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Acoustic scattering by a finite rigid plate with a
poroelastic extension
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The scattering of sound by a finite rigid plate with a finite poroelastic extension
interacting with an unsteady acoustic source is investigated to determine the effects
of porosity, elasticity and the length of the extension when compared to a purely rigid
plate. The problem is solved using the Wiener–Hopf technique, and an approximate
Wiener–Hopf factorisation process is implemented to yield reliable far-field results
quickly. Importantly, finite chord-length effects are taken into account, principally
the interaction of a rigid leading-edge acoustic field with a poroelastic trailing-edge
acoustic field. The model presented discusses how the poroelastic trailing-edge
property of owls’ wings could inspire quieter aeroacoustic designs in bladed systems
such as wind turbines, and provides a framework for analysing the potential noise
reduction of these designs.
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1. Introduction
It is well known that many species of owls have the unique ability to fly almost

silently, and this topic is now widely studied as it could provide novel designs
which allow for noise reduction in bladed systems, such as helicopter rotors and
wind turbines (Barone 2011). Certain features of the wings of owls are known to
be particularly effective in reducing scattered noise (Graham 1934): the fringed or
serrated trailing edge (Howe 1991); the downy coat on the upper surface of the wing
(Clark 2014); and the flexible and porous qualities of the feathers at the trailing edge
(Jaworski & Peake 2013). It is this latter feature that we discuss in detail here, by
modelling the flexible and porous qualities of the trailing edge of an owl’s wing. It
is hoped that a greater understanding of the sound reduction mechanisms could lead
to new designs of wind turbine blades that reduce trailing-edge noise.

Poroelastic plates, that is infinitely thin plates which include both flexural elasticity
and surface porosity due to acoustically compact circular apertures, can be modelled
by the poroelastic plate equation (Howe 1998). Howe has assessed the independent
effects of porosity and elasticity on trailing-edge noise for semi-infinite plates
(Howe 1979, 1993), finding both to be suitable adaptations to blades for noise
reduction. Recently Jaworski & Peake (2013) have combined the effects of porosity
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and elasticity to show that for a semi-infinite plate, trailing-edge noise can be
significantly reduced if a poroelastic material is used rather than a purely rigid,
impermeable material. Whilst semi-infinite models are useful for highlighting the
potential noise reduction for poroelastic trailing edges from, for example, a turbulent
eddy produced in a boundary layer near a compliant edge, they do not account for
finite chord-length effects, including perhaps principally the scattering of noise by a
leading edge. The interaction between the leading- and trailing-edge scattered fields is
a key factor in determining the maximum level of far-field noise due to rigid plates
scattering an incident sound wave (Ayton & Peake 2013), and similarly leading-edge
back-scattering is important for rigid plates scattering near-field acoustic sources
(Roger & Moreau 2005). For elastic plates, Scott (1992), and more recently Cavalieri,
Wolf & Jaworski (2014), have considered acoustic scattering by a finite-chord elastic
strip analytically and numerically respectively. Their results exhibit modulated far-field
scattered acoustic directivities, as is typical for finite chord-length plate interactions,
due to the interaction of leading- and trailing-edge scattered fields.

In practice, however, one would not wish to alter a wind turbine blade from fully
rigid to fully compliant, as this would adversely affect the performance. Instead, a
poroelastic extension could be added to a rigid blade to reduce noise, but maintain
performance. Indeed the idea of a trailing-edge extension is already implemented for
serrated (sawtooth) trailing edges on wind turbines (Koegler, Herr & Fisher 2009). It
is vital to include both leading- and trailing-edge fields, and a rigid–elastic connection
to appropriately model the effects of adding a poroelastic extension to a rigid wind
turbine blade. Therefore in this paper we develop such a model by extending the
two ideas from Jaworski & Peake (2013) and Scott (1992) to consider a finite rigid
plate, with a finite poroelastic extension. Not only can we then assess the effects of
the poroelastic trailing edge on the scattered leading- and trailing-edge fields, we can
alter the length of the poroelastic section to highlight optimal extensions that could
minimise scattered noise.

Also in this paper we present an analytic method to approximate the solution
for the far-field scattered acoustics. Previous work by Jaworski & Peake (2013)
and Scott (1992) relies on numerical factorisations of the Wiener–Hopf kernels
which are far from straightforward. The analytic approach presented here utilizes
Padé approximations and the extended Liouville’s theorem to approximate unknown
functions arising in the Wiener–Hopf equations (Abrahams 2000). The results are
sufficiently accurate to illustrate the effects of finite chord length on this scattering
process, and results can be produced quicker and more easily than the numerical
schemes in Jaworski & Peake (2013) or Scott (1992). To validate the approximate
Wiener–Hopf method we compare to an asymptotic result for the scattering of a
high-frequency incident sound wave by a finite rigid flat plate, where the result is
known (Ayton & Peake 2013), and compare to the findings of Cavalieri et al. (2014)
in the case of a fully elastic plate (with no rigid section).

The model we use in this paper is illustrated by figure 1 and investigates the
scattering of an arbitrary acoustic source, S, by a finite flat plate which comprises
of a rigid section, x ∈ (−M, 0), and a poroelastic section, x ∈ (0, L). This composite
plate represents a simplified version of the owl’s wing, which has a rigid leading
edge, but porous and flexible qualities at the trailing edge. In our model, the porosity
and elasticity of the poroelastic section are assumed to be homogeneous. We obtain
a formal Wiener–Hopf solution for the scattered sound in § 2. We initially consider
a non-porous elastic edge in § 2.1, and discuss the inclusion of porosity in § 2.3. We
confirm that our Wiener–Hopf equations agree with the analytic system obtained by
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–M Rigid Poroelastic
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FIGURE 1. The model problem with arbitrary source, S.

Scott (1992) in the limit M→ 0, and also limit to a semi-infinite rigid plate case,
M→∞, in § 3. Section 4 discusses the new analytic approach to approximating the
solution for the far-field scattered sound, § 5 contains our results, and § 6 contains
concluding remarks.

2. Formal Wiener–Hopf solution

In this section we construct the formal Wiener–Hopf solution for the acoustic
scattering of an arbitrary source by a finite flat plate with a poroelastic extension, as
illustrated in figure 1.

2.1. Elastic edge
We begin by considering the problem illustrated in figure 1 with zero porosity. The
surrounding fluid is quiescent and the speed of sound is c0. We take a general
acoustic source whose associated pressure, pi, satisfies the Helmholtz equation with
source S and wavenumber k0 = ωl∗/c0, where l∗ is a characteristic length scale of
the problem which we shall discuss shortly. The total unsteady pressure is written
p = pie−iωt + H(x, y)e−iωt, where H is the scattered pressure which satisfies the
homogeneous Helmholtz equation,

∇2H + k2
0H = 0, (2.1)

and must consist only of outgoing waves. The deflection of the elastic plate is given
by η(x)e−iωt where η(x) satisfies the thin-plate equation (Timoshenko & Woinowsky-
Kreiger 1959)

B
(
∂4η

∂x4
− k4

pη

)
=−2H(x, 0), 0 6 x 6 L. (2.2)

B is the bending stiffness of the elastic plate, kp = (mω2/B)1/4 is the plate in-vacuo
wavenumber and m is the mass per unit area of the plate. The forcing in (2.2) arises
due to the effect of unsteady fluid loading. We have a boundary condition of zero
normal velocity on the rigid section of the plate,

∂H
∂y

∣∣∣∣
y=0

=− ∂pi

∂y

∣∣∣∣
y=0

, −M 6 x 6 0, (2.3)

and a kinematic condition on the elastic plate,

∂H
∂y

∣∣∣∣
y=0

+ ∂pi

∂y

∣∣∣∣
y=0

= ρ0ω
2η, 0 6 x 6 L, (2.4)
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where ρ0 is the mean fluid density. We demand that the vertical velocity is continuous
everywhere except across the plate, thus require

H(x, 0)= 0, x<−M and x> L. (2.5)

Finally we impose conditions on the joint between the rigid and elastic sections of the
plate, x= 0, and at the edge of the poroelastic extension, x= L. Typically the joint is
clamped, η(0)= η′(0)= 0, and x = L is taken to be a free edge, η′′(L)= η′′′(L)= 0.
There are however further possibilities, such as a pinned edge which would require
η(0) = η′′(0), so we do not immediately impose specific conditions at x = 0, L for
the deflection, however we note that at each point, two of the values η, η′, η′′, η′′′ are
known and two are unknown.

There are two key length scales in this problem, M and L, however we choose not
to non-dimensionalise with respect to either of them (or L+M) to allow us to take
the limits L→ 0 and M→ 0 to compare to previous results for acoustic scattering
by rigid plates (Ayton & Peake 2013) or elastic plates (Scott 1992; Cavalieri et al.
2014). In these special cases, the characteristic length scale, l∗, is taken as M/2 or L/2
respectively. In cases where the rigid section is non-zero and finite, the characteristic
length scale is taken as the rigid semi-chord length, M/2, for an incident sound wave,
and the full semi-chord length (L+M)/2 for a near-field monopole.

Equations (2.1) to (2.5), along with the imposed conditions for the deflection at
x = 0, L, are sufficient to now solve the problem. We first determine the formal
Wiener–Hopf solution, which requires a number of Fourier transforms. The full range
transform is

H̃(k, y)=
∫ ∞
−∞

H(x, y)eikx dx, (2.6)

therefore the solution to (2.1) is

H̃(k, y)= sgn(y)H̃(k, 0)e−γ |y|, (2.7)

where γ =√k2 − k2
0, and we take H̃(k, 0) to mean the value at y= 0+. We give k0

a small positive imaginary part, which is set to zero at the end of the analysis, and
the branch points of γ are at k =±k0, with branch cuts extending to infinity in the
upper and lower half-planes.

We introduce three pairs of half-range transforms;

HM
− (k, y)=

∫ −M

−∞
H(x, y)eik(x+M) dx, HM

+ (k, y)=
∫ ∞
−M

H(x, y)eik(x+M) dx, (2.8a,b)

H0
−(k, y)=

∫ 0

−∞
H(x, y)eikx dx, H0

+(k, y)=
∫ ∞

0
H(x, y)eikx dx, (2.8c,d)

HL
−(k, y)=

∫ L

−∞
H(x, y)eik(x−L) dx, HL

+(k, y)=
∫ ∞

L
H(x, y)eik(x−L) dx. (2.8e,f )

The suffices ± indicate that the functions are analytic in the upper and lower halves
of the complex k plane respectively. We also introduce two finite Fourier transforms
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418 L. J. Ayton

H̄M(k, y)=
∫ 0

−M
H(x, y)eikx dx, (2.9a)

H̄L(k, y)=
∫ L

0
H(x, y)eikx dx, (2.9b)

which are analytic for all values of k.
The transforms, (2.8) and (2.9), allow us to write

H̃(k, y) = (HM
− +HM

+ )e
−ikM (2.10a)

= H0
− +H0

+ (2.10b)

= (HL
− +HL

+)e
ikL (2.10c)

= HM
− e−ikM + H̄M + H̄L +HL

+eikL. (2.10d)

We make use of these decompositions, along with the relation

∂H̃
∂y
(k, 0)=−γ H̃(k, 0), (2.11)

at various points throughout the following analysis.
We begin by transforming (2.2)–(2.5) using the appropriate range transforms. First,

(2.2) becomes

B
2

(
k4 − k4

p

)
η̄L + H̄L(k, 0)=Q0(k)+ eikLQL(k), (2.12)

where the polynomials, Q0,L, are given by

Q0(k)= B
2

(
η′′′(0)− ikη′′(0)− k2η′(0)+ ik3η(0)

)
, (2.13a)

QL(k)= B
2

(−η′′′(L)+ ikη′′(L)+ k2η′(L)− ik3η(L)
)
. (2.13b)

There are four unknown constants associated with the functions Q0,L since four are
specified by edge conditions at x= 0, L. The rigid boundary condition, (2.3), becomes

∂H̄M

∂y
=−∂ p̄M

i

∂y
≡ α(k) (2.14)

whilst the kinematic boundary condition, (2.4), becomes

∂H̄L

∂y
=−∂ p̄L

i

∂y
+ ρ0ω

2η̄L ≡ β(k)+ ρ0ω
2η̄L. (2.15)

The continuous velocity conditions, (2.5), become

HL
+(k, 0)=HM

− (k, 0)= 0. (2.16)
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We substitute (2.15) into (2.12) and use the splitting, (2.10d), along with the relation
(2.11), to yield

κ(k)H̃(k, 0) = H̄M(k, 0)+Q0(k)+ eikL

(
QL(k)+ ∂HL

+
∂y

(k, 0)P(k)
)

+ e−ikMP(k)
∂HM
−

∂y
(k, 0)+ P(k)(α(k)+ β(k)), (2.17)

where P(k)= B(k4 − k4
p)/(2ρ0ω

2), and κ = 1− γP. We use the splitting

H0
− = H̄M + e−ikMHM

− , (2.18)

along with (2.16), to replace the H̄M(k, 0) term in (2.17) with H0
−(k, 0). Finally, we

define

H 0
− (k)=H0

−(k, 0)+Q0(k), (2.19a)

H L′
+ (k)= P(k)

∂HL
+

∂y
(k, 0)+QL(k), (2.19b)

so that we may write (2.17) as

κ(k)H̃(k, 0)=H 0
− (k)+ eikLH L′

+ (k)+ e−ikMP(k)
∂HM
−

∂y
(k, 0)+ P(k) (α(k)+ β(k)) .

(2.20)
This is the key equation for our problem, and the remainder of this section is

dedicated to using the splittings, (2.10), to obtain three Wiener–Hopf equations
allowing us to formally solve for HM

+ (k, 0) and HL
−(k, 0).

We first use splitting (2.10a) to obtain

κ(k)e−ikMHM
+ (k, 0)=H 0

− (k)+ eikLH L′
+ (k)+ e−ikMP(k)

∂HM
−

∂y
+ P(k) (α(k)+ β(k)) .

(2.21)
Using a multiplicative factorisation of κ(k)= κ+(k)κ−(k), as described in Jaworski &
Peake (2013), we obtain

κ+HM
+ =

eikM

κ−
H 0
− +

eik(L+M)

κ−
H L′
+ +

P
κ−

∂HM
−

∂y
+ P
κ−
(α + β) . (2.22)

This is a typical Wiener–Hopf equation, which we could write as

κ+HM
+ − F+ = P

κ−

∂HM
−

∂y
+ F−, (2.23)

where

F = F+ + F−

= eikM

κ−
H 0
− +

eik(L+M)

κ−
H L′
+ +

P
κ−
(α + β) (2.24)

is an additive factorisation into plus and minus functions. The factorisations required
for this problem will be discussed later in § 4. In (2.23), the right-hand side is analytic
in the lower half of the complex k plane, whilst the left-hand side is analytic in the
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420 L. J. Ayton

upper half-plane. Therefore by Liouville’s theorem both sides must be equal to an
entire function, which must be a polynomial in k (Noble 1958). The degree of this
polynomial is determined by considering the k→∞ behaviour of (2.22). As k→
∞, Scott (1992) determines that κ±∼ k5/2, and physically the most singular allowable
pressure at the leading edge is O(x−1/2) as x→ 0+ so HM

+ ∼ k−1/2 as k→∞. Similarly,
the most physically allowable form of ∂HM

− /∂y yields (∂HM
− /∂y) ∼ k1/2 as k→∞.

Therefore the entire function must be E0+ kE1+ k2E2, where E0,1,2 are constants. We
now obtain two equations for HM

+ and ∂HM
− /∂y in terms of E0,1,2 and F±;

HM
+ =

1
κ+

(
F+ + E0 + kE1 + k2E2

)
, (2.25)

∂HM
−

∂y
= κ−

P

(−F− + E0 + kE1 + k2E2
)
. (2.26)

We require that the pressure and its derivatives are not singular at P(k)= 0, therefore
(2.26) yields four conditions;

κ−

(
E0 + kE1 + k2E2 −

[
eikM

κ−
H 0
− +

eik(L+M)

κ−
QL

]
−

)∣∣∣∣
k=±kp,±ikp

= 0. (2.27)

These conditions allow us to determine the three constants, E0,1,2, and one constant
in QL. One constant in QL remains unknown. The constants in Q0 are not formally
required since Q0 is determined as part of the solution for H 0

− in (2.30), and no
singularity conditions arise from this term.

We now split (2.20) using (2.10b) and relation (2.11) to obtain

−J+
∂H0
+

∂y
= 1

J−

(
H 0
− + eikLH L′

+
)+ e−ikM

J−γ
∂HM
−

∂y
+ J+α + P

J−
(α + β) , (2.28)

where J± = κ±/γ± ∼ k2 for large k. The scattered pressure is continuous across the
joint at x= 0, hence the entire function is zero. Therefore

∂H0
+

∂y
=−G+

J+
, (2.29)

H 0
− =−J−G−, (2.30)

where

G = G+ +G−

= eikL

J−
H L′
+ +

e−ikM

J−γ
∂HM
−

∂y
+ J+α + P

J−
(α + β) . (2.31)

Finally we split (2.20) using (2.10c) to obtain

κ−HL
− =

1
κ+

(
H 0
− e−ikL + Pe−ik(L+M) ∂HM

−
∂y

)
+ H L′

+
κ+
+ P
κ+
(α + β) . (2.32)

As before, this equation can be separated into functions that are analytic in the upper
and lower halves of the complex k plane, and the conditions on the derivative of HM

−
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determine that the entire function must be equal to E3 + kE4 + k2E5 where E3,4,5 are
constants. Hence

HL
− =

1
κ−

(
h− + E3 + kE4 + k2E5

)
, (2.33)

H L′
+ = κ+

(
h+ + E3 + kE4 + k2E5

)
, (2.34)

where

h = h+ + h−

= e−ikL

κ+

(
H 0
− + Pe−ikM ∂HM

−
∂y

)
+ P
κ+
(α + β) . (2.35)

Once again, we have an expression that could be singular at P(k)= 0, this time due
to the term P(∂HL

+/∂y) within H L′
+ . To ensure there is not a singularity, we obtain a

further four conditions[
κ+

([
e−ikL

κ+

(
H 0
− + Pe−ikM ∂HM

−
∂y

)]
+
+ E3 + kE4 + k2E5

)
−QL

]
k=±kp,±ikp

= 0, (2.36)

which allow us to determine the three constants, E3,4,5, along with the final constant
in QL and thus completes the formal solution.

An issue arises when we wish to actually calculate the solution from these formal
expressions since the Wiener–Hopf factorisations of F, G and h in (2.24), (2.31) and
(2.35), are all dependent on our unknown H± functions, therefore the formal solution
is implicit. A lengthy numerical solution for a two-dimensional implicit system is
given in Scott (1992). For our three-dimensional system we shall instead use an
approximation method discussed later in § 4 that provides results far quicker that the
procedure in Scott (1992).

2.2. Matrix formulation
We take equations (2.22), (2.28) and (2.32), and formulate them into a matrix equation,
M1H+ +M2H− = P(α + β)(1, 1, 1)T, where

H+ =
 HM

+
H L′
+

∂H0
+/∂y

 , H− =
∂HM

− /∂y
H 0
−

HL
−

 , (2.37a,b)

and M1,2 are matrices containing known functions. By inverting M2 we obtain γ 0 eikM

−e−ikM eikL −P
−e−ik(L+M) 0 0

 HM
+

H L′
+

∂H0
+/∂y

+
∂HM

− /∂y
H 0
−

HL
−

=
−eikMα

−Pβ
0

 , (2.38)

which provides a simpler view of the formal solution to our problem than the six
separate equations presented in the previous subsection, and is of the form of a
standard Wiener–Hopf matrix equation. However, this is no easier to solve than the
implicit system of equations found in the previous subsection.
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2.3. Including porosity
Jaworski & Peake (2013) show that including porosity is a straightforward algebraic
process, which results in a redefinition of functions used throughout the elastic
analysis. We briefly repeat this here and state the required redefinitions. We now
suppose that the elastic section of the plate, x∈ (0, L) is also porous, with N circular
apertures of radius R. The fractional open area is αH = NπR2, and the Poisson ratio
is ν so the effective plate stiffness is B̄ = [1− 2αHν/(1− ν)

]
B. The average fluid

displacement in the apertures is ηa = −KR1p/(πρfω
2R2), where 1p is the pressure

jump across the plate and equals −2H(x, 0), ρf is the fluid density and KR is the
Rayleigh conductivity. The poroelastic plate displacement equation, (equivalent to the
non-porous equation, (2.2)), is

(1− αH)B̄
(
∂4η

∂x4
− k̄4

pη

)
=−2H(x, 0)(1+ 2NRKR), 0 6 x 6 L, (2.39)

where k̄p = (mω2/B̄)1/4. The new kinematic condition (equivalent to (2.4)) is

∂H
∂y

∣∣∣∣
y=0

− β = ρ0ω
2

[
(1− αH)η+ 2αHKRH

πρfω2R2

]
, 0 6 x 6 L. (2.40)

The rigid boundary condition, (2.3), and the continuous velocity conditions, (2.5) are
unchanged. Taking the finite Fourier transform of (2.39) and (2.40), eliminating η̄L,
and using the splitting (2.10d), we obtain an equation identical to (2.20), but with a
redefinition of terms, X→ X̄;

P̄(k)= B̄
2ρ0ω2

(k4 − k̄4
p), (2.41a)

κ̄(k)= 1− γ P̄(k)+ 2NKR

(
R− ρ0

ρf
P̄(k)

)
, (2.41b)

H̄ 0
− =

(
1+ 2NRKR − 2P̄(k)KRN

ρ0

ρf

)
H 0
− + Q̄0, (2.41c)

H̄ L′
+ = P̄(k)

∂HL
+

∂y
(k, 0)+ Q̄L(k), (2.41d)

Q̄0(k)= B̄
2
(1− αH)

(
η′′′(0)− ikη′′(0)− k2η′(0)+ ik3η(0)

)
, (2.41e)

Q̄L(k)= B̄
2
(1− αH)

(−η′′′(L)+ ikη′′(L)+ k2η′(L)− ik3η(L)
)
. (2.41f )

The function γ remains unchanged. Since the fundamental equation, (2.20), is
unchanged except for these redefinitions, the solution in the poroelastic case is
immediate from (2.38).

3. Limiting cases
In this section we compare our formal solution (2.38) (and its poroelastic equivalent)

in the limit M→ 0 to the solution in Scott (1992) and also consider the M→∞ limit,
when the source is a sound wave,

pi = e−ik0 cos χ−ik0 sin χ , (3.1)

incident from the far field.
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3.1. Limit of M→ 0
The matrix formulation of the finite elastic plate problem from Scott (1992) is( −κ eikL

−eikL 0

)(
H0
+

H L′
+

)
+
(

H 0′
−

HL
−

)
= k0 sin χ

k− k0 cos χ

(−PeikL
(
eiL(k−k0 cos χ) − 1

)
0

)
, (3.2)

where

H 0′
− =Q0 + P

∂H0
−

∂y
. (3.3)

The two equations are therefore

−e−ikLH0
+ +HL

− = 0, (3.4a)

−κH0
+ + eikLH L′

+ +Q0 + P
∂H0
−

∂y
=−PeikL k0 sin χ

k− k0 cos χ

(
eiL(k−k0 cos χ) − 1

)
. (3.4b)

In the limit of M→ 0, HM
±→H0

±, therefore the first equation obtained from our matrix
system, (2.38), is redundant. The remaining two equations are

−e−ikLH0
+ +HL

− = 0, (3.5a)

−H0
+ + eikLH L′

+ − P
∂H0
+

∂y
+H 0

− =−PeikL k0 sin χ
k− k0 cos χ

(
eiL(k−k0 cos χ) − 1

)
. (3.5b)

By using the relation
∂H0
+

∂y
=−γH0

+ −
∂H0
−

∂y
, (3.6)

and noting that with M = 0 the continuous velocity condition upstream becomes
H0
−(k, 0)= 0, we obtain the same equations as Scott, and thus have agreement in the

M→ 0 limit.

3.2. Limit of M→∞
In the limit of M →∞, the splitting (2.10a) informs us that HM

+ e−ikM → H̃, since
HM
− → 0 by definition, and H̄M =H0

−. We use the relation

−γ H̃ = ∂H0
+

∂y
+ ∂H0

−
∂y

, (3.7)

so our first equation obtained from (2.38) reduces to (2.14). Our second equation is

−H̃ + eikLH L′
+ − P

∂H0
+

∂y
+H 0

− =
k0 sin χ

k− k0 cos χ
P
(
1− eiL(k−k0 cos χ)

)
, (3.8)

which, after applying (3.7) and the rigid boundary condition,

∂H0
−

∂y
= k0 sin χ

k− k0 cos χ
, (3.9)

will give us the first equation for the case of the semi-infinite rigid section. Our third
equation is

−e−ikLH̃ +HL
− = 0, (3.10)
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which gives the second equation in the case of the semi-infinite rigid section on
application of (3.7). The two limited equations result in the following matrix system:

(
J eikL

e−ikLγ −1 0

)(
∂H0
+/∂y

H L′
+

)
+
(

H 0
−

HL
−

)
= k0 sin χ

k− k0 cos χ

(−J − PeiL(k−k0 cos χ)

−e−ikLγ −1

)
. (3.11)

4. Approximate solution

The formal solution obtained in § 2 requires multiplicative and additive factorisations
of κ, F, G, h, however these cannot be found exactly, due in part to the awkward
exponential functions, eikL, e−ikM, but also the implicit nature of the formal Wiener–
Hopf solutions, (2.22), (2.28) and (2.32). For the one-dimensional problem (i.e.
a single Wiener–Hopf equation) Jaworski & Peake (2013) provide a numerical
method for factorising κ (and an asymptotic factorisation for special cases) however
this cannot be extended to our three-dimensional problem due to terms containing
exponential functions. Scott (1992) presents a numerical method for solving two
implicit Wiener–Hopf equations, but it is far from straightforward to implement,
and due to the truncation of infinite series it provides an approximate solution
nonetheless. Here we present a method with which to obtain an approximate solution
to the system of three equations given in (2.38), that is quick to produce results and
simple to implement.

We begin by taking the system of equations in (2.38) and rearrange so that the terms
containing exponential functions and our unknown H terms in the resulting equations
are either purely plus or purely minus functions, e.g. eikM is only present with H+
terms and never associated with H− terms (known forcing terms do not have this
constraint). This yields

γ S+1 + eikMS+3 + S−1 =−eikMα, (4.1a)

−κS−3 + Pe−ik(L+M)S−1 + e−ikLS−2 + PS+2 =−Pe−ikL(α + β)−QL, (4.1b)
κS+3 + e−ikMS−1 + γ S−2 + γPeikLS+2 =−γPβ − α − γ eikLQL, (4.1c)

where S±1,2,3 are the components of the plus and minus vectors in (2.38), except we
have set S+2 = HL′

+ so that we may impose the condition that HL′
+ is non-singular

(similar to (2.36)). We write the right-hand sides of (4.1) as A(k), B(k), C(k)
respectively. Recall QL contains 2 unknown constants.

By constructing the Wiener–Hopf equations in this way, we can formally obtain
expressions for some of the Si

± in (4.1) using standard Wiener–Hopf additive
factorisations. For example, take (4.1a); the right-hand side is analytic in the upper
half-plane (UHP). On the left-hand side, we require an additive factorisation of γ S+1
into plus and minus functions. Then by Liouville’s theorem we can consider just the
terms that are analytic in the lower half-plane (LHP) to obtain

S−1 =
(−γ S+1

)
− + E1(k), (4.2a)

where (·)± denotes the part of an additive factorisation that is analytic in the
upper/lower half of the complex k plane, and E1 is an entire function which must
be a polynomial containing a number of unknown constants dependent on the degree
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of the polynomial. We discuss the degrees of the unknown polynomials in the next
subsection. Similar consideration of (4.1b) yields

PS+2 =
(
κS−3

)
+ + E2(k), (4.2b)

where E2(k) is entire. Finally, after dividing (4.1c) by γ , we obtain

S−2 =
(
− κ
γ

S+3

)
−
+ s−2 (k)+ E3(k), (4.2c)

where s−2 arises from the additive factorisation of γ −1c(k) − γ −1e−ikMS−1 and is
formally known since S−1 is given by (4.2a), and E3 is a further entire function.

By creating equations (4.2) we have reduced the problem of factorising either
the matrix equation, (2.38), or solving the system of implicit equations, (2.22),
(2.28), (2.32), to a problem of merely having to calculate the entire functions, E1,2,3
(which we do in the following subsection), and the additive factorisations of the
bracketed terms on the right-hand sides of (4.2). It is these factorisations that we
will approximate by using rational approximations of the functions γ , κ and κ/γ in
§ 4.2 in a procedure that is far quicker than methods proposed for solving implicit
equations (Scott 1992) or factorising Wiener–Hopf matrices (Veitch & Peake 2008).

4.1. Determining the entire functions
To determine the entire functions, E1,2,3 in (4.2) we must consider the large k
behaviour of (4.1).

The dominant contributions to the left-hand side of (4.1a) for large k come from

γ S+1 + S−1 . (4.3)

The remaining terms decay with k and are therefore not going to contribute to
assessing the polynomial E1. By considering the above terms, and using the splitting
(2.10a) we find in fact that (4.3) is ∼(∂HM

+ /∂y)e−ikM, which cancels with the
right-hand side, A(k), yielding overall an equation that decays for large k, thus
the entire function, E1(k)= 0.

The second equation, (4.1b), contains Q0,L which could be dominant for large
k, however upon splitting S−1 into a term containing ∂H̄L/∂y, using (2.15), and
approximating η̄L by Fourier transforming η(x) ≈ η(0) + xη′(0) + x2η′′(0)/2 +
x3η′′′(0)/6, we see that the contributions from Q0,L cancel with corresponding terms
from S−1 . By further splitting terms in (4.1b) we reduce the dominant contribution for
large k to P∂HL

+/∂y = O(k7/2), since HL′
+ = O(k−1/2) is the most singular allowable

solution (Jaworski & Peake 2013). Therefore by the extended Liouville’s theorem,
E2(k)= e0+ e1k+ e2k2+ e3k3, where the ei are unknown constants. A similar analysis
of the third equation, (4.1c), yields E3(k)= e4 + e5k.

4.2. Rational approximations
We wish to construct an analytic approximation for the solution to the system of
equations, (4.2). We begin by approximating γ and κ by rational functions

γ (k)=
∏
j,j′

(k− α+j′ )(k− α−j′ )
(k− γ +j )(k− γ −j )

, (4.4a)

κ(k)=
∏
j,j′

(k− β+j′ )(k− β−j′ )
(k− κ+j )(k− κ−j )

, (4.4b)
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which can be done using Padé approximants (Abrahams 2000). The poles and zeros
of the rational approximations lie in the upper or lower half-planes, denoted by ±,
respectively. We require the rational approximation of γ to be accurate for bounded
values of k since we only wish to discuss the far-field scattered acoustics (which
requires evaluation of our approximations only at the bounded points k=−k0 cos θ , as
shall be discussed later). If there are n zeros of γ and n poles of γ , there are n+ 4
zeros of κ , and n poles of κ . n must be even since we wish to preserve the symmetry
of our functions, i.e. the approximation of γ should still be an even function. We
ensure that the relationship, κ = 1 − γP, holds so that the poles of γ and κ are
identical (since P has no poles).

The approximations (4.4) now allow us to express the factorisations, (−γ S+1 )−,
(κS−3 )+, (−κ γ −1S+3 )− analytically. For example, consider γ S+1 which we wish to
additively factorise. The minus function only admits poles at k= γ +j since S+1 cannot
have poles in the upper half-plane. Therefore we can write (4.2a) as

S−1 =
∑

j

a1
j

k− γ +j
+ E1(k). (4.5a)

The a1
j are unknown, and the number of these unknowns equals the number of poles

of γ that lie in the UHP, n/2. We have not allowed for poles of order greater than 1
since non-simple poles do not arise for the functions we are considering here.

Similar consideration of (4.2b) yields

PS+2 =
∑

j

a2
j

k− κ−j
+ E2(k), (4.5b)

where the number of unknowns a2
j equals the number of poles of κ in the LHP, n/2.

Finally (4.2c) yields

S−2 =
∑

j

a3
j

k− α+j
+ s−2 (k)+ E3(k), (4.5c)

where s−2 is now known in terms of the a1
j . We apply Cauchy’s theorem to obtain this

additive decomposition.
We have now obtained series solutions for three functions in (2.38) in terms

of unknown constants, and with these we could determine H̃(k, 0), and thus the
scattered solution. We have 3n/2 + 6 unknowns constants due to our approximations
and the entire functions, E1,2,3, and a further 2 from the constant terms in QL, totalling
3n/2 + 8.

4.3. Determining the unknown constants

To determine the unknown constants a1,2,3
j and e0,...,5, we consider rearrangements of

the equations, (4.1). Equation (4.1a) yields

γ+S+1 =
1
γ−

[
A(k)− S−1 − eikMS+3

]
, (4.6a)

where the left-hand side is analytic in the upper half k-plane, so the right-hand side
cannot be singular at γ− = 0, i.e. at k = α+j . Therefore the function in the square
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brackets of (4.6a) must be zero for all k = α+j . Note, we obtain an expression for
S+3 by rearranging (4.1c). From (4.1b) we find

κ−S−3 =−
1
κ+

[
B(k)− PS+2 − S−2 e−ikL − PS−1 e−ik(L+M)

]
. (4.6b)

so similarly, the function in the square brackets must be zero at all k = β−j . From
(4.1c) we require

C(k)− S−1 e−ikM − γ S−2 − γPS+2 eikL
∣∣

k=β+j
= 0. (4.6c)

This gives us 3n/2 + 4 equations. We finally note that the expression for S+2 in (4.5b)
cannot be singular at P= 0 in the UHP and by virtue of the relationship

S+2 =−γHL
− −HL′

− , (4.7)

S+2 can also not be singular in the LHP, therefore we obtain a further 4 equations from
requiring the right-hand side of (4.5b) to be zero at P = 0. This gives us a total of
3n/2 + 8 equations to solve for our 3n/2 + 8 unknowns (including the two unknowns
in QL). We may then rearrange the equations (4.1) to obtain solutions for all of the
six functions. Note, due to the small positive imaginary part of k0, all poles and zeros
discussed do have non-zero imaginary parts.

4.4. Far-field acoustics
Given the solutions obtained in the previous section, we can finally solve for
H̃(k, 0) = HM

+ (k, 0)e−ikM, required in (2.7). We invert the Fourier transform, (2.6),
to yield H(x, y), which we can approximate in the far field, x, y→∞, by using the
method of stationary phase. We find the far-field scattered acoustic pressure,

H(r, θ)≈ eik0r

√
2πr

HM
+ (−k0 cos θ, 0)eiMk0 cos θ−πi/4|sin θ | ≡D(θ)

eik0r

√
r
, (4.8)

where (r, θ) are polar coordinates, with θ = 0 denoting the downstream direction.
|D(θ)| gives the directivity of the far-field acoustics as a function of observer angle.
Since we only evaluate HM

+ at k=−k0 cos θ , we only require our approximation to be
accurate for HM

+ (k, 0) (equivalently S+1 ) when |k|6 k0, which we obtain from (4.6a).

5. Results
Before proceeding with results for a rigid plate with poroelastic extension, we

first present verification that the rational approximation approach is reasonable
by comparing results for the scattering of sound by a purely rigid plate. All
Padé approximations are calculated using the built-in PadeApproximant function
in Mathematica.

5.1. Verification of the rational approximation method
We consider the scattering of sound by a purely rigid flat plate, M = 2, L= 0.

In figure 2 we compare the approximate result for the far-field scattered sound as
calculated using the rational approximation method in this paper (with γ given by a
Padé approximation with 10 poles), with an asymptotic approximation which can be
obtained from Ayton & Peake (2013).
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FIGURE 2. Comparison of two approximate solutions for the far-field scattered acoustics
from a finite rigid plate of length 2, due to an incident sound wave with χ = 3πi/4 and
varying k0. Solid line uses asymptotic approximation from Ayton & Peake (2013). Dashed
line uses the Wiener–Hopf rational approximation approach and plots |D(θ)|, given by
(4.8). Both results are normalised by the incident pressure amplitude. (a) k0= 6, (b) k0=
10, (c) k0 = 14.

Figure 2 shows good agreement between the two approximate solutions. The
method in Ayton & Peake (2013) requires k0 to be large, and has errors of O(k−1

0 ). It
does not strictly impose zero pressure upstream of the flat plate, as seen in all three
comparisons; the errors at θ = π can therefore be attributed to this discrepancy
of boundary conditions at this point. A final difference is that the asymptotic
approximation is for sound scattering in a background steady uniform flow with
non-zero Mach number; in figure 2 we set that Mach number to 0.01.

5.2. Results for poroelastic extensions
We now investigate the effects of a poroelastic extension to a rigid flat plate for two
different acoustic sources. First, an incident sound wave from the far field, and second,
a near-field monopole close to the poroelastic trailing edge. In both cases, we suppose
the poroelastic plate is clamped to the rigid plate at x = 0 and the edge at x = L is
free, and we normalise the scattered pressure by the amplitude of the incident field.
The incident sound wave provides insight into the potential noise reduction capabilities
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FIGURE 3. Pdiff as a function of poroelastic section length, L, for different elastic plate
wavenumbers, kp, and incident frequencies, k0. Porosity remains fixed at αh = 0.014.

of poroelastic extensions for the scattering of external sound sources by blades. A
near-field monopole models a turbulent source within a boundary layer above a wind
turbine blade. The poroelastic extension is an attempt to model the flexible and porous
qualities of the trailing edge of the owl’s wing and understand the noise reduction that
could be achieved by a similar adaptation to turbine blades.

5.2.1. Incident sound wave
We first consider the scattering of a far-field sound wave with pressure

pi = e−ik0 cos χ−ik0 sin χ . (5.1)

Since the source emanates from the far field, it is independent of the properties of the
plate, in particular the length of the poroelastic section. We can therefore consider the
effects of altering the length of the poroelastic section without having to modify the
original source. For all results here, we set χ =π/4.

We define the following function, proportional to the total above-plate scattered
sound power, as

Ptot =
∫ π

0
|D(θ)|2 dθ, (5.2)

where D(θ) is the far-field directivity given by (4.8). To assess the difference in above-
plate scattered power levels between a plate with a poroelastic extension of length x,
and a fully rigid plate, we define

Pdiff (x)= 10 log10

(
Ptot|M=2,L=x

Ptot|M=2+x,L=0

)
, (5.3)

which is measured in dB.
Figure 3 illustrates Pdiff for different elastic plates and different incident frequencies.

A negative result indicates noise reduction, whilst a positive value is a noise increase.
We see that altering the length of the poroelastic section could significantly reduce the
scattered noise but there exist lengths whereby the noise would in fact be increased.
The optimal choice of length L of the poroelastic section for reducing the scattered
noise depends on the parameters of the plate, L and kp, and incident frequency, k0.
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FIGURE 4. Ptot results used to produce the dashed line in figure 3. (a) Ptot as a function of
poroelastic section length, L, for elastic plate wavenumber kp= 20, and incident frequency
k0= 3. Rigid plate length, M, is fixed at 2. (b) Ptot as a function of rigid plate length, M,
for elastic plate wavenumber kp = 20, and incident frequency k0 = 3. Poroelastic section
length, L, is fixed at 0.

The eigenvalues, λ, of an elastic plate of length L are discussed in Cavalieri et al.
(2014), and satisfy

cos(Lλ) cosh(Lλ)+ 1= 0 (5.4)

when one edge is free and one is clamped. The first few eigenvalues are given by
Lλ = 1.88, 4.69, 7.85, 11.00. All modes are permitted in our system, but due to the
practical restriction on length 0 6 L 6 0.5, we only observe the first few modes in
the presented results. If kp is close to λ the plate experiences a resonance and we
expect a significant reduction of scattered noise. This is illustrated in figure 4(a);
we see significant troughs at lengths, L, where kpL ≈ {1.88, 4.69, 7.85, 11.00}.
These reductions do not however automatically translate to a reduction of noise,
i.e. a significant reduction in figure 3 (dashed line), since the interaction of the
trailing-edge field with the leading-edge field must be taken into account to find the
total far-field noise. In figure 4(b) we plot Ptot for a rigid plate of varying length. The
total scattered sound varies with length since the phase shift between the leading- and
trailing-edge scattered fields is dependent on the length of the plate. A minimum in
figure 4(b) indicates a destructive interference between the leading- and trailing-edge
fields, whilst a peak indicates a constructive interference. By changing the trailing
edge from rigid to poroelastic, we alter the phase shift between the leading- and
trailing-edge fields. If in the fully rigid case, there is a destructive interference, e.g.
for M ∈ (2.15, 2.3), altering the phase shift by introducing a poroelastic trailing edge
results in losing this optimal destructive interference and can produce an overall
increase in noise (despite the trailing-edge field being reduced in magnitude), as seen
in figure 3 for L ∈ (0.12, 0.25).

We justify that the rigid–elastic connection is not a significant contributer to the
scattered far-field noise by considering figure 5 which illustrates the far-field directivity
for a finite poroelastic extension clamped to a semi-infinite rigid plate. There are no
oscillations, even at the high frequency of k0 = 10, indicating only one source is
dominant in determining the far-field sound, and this must be the trailing edge. We can
therefore attribute any oscillations in the directivity of the far-field scattered sound by
our finite length plates to leading- and trailing-edge interaction rather than interference
by the rigid–elastic connection.
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FIGURE 5. Far-field directivity for a semi-infinite plate, M→∞, L = 1, with k0 = 10,
kp = 70, αh = 0. Result is normalised by the incident pressure amplitude.
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FIGURE 6. Pdiff as a function of poroelastic section length, L, for different poroelastic
plate wavenumbers, kp, or porosity, αh, and incident frequencies, k0. (a) Porosity remains
fixed at αh = 0.014 and the frequency of the incident sound wave is k0 = 7. The bending
wavenumber is varied. (b) The bending wavenumber of the plate is fixed at kp = 13, and
the frequency of the incident sound wave is k0 = 1. Porosity is varied.

Figure 6(a) illustrates the effects of altering the poroelastic plate stiffness on
possible noise reduction, as the length of the plate is increased. We see the peaks
and troughs familiar from figure 3, with more oscillations for higher values of kp since
more flexible plates admit more resonances. The overall trend of when there is an
increase or decrease in noise is similar across all kp values, since this is governed by
the leading- and trailing-edge interaction rather than the alteration of the trailing-edge
field directly by the poroelastic plate.

We see the effect of altering porosity in figure 6(b), which we know from Jaworski
& Peake (2013) and Cavalieri et al. (2014) has more significant effects at low
frequencies. We see that a higher porosity has the capability of maintaining a
negative sound power difference for a larger range of values of L, and in agreement
with Cavalieri et al. (2014), the more porous the extension, the greater the possible
reduction of noise. There are only two oscillations in the results in figure 6(b)
since there are only two lengths that correspond to resonances which can be seen
in figure 7(a). Figure 7(b) does not have any minima, therefore the leading- and
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FIGURE 7. Ptot results used to produce solid line results in figure 6(b). (a) Ptot as a
function of poroelastic plate length, L, for elastic plate wavenumber kp = 13 and incident
frequency k0= 1. Rigid plate length, M, is fixed at 2. (b) Ptot as a function of rigid plate
length, M, for elastic plate wavenumber kp= 13 and incident frequency k0= 1. Poroelastic
plate length, L, is fixed at 0.

trailing-edge interaction does not have a significant impact on the scattered noise,
and overall we see reductions in total noise for almost all lengths of extension and
the main mechanism reducing noise in figure 6(b) is due to the reduction of the
trailing-edge scattered field by the addition of the poroelastic extension.

Realistic designs with poroelastic extensions would only use small values of L, to
minimise adverse aerodynamic effects, and we see from figures 3 and 6(a) that even
small poroelastic extensions of 5–10 %, L ∈ (0.1, 0.2), of the total rigid chord length
can yield a reduction in scattered sound power of up to 4 dB for certain frequencies.
Figure 6(b) shows that increasing the porosity of the extension could extend the range
of lengths over which we would see a noise reduction for given frequencies, thereby
allowing the poroelastic extension to be chosen to optimise noise reduction over a
wide range of possible incident sound frequencies.

5.2.2. Near-field monopole
For a near-field source, located just above the trailing edge, varying the length of the

poroelastic section significantly alters how the source interacts with the rigid section
of the plate, therefore for clarity when comparing results we shall focus on results at
fixed values of L. Unless otherwise specified, we choose a monopole source,

pi = 1
k0rm

eik0rm, (5.5)

where rm is a radial coordinate centred on the location of the monopole. We begin
by comparing results to Cavalieri et al. (2014, figure 9a) in figure 8; we see clear
similarities although there is a notable difference in the sharp dip between lobes in
our kp = 20 result, which is much less pronounced in the result from Cavalieri et al.
(2014). This is most likely a result of our different source terms (we use a monopole
but Cavalieri et al. (2014) use a quadrapole; the quadrapole radiates noise differently
towards the leading edge therefore producing a different leading-edge scattered field
than the monopole), but there could also be an effect from our result having a non-
zero rigid length, thereby allowing the leading-edge acoustic field to be scattered by
a rigid edge rather than a clamped elastic edge.

In figure 9 we see the effect of altering the plate stiffness for M = 1.85, L= 0.15,
αh = 0.0014 and k0 = 8. We refer to the kp = 0.01 case as the rigid plate comparison.
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FIGURE 8. Directivity of the far-field scattered pressure from a monopole at (L, 0.06)
with k0 = 5, interacting with an impermeable elastic plate of length L= 0.999 with rigid
section, M = 0.001. Results are normalised by the incident pressure amplitude.
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FIGURE 9. Directivity of the far-field scattered pressure from a monopole with k0 = 8,
interacting with a rigid plate of length M = 1.85 with a poroelastic extension of length
L= 0.15, with αh= 0.0014 and varying kp. Results are normalised by the incident pressure
amplitude.

We see a large increase in noise for kp = 50 compared to the rigid plate, and a large
decrease for kp = 70. These increases or decreases with respect to the rigid plate
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FIGURE 10. Far-field noise difference in dB at each polar angle θ between the rigid
plate, kp = 0.01 and flexible plates, with M = 1.85, L= 0.15 and αh = 0.0014, for k0 = 8.

scattered noise arise for similar reasons as the previous section; altering kp alters the
trailing-edge field which could be close to a resonance, however there could be a
constructive or destructive interference of the leading- and trailing-edge acoustic fields.
The decrease for kp = 70 occurs since it is close to a resonance (0.15 × 70 = 10.5),
whilst the increase for kp = 50 occurs since in the rigid case there is an optimal
destructive interference between the leading- and trailing-edge field, but the poroelastic
trailing edge with kp= 50 alters the phase shift between the leading- and trailing-edge
fields in such a way as to create a constructive interference. Figure 10 uses the same
results as figure 9 to illustrate the noise difference in dB at each angle θ between the
rigid plate and a flexible plate.

We see from figure 10 that by choosing a length and bending wavenumber close
to a resonance, a large noise decrease could be achieved. Figure 11 illustrates a
similar situation as figure 10 but for k0 = 10 and L = 0.1. We choose different
bending wavenumbers to provide consistent bending Mach numbers, Ω = k0/kb, as
the previous situations, since the bending Mach number was found to be a key
parameter in Cavalieri et al. (2014). By comparing figures 10 and 11 we see that the
same poroelastic plate would have different noise reduction capabilities for different
source frequencies. The reduction in noise for kp= 75 occurs due to the proximity of
the resonant mode (0.1× 75= 7.5).

A turbulent boundary layer would contain a vast number of sources at different
locations with different frequencies. The results in this paper can allow multiple
sources to be assessed. To illustrate this, we consider figure 12 which shows
the magnitude of the far-field acoustic pressure produced by five monopoles of
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FIGURE 11. Far-field noise difference in dB at each polar angle θ between the rigid plate,
kp = 0.01 and flexible plates, with M = 1.9, L= 0.1 and αh = 0.0014, for k0 = 10.

equal strength, located at points (0.15, 0.06), (0.13, 0.04), (0.14, 0.03), (0.12, 0.02),
(0.145, 0.05), with frequencies 6, 6.5, 7, 7.5, 8, for a plate with L= 0.15,M= 1.85 and
constant porosity αh = 0.0014. Figure 13 shows two of the contributions to figure 12.
In figure 13(a) we see a result where the overall sound pressure is decreased for the
given flexible plates compared to the rigid plate, whereas in figure 13(b) this is not
the case and we see increases in noise for certain values of kp versus the rigid plate,
in particular kp = 40, 50. It is these values of kp that cause an increase in pressure at
certain angles in figure 12 which could result in an increase of total scattered noise.
We notice however that the increases in figure 12 for the combined five monopoles
are much less than the increases seen in the single monopole result in figure 13(b),
indicating that over a number of different turbulent sources the capability of the
poroelastic plate to increase total noise is lessened.

By comparing figures 13(a,b) we see that the magnitude of the far-field acoustic
directivity for the rigid plates is very different despite the similar sources, indicating
that in the case of figure 13(b) there is a strong destructive interference between the
leading- and trailing-edge acoustic fields, whereas in figure 13(a) there is not. This
explains why, for the same values of kp, we do not always see a consistent increase
or decrease of noise even though the length of the poroelastic section is the same.
The destructive leading- and trailing-edge acoustic interference is dependent on the
acoustic source, which differs between figures 13(a,b).
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FIGURE 12. Far-field pressure directivity obtained by five monopoles with different
locations and frequencies. In all cases αh = 0.0014.
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FIGURE 13. Far-field pressure directivity for two different single monopole sources, with
αh = 0.0014. Results are normalised by the incident pressure amplitude. (a) k0 = 7.5,
located at (0.12, 0.02), (b) k0 = 8, located at (0.145, 0.05).

6. Conclusions

In this paper we have considered the scattering of acoustic sources by finite rigid
plates with finite poroelastic extensions in an attempt to model the noise control
properties of the trailing edge of an owl’s wing. Whilst the formulation holds for
an arbitrary acoustic source, we have focussed on results in two important cases;
far-field sound waves, applicable to rotor blockage within aeroengines, and near-field
monopoles, applicable to turbulent boundary layer self-noise. In both cases the rigid
section of the plate was seen to be important in determining the potential noise
reduction due to interference between acoustic leading- and trailing-edge fields,
something that studies for purely poroelastic plates or semi-infinite plates have not
assessed. Additionally the length of the poroelastic section was a key parameter
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affecting noise levels since longer extensions permit more possible resonant modes.
We have also presented an approximation method for Wiener–Hopf factorisations,
based on Padé approximations. This is particularly effective for this problem since
we are concerned only with the far-field scattered acoustics; the method would not
be appropriate for calculating the acoustics in the mid or near field.

Blade geometry and mean flow have been excluded from the analysis. An
inclusion of either would significantly complicate the modelling of the fluid–structure
interaction, and progress with the Wiener–Hopf technique would be difficult.
Abrahams (1983) discusses the scattering of sound by a finite elastic plate in
uniform subsonic flow, however to solve this problem one must use a matched
asymptotic expansion in conjunction with the Wiener–Hopf technique. By including
a mean flow the sound generated by non-acoustic sources, such as a convective
gust from far upstream, could be assessed. Also we have neglected any viscous
fluid action within the perforates of the extension. The poroelastic plate model used
here presents just a first-order correction to account for the porosity of the plate,
provided kpR� 1, k0R� 1 and α2

h � 1. These restrictions, along with the effects of
mean flow on a perforated plate are discussed in Howe (1998). We would anticipate
that any effective increase in surface damping (such as including the effects of
viscosity within the perforate) could further decrease the far-field scattered sound
by decreasing the trailing-edge scattered field, however the interaction between the
leading- and trailing-edge fields could still result in noise increases.

The solution in this paper allows us to calculate the scattered field from multiple
near-field sources, as would be found in a turbulent boundary layer above a wind
turbine blade. Whilst we have seen that not all single monopole source cases result in
an overall decrease of far-field noise for flexible plates compared to fully rigid plates,
we would expect, given that we know owls fly almost silently despite turbulence
generated within the boundary layers above their wings, that when a large number
of sources interact with the poroelastic trailing edge, the noise is reduced overall. In
this paper, we have seen that single monopole sources can scatter more noise when
interacting with plates with certain poroelastic extensions than when interacting with
fully rigid plates. However, the combination of multiple monopole sources results in a
much reduced increase in the scattered noise in these situations. We expect that if we
included far more near-field sources, any poroelastic extension would reduce the total
scattered noise compared to that from a fully rigid plate. Further work is required
to support this hypothesis, however it is similar to the results observed for sound
generation by wavy leading edges; for single turbulent sources, wavy leading edges
have been seen to both increase and decrease noise compared to straight leading
edges (Mathews & Peake 2015). However, fully turbulent flow with a large number
of sources predicts a consistent noise reduction for all types of wavy leading edge
when compared to straight leading edges (Haeri, Kim & Joseph 2015).

We can conclude that, in agreement with previous studies, poroelastic trailing
edges could be a significant tool for reducing sound scattering for a range of acoustic
sources, however the interaction of the leading- and trailing-edge scattered fields has
the capability of increasing the overall far-field scattered noise when compared to a
purely rigid plate.
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