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Abstract  In this note we give simple proofs of several results involving maximal truncated Calderén—
Zygmund operators in the general setting of rearrangement-invariant quasi-Banach function spaces by
sparse domination. Our techniques allow us to track the dependence of the constants in weighted norm
inequalities; additionally, our results hold in R™ as well as in many spaces of homogeneous type.
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1. Introduction

Sparse domination has recently been an extremely active area of research in harmonic
analysis. This technique dates back to Andrei Lerner from his alternative, simple proof
of the Ay theorem [20, 21], proved originally by Hytonen [14]. Lerner is able to bound all
Calderon—Zygmund operators by a supremum of a special collection of dyadic, positive
operators called sparse operators. This bound led almost instantly to a proof of the sharp
dependence of the constant in related weighted norm inequalities, the As theorem, a
problem that had been actively worked on for over a decade.

There have been many improvements to Lerner’s techniques as well as extensions of
his ideas to a wide range of spaces and operators. These results are too numerous to
list fully, though we mention a few of them in our references; we refer the interested
reader to the many recent papers and monographs involving sparse domination for more
references and background. We could have made use of some of these improvements, such
as [6,8,19,22], but since we are looking at weighted norm inequalities, Lerner’s original
technology also works.
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In this paper, we concentrate on several of the results in the paper [9] involving the
maximal truncated Calderén—Zygmund operator. Specifically, we study the behaviour of
the maximal truncated Calderén—Zygmund operator on rearrangement-invariant Banach
function spaces (RIBFSs) and rearrangement-invariant quasi-Banach function spaces
(RIQBFS); we also show some modular inequalities. To bring our results into context,
we recall a few definitions.

Let T be a Calderéon—Zygmund operator in R™ with standard kernel K satisfying the
following size and smoothness conditions.

(1) [K(z,y)] < ¢/(lz —y["), where z # y.
(2) There exists 0 < § <1 such that
|z —a2'|°

K a) = K@ )]+ 1K (3, ) = Ky )| < e "0

where |z — /| < |z — y|/2 and ¢ is some absolute constant.
(3) T is bounded on L2.

Given a Calderén—Zygmund operator T, define its maximal truncated operator by

T f(z) = sup
0<e1<en

/ K(e.9)f(y) dy‘.
e1<|z—y|<ea

We say that a weight w belongs to the Muckenhoupt class A,,1 < p < oo, if for every

cube Q C R™,
1 1
CIRCDIC

[torsas)” <o,

When p =1, w belongs to A if Mw(x) < [w]a, w(z) almost everywhere (a.e.). More-
over, we denote A, = Up>1 Ap. In this paper we use the Fujii-Wilson definition of the
Muckenhoupt class A.,. Namely, the weight w belongs to the class A if and only if

w| A, :=sup
Q w(Q)
where the supremum is taken with respect to all cubes in R™ whose sides are parallel to
the axes.

In this language, the A, theorem states that for w € A,, p > 1,

/Q M(wxq) < oo,

1T o w20y < C(T, p) ] 2/ E=D)

and the exponent is sharp. We refer the reader to the books [10, 11] for more information.

By using sparse domination, we show that under certain conditions, the following
statements hold, with explicit dependence of the constant C' on the weight w (which is
detailed and discussed in the body of this paper):
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(i)
1T fllxw) < Clfllxew)s
where X is some RIBFS or RIQBFS (see Theorems 3.5 and 3.7 for a precise
statement);

(i)
AT f@))w(z)de <C | ¢(f(x))w(z)d,

Rﬂ, Rn
where ¢ is an N-function and w is some Muckenhoupt weight.

As stated, additionally we track the dependence of the constants on the weight character-
istic and provide some commentary. In particular, the dependence on the constant that
we obtain improves on that in [16] in certain cases, even on the space L?(w) (see remarks
following Theorem 3.7).

Our approach simplifies the original proof, which is done by using extrapolation [9].
Moreover, by taking the advantage of the sparse domination, we can track the constant
C and study its dependence with respect to w. Finally this technique is general enough
to hold in many spaces of homogeneous type (SHT). These are doubling measure spaces
equipped with a quasimetric—more references and a precise definition are contained in
[2]. For simplicity, we structure our results in R”, and we indicate throughout the note
where additional steps are needed for SHT and what they are; we mention any restrictions
on the space when they arise.

The structure of the paper is as follows: § 2 provides background, especially concerning
RIQBFS; and §3 includes our main results, proofs and remarks.

Throughout this paper, for a,b € R, a <b (a 2 b, respectively) means there exists
a positive number C, which is independent of a and b, such that a < Cb (a > Ob,
respectively).

2. Preliminaries

In this section, we collect several basic facts for RIBFSs, RIQBFSs and modular
inequalities.
2.1. RIBFSs and RIQBFSs

Denote by M the set of measurable functions on (R™, dz) and by M™ the non-negative
ones. A rearrangement-invariant Banach norm is a mapping p : M* — [0, o0] such that
the following properties hold.

p(f) =0« f=0ae;p(f+g) < p(f)+p9); plaf) = ap(f) for a > 0.
If0 < f <gae., then p(f) < p(g).
If fo 1 f ae., then p(fy) T p(f).

If E is a measurable set such that |E| < oo, then p(xg) < oo, and [, fdz <
CEp(f), for some constant 0 < Cg < oo, depending on E and p, but independent
of f.
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(e) p(f) =plg) if f and g are equimeasurable, that is, d¢(\) = dy(N\), A > 0, where df
(dg, respectively) denotes the distribution function of f (g, respectively).

By means of p, the RIBFS is defined as

X={feM:|flx:=p(f]) < oo}

Moreover, the associate space of X is the Banach function X’ defined by

X' = {fGM,IIfIX/ :sup{/w fodu g e MY, plg) < 1} <oo}.

Note that in the present setting, X is an RIBFS if and only if X’ is an RIBFS (see, for
example, [3, Chapter 2 and Corollary 4.4]). For SHT, we require that the underlying
space be resonant (that is, a o-finite space that is completely non-atomic, or is atomic
with all atoms having equal measure).

An important feature for these spaces is the Lorentz—Luxemburg theorem, which asserts
that X = X" and hence we have

Il =suw{| [ foas

Recall that the decreasing rearrangement of f is the function f* on [0, 00) defined by

g X, llglo < 1}.

frt)=inf {A>0:ds(X) <t}, t>0.

It is well known that f* is equimeasurable with f and hence by Luxemburg’s represen-
tation theorem, there exists an RIBFS X over (R*,dx), such that f € X if and only if
f* € X with || f||x = || f*|ls, that is, the mapping f — f* is an isometry. Furthermore, for
associate space, we have X =X and ||f|x = ||f* |- We refer the reader to the book [3]
for a detailed introduction to RIBFSs.

Let w € Ay, X an RIBFS and X as its corresponding space in (R*, dx). We consider
the weighted version of the space X as follows:

X(w) = {f € M [ fllxcw) = IIfillz < o0},

where fi(t) =inf{\ > 0:w;(X) <t}, t >0, is the decreasing rearrangement induced by
wy, the distribution function of f with respect to the measure wdx (note that we need
a resonant space to apply the representation theorem). It is known that X'(w) = X(w)’
(see [9]).

Next, we recall the Boyd indices of an RIBFS, which are closely related to some
interpolation properties (see [3, Boyd’s theorem]). Consider the dilation operator

th(s):f(;?)7 0<t<oo, feEX,

with norm

hx(t) = | Dillgx, 0 <t <oo.
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Then the lower and upper Boyd indices are defined, respectively, by

I logt logt . logt . logt
=lim —=—— = sup ——— = lim ——=—— = inf ——=——.
P = I log hx (t) 1<t<poo log hx(t)’ @ = o log hx(t)  o<t<1loghx(t)

We have that 1 < px < gx < oo, which follows from the fact that hx(¢) is submultiplica-
tive, that is, hx(ts) < hx(t)hx(s), for all s,¢ > 0. The relationship between the Boyd
indices of X and X’ is the following: pxs = (¢x)’ and gx» = (px)’, where p and p’ are
conjugate exponents (see, for example, [3,23]).

For each 0 < 7 < co and X an RIBFS, we consider the r exponent of X, namely,

X" = {feM:|f]" X},

with norm || f|xr = |||f |TH;§/ ". Note that the definition of Boyd indices extends to X": we
have pxr = px -7 and g¢xr = ¢x - . It is known that if X is an RIBFS and r > 1, then X"
is still an RIBFS; however, for 0 < r < 1, the space X" is not necessarily Banach (see, for
example, [9]). Hence, it is natural to consider the quasi-Banach case.

We start with the definition of the quasi-Banach function norm. Again, let p’ : MT —
[0,00) be a mapping. We say that p’ is a rearrangement-invariant quasi-Banach function
norm if p satisfies the defining conditions (a), (b), (c), (e) with the triangle inequality
replaced by

P(f+9) <CW(f)+ 0 (9),

where C' is an absolute constant. Then, similarly, the RIQBFS is defined as the collection
of all measurable functions such that p'(|f|) < co. In addition, for the purpose of making
X" become an RIBFS for some large power r, where X is some RIQBFS, we impose the
following p-convex condition on X for p > 0 (see, for example, [12]) by requiring

N 1/p N 1/p
I(Sue) | = (Xm)
j=1 X j=1

Clearly, the p-convexity condition is equivalent to the fact that X'/? is an RIBFS and,
again by the Lorentz—Luxemburg theorem, we have

1/p
I = s { ([ 17@Pate)an) g€ Mgl <1},

where Y is the associate space of the RIBFS Y = X'/?_ In a similar fashion, by using the
fact that powers commute with f*, we can define X(w) for an RIQBFS X, w € A and
0 < r < oo, and we have X(w)" = X"(w).

Remark 2.1. We list some typical examples of RIBFSs and RIQBFSs here: the
Lebesgue space LP, the Lorentz space LP?, the Orlicz spaces L?, the Lorentz I'-spaces
I'(v) and the Marcinkiewicz spaces M,. We refer the reader to the work [9] for a detailed
introduction to these spaces, as well as their Boyd indices.

https://doi.org/10.1017/5S0013091519000300 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091519000300

234 T. C. Anderson and B. Hu

2.2. Modular inequality

To set up our modular inequality results, we start recalling some basic properties of
Young functions, as well as N-functions. Let ® be the collection of all the functions
¢ : [0,00) — [0, 00) satisfy the following conditions:

(1) ¢ is non-negative and increasing;
(2) #(0T) =0 and ¢(c0) = oco.

If ¢ € @ is convex, then we say that ¢ is a Young function. Moreover, an N-function ¢
is a Young function such that
(%)

lim M:0 and lim —* =0

t—0+ t t—oo
We say that ¢ € & is quasi-convex if there exist a convex function 5 and a; > 1 such that
o(t) < o(t) < argp(ast), t=0.

For a positive increasing function ¢, we define the lower and upper dilation indices of ¢,
respectively, by

log hy(t log hy(t log hy(t log hy(t
iy = lim %8 o(t) _ sup 18 ¢()’ I, = lim 1% o) _ ¢ log ¢()’
t—o+ logt o<t<1 logt t—oo logt 1<t<oco logt
where
9(st)
he(t) = sup , t>0.
o) =30 5)

Observe that 0 <144 < Iy < oco. Moreover, as we mentioned before, the dilation indices
are closely related to Boyd indices. More precisely, we have
1 1
px = I¢’ ax = ’l¢7

where X is the Marcinkiewicz space induced by ¢ (see [9]), while

px =ig, qx = Iy,

where X is the Orlicz space induced by ¢ (see [7]).
The following Ay condition is crucial. Given a function ¢ € ®, we say that ¢ satisfies
the Ay condition if ¢ is doubling, that is,

6(2t) < Co(t), t> 0.

It is well known that if ¢ is quasi-convex, then iy > 1, ¢ € A if and only if /4 < oo and
¢ € Ay if and only if iy, > 1, where ¢(s) = sup,~o{st — ¢(t)},s > 0, is the complementary
function of ¢ (see, for example, [25]). Here are some important properties of ¢.

(1) (Young’s inequality) st < ¢(s) + ¢(¢), s,t > 0.
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(2) When ¢ is an N-function, ¢ is also an N-function, and the following inequality
holds:

t<o ) L) <2t t>0. (2.1)

(3) If ¢ is an N-function, then there exists 0 < o < 1 such that ¢* is quasi-convex if
and only if ¢ € Ag, where ¢*(t) = ¢(t)*.

We are now ready to define the modular inequality. Given w € A, and ¢ € ®, we
define the modular

P80 = [ ols@huta) da.
The collection of functions

MG ={f:p5(f) < oo}

is referred to as a modular space. A sublinear operator T' satisfies a modular inequality
on M{ﬁ if there exist constants ¢y, co > 0 such that

pﬁ)(Tf) < clpﬁ(CQf)5

and satisfies a weak modular inequality on M if there exist c3,cq > 0 such that

Sl)l\p p(Nw{z e R": f(x) > A} <3 Sl}l\p p(Nw{z € R" : cug(x) > A}

Note that weighted modular estimates are not necessarily associated with Banach or
quasi-Banach spaces and so duality cannot be used. Modular inequalities were originally
developed as a means for providing endpoint estimates for certain operators, such as
iterates of the Hardy—Littlewood maximal function [9].

3. Main result

We need some dyadic calculus from [20,21]. By a dyadic grid D, we mean a collection
of cubes with the following properties.

(i) For any @ € D, its sidelength ¢ is of the form 2%, k € Z.
(i) QN R € {Q,R,0} for any Q, R € D.

(iii) The cubes of a fixed sidelength 2* form a partition of R™.
An important property for a dyadic grid is the three-lattice theorem. This asserts that
there are 3" dyadic grids D,, such that for any cube Q C R"™ there exists a cube Q,, € D,

such that Q@ C Q4 and £, < c,lg. Moreover, in [5], the author showed that the optimal
number of the dyadic grids is n + 1 (see [5,17,20] for a discussion).
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We say that S C D is a sparse family of cubes if for every Q € S,

U P’ < %IQL

PeS,PCQ

Equivalently, if we define

EQ=Q\ | P
PeS,PCQ

then the sets E(Q) are pairwise disjoint and |E(Q)| > $|Q|. Note that in general, the
constant l in the above definition can be replaced by any v € (0, 1). However, we will use
= for ﬁlmphaty Note that the concept of dyadic grid has been well studied in SHT, as
well as the analogue of the three-lattice theorem (called Mei’s theorem; see, for example,
[2,15,22]).

Given a dyadic grid D and a sparse family S C D, we define the dyadic positive operator
A by

Af(@) = Apsf(z) = foxe(@)
QeSs

where fo =1/]Q| [, 0 f. Moreover, given a measurable function f on R" and a cube Q,
we define the median value of f over QQ by

my(Q) :==sup {A:max{|[{z € Q: f(x z) <A} } <lQl/2}).

An important property of this quantity is the following: if f € Ll, then |mo(T** f)| — 0
as |Q| — oo. Indeed, by the proof of [2, Lemma 5.1], we see that

1T fllLr= @ £l
Q| Q-

where it is well known that ||[77*|1 . < 0o (see, for example, [11, Theorem 4.2.4]). In
SHT this is true as well, as long as u(X) = oo, using the weak bound for 7** from [13]
(note that they impose the Hormander condition on their operator).

Finally, given any a > 0 and ) a cube, we denote by a@ the cube with the same centre
of @ and sidelength afg.

The following theorem is crucial.

ImQ(T™ f)] < <700

Theorem 3.1. Let T be a Calderén—Zygmund operator in R™ with standard kernel
K (see the introduction) and D a dyadic grid. Then the following assertions hold.

(1) Let f be any measurable function on R™. For any Qo € D, there exists a sparse
family S C D such that for almost every x € Qo,

T f(2) = mo (T )| S M f(z) + Z 2m5TSm|f|( x), (3.1)
where M is the Hardy—Littlewood maximal operator and

Tsmf(x) = famgxolx), meN.
QeS
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(2) Let X be a Banach function space, that is, the very last condition (e) for RIBFSs
is not required. Then

1M fllx < sup lApsfllx, f=>0, (3.2)

and for any m € N,

sup || Zs,m fllx < msup |Apsflx, [f=>0. (3.3)
SeD DS

s

In particular, we have for any Banach function space X,

1T fllx < sup [ Ap s f1l|x- (3-4)
D,S

(See [20].) This result holds in SHT by following the proofs in [2,20] for T, but
substituting the sublinearity of T* for the linearity of T'.

3.1. Maximal truncated Calder6n—Zygmund operator on RIBFSs and
RIQBFSs

We start by considering the behaviour of 7%* on RIBFSs and RIQBFSs.

Lemma 3.2. Let 1 < p < oo and let w € A,. Then w € A,_., where

p—1

£ = 1+2n+1[0-]A00

in which o = w'™?" is the dual weight. Furthermore

[wla, . < 2p*1[w],4p

p—e —

(see [24, Corollary 1.1.1 and Lemma 1.1.3]).
Note that a version of this lemma is true in SHT; see [18].

Lemma 3.3. Let X be an RIQBFS which is p-convex for some 0 < p < 1. Then if
1 < px < o0, then M is bounded on X(w) for all w € A,,. Moreover, when 1 < px < 00,

we have

1
1M |0y ) < Cluo] {75,

Px

where C' is an absolute constant only depending on px and n.

Proof. The proof of this lemma is contained in the proof of [9, Theorem 2.3]. More-
over, the upper bound of || M||x(w)—x(w) comes from tracking the constant by using
Lemma 3.2. 0

We also need the weighted dyadic Hardy—Littlewood maximal operator M P, given by

MPf(z)= sup ﬁ /Q F@lwly)dy, £ e Lh (R,

zeQ,QeD W

where w € A, and D is the given dyadic grid. It is well known that MP maps LP(w)
strongly to LP(w) for 1 < p < oo and L'(w) weakly to L''*°(w) (see [10, Theorem 7.1.9] or
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[22]). We have the following result for the dyadic maximal function that can be obtained
in a similar manner to [9, Theorem 3.2]. Note that this result is independent of the weight
characteristic since we are using the dyadic maximal function.

Lemma 3.4. Let X be an RIQBFS which is p-convex for some 0 < p < 1. If px > 1
and w € Ay, then MP is bounded on X(w). More precisely, we have ||[MP|| < C, where
the absolute constant C' only depends on px and n.

We first deal with the case where X is an RIBFS.

Theorem 3.5. Let T' be a Calderén—Zygmund operator with standard kernel K.
Furthermore, let X be an RIBFS and w € Ap,. Then if 1 < px < gx < oo, then

ok 1
1% ey < Clwlan [w] 471 1),
where C' is an absolute constant only depending on px and n.

Proof. First we note that px» = (¢x)’ = ¢x/(gx — 1) > 1, which follows from the fact
that 1 < gx < o0.

By (3.4), it suffices to show that for any D a dyadic grid and S € D a sparse family,
we have

14D | Fllly S [l [w0] 7 1l 2o

Indeed, for any ||h|lx/(,) < 1 and Q a dyadic cube, put

ﬁ /Q h(z)w(x) dx

and then, by Lemmas 3.3 and 3.4, we have

hq.w =

[ pslrl@nuas= [ (3 flovol) ) Haola) ds

QeS

= Z fQ ' hQ,w U}(Q)

QeS
L x 1/2 D x 1/2w T )ax 2'lU
g%(w(@/@w( DHEHMZH) () dr ) w(Q)
<Sula. [ MI@MER@ () dr

RTL
< 8[w]a 1M fllscan 1M s )

1
< [ 1] 0 £ o 1l oy

< 8[wa [w] {71 fll (),
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where in the second inequality we apply the Carleson embedding theorem by noting that
the Carleson condition
Y w(Q) < 2[w]a w(R) (3.5)
QCR
holds for any dyadic cube R € D (see [16, Lemma 4.1]).
The desired result follows by taking supremum over all dyadic grids D and all their
sparse families S. O

The following corollary is straightforward.

Corollary 3.6. Let T' be a Calderon-Zygmund operator with standard kernel K.
Furthermore, let X be an RIQBFS, which is p-convex for some p > 0, and w € A
Then if p < px < gx < o0, then

px/p*

g 1 1/17 l/P 1
T )P gy < ClldZ Rl 17 gy
where C' is a constant only depending on p, px and n.
Proof. This is because X'/ is an RIBFS and py1/» = px/p- |
Next, we deal with the case where X is an RIQBFS, which is proved in a different way.

Theorem 3.7. Let T be a Calderén-Zygmund operator with standard kernel K. Fur-
thermore, let X be an RIQBFS, which is p-convex for some 0 < p <1, and w € A, . Then
if 1 < px < gx < 00, then

1™ ) < Cll{ [] {71 1)

oo

where C' is an absolute constant only depending on px and n.

Proof. Since X is p-convex, we have that Y = X'/? is an RIBFS. Take and fix any
h € Y'(w) with [|h]ly/(,) < 1. We have the following claim: for any dyadic grid D and
S € D a sparse family,

1= (s fj ;M:rs,mﬂ(x))ph(x)w(x) dr < Clula ([w]l/”) 17 e

= clula.. (o ]Wx) T

Indeed, we have

RTL
12 ,m
- Il + Z 2m5p

where I := [o0[Z5m|f](2)]Ph(x)w(z) da.

p N 1 p
I< | Mf(z)Ph(z)w(z) dx+m§::0 /R ) W[%,mlf\(x)] h(z)w(z)dx
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Estimation of I;. By Lemma 3.3 and duality, we have

< 1Ol = 19 By < (€l ) 161

Estimation of I3, m € N. Using the fact that 0 < p <1, the above estimation on I;
and duality, we see that for each m € N,

= [ (3 fraxo) hawie)da

QeS
<[ (C;Sfmm ) hioyue) da
=3 1o / ha)w(@)de = > fB.ohqw - w(Q)
QeS QEeS
<> ( / (M f(2)P/* (M h(x)) " w(z) dfc)Qw(Q)

QesS
Sfula. [ OIf@)MEh@)u(a) do

(by Carleson embedding theorem)
< [wlac [Pl oy | Mo Bl oy

1
< Clula. (lu “’X) 11
where in the last inequality we use the fact that | MDAy w) S Bllvrw) < 1.
Indeed, by Lemma 3.4, it suffices to show that py: > 1. A simple calculation shows that

qQy  gxi/p 4X

= = >1
gy —1 gam—1 qgx—p

Py = (QY)/ =

for 1 < gx < co. Thus, combining the estimation of both I; and I ,,, we get

< Cluwla ([ ]UPX) (Hf”p Z Iél%,v

m=0

SC[w]Ax([ 1”’“) T (3.6)

Recall that |mq(T7* f)| — 0 as |Q] — oo. The desired result follows from (3.1), (3.6) and
Lebesgue’s domination theorem. O

We make several remarks on the above results.
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Remark 3.8.
(1) It is clear that Theorem 3.5 is a particular case of Theorem 3.7.

(2) There is another approach for proving Theorem 3.5 by using extrapolation. We
sketch the proof here. First, we have for any w € A,, where 1 < p < oo,

1T fllzew) S 1l 2e w)

(see [10, Theorem 7.4.6]). Second, we apply the extrapolation theory of RIBFSs
(see [7, Theorem 4.10]) to the above inequality to get the desired result. However,
by doing so, it is not clear how the operator norm of 7%* depends on the weight w.

(3) The modifications for SHT include assuming that the Lebesgue differentiation
theorem holds. For a thorough reference on this property and SHT in general,
see [1].

(4) The dependence on the weight of [w]4

(see Theorem 3.5) in the constant

1
[w] 4"

oo

is indicative of the method of proof—the term [w]a__ comes from a Coifman—

Fefferman-style argument using Carleson embedding, while the term [w]z/ pp * comes

from the bound for the maximal function. By observing the proof and Buckley’s
proof of the sharp bound for the maximal function, we see that our bound should
be sharp in terms of the characteristics. Therefore, we expect that the dependence
on the constants is sharp.

Remark 3.9. We note that even when considering the space L?(w), in certain cases,
our constant dependence in Theorem 3.5 improves on the dependence in the work [16]
(note that the result in [16] is for the standard Calderén—Zygmund operator, ours is for
the maximal truncated Calderén-Zygmund operator). In particular, our bound is

[w){?[w]a...

while Hyténen and Pérez obtain a bound of

] Y2 ([w]an + w4 ) 2.

~
~

Let n = 1. For the case of power weights w(x) = |z|* with 0 < a < 1, we have that [w]4, &=
1/(1+a)-1/(1—a), [w]a, =1/(1+a)and [w™]s_ = 1/(1— a). Therefore,
1

e S Clulan o) ? = (wlag + a2

R4

[w]a.

Hence in these cases, our bound is smaller (see [16] for computations and more details).
To close this subsection, we prove the following bound for the median (which holds in
SHT), which can be substituted in the above proofs for X(w) = LP(w). This bound shows

the dependence of the constant on the weight characteristic and allows us to consider SHT
of finite measure for the case of the RIBFS L”(w).
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Proposition 3.10. We have that ||mq(T™*)| e (w) < C’Tyn[w]}q/pp||f||Lp(w).

Proof. By [2, Lemma 3.15] and Holder’s inequality, we have

T A1 /o
Ima (T o) < ( /Q IR ATCTI dx)

Q[P
||T**||1 1/p , 1/p’ 1/p
<= (/ fpw> (/ w P /p) (/ w(x)dx)
Q| Q Q Q
T 11 o 1l gy 0] 4 O

This bound for the median mirrors the Buckley bound for the maximal function [4].
3.2. Maximal truncated Calderéon—Zygmund operator of modular inequality

type

We need the following lemma, which can be regarded as a modular inequality version
of Lemma 3.3.

Lemma 3.11. Let ¢ € ® be such that ¢ is quasi-convex. Furthermore, let w € A;,.
If1 <4 < oo, then

stf@) o) de < [ o Colull ) Jute) as
Rn n
where Cy is an absolute constant that only depends on ¢ and «.

Proof. The proof of this lemma is contained in the proof of [9, Theorem 3.7]. Moreover,
the constant follows from Lemma 3.2. O

Similarly, as what we did for the RIBFS and RIQBFS case, we need the following
version of the modular inequality for the weighted Hardy—Littlewood maximal function.

Lemma 3.12. Let w € Ay, and ¢ € ® be such that there exists 0 < a < 1 for which
¢“ is a quasi-convex function. Then there exists some constant as > 1, depending on ¢
and w, such that

S(My f(x))w(z)dz < az | plas|f(2))w(w)de,
R R

where the constant as only depends on ¢ and «, and is independent of w.
(See [9, Propostion 5.1], where it is stated that the constant depends on w, but by their
proof one sees that it is in fact independent of w.)

We make some easy observations of the Ay condition and N-functions before we state
the following lemma. First, we note that ¢ € A,, that is, ¢(2t) < C¢(t), t > 0, if and only
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if there exists some constant C” (for example, we can take C’ = log C'/log2) such that
for any A > 2,

(M) < 29N (1), > 0. (3.7)

The proof for this claim is straightforward from the definition, and hence we omit it here.
Second, since

o7 ) (1) =t, t=>0,

it follows that
1 —1

to ((t) = ¢ (e()e (6(1) > 6(t), >0,
which implies that

¢<¢f)) <o(t), t>0. (3.8)

Lemma 3.13. Let ¢ be an N-function and ¢ € Ay, that is, Iy < oo, and w € A;,. If
iy > 1, for each m € N, any dyadic grid D and S € D a sparse family, we have

| T lfi@)ute)ds < 'l [ o @) s

where C" is defined in (3.7) and C" is an absolute constant only depending on ¢.

Proof. Since ¢ is an N-function, it is clear that the quantity ¢(7s m|f|(z)) = 0 when
Ts.m|f|(z) = 0. Hence, in the sequel, we write the function

¢ (Ts.m|f1(x))
Tsmlfl(x)

which takes its actual value when Zg ., |f|(x) # 0 and zero when 7s ,,,|f|(z) =
Moreover, since ¢ is A,, it follows that there exists some 0 < o < 1 such that aa is
quasi-convex, that is, there exists some convex function v such that

U(t) < 67 (t) < asp(ast), t>0. (3.9)

Note that we can always assume that az > 2.
Take and fix some ¢ satisfying

0<e< LS O S L (3.10)
. =min< — . . .
16as(w]a_ aza3 27 agasz’ \ 16asw]a._ asa3

Then, by Lemma 3.12, we have

[ Tt s = [ (mex 0)- 2l ) ao

QES 7:5‘7m|f|(x)
¢> (Ts,m| fl(x )
= m d :
QEeSfQ Q- Tom /1 w(z)dz - w(Q)
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W Tsulfl@),
Tem /1) ) (z)d

(by Carleson embedding theorem)

B Mf(2) O(Ts.ml£1(2))
= 8lwla oMy ( Tomlf1(@)

Rn €
< 8lula. ( /| qb(z‘“;(””))w(x)dw

PR CHE SR D

<sula [ sz (

>w(x)dx

(by (2.1))
c’ 3w
<2 T [ o0t i
_( a320(Ts ()
+8“””‘&‘”/ ﬁ( Ts.mlf1() >“’(z)dx

= [ oM f@)ule) do
Rn

+ 8[w]a az - (a3ase)"/® /}R ¢<¢(£Sg%|(g))>w(x) da

(by (3.9), (3.10))

20’—&-3 w
<2 [ s0ri@)ee) s

5 [ oTsmlfl@)u(e) e
RTL
(by (3.8) and (3.10)),

where we have used that fact that (At) < Ai)(t) for agaze = A € (0,1) since 1(0) = 0.
Hence, we have

[ oTsmlfl@)u(@)de < 'l [ o f@)u(a)z,

where C” is an absolute constant only depending on ¢. The lemma is proved. O

Theorem 3.14. Let T be a Calderén—Zygmund operator with standard kernel K.
Furthermore, let ¢ be an N-function belonging to Ag, that is, Iy < oo, and w € A;,. If
i¢ > 1, we have

[ oI @) huwle) dr < Cow) [ (1 5() () da. (3.11)
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where

)

ol Gl <2
oo ’L¢

C(6,w) - SNe
O w }1+O¢C ([w]A/%) . Colw]} /ig > 9,

1(7)

where Cy is the constant defined in Lemma 3.11.
Proof. We start with the case where i, > 1. Denote

1
2<K0—1+Z2m5 o0,

m=0

where ¢ is the constant in the smoothing condition of the kernel K. Again, we prove a
claim similar to that in Theorem 3.7: for any dyadic grid D and S € D a sparse family,

=1
J = /R ¢<Mf(x) +n;)2m75,m|fl(x)>w(w) dz 5 | o(f(z))w(z)dz.

R

Indeed, we have

(o]

7= [ o [MI0 > e Tl f1(0)] Jute) ao

SC’"'/”Lqﬁ(Mf +Z WK Ts.ml fI(z )) (z) dz

(by As condition)

C///
<
KO R"

S f(@)u() o + z g, [ STl u(e) ds
(by convexity of ¢)
<"l [ ors@)ute)da
(by Lemma 3.13)
" aC’ 1/ig
< ool [ o Gl 1) ua) ao
(by Lemma 3.11).

We consider two different cases.

Case I: Cy [w]%iq’ < 2.
)
In this case, we have

72l [ sl s@hute) da.

Case II: Cy [w]x_ij > 2.
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By Equation (3.7), we have

’ 1/i =
sl (wile) [ ss@hu) o

iy

Finally, combining the above estimation with (3.1) and Lebesgue’s domination theorem,
we get the desired result. O

Remark 3.15. Our constant is not predicted to be sharp here. We conjecture that
the sharp constant depends on [w]4_ linearly.
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