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The presence of elongated streaks of high and low streamwise velocity in the shear layer
of circular jets breaks the axisymmetry of their steady-state solution. If the streaks are
considered to be part of the base flow, for the purpose of linear instability analysis,
the instability eigenmodes are thus affected by their presence. The resulting changes of
growth rate and spatial shapes of eigenmodes, related to the shear instability in jets,
are investigated here for parallel base flows. Optimal streamwise vortices (‘rolls’) with
prescribed azimuthal periodicity are computed, such that the transient temporal growth of
the streaks that they produce is maximal. The presence of finite-amplitude streaks requires
the formulation of eigenvalue problems in a two-dimensional cross-plane. Sinuous rolls
and streaks are found to have a stabilising effect on the Kelvin–Helmholtz instability,
whereas the varicose rolls and streaks have a destabilising effect. Absolute instability is
not found to occur. This work shows that the effects of rolls and streaks need to be taken
into account for more precise modelling of jet instability.

Key words: jets, absolute/convective instability

1. Introduction

Rolls and streaks, and their role in instability dynamics and laminar–turbulent transition,
have been extensively studied in the context of wall-bounded shear flows (Butler &
Farrell 1992; Jiménez 2013). Rolls, defined as vortices in the cross-plane of the flow,
transport high-speed fluid towards the wall and low-speed fluid away from the wall,
thereby creating streaks in the main flow velocity (‘lift-up effect’; Landahl 1975). These
streaks are themselves subject to instabilities (Park, Hwang & Cossu 2011), and are even
assumed to play a central role in the self-sustained process of wall-bounded turbulence
(Waleffe 1997; Hwang & Cossu 2010). However, the very presence of rolls and streaks
in free shear flows such as jets has seldom been recognised until recently. Nogueira
et al. (2019) documented the appearance of streaky structures in the turbulent velocity
field of a high-speed jet, by processing particle image velocimetry data with spectral
proper orthogonal decomposition. A linear analysis of the mean flow confirmed that
the transient growth of these structures is caused by the lift-up effect. Pickering et al.
(2020) investigated the formation of streaks in developing jets, obtained from large-eddy
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simulation, in response to harmonic forcing input, concluding that streaks may be expected
to dominate perturbations in jets at low frequencies.

A linear analysis of the growth of streaks in round jets was conducted by
Jiménez-González & Brancher (2017), who computed optimal initial conditions for
transient energy growth. These were found to take the shape of rolls, leading to the creation
of streaks. Marant & Cossu (2018) performed similar transient growth calculations for
a parallel plane shear layer. Those authors then went on to characterise the influence
of finite-amplitude streaks on the linear Kelvin–Helmholtz instability. It was found
that ‘sinuous’ streak structures have a stabilising effect, whereas ‘varicose’ structures
destabilise the Kelvin–Helmholtz eigenmode over certain parameter regimes. A similar
analysis of wake flows was conducted by Del Guercio, Cossu & Pujals (2014), where the
situation was found to be different: both the sinuous and varicose structures reduce the
maximal growth rate, and the varicose streaks have a more stabilising effect than sinuous
streaks of the same amplitude. A quadratic variation of the eigenvalues with respect to
the streak amplitude was found in both of these works, consistent with results from a
second-order sensitivity analysis.

On the basis of these recent studies, the present article investigates how the presence
of rolls and streaks modifies the linear instability characteristics of round jets. The scope
and study programme are quite similar to the plane shear-layer investigation of Marant
& Cossu (2018). As streaks in turbulent jets are well modelled using a transient growth
analysis (Nogueira et al. 2019), we evaluate here how optimal rolls and streaks, obtained
with a similar procedure, affect the Kelvin-Helmholtz mechanism in jets, which is relevant
for understanding the interplay between streaks and the well-documented wavepackets
in jets (Jordan & Colonius 2013; Cavalieri, Jordan & Lesshafft 2019). Differently from
(Marant & Cossu 2018), the curvature of a jet shear layer induces self-interaction effects,
and in particular ‘jet-column’ dynamics, which scale with the jet diameter and are absent
in single plane shear layers. Jet-column dynamics are similar to the interaction dynamics
between the two shear layers that form a plane jet or wake; the absolute mode in round
jets without counterflow is of the jet-column type (Lesshafft & Huerre 2007). While our
present study considers only streamwise-invariant base flow settings, the role of streaks in
jets is not limited to these. For instance, streak structures have been observed to appear
prominently in the braid regions between convecting ring vortices, as shown most recently
in the experiments of Kantharaju et al. (2020) and in the optimal perturbation analysis of
Nastro, Fontane & Joly (2020).

The paper is organised as follows. In § 2, linearly optimal roll structures are computed,
consistent with Jiménez-González & Brancher (2017), that maximise the transient
temporal growth of streaks in an axisymmetric jet base flow. The nonlinear flow
development, in the presence of finite-amplitude rolls, is then simulated in time. In § 3,
frozen instances of streaky parallel jets, obtained in this way, are taken as base flows for
linear stability analysis, and the sensitivity of temporal eigenmodes with respect to rolls
and streaks is discussed. The maximum temporal mode as well as the absolute growth
rate in jets distorted by rolls and streaks are investigated. Conclusions and perspectives are
given in § 4.

2. Evolution of rolls and streaks in a parallel jet

We seek roll structures that lead to the fastest growth of streaks in a parallel and
initially axisymmetric jet (Jiménez-González & Brancher 2017). The initial velocity in
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the streamwise z direction is given by the usual profile of Michalke (1971):

W(r) = 1
2

+ 1
2

tanh
[

1
4b

(
1
r

− r
)]

, (2.1)

where b represents the non-dimensional momentum shear-layer thickness and r the radial
coordinate. The profile, as all quantities in what follows, is scaled with respect to the
jet radius R and the centreline velocity Wc. The viscosity ν of an incompressible fluid is
characterised by the Reynolds number, Re = WcR/ν. Values Re = 104 and b = 1

20 are used
throughout this study.

We define rolls as a set of counter-rotating vortices in the cross-stream plane, with
radial and azimuthal velocity components ur(r, θ) and uθ (r, θ), where θ is the azimuthal
coordinate. Through convection, the rolls distort the axisymmetric profile (2.1), such
that the streamwise velocity changes in time as W(r) + uz(r, θ, t). The perturbation uz
represents the streaks. As we limit all following instability analysis to streamwise-invariant
base flows, rolls and streaks are assumed to be independent of the streamwise
coordinate z.

It is to be clarified at this point that the computation of optimal initial conditions for
the transient growth of streaks is not the focus of this study, but only a necessary step
for the following instability analysis of streaky base flows. The transient growth scenario
over short and long time horizons has been amply documented by Jiménez-González
& Brancher (2017). Furthermore, in accordance with that work as well as with Marant
& Cossu (2018) and the connected studies cited in § 1, we deliberately stay within the
classical assumption of a streamwise-invariant base flow (including the rolls and streaks),
in order to provide a first characterisation of the effect of streaks on the shear instability
in round jets. This choice allows us to restrict the number of parameters, and to arrive at
general conclusions from local instability analysis. It is hoped that these will be beneficial
for the future analysis of non-parallel streaky jet base flows, which will necessitate a
three-dimensional global framework, including nozzle conditions and justifications for
turbulent mean flow modelling.

2.1. Optimisation in the linear limit
Following the approach of Jiménez-González & Brancher (2017) and Marant & Cossu
(2018), and references therein, optimal roll shapes for streak generation are sought in the
linear limit of small velocities (ur, uθ , uz) � 1. The number of rolls and streaks around
the azimuth is prescribed by an azimuthal wavenumber m, such that the variations of ur,
uθ and uz in θ are given by a factor eimθ . In the following, we refer to m as the ‘streak
wavenumber’.

For a given value of m, temporal eigenmodes of the axisymmetric profile (2.1)
are computed, under the restriction of z-invariance (zero axial wavenumber). These
computations are performed in polar coordinates, such that only the radial coordinate
is discretised via Chebyshev collocation (Lesshafft & Huerre 2007), and non-oscillatory
eigenmodes (in time) are recovered. The full spectrum of these eigenmodes, which
satisfy the incompressibility condition of zero velocity divergence, is then used as a
non-orthogonal basis for the optimisation of transient perturbation growth.

The optimal rolls and streaks are identified such that their kinetic energy is
maximised in a linear framework. For a perturbation u(r, m, t), the initial perturbation
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(a) (b) (c) (d)

(h)(g)( f )(e)

FIGURE 1. Optimal (a,c,e,g) and first suboptimal (b,d, f,h) linear rolls and streaks for streak
wavenumbers m = 2 (a,b,e, f ) and m = 6 (c,d,g,h). (a–d) Streamwise perturbation vorticity
(rolls) at t = 0; (e–h) streamwise perturbation velocity (streaks) at t = T = 1. Red colour is
positive, blue colour is negative.

u0 = u(r, m, t = 0) is sought such that the quotient

σ 2 = ‖u(T)‖2

‖u0‖2 (2.2)

is maximised, where T is a prescribed finite evolution time. The norm is defined as ‖u‖2 =∫ rmax

0 (|ur|2 + |uθ |2 + |uz|2)r dr, where rmax denotes the maximal radial coordinate in the
computation domain. An orthogonal set of optimal and suboptimal initial perturbations u0
can then be obtained by singular value decomposition (Schmid & Henningson 2001). All
three components of perturbation velocity are included in the norms in (2.2), which means
that the energies of both rolls and streaks are taken into account.

Identical optimal structures as shown by Jiménez-González & Brancher (2017) are
recovered, for the same base flow (2.1) and the same gain definition (2.2), characterised
by roll structures in the initial condition u0 (vorticity in the cross-plane), which give rise
to streaks in u(T) (axial velocity). These structures, obtained over a time horizon T = 1,
are presented in figure 1 for m = 2 and m = 6. Note that the shapes of these rolls and
streaks are insensitive to the choice of sufficiently short time horizons, so that T = 0.1
or T = 10 give practically identical results for the optimal initial condition. According
to Jiménez-González & Brancher (2017), viscous decay of rolls and streaks becomes
important at time scales T = O(1000), much larger than the turbulent coherence scales
in the jet flows that motivate the present study.

While Jiménez-González & Brancher (2017) computed, through direct–adjoint looping,
the optimal initial conditions that lead to the highest gain, the present singular value
decomposition technique also allows us to recover the following suboptimals. The optimal
and first suboptimal initial perturbations for both example values of m are shown in
figure 1; in analogy with the plane shear-layer results of Marant & Cossu (2018), we refer
to the optimal structures in figure 1(a,c,e,g) as ‘sinuous’, and to the first suboptimal ones
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in figure 1(b,d, f,h) as ‘varicose’. Subsequent suboptimal structures are characterised by an
increasing number of radial oscillations.

2.2. Nonlinear time stepping
In the following simulations, optimal and suboptimal initial conditions (ur, uθ ) are
projected onto a two-dimensional Cartesian mesh in the (x, y) cross-plane, and are added
with a finite amplitude to the initially axisymmetric streamwise base flow velocity profile
(2.1). This perturbed base flow is then advanced in time, according to the complete
nonlinear Navier–Stokes equations for incompressible flow,

∂tu + (u · ∇)u = −∇p + Re−1∇2u, (2.3)

∇ · u = 0, (2.4)

expressed in Cartesian velocity components. Finite elements, provided by the FEniCS
library (Logg & Wells 2010), are used to discretise these equations in the (x, y) plane,
and time stepping is performed by use of the Crank–Nicolson method. The velocity
components in these Cartesian calculations are denoted u = (U, V, W).

Example results from these simulations, with m = 6, are shown in figure 2: the first case
(figure 2a–d) develops from a sinuous initial condition;the second case (figure 2e–h) starts
from a varicose one. The jet deformation due to the sinuous perturbation is more apparent,
and reminiscent of the profile shapes of jets from corrugated nozzles (Lajús et al. 2019).
While the sinuous rolls mostly lead to azimuthal variations of the radial position of the
shear layer, the varicose rolls lead to a thickening and thinning of the shear layer at different
azimuthal positions. These effects correspond to the parameters R and Θ , respectively, of
the velocity profiles in Lajús et al. (2019).

To quantify the intensity of rolls and streaks, their amplitudes Ar and As are defined in
the same way as in Marant & Cossu (2018) and references therein:

As(t) = 1
2 maxx,y(Wb)

(
max

x,y
[W(t) − W(0)] − min

x,y
[W(t) − W(0)]

)
(2.5)

and

Ar(t) = 1
4 maxx,y(Wb)

(
max

x,y
[U(t)] + max

x,y
[V(t)] − min

x,y
[U(t)] − min

x,y
[V(t)]

)
. (2.6)

The growth of streak amplitude, caused by sinuous and varicose rolls, is shown in
figure 3: these computations are initialised with rolls of amplitude 1 % � Ar � 3 %, and
the streak wavenumber is again chosen as m = 6. The streak amplitude, which initially is
zero, is found to increase approximately linearly in time, and the linear growth rate in the
initial stage scales with the roll amplitude. The amplitude growth of varicose streaks is
slower. As the rolls experience viscous dissipation, their amplitude Ar(t) decreases slowly
in time. Note that in our parallel-flow setting, rolls generate streaks, but streaks have no
influence on rolls, even in the nonlinear regime. Therefore, the roll amplitude may be set
as an initial condition parameter, whereas the streak amplitude is simply a function of
time in the base flow evolution. The streak amplitude is then chosen as a parameter instead
of evolution time, because it indicates more directly the intensity of the jet deformation.
Snapshots of these time-evolving streaky jets, characterised by the values of m, Ar and As,
and by their sinuous or varicose symmetry, are now taken as base flows for the purpose of
linear stability analysis.
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(a)

(e)

(b) (c) (d)

( f ) (g) (h)

FIGURE 2. Nonlinear time evolution of m = 6 streaks in jets: streamwise velocity. (a–d)
Sinuous rolls as initial condition (see figure 1g); (e–h) varicose rolls as initial condition
(see figure 1h). Both cases start from initial roll perturbations with amplitude Ar(t = 0) =
3 %, as defined in (2.5). (a) t = 2, As = 28 %; (b) t = 4, As = 49 %; (c) t = 6, As = 63 %;
(d) t = 16, As = 90 %; (e) t = 2, As = 7 %; ( f ) t = 4, As = 13 %; (g) t = 6, As = 19 %;
(h) t = 16, As = 35 %.
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(a) (b)

FIGURE 3. Time evolution of (a) the streak amplitude As(t) and (b) the roll amplitude Ar(t),
both normalised by Ar(0), with sinuous and varicose rolls of m = 6 as initial perturbations of
amplitude Ar(0) = 1 %, 2 %, 3 %.

3. Linear stability analysis

Linear stability analysis is carried out in Cartesian coordinates (x, y, z). Velocity
perturbations (u′

x , u′
y, u′

z) and pressure p′ are assumed to take the form of
normal modes [u′

x , u′
y, u′

z, p′](x, y, t) = [ux(x, y), uy(x, y), uz(x, y), p(x, y)] exp(−iωt +
ikz). The linear perturbation equations are

− iωux + U∂x ux + ∂x Uux + V∂yux + ∂yUuy + ikWux + ∂x p

− Re−1(∂xx ux + ∂yyux − k2ux) = 0, (3.1)
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FIGURE 4. Validation and mesh convergence of the linear stability results computed in the
(x, y) plane. Eigenmodes with streamwise wavenumber k = 5 of an axisymmetric base flow
(2.1) are shown. (a) Validation against a polar formulation, where only the radial coordinate is
discretised: the seven leading eigenmodes (n = 0, . . . , 6) computed in the (x, y) plane (◦, red)
and in polar coordinates (×, blue). (b) Relative error ε of the growth rate ωi (solid line) and the
frequency ωr (dashed line) of the n = 0 eigenmode, as a function of the number of grid points
N in the (x, y) plane. Results for N = 22 041 are taken as reference.

− iωuy + U∂x uy + ∂x Vux + V∂yuy + ∂yVuy + ikWuy + ∂yp

− Re−1(∂xx uy + ∂yyuy − k2uy) = 0, (3.2)

− iωuz + U∂x uz + ∂x Wux + V∂yuz + ∂yWuy + ikWuz + ikp

− Re−1(∂xx uz + ∂yyuz − k2uz) = 0, (3.3)

∂x ux + ∂yuy + ikuz = 0. (3.4)

Finite-element discretisation is applied by use of the FEniCS library on a two-dimensional
mesh in the (x, y) plane. Second- and first-order Lagrangian elements are used to discretise
perturbation velocity and pressure, respectively. The discretised equations are assembled
as an eigenvalue problem Aq = ωBq, where the eigenvalues ω and the associated
eigenvectors q = (ux , uy, uz, p) for a fixed k are computed via the Arnoldi algorithm.
Eigenvalue calculations on the two-dimensional (x, y) mesh have been validated against
the one-dimensional polar formulation used in § 2.1, discretised only in r, for a strictly
axisymmetric base flow. For a wavenumber k = 5, the seven most unstable eigenmodes
are compared in figure 4(a), and excellent agreement is found between these two different
formulations. Grid convergence is then examined to determine the required number of
grid points N in the (x, y) plane, to be used for linear stability analysis. Real and imaginary
parts of the dominant eigenvalue (n = 0, k = 5) are tracked. The eigenvalue obtained with
the largest number of points (N = 22 041) is taken as reference, and the relative error ε, as
a function of N, with respect to this reference value is presented in figure 4(b). A number of
N = 15 821 grid points is deemed satisfactory, giving convergence within five significant
digits, and is kept for the following computations. As nomenclature, we define the temporal
growth rate as ωi = Im[ω] and the frequency as ωr = Re[ω]. We denote the azimuthal
wavenumber of eigenmodes n, so as to distinguish it from the streak wavenumber m, which
characterises the azimuthal periodicity of the streaky base flow.
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(a) (b) (c) (d)

–2.4 –1.0 1.0 2.40 –2.4 –1.0 1.0 2.40 –2.4 –1.0 1.0 2.40

FIGURE 5. First-order sensitivity of the growth rate with respect to base flow modifications:
(a) an instability eigenmode (n = 3, k = 5) of the axisymmetric base flow (axial velocity);
associated sensitivity with respect to (b) radial velocity, (c) azimuthal velocity and (d) streamwise
velocity changes in the base flow.

3.1. Linear sensitivity analysis
In the limit of infinitesimal base flow modifications, the effect of streaks on instability
eigenvalues (growth rate and frequency) can be predicted by way of sensitivity analysis
(Hill 1992; Marquet, Sipp & Jacquin 2008). In the context of streaks in plane shear layers,
Marant & Cossu (2018) demonstrated that this analysis needs to be expanded to second
order, if one wishes to correctly retrieve the quadratic dependency of eigenmodes on streak
amplitude. The same observation had been reported before from studies of instability
control in plane two-dimensional flows via spanwise-periodic base flow modifications
(Hwang & Choi 2006; Tammisola et al. 2014; Boujo, Fani & Gallaire 2019). If, however,
in the present configuration, rolls and streaks in jets cause first-order variations in the
instability eigenvalues, then a sensitivity analysis will allow us to identify roll shapes that
optimally destabilise linear eigenmodes.

A given base flow variation δQ = (δUr, δUθ , δUz) induces a variation δA of the
matrix of the linearised Navier–Stokes operator. The resulting first-order variation δω
of the eigenvalue associated with a direct eigenvector q and an adjoint eigenvector q+

(appropriately normalised; see Chomaz (2005) for details) is given by

δω = q+HδAq = sHMδQ. (3.5)

The superscript H denotes the transpose conjugate, the matrix M contains mesh-dependent
quadrature coefficients for a scalar product and s is the base flow sensitivity field
(nomenclature as in Lesshafft & Marquet (2010)). The effect of a given base flow variation
δQ on the eigenvalue is given by its projection onto the sensitivity field; consequently, if
we restrict the norm of δQ to a fixed value, its optimal shape for maximum destabilisation
of an eigenmode is given by the imaginary part of the associated s.

Such a sensitivity field (imaginary part) is shown in figure 5, for an eigenmode
with wavenumbers (n = 3, k = 5) in an axisymmetric (non-streaky) base flow. It can
be seen that, at first order, the temporal growth rate is only sensitive to changes in
the shear. All components of the sensitivity are found to be axisymmetric, although
the underlying eigenmode is not. This result, consistent with the shear layer and wake
studies cited above, indicates that rolls and streaks, here defined as non-axisymmetric
base flow modifications with zero mean along the azimuth, can only have a second-order
effect, but not a first-order effect, on the eigenmodes. Optimisation could be performed
on the second-order sensitivity operator to identify azimuthally non-uniform base flow
modifications for maximum change of an eigenmode (Boujo, Fani & Gallaire 2015; Boujo
et al. 2019).
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

FIGURE 6. Eigenmodes (n = 0, 1, 2 and k = 5) of axisymmetric and streaky jets, with streak
wavenumber m = 6. Sinuous case: Ar = 10 %, As = 40 %; varicose case: Ar = 10 %, As = 51 %.
Streamwise velocity is shown. (a) n = 0, no streaks; (b) n = 0, sinuous streaks; (c) n = 0,
varicose streaks; (d) n = 1, no streaks; (e) n = 1, sinuous streaks; ( f ) n = 1, varicose streaks;
(g) n = 2, no streaks; (h) n = 2, sinuous streaks; (i) n = 2, varicose streaks.

3.2. Linear stability of finite-amplitude streaky jets
Linear stability analysis is now carried out to identify the temporal growth rate ωi of
eigenvalues in frozen instances of streaky base flows. For illustrative purposes, the effect
of rolls and streaks on the shapes of some eigenmode shapes is shown in figure 6: basic
eigenmodes in the axisymmetric case, with azimuthal wavenumbers n = 0, 1 and 2, have
been continuously tracked towards high amplitudes Ar and As in base flows with sinuous
and with varicose roll and streak structures. In the caption, we extend the use of n to the
high-amplitude cases in this loose sense of mode tracking, fully aware that the implied
symmetries are not strictly preserved in these cases (see the detailed discussion of mode
tracking in Lajús et al. (2019)).

Systematic variations of the dominant temporal growth rate (n = 0) over streamwise
wavenumber k are represented in figure 7. Amplitudes Ar = As = 5 % are fixed, and
instability growth rates are plotted for streak wavenumbers m = 1, . . . , 10. The range of
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FIGURE 7. Temporal growth rate ωi as a function of k and m for Ar = As = 5 %. Only positive
(unstable) values are represented. The first row with label ‘none’ represents the growth rate
found for the axisymmetric base flow without streaks. (a) Sinuous rolls/streaks. (b) Varicose
rolls/streaks.
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FIGURE 8. Parameter studies of the temporal growth rate ωi. Blue and red symbols represent
sinuous and varicose variations of the base flow, respectively. The temporal growth of the purely
axisymmetric jet is shown for comparison (dashed line). Maximum growth rate ωi,max (a) as a
function of streak amplitude As(t) for m = 6 and Ar(0) = 5 % (circle), 10 % (square) and (b) as a
function of streak number m for the most destablising k for Ar = 5 % and As = 5 %. (c) Growth
rate ωi as a function of Ar for m = 6, k = 6 and As = 0. The initially axisymmetric (n = 0)
eigenmode is tracked in (c).

unstable wavenumbers is narrowed in the presence of sinuous streaks, but largely widened
for cases with varicose streaks.

In figure 8(a), the maximum ωi over all streamwise wavenumbers k, denoted as ωi,max ,
is presented as a function of As(t). The sinuous perturbations, decreasing ωi,max , have a
stabilising effect, whereas the varicose perturbations, increasing ωi,max , destabilise the jets.
The maximum temporal growth rate of a streaky jet with sinuous perturbations does not
strongly change as the streaks gain amplitude, whereas that with varicose perturbations
increases monotonically with the streak amplitude. These results are consistent with the
findings of Lajús et al. (2019): the sinuous streaks lead to an azimuthal change of the shear
layer position (parameter R in Lajús et al. (2019)), which has little effect on jet stability.
In contrast, the varicose streaks lead to azimuthal variations of the shear-layer thickness
(parameter Θ in Lajús et al. (2019)), which has a destabilising effect. While it is tempting
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FIGURE 9. Variations of the absolute growth rate ω0,i with roll amplitude Ar. The streak
amplitude As is zero.

to discuss these tendencies on the basis of the azimuthally averaged base flow distortions,
Marant & Cossu (2018) and Lajús et al. (2019) have demonstrated that such a discussion
is incomplete, because the periodic variations of the base flow contribute to the change of
eigenvalues on the same order as their average.

The effect of the streak wavenumber m on ωi,max is presented in figure 8(b) for Ar =
As = 5 %. Over all m studied, the varicose perturbations lead to an increase of temporal
growth rate, while the sinuous perturbations always decrease the temporal growth rate.
The same qualitative behaviour, as demonstrated here only for m = 6, is observed at
all values of m, including the special case m = 1 (‘shift-up’ as opposed to ‘lift-up’; see
Jiménez-González & Brancher (2017)). In figure 8(c), the changes of the temporal growth
rate of the dominant n = 0 eigenmode as a function of small roll amplitude are tracked.
It is found that the growth rate variations are initially quadratic in Ar, which indicates a
second-order sensitivity. This is consistent with our findings in § 3.1 that the first-order
sensitivity of azimuthally periodic base flow modifications, rolls and streaks, is zero.
A quantitative second-order sensitivity analysis is not attempted here, as the result can
be expected to be similar to that of Marant & Cossu (2018).

3.3. Absolute instability of streaky jets
Although the results of our jet study so far display the same trends as revealed by Marant
& Cossu (2018) for plane shear layers, the effect of streaks on the absolute instability
mode in jets deserves to be examined. In jets, the absolute mode is of the jet-column type
(Lesshafft & Huerre 2007), and therefore physically distinct from the plane shear layer
case. In a similar study of parallel wakes, Del Guercio et al. (2014) observed that sinuous
as well as varicose spanwise perturbations may reduce the absolute growth rate and even
suppress the absolute instability. Brandt et al. (2003) demonstrated a similar stabilising
effect of streaks on the absolute mode in a Blasius boundary layer.

For our standard jet base flow, variations of the absolute growth rate ω0,i (see Huerre
& Monkewitz 1990) with roll amplitude Ar are shown in figure 9. The streak amplitude
is set to zero in this example. In the case of varicose perturbations, increasing Ar slightly
increases the absolute growth rate ω0,i for streak wavenumbers m < 6, but even a very
high roll amplitude does not give rise to absolute instability. Varicose rolls with m � 6 are
seen to decrease ω0,i. Sinuous rolls are found to have a stabilising effect on the absolute
growth rate, higher m being more stabilising. Additional computations, not presented here,
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show that non-zero values of the streak amplitude As do not lead to further significant
destabilisation of the absolute jet-column mode. In conclusion, a situation where rolls and
streaks would give rise to absolute instability in jets could not be identified.

4. Conclusions

The effect of rolls and streaks on the local instability properties of round jets has
been investigated in this work for various control parameters. First, optimal sinuous and
varicose rolls and streaks, in the sense of maximal energy growth, have been identified
for prescribed numbers of streaks along the azimuth. Optimal and suboptimal rolls and
streaks take a form similar to the sinuous and varicose perturbations found in plane
mixing layers. In both scenarios, streaks grow within the jet shear layer due to the lift-up
mechanism. Sinuous roll structures impart wavy displacements of the shear layer, whereas
varicose rolls lead to periodic variations of its thickness. Nonlinear simulations show that
rolls evolve slowly in time, only subject to viscous decay, while streaks experience linear
amplitude growth in their initial stage.

Linear stability analysis has been performed on frozen instances from nonlinearly
evolved streaky jet flows. The observed trends are clear and easily summarised: sinuous
rolls and streaks, which themselves represent the fastest-growing transient structures,
induce a decrease in the growth rate of Kelvin–Helmholtz instability modes. Varicose
rolls and streaks, in contrast, lead to increased instability. The first-order sensitivity of
Kelvin–Helmholtz eigenmodes in a non-streaky jet has been computed, and found to be
strictly axisymmetric, even for non-axisymmetric mode shapes. Therefore, the effect of
low-amplitude rolls and streaks, with zero axisymmetric projection, cannot be explained
from such an analysis. Consistent with this result, the variations of instability growth rates
with roll amplitude have been shown to be nonlinear, presumably quadratic, analogous to
the more detailed sensitivity studies of plane shear flows in the recent literature.

Finally, the absolute growth rate of the axisymmetric jet-column mode in streaky
jets has been examined. Although varicose rolls do lead to a slight destabilisation of
this mode, the instability has been found to remain convective over the investigated
parameter space. On this basis, the presence of rolls and streaks in jets, although certain
to change the quantitative instability properties, is not expected to lead to self-sustainedp
oscillations.

The results from the present investigation lead to the conclusion that the presence of
rolls and streaks affects the instability properties of round jets in ways similar to those
described by Marant & Cossu (2018) for the setting of plane shear layers. The inclusion
of roll structures in the base flow, compared to the roll-free settings of Marant & Cossu
(2018), has been found to have a similarly strong, but not qualitatively different effect as the
streaks alone. An important limiting assumption in the present study, which is to be relaxed
in future work, lies in the restriction to streamwise-invariant rolls and streaks. Despite
this limitation, the significant modification of Kelvin–Helmholtz instability growth rates
clearly indicates that roll and streak perturbations in jets must be accounted for in future
modelling of jet instability behaviour.
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