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ABSTRACT

This paper considers the bootstrapping approach for measuring reserve uncer-
tainty when applying the model of Schnieper for reserves which separate Incurred
But Not Reported (IBNR) and Incurred But Not Enough Reserved (IBNER)
claims. The Schnieper method has been explored in Liu and Verrall (2009),
and the Mean Square Errors of Prediction (MSEP) derived. This paper takes
this further by deriving the full predictive distribution, using bootstrapping.
Numerical examples are provided and the MSEP from the bootstrapping
approach are compared with those obtained analytically.
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1. INTRODUCTION

The model of Schnieper (1991) separates out IBNR and IBNER claims, with
the intention of providing better estimates of outstanding liabilities in cases
when the over claims data are inherently volatile. Although Mack (1993) used
some of the ideas from Schnieper, there has not been much attention paid to
the original paper since it was published. However, Liu and Verrall (2009) have
derived approximations to the Mean Square Errors of Prediction (MSEP) of
the reserves and we believe that the method has the potential to be useful in
practice. In this paper, we continue with the development of the statistical
background for the original method by showing how the complete predictive
distribution can be approximated using bootstrapping methods. This is a very
important additional step to the theory derived in Liu and Verrall (2009), since
the MSEP is of only limited value in the context of risk assessment and capital
modelling. For a proper assessment of risk, and to use the model in the modern
solvency setting, it is far better to use the predictive distribution. Also, a simu-
lation approach is often used in this context, and bootstrapping has been found
to be very convenient for this.
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Section 2 gives a brief outline of the model of Schnieper. For more details,
see Schnieper (1991) and Liu and Verrall (2009). In Section 3 of this paper, we
show how to construct an appropriate resampling procedure for the Schnieper
method, within a Generalised Linear Models (GLM) framework. Note that the
bootstrapping is a general method, which can be applied to any fully defined
model in order to obtain the sampling distribution for any statistic of interest.
As was shown in England and Verrall (1999) and England (2002), it is straight-
forward to extend the bootstrapping procedure to obtain an approximation to
the predictive distribution. This requires a final step to be added to the resam-
pling method, which simulates a future observation from the appropriate
process distribution. A more complete discussion of bootstrapping methods
can be found in England and Verrall (2006), which also contains a fuller review
of the literature on bootstrapping for claims reserving in general. Note that the
Schnieper method is a recursive method for claims reserving, and the appro-
priate background for this can be found in England and Verrall (2006). The
paper by England and Verrall (1999), which first considered bootstrapping for
the chain-ladder technique, was based on the over-dispersed Poisson model
which is non-recursive. For ease of implementation, the detailed algorithm
which can be used to obtain the bootstrap approximation to the predictive dis-
tribution for the Schnieper method is given in the Appendix. In Section 4, we
apply the bootstrap method to the data from Schnieper (1991) and show that
the results are very close to the results for the analytical estimation error derived
in Liu and Verrall (2009). This section also shows the full predictive distribu-
tion. Section 5 contains the conclusion.

2. THE SCHNIEPER MODEL

The idea behind the model of Schnieper (1991) is to separate a triangle of
potentially volatile claims data into two separate triangles: a triangle of the
IBNER claims and a triangle of the real IBNR claims. In this way, the hope
is that the separate triangles will prove easier to deal with and will provide
better estimates of outstanding claims, and a better idea of the forces driving
these. It is assumed that the data in the two triangles are independent, and we
briefly describe the models used for each of these. For more details of these
models, and of the estimation of the parameters and forecasts, see Schnieper
(1991) and Liu and Verrall (2009).

Without loss of generality, we assume that the data are available in trian-
gular form, indexed by accident year, i, and development year, j. The single
triangle of data consists of the cumulative incurred claims, and are denoted by
{Xij : 1 # i # n; 1 # j # n – i + 1}:
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It is assumed that the incremental incurred claims (Xij – Xi, j – 1) are the sum of
incremental incurred from the old claims (–Dij) and the new claims (Nij). In
other words, –Dij represents the change in the cumulative incurred claims for
claims reported in previous development periods (IBNER data), and Nij is the
new claims (IBNR claims) reported in development period j. Thus,

Xij – Xi, j – 1 = Dij + Nij

and for cumulative claims:

Xij – Xi, j – 1 – Dij + Nij.

Schnieper also assumes that a measure of the exposure, Ei, is available for each
accident year i. In common with Schnieper (1991), we do not attempt to forecast
beyond development year n. We refer to cumulative claims at development
year n as “Ultimate Claims”.

We define the information up to payment year k by Hk and the informa-
tion up to development year k by Fk, where 

Hk = {Nij, Dij : 1 # i, j # n ; i + j – 1 # k}

and Fk = {Nij, Dij : 1 # i, j # n ; j # k}.

Fk corresponds to Bk in Mack (1993).

The general model assumptions are given as follows:

Assumption 1: There exist constants lj and dj, such that for known exposure
Ei we have that,

E [Nij | Hi + j – 2 ] = Ei lj , 1 # i, j # n,

E [Dij | Hi + j – 2 ] = Xi, j – 1 dj , 1 # i # n, 2 # j # n.

Assumption 2: There exist constants s2
j and t2

j , such that 

Var [Nij | Hi + j – 2 ] = Ei s2
j , 1 # i, j # n

Var [Dij | Hi + j – 2 ] = Xi, j – 1 t2
j , 1 # i # n, 2 # j # n.

Assumption 3: Independence between accident years

As in Schnieper (1991), it is assumed that {N1j, D1j : 1 # j # n} … {Nnj, Dnj :
1 # j # n}}, are independent between accident years.

Assumption 4: Uncorrelatedness between development years

{Nij | Hi + j – 2 : 1 # j # n} and {Dij | Hi + j – 2 : 1 # i # n, 2 # j # n} and are uncor-
related.
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For a discussion of these assumptions, see Liu and Verrall (2009). Based on
these assumptions, estimates of the parameters may be obtained, along with
predictions of the development of future claims. This is a recursive method,
and full details of the derivation of these estimates may be found in Schnieper
(1991) and Liu and Verrall (2009). The estimates of the parameters in the mean
are given by
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These are the estimates that are used when the bootstrap methodology is
applied. Finally, the estimate of outstanding incurred claims in the original
single triangle was derived by Schnieper. Note that E [Xi, j |Hn ] is the prediction
of Xi, j, and we use the notation of Xi, j for this: E [Xi, j | Hn ] = Xi, j. Then Xi, j =
(1 – dj ) Xi, j –1 + Ei lj for j !{n – i + 2, n – i + 3, …, n}. Note also that E [Xi, n – i +1 |Hn ] =
Xi, n – i + 1, and hence Xi, n – i + 1 = Xi, n – i + 1 forms the starting point in this recursive
formula.

3. BOOTSTRAP METHODOLOGY

The Schnieper method presents an interesting exercise for bootstrapping in
that there are two separate triangles that have to be resampled independently.
This is different from most other applications of bootstrapping for claims
reserving, when a single triangle is considered. In this section, we describe how
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the resampling procedure can be adapted to this novel situation, and in the
Appendix we set out the algorithm in detail.

In order to apply the bootstrapping methodology, we require data which
can be assumed to be independent and identically distributed (iid). Since the
data themselves are not iid, we resample from the residuals rather than the
raw data. Also, since the Schnieper method is based on recursive models, we

use residuals of the ratios, ij

Ei

N
and ij

X
D

,i j 1-
, rather than the observed data, Nij

and Dij. This has been discussed in detail in England and Verrall (2006). In
order to calculate residuals (suitably normalized), we require the mean and
variance of each of the ratios. Following Liu and Verrall (2009), the mean and
variance assumptions for the Schnieper model are:
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The idea of bootstrapping is to generate new triangles of data (“bootstrap
samples”) which are representative of the underlying distributions of the esti-
mates. When this has been done a reasonable number of times and the required
results saved, the sampling properties may be estimated by simply looking at
the properties of the bootstrap samples. So, for example, to obtain a bootstrap
estimate of the estimation error of the overall reserve, we generate a reasonable
number (in most cases we use 10,000) of new sets of data from the original data
and estimate the reserve for each of these.

The aim is to estimate the MSEP for a future observation, Xim(n – i + 1 <
m # n):

MSEP [ Xim | Hn ] = E [(Xim – Xim)2 | Hn ]

= E [((Xim – E [Xim | Hn ]) – ( Xim – E [Xim | Hn ]))2 | Hn ]

= E [Xim – E [Xim | Hn ])2 | Hn ] + ( Xim – E [Xim | Hn ])2

= process variance + estimation error.

The process variance is straightforward due to the assumptions of independence
between accident years and uncorrelatedness between development years. In the
context of bootstrapping, it requires the inclusion of a final simulation from
the process distribution, details of which are given below. For the estimation
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error, there are two approximations that can be used, as discussed in detail in
Liu and Verrall (2009). The first approach, which was used by England and
Verrall (2002), approximates the estimation error by the estimation variance,
Var [ Xim | Fn – i + 1]. The other approach is to derive an approximation to the esti-
mation error directly. Corresponding to these two approaches, there are two
procedures that can be used in the bootstrapping process. If the estimation
variance approximation approach which is adopted by England and Verrall
(2002) and Buchwalder et al (2006) is followed, the bootstrap estimate of the
approximation is obtained by calculating the sample variance of the bootstrap
reserves. However, if the approach of Mack (1993) is followed, the bootstrap
estimate of the estimation variance is obtained by calculating the average squared
difference between the bootstrap reserve estimate and the original reserve
estimate. The rationale for the first approach is clear: we simply estimate the
estimation variance by the variance of the bootstrap samples. The rationale for the
second approach is that we require a bootstrap estimate of (Xi,m – E [Xi,m |Hn ])2,
and this can be obtained by looking at the average squared difference between
the bootstrap value, XB

i,m and Xi,m.
To include the process variance, we add an extra simulation after each bootstrap,

using the appropriate process distribution. This is the most straightforward
way to include the process variance, and more details can be found in England
and Verrall (2006).

Let fij = ij

Ei

N
and gij = ij

X
D

,i j 1-
.

Then the scaled Pearson residuals for the two triangles are given by:

rPS( fij, lj, Ei, sj) =
j

ij jfi -E

s
l` j

and rPS(gij, dj, Xi, j – 1, tj) =
j

jij
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It is well known that a bias correction is required in the context of bootstrap
estimation. In order to include this, these residuals are adjusted by multiplying 
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These adjusted residuals are sampled, with replacement, to generate bootstrap
samples of residuals, rB

ij and sB
ij , for i = 1,2, …, n; j = 1,2,…, n – i + 1. The tri-

angles of pseudo data are then calculated by inverting the residual definition:

fij
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The appealing aspect of bootstrapping is that the calculations now only involve
the simple spreadsheet operations used in the original method to calculate the
loss reserves. In other words, they can be based on the original Schnieper paper,
rather than involving any more complex statistical analysis similar to that in
Liu and Verrall (2009). Thus, for each bootstrap sample, the bootstrap estimates
of the parameters in the mean, lB

j and dB
j , are calculated using the usual

weighted averages of the individual development factors. These are given in the
following equations:
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Note that the observed data, Xi, j –1, and the exposure Ei act as the weights here:
it is not correct to use bootstrapped data for the weights.

The bootstrap estimates of the reserves for each row and the overall total
can be obtained by applying the bootstrap values of the parameters, lB

j and
dB

j , to the original formula of Schnieper for the outstanding incurred claims:

Xi, j = (1 – dj
B ) Xi, j – 1 + Ei l j

B, for j ! {n – i + 2, n – i + 3, …, n} (with the initial
point Xi, n – i + 1 = Xi, n – i + 1).

Bootstrapping only addresses the estimation error for the model. If the aim of
the exercise is to obtain a bootstrap estimate of the estimation error, then this
is all that is needed. However, for claims reserving purposes, we also require
the prediction error and the full predictive distribution of the reserves. To
obtain these, it is necessary to include the process variance, using the process
distributions. The most straightforward option here, since we are only speci-
fying the first two moments, is to use normal distributions for both Nij and Dij.
(Note that it would be possible to use other models, such as the over-dispersed
Poisson distribution.) Thus, the final step in the process to obtain simulations
of the loss reserves suitable for calculating prediction errors and the predictive
distribution is to simulate from these process distributions, using the bootstrap
sample values for the means. In other words, for each triangle, we obtain sim-
ulated values of the incrementals, using the appropriate process distributions:
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These simulated values can then be used to obtain estimates of the outstanding
liabilities. The variances of these distributions can be used to quantify the process
variance, either analytically (as in Liu and Verrall, 2009) or using simulation
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as in this paper. An approximation to the full predictive distribution of the out-
standing liabilities can be obtained from these simulated values in conjunction
with the bootstrapping procedure.

Note that we have chosen here to use normal distributions for the process
distributions. It would also be possible make other choices for these distributions,
including using the distributions of the residuals to construct a process distri-
bution, or to use a distribution-free approach. For more details of this, see Peters
et al (2009), which demonstrates how to use bootstrap procedures for the dis-
tribution-free chain ladder model, without making parametric assumptions.
When considering the tails of the distributions, for example when looking at
measures such as VaR, the specific assumptions made about the process
distribution can have an impact. We would recommend that these issues are con-
sidered in any implementation, but in this paper we show how to construct the
bootstrapping procedure, illustrate the results when using normal process dis-
tributions, and compare them with the analytical results in Liu and Verrall (2009).

The algorithm bootstrapping Schnieper’s model is set out in the Appendix.
In section 4, we provide illustrations of the bootstrapping method, and compare
with the analytical results.

4. ILLUSTRATION

In this section, we illustrate the results by applying the bootstrapping method-
ology to the data from Schnieper (1991). The results are compared with the
analytical methods, as well as the bootstrap estimation of the prediction error
using Mack’s approximation.

The data used by Schnieper consisted of an IBNR triangle, Xij, and expo-
sure, Ei, which are shown in Table 1. Tables 2 and 3 show the more detailed
data, consisting of the new claims, Nij, and the changes in the existing claims,
–Dij. These data were taken from a practical motor third party liability excess-
of-loss pricing problem.

684 H. LIU AND R. VERRALL

TABLE 1.

CUMULATIVE IBNR (Xij ) AND EXPOSURE (Ei) FOR BOTH NEW AND EXISTING CLAIMS.

Dev year
1 2 3 4 5 6 7 Exposure

Accident year

1 7.5 28.9 52.6 84.5 80.1 76.9 79.5 10,224
2 1.6 14.8 32.1 39.6 55.0 60.0 12,752
3 13.8 42.4 36.3 53.3 96.5 14,875
4 2.9 14.0 32.5 46.9 17,365
5 2.9 9.8 52.7 19,410
6 1.9 29.4 17,617
7 19.1 18,129
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Table 4 shows a comparison of the results using the analytical methods derived in
Liu and Verrall (2009) and the bootstrap results. The bootstrap results were obtained
using the estimation variance approach which is adopted by England and Verrall
(2002) and Buchwalder et al (2006), so that the bootstrap estimate of the approxi-
mation was obtained by calculating the sample variance of the bootstrap reserves.
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TABLE 2.

INCREMENTAL INCURRED CLAIMS FROM NEW CLAIMS (Nij).

Dev year
1 2 3 4 5 6 7

Accident year

1 7.5 18.3 28.5 23.4 18.6 0.7 5.1
2 1.6 12.6 18.2 16.1 14 10.6
3 13.8 22.7 4 12.4 12.1
4 2.9 9.7 16.4 11.6
5 2.9 6.9 37.1
6 1.9 27.5
7 19.1

TABLE 3.

INCREMENTAL INCURRED CLAIMS FROM EXISTING CLAIMS (Dij).

Dev year
2 3 4 5 6 7

Accident year

1 –3.1 4.8 –8.5 23 3.9 2.5
2 –0.6 0.9 8.6 –1.4 5.6
3 –5.9 10.1 –4.6 –31.1
4 –1.4 –2.1 –2.8
5 0 –5.8
6 0

TABLE 4.

A COMPARISON OF BOOTSTRAP AND ANALYTICAL RESULTS.

Reserves Prediction Errors Prediction Errors %

Analytical Bootstrap Analytical Bootstrap Analytical Bootstrap

i = 2 4.4 4.3 9.5 9.4 215% 217%
i = 3 4.8 4.8 14.3 14.4 298% 299%
i = 4 32.9 33.2 29.8 31.4 91% 95%
i = 5 60.3 61.1 41.2 43.0 68% 70%
i = 6 77.2 77.6 43.5 45.6 56% 59%
i = 7 104.3 104.8 49.2 51.5 47% 49%

Overall Total 283.9 285.8 121.9 122.9 43% 43%
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FIGURE 1. Bootstrap Predictive Distribution of the Schnieper Overall Reserve.

It can be seen that there is a good agreement between the analytical results
and those obtained using bootstrapping (allowing for the fact that bootstrap-
ping is a simulation-based method).

A major advantage of using bootstrapping over the analytical approach is
that it is also possible to obtain a simulation of the predictive distribution.
This is illustrated in Figure 1, which shows the predictive distribution of the
overall reserve for the Schnieper method, smoothed using a Kernel smoother
with bandwidth 50.

As mentioned in Section 3, there are two approximation approaches described
in Liu and Verrall (2009): Tables 5 and 6 compare the differences when fol-
lowing these two approaches. The column labeled E&V (2002) corresponds to
the approach adopted by England and Verrall (2002) and Buchwalder et al (2006).
The second column shows the results using the approach of Mack (1993).
In the first approach, the estimation error is approximated using the sample
variance of the bootstrap reserves, and in the second approach, the bootstrap
estimate of the estimation error is obtained by calculating the average squared dif-
ference between the bootstrap reserve estimate and the original reserve estimate.
In both cases, this is done before the sampling from the process distribution is
carried out in order to obtain an estimate of the MSEP.
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TABLE 5.

A COMPARISON OF BOOTSTRAP ESTIMATION ERRORS.

E & V (2002) Mack (1993)

i = 2 6.929 6.938
i = 3 10.040 10.061
i = 4 16.183 16.384
i = 5 23.689 23.883
i = 6 23.629 23.897
i = 7 27.677 27.976

Overall Total 98.017 99.020
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5. CONCLUSION

This paper has shown how bootstrapping can be applied in the context of the
Schnieper method of claims reserving. This is a novel application, because it
involves bootstrapping two separate triangles. The illustration shows that it is
possible to reproduce the MSEP of the analytical methods that were derived
in Liu and Verrall (2009). There are a number of practical advantages of the
bootstrapping approach. Firstly, it is straightforward to implement in a spread-
sheet, giving it great practical appeal. Secondly, and perhaps more importantly,
it is also possible to obtain the full predictive distribution. In the context of
capital modeling and solvency, it is important to have the full predictive dis-
tribution in order to examine quantiles as well as the first two moments of the
distribution. In this context, we would emphasise again that the effect of the
process distribution should also be considered.
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APPENDIX

This Appendix provides the algorithm, step by step, which is needed in order
to implement the bootstrap process described in section 2.

1. Calculate the link ratios and the variances of the link ratios for true IBNR and

IBNER run-off triangles as fij = ij

Ei

N
and gij = ij

X
D

,i j 1-
. Note that the variances,

s2
j and t2

j , remain unchanged throughout: they are not recalculated from the
bootstrap samples.

2. Calculate the scaled Pearson residuals:

rPS( fij, lj, Ei, sj) =
j

ij jfi -E

s
l` j

and rPS(gij, dj, Xi, j – 1, tj) =
j

jijg,i j 1 --

t
X d` j

3. Adjust these two groups of scaled Pearson residuals by multiplying by

n j
n j

1- +
-

to correct the bootstrap bias:

rij = n j
n j

1- +
-

rPS( fij, lj, Ei, sj) and sij = n j
n j

1- +
-

rPS(gij, dj, Xi, j – 1, tj).

Start the iterative loop to be repeated N times (N $ 1000).

4. Set B = 1.

5. Randomly draw, with replacement, from the constructed residual run-off tri-
angles, denoted as R ={rij, i =1,…, n; j =1,… n – i + 1} and S ={sij, i =1,…, n;
j =1, … n – i + 1}, respectively. Denote the bootstrap residuals as rB

ij and
s B

ij , i = 1, 2, …, n; j = 1, 2, …, n – i +1, so that two pseudo samples of the
Pearson residuals for true IBNR and IBNER claims are created and denoted
as RB = {rB

ij , i =1,…, n; j =1,… n – i + 1} and SB = {sB
ij , i =1,…, n; j =1,… n –

i + 1}.

6. Calculate the bootstrap link ratios of the true IBNR and IBNER, fij
B and

gij
B using equations (3) and (4).
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7. Calculate the Nij-weighted and Dij-weighted average bootstrap development
factors for the true IBNR and IBNER, lB

j and dB
j , using equations (1) and

(2), respectively.

8. Simulate a future payment for each cell in the lower triangle for both true
IBNR and IBNER claims, respectively, from the process distribution with
the mean calculated from step 7.

jij B
j ,NormalE El

s

i
i j

i
2

2

++ -H
N

J

L

K
KK

N

P

O
OO

for the true IBNR claims 

and
j

j
ij B,Normal

D
d

t

, ,i j
i j

i j1
2

1

2

+
-

+ -
-X XH

J

L

K
KK

N

P

O
OO

for the future IBNER claims.

9. Use the simulated predicted incremental claims, –Dij + Nij, from step 8 to
obtain reserve estimates.

10. Store the results, set B = B + 1 and return to step 5 (the start of the iterative
loop) until B = N.
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