modes are needed for
strong adverse-pressure-gradient cases. In the present study, 33 Fourier modes proved to
be sufficient. The domain size in the η−direction is 30, within which 1000 grid points are
deployed. The computation domain starts from x̂ = 0.001. In most calculations, we take
the streamwise marching step �x̂ = 0.001, but stronger adverse-pressure-gradient case
requires a smaller �x̂.

In order to obtain the convergent solution of the NUBRE, an underrelaxtion
predictor–corrector procedure is applied. The marching from location n to n + 1 involves
the three steps as follows.
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Figure 2. Validation of the numerical algorithm and code. The downstream development of the maximum
streamwise velocity of different Fourier modes. (a) Zero-pressure-gradient case σc = 0, (b) a favourable
gradient case σc = 1.5 and (c) an unsteady adverse gradient case σc = 0.8. The parameters are k̂1 = 26.35,

GΛ = 1501, RΛ = 1145 and ε = 0.0007. The solid lines indicate the results obtained by the present algorithm,
whereas the symbols stand for the results of Xu et al. (2017) (a) and Xu (2020) (b,c).

Step 1: the nonlinear terms and the steady spanwise-averaged velocities in (3.25) and the
related systems for (3.19) and (3.20) are approximated by using the values of the variables
at the streamwise location n.

Step 2: systems (3.25), (3.19) and (3.20) are marched forward to predict the
spanwise-dependent and unsteady spanwise uniform components at the location n + 1.
These are updated by an underrelaxation iteration (Xu et al. 2017, 2020) with the
spanwise-averaged velocities being fixed at the value the streamwise location n. The
iteration continues until convergence is achieved.

Step 3: update the forcing terms Q1 and Q3 using the output for the unsteady and
spanwise-dependent components from step 2. Compute the steady spanwise-averaged
velocities, namely solve (3.8a,b) and (3.9) for UB and VB at (n + 1), and solve (3.15) for
WB at (n + 1).
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Figure 3. The slip velocity (a) and the skin friction (b) for a favourable-to-adverse flow. The dash-dotted
and dashed lines represent the results for d = 0.112 and 0.111, respectively. The solid lines are the results at
d = 0.110, which are included for comparison. The vertical dashed lines mark the approximate location where
τ = 0. The inset displays an enlarged view of the part in the box.

Repeat steps 2 and 3 until both the steady spanwise-averaged and unsteady or
spanwise-dependent quantities converge.

For the purpose of validation, the present algorithm and code are applied to several
cases, which were investigated previously using a different algorithm and code. The
comparison is shown in figure 2, and the agreement is clearly very good.

4. Numerical results

4.1. Flat-plate case: streaks eliminate separation
The flow over an aerofoil is often subject to a favourable-to-adverse pressure gradient
(Istvan et al. 2017; Istvan & Yarusevych 2018). Such a form of pressure gradient is also
imposed to the flat-plate model in experiments (e.g. Gaster 1966; Michelis et al. 2018),
which can mimic the conditions on the suction side of a highly cambered airfoil of finite
thickness. In the present paper, the induced slip velocity is assumed to be

Ue(x̂) = 1 + d{tanh2[(x̂ − x̂0)π/L] − 1}, (4.1)

where x̂0 is the location where the slip velocity attains its maximum, the parameters d and
L control the intensity and the streamwise extent of the pressure gradient, respectively. We
choose x̂0 = 0.2 and L = 0.5 in the present work. Figure 3(a) shows the distribution of
Ue(x̂) for several values of d.

The discretised boundary-layer equations (3.8a,b) and (3.9) are first solved in the
absence of FSVD. A convergent solution can be obtained for all x̂ for d ≤ 0.110. However,
marching cannot continue beyond a certain streamwise location for d = 0.111, indicating
that the critical value for the onset of separation is dc ≈ 0.111. The slip velocity with d =
0.111 or 0.112 is expected to induce a two-dimensional short separation bubble. Figure 3(b)
displays the evolution of the skin friction τ = ∂u/∂y. Since the classical boundary-layer
theory cannot describe such a flow, convergent solutions cannot be obtained at or beyond
the marked location x̂s where τ = 0. The enlarged view in the inserted window shows that
as d → dc, the skin friction approaches the asymptotic behaviour τ ∼ |x̂s − x̂| (Ruban
1981). It is also shown that with the increase of the adverse-pressure-gradient intensity d,

the separation location moves forward.
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Figure 4. Comparison of the downstream development of maxη u1,rms for steady FSVD with different ε. The
symbols x indicate the separation locations. The parameters are d = 0.112, GΛ = 0 and RΛ = 1145.

In all the calculations, the parameters characterising FSVD are specified as follows. We
take spanwise wavenumber k3 = 1 without losing generality, and k2 = k3 is chosen on the
consideration that FSVD are typically ‘axisymmetric’. Since k1 = 0 or k1 � 1 (steady or
low-frequency FSVD), it follows from (2.5) that û∞

2,± = ∓û∞
3,±; we take û∞

3,+ = −û∞
3,− =

1 since the oblique components in the pair are assumed to have an equal amplitude and
û∞

3,+ can be absorbed into ε.
In this section, our results will confirm that three-dimensional disturbances induced

by low-frequency FSVD of rather moderate intensity can eliminate the two-dimensional
separation. The intensity of the vortices generated is to be measured by u1,rms, the
root-mean-square of the spanwise-dependent harmonic components, which is defined as

u1,rms ≡ rt

⎡⎣ ∑
m,n /= 0

|s2ûm,n|2
⎤⎦1/2

. (4.2)

It should be noted that in the steady limit k̂1 = 0, the double summation in (4.2) reduces to
a single sum. The development of u1,rms is shown in figure 4 for five different values of ε.
In the linear stage, u1,rms amplifies rapidly and the amplification becomes moderate in the
nonlinear saturating stage, which commences in the region of favourable pressure gradient
(acceleration). The amplitude attained increases with ε. For ε < 0.35, u1,rms amplifies
again past x̂ ≈ 0.2, the start of the decelerating (adverse-pressure-gradient) region. This is
because, under an adverse pressure gradient, the disturbance starts to saturate only after it
has reached an amplitude larger than that under favourable pressure gradient (see figure 3
in Xu et al. 2020). Presently, the amplitude at x̂ ≈ 0.2 is below that required for saturation.
For ε ≥ 0.4, the amplitude acquired in the accelerating region is already large enough for
nonlinearity to inhibit the growth in the decelerating region x̂ > 0.2 and so saturation
continues. For ε ≤ 0.0040, our code to solve the NUBRE ‘blows up’, signifying that
the solution then terminates at a finite-distance singularity. However, in the presence of
FSVD with higher intensity levels ε = 0.0041 and 0.0049, separation does not occur any
longer. The present result indicates that the threshold amplitude εc for FSVD to eliminate
the separation is 0.0040 < εc < 0.0041. For ε = 0.0041, which is only slightly above εc,
the extended saturation is followed by rather rapid attenuation. For a sufficiently high ε
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Figure 5. (a) The development of the skin frictions at the valley and peak for d = 0.112 and different FSVD
level ε. The symbols present the skin frictions at the peak. (b) The streamwise location of the separation vs ε.
The squares and deltas refer to the cases of d = 0.112 and 0.111, respectively.

(0.0049), u1,rms features a broad peak rather than extended saturation and then decays
rather gradually.

The reader is reminded that in the present study, the FSVD intensity ε is gradually
increased in order to identify the critical level εc. Our theory is completely appropriate
when ε > εc because in the absence of separation, the viscous effect produces merely
an asymptotically small correction to the inviscid main flow, and specifically the
two-dimensional pressure gradient induced by the viscous motion is negligible in
comparison with the streamwise inertia in the boundary layer, while the displacement
effect on FSVD, which appears at leading order, has already been taken into account in
our analysis and computations. However, the solutions for ε < εc must be treated with
caution because the massively separated flow may influence the entire inviscid part of the
main flow. An appropriate description of a separated boundary layer in the case of ε < εc
is beyond the scope of the present paper and requires a new approach.

Figure 5(a) displays the downstream development of the skin frictions at the peak and
valley. The result indicates that our code to solve the NUBRE ‘blows up’ where the
minimum skin friction approaches zero, suggesting that the termination is associated with
separation. The separation location depends on the FSVD level. In the case of d = 0.112
and ε ≥ 0.0040, τ reaches its minimum which is positive and then increases, and marching
can be continued to arbitrary locations downstream, suggesting that the FSVD at the
present level has suppressed the separation completely. Specifically at ε = 0.0041, the
skin friction undergoes a sharply decrease at the very beginning. Then the skin frictions at
the peak and valley diverge from each other due to the growth of the streaks. The difference
between the skin frictions at the valley and peak becomes less pronounced when x̂ > 0.16
due to attenuation of the streaks as is shown in figure 4. The skin friction decreases to
attain its minimum value at x̂ ≈ 0.37, and then starts to increase again, signalling that
the separation is avoided. Figure 5(b) shows the dependence of the separation location x̂s
on the FSVD level ε. As ε is increased from a very small level, the separation location
first shifts upstream but then moves downstream. After passing the minimum distance, x̂s
increases very rapidly with ε. Apparently, x̂s approaches infinite as ε → εc ≈ 0.0040. In
this case, the separation is eliminated. The growth of the fundamental component prompts
the forward movement of separation location, whereas the nonlinearly induced mean-flow
deformation tends to delay the separation. It is also found that as the adverse pressure
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Figure 6. The downstream development of the amplitudes of Fourier modes, maxη |rts2ûn| (n = 1, 2, . . .) for
d = 0.112 and ε = 0.0049. The parameters are GΛ = 0 and RΛ = 1145.

gradient d is increased, the separation location moves forward at a fixed ε, and FSVD of a
higher intensity are thus required to prevent the separation.

Figure 6 shows the development of maxη |rts2ûn|, the maximum amplitude of the
fundamental and harmonic components. Note that, unlike the formulation in Xu et al.
(2020), the mode (0, 0) is no longer present as it is fully absorbed into the steady
spanwise-averaged flow in our formulation. Near the leading edge, all harmonics have
much smaller amplitudes than that of the fundamental. After the initial non-modal growth,
the fundamental mode (0, 1) attenuates starting from x̂ ≈ 0.06 and its amplitude remains
almost constant between x̂ = 0.08 and 0.24, whilst all the harmonics continue to grow
overall (but not necessarily monotonically). Among them, mode (0, 2) grows quickly to
overtake the fundamental (0, 1) at x̂ ≈ 0.28. As a result, two mushroom structures are
anticipated within one spanwise periodic as will be shown later. From x̂ ≈ 0.36, the
fundamental mode grows again while all harmonic components attenuate.

It is informative to monitor the streamwise velocity of the distorted boundary layer,

U(η, z; x̂, τ̂ ) ≡ UB(x̂, η) + rts2
∑
m,n

ûm,n(x̂, η) exp(−imk̂1τ̂ + ink3z). (4.3)

In figure 7(a), the profiles of U at three spanwise positions are displayed. Near the leading
edge, the profiles at different spanwise positions overlap because of the small amplitude of
the excited disturbance. As is shown in figure 6, the fundamental mode (0, 1) at x̂ = 0.086
is the dominant component causing the deficit of the streamwise-velocity profiles at
z = π/2 and π. With the nonlinearly generated (0, 2) mode growing faster, at x̂ = 0.206
the profile at z = π/2 almost coincides with that of at z = π. Eventually at x̂ ≥ 0.326, a
larger deficit appears at z = π/2. Of particular interest is the streamwise-velocity profile
at x̂ = x̂s = 0.356, the location of the separation which would occur in the absence
of FSVD. Now in the presence of FSVD under consideration, flow reversal does not
occur at any of these three spanwise positions, indicating that Goldstein’s singularity is
prevented. The experiment of Simoni et al. (2016) found that FSVD of sufficient intensity
eliminated separation. Here, we have presented the first theoretical demonstration of this
phenomenon. It should be borne in mind that in the nonlinear saturation phase the profiles
become highly distorted and as a result may be susceptible to secondary instability. The
actual occurrence of bypass transition depends on whether or not secondary instability
modes are excited. Our result that separation can be eliminated without resorting to
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Figure 7. Streaky boundary layer subject to a favourable-to-adverse pressure gradient with separation being
eliminated by FSVD-induced streaks. (a) Profiles of the streamwise velocity U at various x̂-locations. Solid
lines: at the peak (z = 0); dashed lines: at the valley (z = π); dash-dotted lines: at the middle of the peak and
valley (z = π/2); symbols: profiles in the pre-separation region with FSVD being absent. Here, x̂s = 0.356 is
the separation location when ε = 0. (b) The nonlinear evolution of steady streaks illustrated by contours of the
streamwise velocity. (c,d) Streamwise-velocity profiles of fundamental and harmonics û0,n at x̂ = 0.206 and
x̂ = x̂s = 0.356. The parameters are GΛ = 0, RΛ = 1145 and ε = 0.0049.
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Figure 8. The downstream development of maxη u1,rms for steady Görtler vortices at different ε. The
parameters are d = 0.112, GΛ = 1501 and RΛ = 1145.

transition suggests a scenario that even if bypass transition does occur, it may not
necessarily be the direct or primary cause of separation suppression.

Figure 7(b) presents the evolution and structure of the steady streaks. The spanwise
extent displayed is two fundamental wavelengths. Near the leading edge, the streaks
resemble those in the case of zero pressure gradient. One streak appears first within a
spanwise wavelength, but splits into two streaks as (0, 1) is overtaken by the harmonic
(0, 2), whose spanwise wavelength is half of the original one. Two streaks persist for
some distances despite the (0, 1) mode becomes dominant again from x̂ ≈ 0.41 as is
shown in figure 6, but the structure of one streak would eventually re-emerge farther
downstream. Figures 7(c) and 7(d) show the profiles of the fundamental and harmonics in
the streamwise velocity at x̂ = 0.206 and the separation point x̂ = x̂s = 0.356 respectively.
The fundamental (0, 1) dominates at x̂ = 0.206, but its magnitude decreases as is indicated
in figure 6, and is overtaken by (0, 2) component at x̂ = x̂s = 0.356. The (0, 1) mode has
two peaks at η ≈ 1.3 and 3.4. These two peaks were also be detected by Martin & Martel
(2012) for an elevated initial amplitude of streak shown in their figure 9 (Bottom row). The
component (0, 3) acquires a magnitude comparable to that of (0, 1).

4.2. Concave wall case: Görtler vortices eliminate separation
In many flows of interest, high-intensity turbulence and streamwise curvature are both
present. In this subsection, we investigate how FSVD influences the separation in a
curved boundary layer. The slip velocity is the same as equation (4.1) with d = 0.112.
The Reynolds number is set as RΛ = 1145 and the Görtler number GΛ = 1501, which
are pertinent to an experiment condition of Swearingen & Blackwelder (1987). Figure 8
shows the streamwise development of u1,rms for different FSVD levels. When ε is sufficient
small, the code ‘blows up’ in the linear growth stage of the Görtler vortices. The ‘blow-up’
position moves upstream as ε increases. However, when the FSVD level reaches ε =
1.0 × 10−4, ‘blow-up’ no longer occurs, in which case three stages, non-modal, linear
growth and nonlinear saturation, are observed.

Figure 9(a) shows the streamwise development of the skin frictions at the valley and
peak. The Görtler vortices excited by FSVD cause the minimum skin friction to occur at
z = π. The streamwise position of the ‘blow-up’ coincides with the location where the
minimum skin friction τ vanishes. As the FSVD level ε is increased, the skin friction at
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Figure 9. (a) The development of the skin frictions at the peak (dashed lines) and valley (solid lines) at
different ε. The squares, deltas, circles and diamonds represent the cases of ε = 2.1 × 10−5, 4.9 × 10−5,

9.0 × 10−5 and 1.4 × 10−4, respectively. (b) The streamwise locations of separation vs FSVD level ε for a
favourable-to-adverse flow. The error bar indicates uncertainty caused by the limited number of calculations.

the valley decreases very quickly from x̂ ≈ 0.1, and the position at which τ = 0 moves
slightly upstream. At ε = 1.4 × 10−4, the skin friction decreases to a positive minimum
value at x̂ = 0.27 and then increases again. Note that separation would occur at x̂ = 0.356
when ε = 0, but in the presence of FSVD, the skin friction at z = π remains positive due
to the nonlinearly generated mean-flow distortion. Figure 9(b) presents the dependence
of the separation location x̂s on ε. Unlike the flat-plate case shown in figure 5(b), where
the separation position shifts to infinity downstream as ε approaches a threshold, for the
curved wall, with the FSVD intensity increasing, x̂s shifts upstream monotonically. When
the FSVD intensity is low (ε < 6 × 10−5), the upstream shift is rather rapid. However,
with further increase of ε, the separation location gradually approaches a plateau. The
separation no longer occurs when ε ≈ 10−4. The critical FSVD level to prevent separation
is approximately 10−4, much smaller than εc ≈ 4 × 10−3 in the flat-plate case, indicating
that the concave streamwise curvature significantly inhibits the separation for moderate
and large values of GΛ.

The nonlinear interactions generate harmonics. Figure 10 plots the development of
the maximum amplitudes of these components. After the initial non-modal growth, the
Görtler vortices evolve approximately linearly before reaching saturation at x̂ ≈ 0.3. The
fundamental mode (0, 1) is always dominant, and is followed by the nonlinearly generated
(0, 2) mode. The behaviour is different from that of the streaks shown in figure 6 for the
flat-plate case.

The streamwise-velocity profiles at six streamwise locations are displayed in figure 11(a)
for the spanwise positions corresponding to z = 0 (peak) and z = π (valley). The profiles
exhibit velocity excess at the peak, while at the valley they feature a deficit. The Görtler
vortices grow in height and expand towards the outer edge of the boundary layer,
as far as to η ≈ 8. In comparison, over the streamwise range 0.001 ≤ x̂ ≤ 0.446, the
streaks in the flat-plate case only extend up to η ≈ 5 as is shown in figure 7. Special
attention is paid to the profiles at x̂ = x̂s = 0.356, and no flow reversal is found at either
the peak or valley. The separation, which would otherwise occur, is prevented by the
Görtler vortices. Figure 11(b) presents the evolution and structure of the Görtler vortices.
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for d = 0.112 and ε = 1.4 × 10−4. The parameters are GΛ = 1501 and RΛ = 1145.

The characteristic mushroom-shaped pattern is formed, which is similar to that in the weak
adverse-pressure-gradient cases (Xu et al. 2020).

4.3. Boundary layer subject to a persistent adverse pressure gradient
We now turn to the boundary layer over a flat plate, or concave wall, in an expanding
channel, a setting appearing in many experiments (Blair 1992). The inviscid streamwise
slip velocity is obtained as (Xu et al. 2020)

Ue(x̂) =
(

σc + 1
2

)
+ (σc − 1)

2
sinh(2rx̂)

cosh(rx̂) + 1
(r = πRΛΛ/a∗). (4.4)

The expansion ratio σc < 1 controls the streamwise pressure gradient. Unlike (4.1), the
slip velocity (4.4) gives an adverse pressure gradient for all x̂ when σc < 1. Figure 12(a)
plots the variation of the slip velocity. Two rather strong adverse pressure gradients,
corresponding to σc = 0.63 and 0.64, are chosen. A no separation case σc = 0.65 is plotted
for comparison. Figure 12(b) shows the distribution of the skin friction. The separation
location moves upstream as the adverse pressure gradient increases.

In the presence of FSVD, the separation location moves as ε is varied. Figure 13(a)
shows the downstream development of maxη u1,rms for the steady Görtler vortices at
σc = 0.63 with different ε. The separation occurs in the modal growth stage for the
two lower levels, ε = 0.0035 and 0.0070. At ε = 0.014, the separation is eliminated, and
nonlinearity influences the evolution of maxη u1,rms even near the leading edge, indicating
that nonlinearity plays a decisive role in preventing separation.

At a fixed FSVD level, the centrifugal force due to concave curvature is also an important
factor in preventing separation. Figure 13(b) displays the downstream development of
maxη u1,rms for the steady Görtler vortices at σc = 0.63 with a fixed ε = 0.014 but different
GΛ. Three Görtler numbers are chosen for comparison. The evolution of maxη u1,rms
overlaps upstream of x̂ = 0.03, indicating that at the present high FSVD level (ε = 0.014),
the curvature has little influence on the growth of vortices at the beginning. For the two
smaller values of GΛ, the separation still occurs. Note that the separation takes place in the
nonlinear saturation stage of the vortices, which is different from that in the lower FSVD
level cases of ε = 0.007 and 0.0035 shown in figure 13(a). As GΛ is increased to 1501, the
separation is eliminated.
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Figure 11. Boundary layer subject to a favourable-to-adverse pressure gradient with separation being
eliminated by FSVD-induced Görtler vortices. (a) The profiles of the streamwise velocity U at various
x̂-locations. Solid lines: at the peak (z = 0); dashed lines: at the valley (z = π); symbols: profiles in the
pre-separation region with FSVD being absent. Here, x̂s = 0.356 marks the location of the separation that
would occur when ε = 0. (b) The nonlinear evolution of steady Görtler vortices with ε = 1.4 × 10−4.

Figure 14 displays the evolution of the fundamental and harmonics. The dominant
component is the fundamental mode (0, 1). After the non-modal growth, the mode (0, 1)

starts to saturate from x̂s ≈ 0.05, with the linear growth stage being more-or-less bypassed
at such high FSVD level. The separation would occur at x̂ = 0.138 at ε = 0, but disappears
in the presence of FSVD with ε = 0.0175. Again, the elimination is in the saturation
phase of the vortices. The oscillatory behaviour led to halving of the step size �x̂, and
the comparison shown in figure 14 confirms that the solution is satisfactorily resolved.

Figure 15(a) plots the profiles of the streamwise velocity U at various x̂-locations.
As the Görtler vortices develop, the profile at the valley in the region η < 6 is highly
distorted. These profiles may not be observed in experiments because the amplitude of the
secondary instability modes could have grown to a large value. To examine the spanwise
characteristics of the steady vortices, we plot the contours of the streamwise velocity at
eight streamwise locations in the range of 0.001 < x̂ < 0.16 in figure 15(b). The structures
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Figure 12. The development of the slip velocity (a) and skin friction (b) for the separating and
non-separating flows when ε = 0.
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Figure 13. The downstream development of maxη u1,rms for steady Görtler vortices at σc = 0.63 and
RΛ = 1145. (a) Fixed GΛ = 1501 with different ε. (b) Fixed ε = 0.014 with different GΛ.
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Figure 14. The downstream development of different Fourier components (n = 1, 2, . . . , 8) of the steady
Görtler vortices. The parameters are ε = 0.0175, GΛ = 1501, RΛ = 1145 and σc = 0.63. The dashed lines
represent the result obtained with the step size �x̂ halved.
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Figure 15. Boundary layer subject to an adverse pressure gradient but with the separation being eliminated
by FSVD-induced Görtler vortices. (a) The profiles of the streamwise velocity U at various x̂-locations. Solid
lines: at the peak (z = 0); dashed lines: at the valley (z = π); symbols: profiles in the pre-separation region
with FSVD being absent. Here, x̂s = 0.138 denotes the separation location at ε = 0. (b) Nonlinear evolution of
the steady Görtler vortices. The parameters are GΛ = 1501, RΛ = 1145 and ε = 0.0175.

look rather like the streaks shown in figure 7(b). The separation that would otherwise occur
at x̂ = x̂s = 0.138 is prevented by the saturated Görtler vortices.

Rather extensive calculations are carried out for different ε, GΛ and σc in order to map
out the dependence of the critical FSVD level εc on GΛ and σc. The variation of the
separation location with ε for different GΛ is displayed in figure 16(a). For each fixed
GΛ, increasing ε causes the separation location x̂s to move upstream, until the FSVD level
reaches a certain threshold value εc, for which separation no longer occurs. Figure 16(b)
shows the variation of εc with GΛ. As GΛ increases, εc becomes smaller, indicating that
concave curvature helps FSVD inhibit the separation.

Figure 17(a) shows the variation of the separation location x̂s with the FSVD level ε

for different σc. For σc = 0.7 and 0.665, the two-dimensional base flow would have not
separated when ε = 0, however, FSVD of sufficient intensity cause separation because
of the linear growth of the Görtler vortices. That an otherwise attached boundary layer
separates under the action of free-stream disturbances was demonstrated before for steady
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Figure 16. (a) The separation location x̂s vs ε for different GΛ. (b) The critical FSVD level εc vs GΛ. The
parameters are σc = 0.63 and RΛ = 1145.
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Figure 17. (a) The separation location x̂s vs ε for different σc. (b) The critical FSVD level εc vs σc. The
parameters are GΛ = 1501 and RΛ = 1145.

vorticity normal to the leading edge (Goldstein et al. 1992) or in the streamwise direction
(Goldstein & Leib 1993). As ε is increased, the three-dimensional flow becomes attached
again. For σc = 0.63 and 0.595, the boundary layer would separate when ε = 0. The
separation location moves upstream as ε increases until ε = εc, at which the nonlinear
effect becomes significant enough to remove the separation. As figure 17(b) indicates,
the critical FSVD level εc for eliminating the separation decreases monotonically with
σc, suggesting that for a stronger adverse pressure gradient, higher intensity turbulence is
required to remove the separation.

4.4. Unsteady vortices eliminate separation
We now present results showing how unsteady FSVD eliminate separation. The
unsteadiness is characterised by parameter k̂1, which is related to the dimensional
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Figure 18. Suppression of separation by unsteady FSVD. (a) The critical FSVD level εc vs the frequency
of FSVD for a favourable-to-adverse pressure gradient. The error bars indicate the uncertainty caused by the
limited resolution in the search for εc. (b) The downstream development of maxη u1,rms at fixed ε = 0.001 for
different frequencies. The symbols x indicate the separation locations. The parameters are d = 0.112, RΛ =
1145 and GΛ = 0.

frequency f ∗ via the relation,

k̂1 = RΛk1 = 2πRΛ f ∗Λ/U∞. (4.5)

Calculations are performed for the slip velocity representing a favourable-to-adverse
pressure gradient shown in figure 13(a). Figure 18(a) shows the variation of the critical
FSVD level εc with the dimensional frequency f ∗. As the frequency of FSVD increases,
εc reduces dramatically until f ∗ ≈ 2 Hz, for which the critical FSVD intensity to remove
the separation is the smallest. When f ∗ > 2 Hz, εc increases slowly with f ∗ but is still
significantly lower than in the steady case. The results suggest that unsteady low-frequency
FSVD can be more efficient than steady ones to prevent the separation.

The reason for the existence of an optimal frequency which gives a minimum
threshold amplitude to eliminate the separation is due to the competition between the
spanwise dependent components and the steady mean-flow distortion (represented by
(0, 0) component when an unperturbed base flow can be defined). The latter was found
to be more significant than the former in the saturation stage of the streaks (Ricco et al.
2011; Xu et al. 2020). In order to eliminate the separation, the wall shear must remain
positive everywhere along the spanwise direction. The steady spanwise uniform mean-flow
distortion acts to increase the wall shear, while the spanwise dependent components,
primarily (1, ±1) and (0, 2), reduce the wall shear in the valley region. As is shown in
figure 19, when unsteadiness (the frequency f ∗) is increased first, (1, ±1) becomes weaker,
and thus the required threshold is reduced. However, with a further increase of f ∗, (0, 2)

becomes strong and thus the threshold amplitude increases eventually.
Figure 18(b) presents the downstream development of maxη u1,rms for the unsteady

streaks induced by FSVD of different frequency but with a fixed ε = 0.001. The evolution
of maxη u1,rms overlaps for different f ∗ in the region x̂ < 0.05, indicating that unsteadiness
does not play a leading role near the leading edge, as is expected theoretically (Leib et al.
1999). When x̂ > 0.05, the excited unsteady streaks acquire smaller amplitudes for higher
frequencies. The separation is prevented for f ∗ = 2, 4 and 6 Hz, but not in the cases of
f ∗ = 1 and 8 Hz, since ε = 0.001 is below the required threshold as figure 18 indicates.
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Figure 19. The downstream development of different Fourier modes for FSVD of different frequencies: (a) f ∗ = 1 Hz, (b) f ∗ = 2 Hz, (c) f ∗ = 6 Hz, (d) f ∗ = 8 Hz. The
parameters are ε = 0.001, GΛ = 0 and RΛ = 1145.
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Elimination of boundary-layer separation

That the boundary layer separates again as the frequency f ∗ ≥ 8 Hz is due to the reduced
amplitude of the excited streaks, failing to reach the required strength to prevent the
separation.

It is appropriate at this junction to discuss the relation between the threshold εc
of discrete low-frequency FSVD and the overall FST level required for eliminating
separation. This would depend on a number of factors including the spectral property
of FST on the one hand, and the geometry, angle of attack and the surface curvature
of the aerofoil or turbine blade (the first two of which determine the degree of the
adverse pressure gradient) on the other hand. The result presented in figure 18(a) suggests
that for a typical case of favourable-to-adverse pressure gradient, the threshold level of
low-frequency FSVD is only approximately 0.1 % , while experiments indicate that the
overall FST level Tu under which a LSB was (almost) completely suppressed was in
the range of 1.45 %–5 % (Simoni et al. 2016, 2017; Istvan & Yarusevych 2018). The
vast difference arises because the FST covers a broadband spectrum of perturbations,
the majority of which are trapped in the outer edge of the boundary (Dong & Wu
2013), incapable of penetrating into the boundary layer to impact separation. Only the
components in a small low-frequency band are relevant. This suggests that in experimental
studies, a Tu restricted to a suitable low-frequency band would need to be introduced
to characterise the impact of FST on separation. On the other hand, the theory and
calculations need to be extended using a realistic FST model that accounts for a continuum
of low-frequency components, as was done in Zhang et al. (2011). We expect that the
critical intensity in terms of such a Tu would be much lower than the overall FST level.

Figure 19 shows the downstream development of different Fourier components in the
streaks excited by FSVD of different frequency. The fundamental mode (1, 1) is dominant
in all the four cases. The two-dimensional unsteady harmonic (2, 0) has the second
largest amplitude for f ∗ = 1 and 2 Hz, but for f ∗ = 6 and 8 Hz, it is three-dimensional
steady component (0, 2) that takes second place. An almost exponential growth of the
fundamental mode (1, 1) occurs in the range x̂ = 0.1 ∼ 0.35 for the cases of f ∗ = 1 and
2 Hz, suggesting that a linear low-frequency instability mechanism may be operating at
elevated FSVD levels despite the flat plate and an attached boundary layer. It is worth
noting that such exponential amplification was observed in experiment (Simoni, Ubaldi &
Zunino 2014) and DNS (Hosseinverdi & Fasel 2018). An interesting question is whether
this is related to the ‘centrifugal instability’ (Marxen et al. 2009; Marxen & Henningson
2011) that was attributed to VBx̂, the streamwise variation of the spanwise-averaged flow.
For the present attached boundary layer, the instability is rather weak with a spatial growth
rate d ln |û1,1|/dx̂ ≈ 4, but could become strong in a separating or separated boundary
layer.

The first and second rows of figure 20 displays perspective views of the
streamwise-velocity contours in the y–z plane at different downstream locations for the
unsteady streaks with f ∗ = 2 and 6 Hz. In each case, two phases of time modulation,
φ ≡ k̂1τ̂ = 25π/16 and 31π/16, are chosen. At each instant, the streaks look similar to
those in the steady cases shown in figure 7(b), but the spanwise distribution remains
sinusoidal in the late nonlinear stage. The third and fourth rows of figure 20 show the
streamwise-velocity profiles of fundamental and harmonics at x̂ = 0.206 and x̂ = x̂s for
unsteady streaks. The (0, 2) mode has two peaks which are the same as shown by Ricco
et al. (2011) in their figure 5(a). For the streaks with frequency f ∗ = 2 Hz, the mode (2, 0)

takes the second place. With the frequency increasing to 6 Hz, the inner peak of mode
(0, 2) grows to a larger amplitude, leading to that mode (0, 2) overtakes the mode (2, 0)

as shown in figure 20(h).
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Figure 20. Nonlinear evolution of streaks in a boundary layer where the separation is eliminated by unsteady
FSVD with k̂1 = 10.54 (2 Hz, a,c,e,g) and k̂1 = 31.61 (6 Hz, b,d,f,h). First and second rows: contours of the
streamwise velocity U at φ = 25/16π and φ = 31/16π respectively. (e–h) The streamwise velocity profiles of
fundamental and harmonics at x̂ = 0.206 and 0.356 respectively. The parameters are GΛ = 0, RΛ = 1145 and
ε = 0.001.
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Elimination of boundary-layer separation

5. Summary and conclusions

A nominally steady two-dimensional boundary layer usually separates when it is subject
to an adverse pressure gradient.

It has been shown experimentally that elevated FST of rather moderate level can reduce
the size of the separation bubble (O’meara & Mueller 1987; Olson et al. 2013; Istvan et al.
2017) and even eliminate the separation entirely (Simoni et al. 2016, 2017; Zilli et al. 2017;
Istvan & Yarusevych 2018). This effect of FST was observed in DNS (Wissink & Rodi
2006; McAuliffe & Yaras 2010; Balzer & Fasel 2016). Specifically, the so-called Klebanoff
modes (i.e. streaks) induced by low-frequency components in FST play a key role in
inhibiting the separation (McAuliffe & Yaras 2010; Hosseinverdi & Fasel 2019). Prompted
by these experimental and DNS results, in this paper a theoretical approach was taken to
investigate the impact of low-frequency FSVD on separation. The theory is an adoption of
that of Xu et al. (2020), where a nonlinear initial-boundary-value problem was formulated
to describe excitation of streaks and Görtler vortices by FSVD and their evolution. An
important part of the formulation was the correct specification of the upstream and far-field
conditions which account for quantitatively the action of FSVD on the boundary layer.

In Xu et al. (2020), the instantaneous flow is decomposed as the sum of the undisturbed
base flow and the perturbation induced by FSVD. This decomposition is not applicable
to strong adverse pressure gradients that induce separation because the former part
terminates at a finite distance in the form of Goldstein singularity. In order to overcome
this obstacle, the flow was split into the steady spanwise-averaged part and the spanwise
or time-dependent part. They are nonlinearly coupled, and were computed as a whole
numerically. Computations were carried out for two typical forms of slip velocity: one
corresponds to a favourable-to-adverse pressure gradient while the other is entirely
adverse. With the FSVD level ε = 0, these two slip velocities can lead to separation of
the two-dimensional boundary layer when the parameter controlling the pressure gradient
exceeds a certain threshold. However, if the intensity of FSVD is strong enough, the
separation is eliminated. Nonlinearity plays a key role in suppressing the separation,
namely, the nonlinear interactions of the spanwise-dependent components generate steady
spanwise-independent Reynolds stresses, which drive a mean flow with an enhanced
skin friction thereby inhibiting separation. The detailed process leading to separation
elimination and the critical FSVD intensity required depend on the form of the adverse
pressure gradient and wall curvature. For the favourable-to-adverse pressure gradient and
flat-plate case, the separation location first shifts upstream, and then moves downstream
quickly with the FSVD intensity increasing from zero. The separation appears to be pushed
to infinity as the FSVD level approaches a critical value. The influence of the streamwise
curvature on the separation was also investigated in the favourable-to-adverse flow. At
the Görtler number GΛ = 1501, chosen to represent a typical experimental condition,
increasing the FSVD level moves the separation location upstream monotonically. The
separation is eliminated when the intensity of FSVD level reaches a critical level, which
turns out to be one order of magnitude smaller than that in the flat-plate boundary layer.
For an entirely adverse-pressure-gradient flow, the critical FSVD level εc was found to
decrease with GΛ, suggesting that a concave surface curvature helps inhibit the separation.
Calculations performed for different expansion ratio σc indicated that εc increases with the
adverse pressure gradient, as might be expected.

We also investigated the effect of unsteady FSVD on the separation. As the frequency of
FSVD is increased from zero, the critical FSVD intensity to remove the separation drops
quickly to reach a minimum at a low frequency, and it then gradually increases as the
frequency is increased further. With a fixed FSVD intensity, the boundary layer responding
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to FSVD of a moderate frequency would not separate. However, with further increase of
the FSVD frequency, the boundary layer separates again.

By investigating the nonlinear response of boundary layers with adverse streamwise
pressure gradients to steady and low-frequency physically realisable FSVD, the present
work presented the first theoretical demonstration that FST can eliminate separation
by influencing the mean flow directly through the Reynolds stresses. This is a simple
mechanism as it does not resort to usual short-wavelength (inviscid Rayleigh or viscous
T–S) instability, or transition, and instead the amplification of long-wavelength structures,
streaks and Görtler vortices, plays an important role. Our theoretical result is consistent
with the earlier experimental finding of Simoni et al. (2016) and Simoni et al. (2017).
The mechanism is probably a fundamental one that operates as well when instability
modes or fully turbulent fluctuations are involved, i.e. they influence separation also
through the Reynolds stresses and the mean-flow distortion (cf. Marxen & Rist 2010).
The present theoretical framework accounts for the receptivity to realisable FSVD, the
nonlinear evolution of the resulting streaks or Görtler vortices and the effects of curvature.
It may be employed to develop physics-based separation control strategies as well as to
assess various means of control in a more physical setting.

As we remarked earlier, when the FSVD intensity ε < εc the solutions to the
boundary-region equations may not be acceptable because the breakaway separation could
exert a long range influence to impact the entire inviscid part of the flow. A further
investigation of how FSVD influence a separated boundary layer with a LSB, long or
short, is required. This necessitates the inclusion of the simultaneous impact of the LSB
on the inviscid outer flow. Our work on this problem is in progress.
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Appendix A. Newton’s iteration solving (3.8a,b) and (3.9)

Newton’s iteration used to solve (3.8a,b) and (3.9) is facilitated by introducing iterations
on (Fr

j , Ur
j , Gr

j ),

(F(r+1)
j , U(r+1)

j , G(r+1)
j ) = (Fr

j , Ur
j , Gr

j ) + (δF(r)
j , δU(r)

j , δG(r)
j ), (A1)

where r = 0, 1, 2, . . .. The initial values (r = 0) are taken to be those at the previous
streamwise station x̂n−1. We insert (A1) into (3.8a,b) and (3.9), and drop the terms that are
quadratic in δF(r)

j , δU(r)
j and δG(r)

j . This procedure yields the linear system,

δFj − δFj−1 − �ηj

2
(δUj + δUj−1) = r1j, (A2)

δUj − δUj−1 − �ηj

2
(δGj + δGj−1) = r3j−1, (A3)

s1jδGj + s2jδGj−1 + s3jδFj + s4jδFj−1 + s5jδUj + s6jδUj−1 = r2j, (A4)
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Elimination of boundary-layer separation

where

r1j = Fr
j−1 − Fr

j + �ηjUr
j−1/2, (A5)

r3j−1 = Ur
j−1 − Ur

j + �ηjGr
j−1/2, (A6)

r2j = Rn−1
j−1/2 − 4x̂n−1/2

Qn−1/2
1,j−1/2

(U2
e )

n−1/2
j−1/2

− [�η−1
j (Gr

j − Gr
j−1) + α1(FG)r

j−1/2

− α2(U2)r
j−1/2 + αn(Gn−1

j−1/2Fr
j−1/2 − Fn−1

j−1/2Gr
j−1/2)]. (A7)

The coefficients of the linearised momentum equation (A4) are

s1j = �η−1
j + 1

2 (α1Fr
j − αnFn−1

j−1/2),

s2j = −�η−1
j + 1

2 (α1Fr
j−1 − αnFn−1

j−1/2),

s3j = 1
2(α1Gr

j + αnGn−1
j−1/2),

s4j = 1
2 (α1Gr

j−1 + αnGn−1
j−1/2),

s5j = −α2Ur
j ,

s6j = −α2Ur
j−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A8)

The boundary conditions (3.13a,b) imply that

δFn
0 = δUn

0 = 0, δFn
J = 0. (A9a,b)

Let δ = [δ0, δ1, · · · , δJ]T and r = [r0, r1, · · · , rJ]T with δj = [δFj, δUj, δGj]T

and rj = [r1j, r2j, r3j]T. The linear system (A2)–(A4) and (A9) can be written in a
matrix-vector form, Aδ = r, where

A =

⎡⎢⎢⎢⎣
A0 C0 0 0 · · · 0 0
B1 A1 C1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 BJ−1 AJ−1 CJ−1
0 0 · · · 0 0 BJ AJ

⎤⎥⎥⎥⎦ , (A10)

which is the Jacobian matrix of (3.8a,b) and (3.9); the matrices Aj, Bj, Cj in (A10) have
the non-zero entries as follows:

A0(1, 1) = 1; A0(2, 2) = 1; A0(3, 2) = −1, A0(3, 3) = −�η1/2;
Aj(1, 1) = 1, Aj(1, 2) = −�ηj/2; Aj(2, 1) = s3j, Aj(2, 2) = s5j,

Aj(2, 3) = s1j; Aj(3, 2) = −1, Aj(3, 3) = −�ηj+1/2;
AJ(1, 1) = 1, AJ(1, 2) = −�ηJ/2; AJ(2, 1) = s3J,

AJ(2, 2) = s5J, AJ(2, 3) = s1J; AJ(3, 2) = 1;

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A11)

Bj(1, 1) = −1, Bj(1, 2) = −�ηj/2;
Bj(2, 1) = s4j, Bj(2, 2) = s6j, Bj(2, 3) = s2j;

Cj(3, 2) = 1, Cj(3, 3) = −�ηj/2.

⎫⎬⎭ (A12)

Since the matrix A has a block diagonal structure, Aδ = r can be solved by using the
block elimination procedure.

920 A14-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

44
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.441


D. Xu and X. Wu

Appendix B. Expressions for matrices C0 and C1

The non-zero entries of the 6 × 6 matrix C0 in (3.18) are

C0(1, 4) = 1; C0(2, 1) = −2Bv, C0(2, 3) = −in, C0(2, 4) = Bvη; C0(3, 6) = 1;
C0(4, 1) = s2(−imk̂1 + n2k2

3) + 2BvUB + s2UBx̂ − BvηUBη + s2ink3WB,

C0(4, 2) = UBη, C0(4, 4) = −BvηUB + sVB;
C0(5, 1) = −s3VBx̂ + BvηsVBη − 2s3GΛχBUB + 2BvsVB

+Bvηs2(−imk̂1 + n2k2
3 + ink3WB) + Bvηs2UBx̂ − B2

vη
2Uη,

C0(5, 2) = −s2(−imk̂1 + n2k2
3) − BvUB − sVBη + BvηUBη − s2ink3WB,

C0(5, 3) = (sVB − BvηUB)in, C0(5, 4) = −Bv, C0(5, 6) = −in;
C0(6, 1) = (WBx̂s2 − BvηWBη)k3s2, C0(6, 2) = WBηk3s2,

C0(6, 3) = s2(−imk̂1 + n2k2
3 + ink3WB),

C0(6, 5) = s2(ink2
3), C0(6, 6) = sVB − BvηUB,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B1)

and those of the matrix C1 are

C1(2, 1) = −s2;
C1(4, 1) = s2UB;

C1(5, 1) = s3VB, C1(5, 2) = −s2UB, C1(5, 4) = −s2;
C1(6, 3) = s2UB.

⎫⎪⎪⎬⎪⎪⎭ (B2)
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