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Abstract

Ipsative approaches to neuropsychological assessment typically involve interpreting difference scores between
individual test scores. The utility of these methods is limited by the reliability of neuropsychological difference
scores and the number of comparisons between scores. The present study evaluated the utility of difference scores
using factor analytic methods, including reliable components analysis (RCA), equally weighted composites and
individual neuropsychological measures. Data from 1,364 individuals referred for neuropsychological assessment
were factor analyzed and the resulting solutions were used to compute composite scores. Reliabilities and
confidence intervals were derived for each method. Results indicated that RCA outperformed other factor analytic
methods, but produced a slightly different factor structure. Difference scores derived using orthogonal solutions
were slightly more reliable than oblique methods, and both were more reliable than those from equally weighted
composites and individual measures. Confidence intervals for difference scores were considerably smaller for factor
methods relative to those for individual test comparisons, due to the greater reliability of factor based difference
scores and the smaller number of comparisons required. These findings suggest that difference scores derived from
orthogonal factor solutions, particularly RCA solutions, may improve reliability for clinical assessment purposes.
(JINS, 2004,10, 578–589.)

Keywords: Ipsative, Battery interpretation, Reliable components analysis, Difference scores

Introduction

Norm-referenced, ipsative interpretive approaches are fre-
quently employed in cognitive and neuropsychological as-
sessments (Kaplan et al., 1991; Kaufman, 1994; Matarazzo,
1972; Russell, 2000; Tarter & Edwards, 1986). Ipsative meth-
ods usually involve comparisons between test scores within
an individual. However, the nature of comparisons and the
types of measures compared differ greatly across neuropsy-
chological assessment settings and philosophies. Some cli-
nicians may compare all individual measures in a battery to
one another, while others may compare only a few, often

theoretically meaningful, groupings of measures to one an-
other. The comparison of “hold” tests to other measures
sensitive to neurological impairment is an example of a
widespread practice that focuses on theoretically motivated
constellations of tests (Johnstone & Wilhelm, 1996; Scott
et al., 1997). Similarly, some clinicians may examine only
comparisons relevant to the condition of study, such as vi-
sualversusverbal memory comparisons in medial temporal
lobe epilepsy.

Regardless of the specific approach, ipsative methods
are based upon the notion that difference scores between
measures may provide additional information, not gleaned
from the level of performance on individual measures. Sup-
porting this perspective, studies have found neurocognitive
difference scores predict effort on testing (Langeluddecke
& Lucas, 2003), dementia subtype (Cerhan et al., 2002;
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Jacobson et al., 2002), and localization of neurological im-
pairment (Keilp et al., 1999; Wilde et al., 2001) at the group
level. Unfortunately, there is scant evidence for the utility
of ipsative approaches on the individual level (Cerhan et al.,
2002; Keilp et al., 1999; Wilde et al., 2001). The few pos-
itive findings have been in the area of malingering detec-
tion and detection of Alzheimer’s disease (for examples,
see Jacobson et al., 2002; Millis et al., 1998).

Several competing explanations exist for the lack of ev-
idence supporting the clinical utility of difference scores,
including over-reliance on null-hypothesis significance test-
ing at the expense of clinically useful statistics such as sen-
sitivity and specificity (Ivnik et al., 2000)1, poor predictive
validity of difference scores, and0or inadequate reliability
of difference scores for making clinical interpretations (Mac-
mann & Barnett, 1997; McDermott et al., 1992; Nunnally
& Bernstein, 1994; Streiner & Norman, 1995). The first
explanation suggests that difference scores have adequate
reliability and validity but that the necessary data have not
been reported, whereas the latter two accounts propose that
reliability and0or validity may be adequate for group data
but not for making decisions about individuals. Inadequate
validity may be due to a modest relationship between dif-
ference scores and criteria or to insufficient reliability of
the difference scores of interest. Thus, establishing suffi-
cient reliability is a precondition to evaluating the clinical
utility of neuropsychological comparisons. A .90 level of
reliability has been recommended as the minimum level
needed to make decisions about individuals (Kelley, 1927;
Nunnally & Bernstein, 1994). The present study evaluated
whether the level of reliability of difference scores derived
from individual cognitive measures met that recommended
level and compared these levels of reliability to those de-
rived using factor analytic methods. Given the lack of em-
pirical evidence for the clinical utility of neuropsychological
difference scores, it was expected that most difference scores
based upon individual tests or subtests would not meet this
level of reliability.

Additional methodological and logistical difficulties limit
the implementation of ipsative interpretive approaches in
neuropsychology. Comparisons of individual subtests in a
large test battery results in significant increases in the Type I
error rate due to the large number of comparisons. For ex-
ample, a 20-subtest neuropsychological battery permits as
many as 190 comparisons. If all possible comparisons were
examined, alpha would need to be reduced to .0003 for
each comparison, to maintain the Type I error rate at .05.
This correction results in extreme differences being neces-
sary for detecting significant cognitive strengths or weak-
nesses. Secondly, even in situations where individual

measures are highly reliable, difference scores between these
measures are often considerably less reliable as a result of
moderate to high correlations between parent scores (e.g.,
WAIS–III VIQ rxx 5 .97, PIQrxx 5 .94, VIQ–PIQ differ-
ence scorerxx 5 .82; Wechsler, 1997c). Finally, in many
clinical settings, individuals are administered tests that have
been normed independently, complicating direct com-
parisons (Russell, 2000). The creation of large co-normed,
neuropsychological test batteries circumvents the latter prob-
lem. However, current practice in neuropsychology often
involves an individualized, flexible approach to battery ad-
ministration (Lezak, 1995). The advantages and disadvan-
tages of a flexible approach have been discussed elsewhere
(Bauer, 2000). We simply note that a flexible battery ap-
proach limits the clinician’s ability to perform quantitative
neuropsychological comparisons unless the comparisons of
interest are derived from tests included in a co-normed bat-
tery. Even in cases where neuropsychological test batteries
have been concurrently normed, test developers have typi-
cally not provided the information necessary to perform
psychometrically informed difference score comparisons.

The primary purpose of the present research was to com-
pare several methods for increasing the reliability of neuro-
psychological comparisons. In particular, this study sought
to compare the effectiveness of reliable components analy-
sis (RCA) and other factor analytic methods in producing a
small number of reliable neuropsychological variables for
computing neuropsychological comparisons. Based upon
the aforementioned difficulties with implementing an ipsa-
tive approach to neuropsychological data, the application
of data reduction techniques was expected to address both
the problem of reliability of neuropsychological difference
scores and the problem of multiple comparisons by creating
a smaller set of highly reliable composite variables.

Reliable Components Analysis

Reliable components analysis (RCA) is an exploratory data
reduction technique aimed at forming components that have
maximum reliability (Caruso, 2001b; Cliff & Caruso, 1998).
It is similar to other component and factor analytic tech-
niques in that one or more uncorrelated composites are
formed from the original variables. These composites may
then be rotated to maximize interpretive value using orthog-
onal or oblique rotations. RCA differs from other tech-
niques in that the weights derived for each component
maximize the amount of reliable variance in the composite
uncorrelated with subsequent composites. For this reason,
RCA is an especially attractive technique for maximizing
the reliability of neuropsychological difference scores be-
cause the reliability of these comparisons is largely depen-
dent upon the reliability of the measures (for a more complete
description, see Cliff & Caruso, 1998). RCA differs primar-
ily from other factor methods in that RCA uses reliability
coefficients in the diagonal of the correlation matrix whereas
PCA uses 1.0s and PAF uses squared multiple correlations
in the diagonal of the analyzed matrix. Thus, RCA is a

1Clearly hypothesis testing is essential for determining whether ob-
tained results are statistically reliable or likely to have occurred by chance.
The point to be made here is simply that clinically useful statistics such as
sensitivity and specificity, and positive and negative predictive power, can
be reported along with null hypothesis significance tests. A good reference
for the disrespect of null-hypothesis significance testing is Soper et al.
(1988).
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compromise between PCA and PAF in that RCA examines
only reliable variance whereas PCA examines all of the
variance in each variable and PAF analyzes only common
variance.

Several studies have examined the ability of RCA to im-
prove the reliability of cognitive test score comparisons
(Caruso, 2001a; Caruso & Cliff, 1998, 1999, 2000; Caruso
& Witkiewitz, 2001). These studies have found that RCA
produces a similar factor2 structure to other exploratory
factor analytic techniques, but that RCA based composites
yield more reliable cognitive difference scores than other
techniques. Recent findings from a study by Caruso and
Witkiewitz (2002) found that the principle method by which
RCA generated reliable difference scores was through the
creation of orthogonal composites using varimax rotation
of factor weights. This suggests that the uncorrelated nature
of factors derived using varimax rotation, regardless of the
specific extraction, may be the primary driving force in the
higher reliability of difference scores derived from factor
analytic methods. The present research sought to examine
this possibility by including both orthogonal and oblique
rotations from several factor analytic methods.

Based upon the above findings, it was predicted that neuro-
psychological difference scores derived from RCA, princi-
pal components analysis (PCA), and principal axis factoring
(PAF) solutions with orthogonal (varimax) rotations would
have similar levels of reliability. RCA with varimax rota-
tion was expected to outperform PCA and PAF solutions
since this solution was expected to produce more reliable
composites. In contrast, RCA, PCA, and PAF solutions with
oblique (oblimin) rotations were expected to produce lower
levels of reliability of cognitive difference scores due to the
moderate to high correlations expected between compos-
ites. This expectation is based upon the notion of a positive
manifold of correlations between cognitive measures (Car-
roll, 1993). Factor composition was expected to be similar
across factor analytic methods, an important condition for
making meaningful comparisons of the reliabilities of cog-
nitive difference scores.

METHODS

Research Participants

Data for the present study were obtained from a de-identified
patient registry that has been reviewed and approved by the
Institutional Review Board at the Cleveland Clinic Foun-
dation. The database consisted of neuropsychological test
data from adolescents and adults referred for neuropsycho-
logical assessment at the Cleveland Clinic Foundation
(CCF)-Section of Neuropsychology. Approximately 50%

of the patients referred for examination come from the De-
partment of Neurology, approximately 25% come from the
Department of Psychiatry and Psychology, and approxi-
mately 25% come from other sources such as the Depart-
ments of Internal Medicine, Neurosurgery, Orthopedic
Surgery, Rheumatology, Hematology0Oncology, Cardiol-
ogy, and other departments or community sources. The most
frequently occurring referral questions included assessment
for possible dementia, attention-deficit0hyperactivity dis-
order, or learning difficulties; neurocognitive consequences
of stroke, traumatic brain injury, or tumor; and pre-operative
epilepsy, deep brain stimulation, or hydrocephalus evalua-
tion. Only data from an individual’s initial evaluation were
included in the present analyses. In general, the sample
appeared representative of the population of individuals seen
at this outpatient clinic, with the exception of the exclusion
of individuals with moderate to severe dementia that were
not able to complete any of the measures of interest. The
final sample consisted of 1,364 people (47% female;Mage5
51.7, SD 5 18.1, range5 16–93). The racial distribution
was consistent with that of patients seen at CCF and was
similar to the racial distribution of the greater Cleveland
area (White 88.9%, African American 8.3%, Hispanic .8%,
Asian .5%, Other 1.5%). On average, individuals had 13.7
years of education (SD5 2.9, range5 3–22), and 89.8%
were right-handed.

Measures

Table 1 presents descriptive statistics for all neuropsycho-
logical measures included in the present study. Measures
included Trails A and B (Reitan, 1958) time to completion
in seconds; standard scores from the Wisconsin Card Sort-
ing Test (Heaton et al., 1993) for the number of persever-
ative errors (WCST–perseverative), categories (WCST–
categories) and set failures (WCST–set failures); verbal
comprehension (WAIS–III VCI), perceptual organization
(WAIS–III POI), and processing speed (WAIS–III PSI)
standard scores from the Wechsler Adult Intelligence Scale–
Third Edition (Wechsler, 1997a); working memory
(WMS–III WMI), auditory immediate memory (WMS–III
auditory immediate), visual immediate memory (WMS–III
visual immediate), auditory delayed memory (WMS–III audi-
tory delayed), visual delayed memory (WMS–III visual
delayed), and auditory recognition delayed memory
(WMS–III auditory recognition) standard scores from the
Wechsler Memory Scale–Third Edition (Wechsler, 1997b);
Wide RangeAchievement Test–3 reading subtest (WRAT–3
Reading) standard scores (Wilkinson, 1993); average num-
ber of taps with the dominant (FT–dominant hand) and
non-dominant hand (FT–non-dominant hand) from the fin-
ger tapping test (Halstead, 1947; Reitan, 1955; Spreen &
Strauss, 1998); total number of seconds to complete the
Grooved Pegboard (see Lezak, 1995; Mitrushina et al., 1999)
with the dominant (GP–dominant hand) and non-dominant
hand (GP–non-dominant hand); total raw score, including
spontaneously correct responses and correct responses after

2The term factor is used to denote both component methods and com-
mon factor methods and refers to any procedure used to reduce the number
of variables in a data set to a smaller set of variables that typically explain
a large proportion of the variance of the original variables.
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semantic cue, from the Boston Naming Test (Kaplan et al.,
1983); and total number of words produced during three
60-s trials each using either phonemic fluency FAS
(Spreen & Benton, 1969) or CFL from the Controlled
Oral Word Association Test (Verbal Fluency; Benton et al.,
1994).

These 21 measures were selected for analysis based upon
several considerations. First, this set represents a core bat-
tery of measures given to the majority of outpatients re-
ferred for testing. As such, this set provided data on a
large number of subjects, with a moderate rate of missing
data (27% missing). Second, these measures are derived
from tests commonly given in neuropsychological assess-
ment (Lees-Haley et al., 1996). Using data from the sur-
vey by Lees-Haley et al., it was estimated that the percentage
of neuropsychologists using tests included in the present
study ranged from approximately 75% for the WAIS–III
(WAIS–R in that study) to approximately 7–10% for the
verbal fluency task. Thus, the present results may inform
other neuropsychological assessment settings where simi-
lar measures are administered. Finally, the measures in-
cluded in the present study were thought to sample several
major domains of cognitive functioning, including language0
verbal reasoning abilities, visuoperceptual0constructional
skills, attention, executive functions, and memory.

Procedure

Data imputation

In order to maximize sample size and avoid possible intro-
duction of bias due to missing data, we employed the mul-
tiple data imputation procedure developed by Graham and
Schafer (Graham & Schafer, 1999; Schafer, 2002). The pro-
cedure was used to impute three sets of values for each
individual. In each data set the missing values are esti-
mated, with slightly different estimations for each missing
value in each data set, and complete data remain consistent
across data sets. Missing values are estimated using an it-
erative procedure based upon parameter estimates derived
from the EM algorithm. For three imputed data sets, the
standard error of imputations will tend to be only 1.04 times
as wide as the standard error of an infinite number of data
sets (Graham & Schafer, 1999). This indicates that the three
data sets in the present study were likely to include highly
similar imputed values for all of the missing data from the
original data matrix.

Data analyses

Before examining the increase in reliability of neuropsy-
chological comparisons using factor analytic methods, we

Table 1. Descriptive statistics for all neuropsychological measures

rxx M SD SD of M SE Median

Trails A .70 50.51 40.19 0.48 1.09 37.00
Trails B .78 138.06 90.94 0.93 2.46 104.67
WCST–perseverative errors .64 89.08 19.26 0.43 0.52 90.67
WCST–categories .70 3.75 2.22 0.01 0.06 4.00
WCST–set failures .50 1.12 1.33 0.02 0.04 1.00
WAIS–III VCI .96 97.18 17.05 0.25 0.46 98.00
WAIS–III POI .93 93.94 17.79 0.40 0.48 93.67
WAIS–III PSI .88 88.35 16.40 0.11 0.44 88.00
WMS–III WMI .86 91.83 17.65 0.38 0.48 99.00
WRAT–3 Reading .92 97.49 13.69 0.03 0.37 90.67
WMS–III Auditory Immediate .93 91.32 18.90 0.47 0.51 90.00
WMS–III Visual Immediate .82 87.86 18.05 0.18 0.49 92.33
WMS–III Auditory Delayed .87 92.60 18.84 0.42 0.51 88.33
WMS–III Visual Delayed .83 88.69 18.43 0.26 0.50 95.00
WMS–III Auditory Recognition .74 94.13 18.56 0.19 0.50 93.00
Finger Tapping–Dominant .77 41.08 10.56 0.06 0.29 42.37
Finger Tapping–Non-Dominant .78 38.08 11.98 0.55 0.32 39.07
Grooved Pegs–Dominant .86 109.22 60.39 0.97 1.64 90.33
Grooved Pegs–Non-Dominant .86 118.33 64.01 0.41 1.73 99.33
Boston Naming Test .93 48.28 10.76 0.11 0.29 29.00
Verbal Fluency .83 29.29 13.09 0.06 0.35 51.33

*Note. Means,SDs, SDs of M, SEs, and Medians were calculated using all imputed data using the
procedures described by Graham and Schafer (1999), therefore median values are actually the average
median values from three imputed data sets.SDof M is computed as the standard deviation of the three
means obtained from imputed data sets, whereasSD is the standard deviation within each data set
averaged across the three data sets.
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first determined the number of factors present in the data
set. To make this decision, separate PCA’s were computed
for each imputed data set, and the resulting eigenvalues
were compared to the random values derived by Horn’s
parallel analysis (HPA; O’Connor, 2000). These analyses
were performed separately for each sub-sample within each
imputed data set. HPA, used in conjunction with PCA, has
been shown through Monte Carlo simulations to be more
accurate than conventional methods at judging the number
of factors in a data set (Buja & Eyuboglu, 1992; Widaman,
1993; Zwick & Velicer, 1986). Next, the replicability of
factor structures was determined for each of the six factor
analytic methods examined (PCA–varimax, PCA–oblimin,
PAF–varimax, PAF–oblimin, RCA–varimax, and RCA–
oblimin) using SPSS (2002) and RCA syntax for SPSS de-
tailed in Caruso (Caruso & Cliff, 2002). Data were randomly
divided into two equal sub-samples (n 5 682) for each im-
puted data set and all six analytic procedures were per-
formed for each sub-sample. Results for sub-samples were
compared using congruence coefficients (Tucker, 1951). In
the present study, congruence coefficients were computed
in two ways. The first method computed congruency as the
correlation between the two independent sets of component
loadings. Loadings were obtained from the rotated compo-
nent matrix for varimax solutions and from the structure
matrix for oblique solutions. This method is comparable to
the factor congruence coefficients reported by McCrae et al.
(1996) . The second method computed congruency as the
correlation between the two independent sets of component
weights from the rotated weight matrix. The latter method
estimates the comparability of factor scores from each sub-
sample. After determining the replicability of each solu-
tion, sub-samples were recombined and all factor analytic
procedures were recomputed and scores for each factor de-
rived from each factor method were retained. The rotated
component or structure matrices and weight matrices were
examined for each factor method to specify the nature of
resulting factor scores. Convergent and discriminant valid-
ity of each factor analytic method was examined by com-
puting the correlation between the resulting factor scores.

The reliability of neuropsychological difference scores
was determined by first computing the reliability of each
composite for each factor solution. To accomplish this, re-
liabilities for each neuropsychological variable were ob-
tained from published reports (Bowden et al., 1998; Dikmen
et al., 1999; Fastenau et al., 1998; Franzen et al., 1995,
1996; Ingram et al., 1999; Tate et al., 1998; Wechsler, 1997c;
Wilkinson, 1993). In cases where internal consistency or
alternate forms reliability estimates could not be obtained,
test–retest reliability was substituted. When multiple relia-
bility estimates were found in the literature, estimates were
averaged using Fisher’sr-to-z transformation (Corey et al.,
1998). For RCA, the reliability of each composite retained
was provided in the output. For the other methods, these
values were computed using the formulas provided in Nun-
nally and Bernstein (1994). The reliabilities of difference
scores obtained for each factor solution were computed via

the equation provided in Streiner and Norman (1995; p. 168).
To demonstrate the increase in reliability using differen-
tially weighted composites, equally-weighted composite
scores were also computed using variables loading at or
above .55, on average, in the rotated component0structure
matrices of all methods.3 These scores were computed by
weighting each variable with a significant loading 1.0 and
averaging scores across variables. The resulting difference
scores comparing equally weighted composites approxi-
mate the clinical interpretive approach of grouping tests
into particular cognitive domains and then qualitatively com-
paring these groupings to determine cognitive strengths and
weaknesses. Standard errors of estimation derived from stan-
dardized difference scores were computed for each factor
analytic solution and for the equally weighted composites
(Lord & Novick, 1968). Reliabilities of individual test dif-
ference scores were also computed between WAIS–VCI and
all other variables and WRAT–Reading and all other vari-
ables. These comparisons were chosen since they are com-
monly employed in clinical practice to compare measures
thought to be relatively resistant to brain damage and mea-
sures sensitive to neurological impairment (Johnstone &
Wilhelm, 1996; Scott et al., 1997). Standard errors of esti-
mation were used to compute 95% confidence intervals for
all difference scores. Confidence intervals were computed
in standard score units (M 5 100, SD5 15) and were ad-
justed for the number of comparisons (six comparisons for
factor methods and equally weighted composites and 19
comparisons for individual measures). Adjustments were
used to balance the increase in Type I error with multiple
comparisons. Thus, the resulting 95% confidence intervals
indicate that 95% of the time differences between all non-
significant score comparisons will be detected as such.

RESULTS

Missing Data Analyses

Approximately 27% of all neuropsychological test data was
missing, with the majority of missing data attributed to
WCST variables (smallestn 5 881), Finger Tapping Test
variables (smallestn 5 768), and Grooved Pegboard vari-
ables (smallestn 5 889). Over 65% of the sample had data
from at least 16 of the 21 measures and 35% of the sample
completed all measures. To determine the influence of miss-
ing data on observed and imputed values, correlations be-
tween a dichotomous measure specifying whether data was

3RCA–oblimin solutions were excluded from the average due to the
poor replicability of this method. The .55 value of matrix coefficients was
chosen to eliminate the influence of measures with moderate loadings on
the reliability of equally weighted composites. WAIS–III POI was not
included in the derivation of any of the equally weighted composites be-
cause it cross-loaded on two factors. Inclusion would have further dimin-
ished the reliability of equally weighted difference scores by increasing
the correlation between composites. WMS–WMI and WCST–set failure
did not have significant loadings on any factor and therefore were not
included in any composite.
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complete or imputed was correlated with each variable, sep-
arately in each data set. Correlations were then averaged
across variables and across imputed data sets. On average,
the potential influence of missing data on observed scores
was significant, but modest in size (averager 5 2.14,
p,.001). The data were well suited for multiple imputation
procedures, both in terms of completeness and the small
relationship between missing data and observed0imputed
values.

Table 1 presents descriptive statistics for all neuropsy-
chological variables. Calculations of descriptive statistics
and weight matrices derived by factor analytic procedures
were performed separately for each imputed data file and
then statistics were averaged following the procedures out-
lined by Graham and Schafer (1999). Very little variation
was observed for mean values across imputed data files as
evidenced by the smallSD of Mrelative to average sample
standard deviations of scores (see Table 1 Columns 4 and 5).
Similarly, weights derived from PCA and PAF factor solu-
tions tended to be extremely consistent across imputed
data sets (PCA–varimaxr 5 .99, PCA–obliminr 5 .99,
PAF–varimax r 5 .99, PAF–oblimin r 5 .99). RCA–
varimax was slightly less consistent (r 5 .93) and RCA–
oblimin displayed poor consistency across data sets (r 5
.52). Given the low level of between data set consistency
for RCA–oblimin, no further analyses were performed for
this method.

Number of Factors and Replicability

HPA indicated a three-factor solution for each sub-sample
in each imputed dataset. In most of these analyses the fourth
component was only slightly smaller in magnitude than the
random values generated using HPA. Based upon this con-
sideration, interpretability, and previous work suggesting
that underfactoring is a more serious error than overfactor-
ing (Fabrigar et al., 1999), four factors were retained in
subsequent analyses.

Congruence coefficients from structure or weight matri-
ces were computed within each imputed data file and then
averaged across files. Coefficients derived from structure
or rotated component matrices were .98 or better for the
first two components of each factor analytic method. For
the third factor, coefficients ranged fromr 5 .97–.99, with
the exception of RCA–varimax (r 5 .94). Coefficients for
the fourth factor were high for PAF methods (PAF–varimax
r 5 .98, PAF–obliminr 5 .99), somewhat lower for PCA
solutions (PCA–varimaxr 5 .88, PCA–obliminr 5 .93),
and very low for RCA–varimax (.51). For coefficients com-
paring factor weight matrices, the first three factors were
highly replicable for PCA and PAF methods (r 5 .96–.99).
Coefficients for the fourth factor were high for PAF solu-
tions (PAF–varimaxr 5 .97, PAF–obliminr 5 .97) and
somewhat lower for PCA solutions (PCA–varimaxr 5 .89,
PCA–obliminr 5 .89). RCA displayed high coefficients for
the first three factors (r 5 .95–.97), however the coefficient
for the fourth factor was considerably lower (r 5 .80). Analy-

ses involving the fourth RCA factor should be viewed cau-
tiously given the variable replicability of this factor.

Factor Composition and
Convergent/Discriminant Validity

To examine the nature of factor solutions, coefficients from
the structure or rotated component matrices were derived
for each factor method using the entire sample, separately
in each imputed data set, and then averaged across data
sets. Table 2 presents the mean structure0rotated compo-
nent matrix averaged across methods and imputed data sets.
Weight matrices were also examined to aid in interpreta-
tion. The first three factors were easily interpreted and were
highly consistent across factor methods.4 The first factor
was labeledMemory with high loadings from all of the
WMS–III indices. The second factor was labeledVisual
Motor and included high loadings from Trails A and B,
FTT–dominant and non-dominant, GP–dominant and non-
dominant, and moderate loadings from WAIS–III PSI and
WAIS–III POI. The third factor was labeledLanguageand
included high loadings from WAIS–III VCI, Boston Nam-
ing, and WRAT–3 Reading and moderate loadings from
Verbal Fluency, WAIS–III POI, and WMS–III WMI. For
the fourth factor, labeledExecutive Functioning, PCA and
PAF had consistently high loadings for WCST–perseverative
errors and WCST–categories. However, the fourth factor
for RCA–varimax was not consistent with other methods,
possibly due to the poor consistency between imputed data
sets and inadequate within data set replicability of this RCA
factor. The label executive functioning did not apply for
RCA–varimax since the largest weights for this factor were
a positive weight for WAIS–III POI and a negative weight
for Boston Naming Test. For simplicity, this label was re-
tained for all methods. However, comparisons between RCA
and other methods for this factor likely involved different
constructs.

Table 3 presents convergent and discriminant validity for
each method and factor. Correlations between factor scores
derived for each factor method and the equally weighted
composites were computed to examine the convergent and
discriminant validity of these factors. Convergent validity
was computed by averaging correlations between factors
with similar composition across methods. For example,
PCA–varimax Memory factor scores were correlated with
Memory factor scores from all other methods. Discriminant
validity was determined by averaging correlations between
different factors from different methods. For example, PCA–
varimax Memory was correlated with all other factors for
all other factor methods.

PCA, PAF, and the equally weighted composites dis-
played good convergent validity for all factors (Memory
r 5 .94–.97, Visual Motorr 5 .83–93, Languager 5 .90–.95,

4Factors did not consistently appear as the first, second, third, and
fourth factors in each solution. For simplicity, the factor occurring most
frequently in these positions is labeled as such.
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and Executive Functioningr 5 .79–.83). RCA showed good
convergent validity for the first three factors (Memoryr 5
.94, Visual Motor r 5 .86, Languager 5 .92) but poor
convergent validity for the fourth factor (Executive Func-
tioning r 5 .33). This is consistent with the previously dis-
cussed differences between the nature of the fourth factor
for RCA–varimax and the fourth factor for other methods.
As expected, based upon the uncorrelated nature of the
scores, varimax solutions showed superior discriminant va-
lidity to oblique solutions and equally weighted scores.

Reliability of Difference Scores

Prior to examining difference score reliability, composite
reliability was computed for each method. All factor solu-

tions produced highly reliable composite scores for the first
three factors (Memoryr 5 .94–.97, Visual Motorr 5 .92–
.97, and Languager 5 .94–.97), with only a slight ad-
vantage for RCA–varimax scores. The equally weighted
composites also produced highly reliable scores for these
factors (r 5 .96–.97). For executive functioning, RCA–
varimax produced the most reliable composite (r 5 .88),
with PAF–oblimin being slightly less reliable (r 5 .84), and
other methods producing the least reliable composite scores
(PCA–varimax5 .68, PCA–oblimin5 .73, PAF–vari-
max5 .71, equal weighting5 .80). However, as noted pre-
viously, this RCA factor displayed poor convergent validity
with other factor solutions.

Table 4 presents reliabilities, standard errors of measure-
ment, and 95% confidence intervals for difference scores

Table 2. Structure0rotated component matrix averaged across methods and imputed data sets

Memory Visual Motor Language Executive

Trails A .36 .77 .20 .24
Trails B .47 .68 .30 .41
WCST–perseverative errors .31 .32 .19 .63
WCST–categories .39 .43 .17 .66
WCST–set failures .05 .04 .05 .37
WAIS–III VCI .46 .19 .87 .26
WAIS–III POI .44 .55 .55 .44
WAIS–III PSI .46 .62 .45 .34
WMS–III WMI .48 .49 .52 .38
WRAT–3 Reading .27 .15 .82 .17
WMS–III Auditory Immediate .84 .26 .46 .28
WMS–III Visual Immediate .80 .32 .26 .17
WMS–III Auditory Delayed .86 .23 .41 .25
WMS–III Visual Delayed .81 .33 .28 .19
WMS–III Auditory Recognition .76 .19 .39 .25
Finger Tapping–Dominant .15 .74 .24 .17
Finger Tapping–Non-Dominant .09 .60 .18 .11
Grooved Pegs–Dominant .28 .88 .13 .16
Grooved Pegs–Non-Dominant .30 .85 .14 .19
Boston Naming Test .47 .33 .64 .14
Verbal Fluency .39 .42 .56 .20

Note.Values greater than .55 are italicized.

Table 3. Convergent and discriminant validity of factor scores for each method

PCA–
varimax

PCA–
oblimin

PAF–
varimax

PAF–
oblimin

RCA–
varimax

Equal
weighting

Convergent validity
Memory .94 .97 .95 .97 .94 .97
Visual Motor .87 .84 .87 .83 .86 .93
Language .94 .95 .94 .94 .92 .90
Executive .79 .83 .82 .82 .33 .81

Discriminant validity
Memory .21 .37 .20 .39 .24 .37
Visual Motor .20 .32 .18 .31 .25 .32
Language .17 .32 .17 .34 .13 .44
Executive .10 .24 .23 .46 .08 .39
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by factor method. Inspection of this table reveals that the
most reliable difference scores were obtained by RCA–
varimax. This was especially true for comparisons involv-
ing the executive functioning composite, highlighting the
increased reliability of the fourth RCA–varimax composite
relative to other methods. Other varimax rotated solutions
produced the next highest reliability estimates for factor
difference scores, and equally weighted difference scores
yielded the lowest reliability estimates. In terms of the mag-
nitudes of reliability coefficients, several met the recom-
mended (.90) level of reliability for clinical interpretation.
This was especially true for RCA–varimax, where all six
estimates exceeded the recommended level. For other meth-
ods, comparisons not involving executive functioning all
exceeded the recommended level, with the exception of
equal weighting, where only two of the three comparisons
exceeded .90.

In general, varimax rotated methods produced slightly
higher reliabilities than oblimin rotated solutions, with all
varimax solutions exceeding .80 and only three of six com-
parisons for each oblimin solution exceeding .80. Inspec-
tion of the standard errors of estimation further supports
the advantage of RCA-varimax over other methods and the
superiority of varimax solutions over oblimin solutions. All
of the standard errors for RCA comparisons were less than
103 the standard deviation of scores, while only half of the
comparisons for other methods were less than 103 the stan-
dard deviation of scores. Varimax solutions consistently pro-
duced smaller standard errors of estimation than oblique
solutions as a result of greater reliability. It should be noted

that PCA and PAF analyses using promax rotation were
also performed. These analyses were examined since the
promax rotation begins with a varimax rotation and then
allows factors to correlate, producing a more realistic factor
structure for cognitive measures. However, these analyses
were not reported because the promax rotation yielded even
higher correlations between factors than both PCA and PAF
oblimin solutions, and therefore produced less reliable dif-
ference scores and were largely redundant with findings for
oblimin solutions.

In terms of individual measure difference scores, WAIS–III
VCI and WRAT–3 Reading comparisons were generally
less reliable than those derived from factor methods and
equal weighting (VCI difference score reliabilitiesr 5 .66–
.88, averager 5 .79; WRAT–Reading difference score re-
liabilities r 5 .69–.86, averager 5 .79). None of the
comparisons reached the recommended .90 level of relia-
bility and only 8 of 19 for WAIS–VCI and 11 of 19 for
WRAT–Reading met the .80 level of reliability. Selected
difference scores from other comparisons indicated even
poorer levels of reliability, with a few comparisons approach-
ing zero reliability.

Table 4 also presents 95% confidence intervals for dif-
ference scores derived from each factor method as well as
equally weighted difference scores. Individual test compar-
isons are not included in this table due to the large number
of comparisons. However, confidence intervals for these
comparisons were also computed. Confidence intervals for
each method were adjusted for the number of comparisons
required in order to maintain Type I error at .05. In essence,

Table 4. Reliabilities, standard errors of estimation, and 95% confidence intervals for each
difference score by method

PCA–
varimax

PCA–
oblimin

PAF–
varimax

PAF–
oblimin

RCA-
varimax

Equal
weights

Reliabilities
Memory–Visual Motor .93 .92 .93 .92 .95 .91
Memory–Language .93 .92 .93 .91 .95 .88
Memory–Executive .80 .77 .82 .76 .91 .76
Visual Motor–Language .94 .93 .94 .94 .95 .91
Visual Motor–Executive .81 .78 .82 .76 .92 .69
Language–Executive .81 .80 .83 .82 .92 .77

Standard errors of estimation
Memory–Visual Motor .26 .27 .26 .27 .22 .29
Memory–Language .26 .27 .26 .29 .22 .32
Memory–Executive .40 .42 .38 .43 .29 .43
Visual Motor–Language .24 .26 .24 .24 .22 .29
Visual Motor–Executive .39 .41 .38 .43 .27 .46
Language–Executive .39 .40 .38 .38 .27 .42

95% CI
Memory–Visual Motor 9.36 9.89 9.06 9.65 8.17 10.02
Memory–Language 9.21 9.98 8.90 10.40 8.17 11.68
Memory–Executive 14.38 15.06 13.79 15.39 10.26 15.33
Visual Motor–Language 8.61 8.84 8.61 8.58 7.81 10.31
Visual Motor–Executive 14.12 14.82 13.65 15.32 10.00 16.51
Language–Executive 14.05 14.44 13.58 13.85 10.00 14.99
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this creates larger confidence intervals for each comparison
but the convention of 95% confidence interval is used to
indicate that a Type I error should occur only 5% of the
time for all comparisons (for a review and comparison of
methods for controlling error, see Williams et al., 1999). As
expected, factor methods produced considerably smaller con-
fidence intervals than equally weighted difference scores
and individual test comparisons (PCA–varimax6 8.6 to
614.4, PCA–oblimin6 8.8 to615.1, PAF–varimax68.6
to 613.8, PAF–oblimin68.6 to615.4, RCA–varimax67.8
to 610.3, equal weights610.0 to616.5, VCI individual
test comparisons613.8 to619.8, WRAT–Reading individ-
ual test comparisons6 14.4 to619.4). This was especially
evident for comparisons involving only the memory, visual
motor, and language factors. RCA consistently produced
the smallest confidence intervals.

DISCUSSION

The present study demonstrated the potential clinical utility
of orthogonal, factor-analytically derived neuropsycholog-
ical difference scores. Relative to individual test compari-
sons, factor methods produced a smaller number of highly
reliable comparisons, decreasing the size of the confidence
interval necessary for detecting cognitive discrepancies. As
expected, RCA–varimax difference scores were slightly more
reliable than scores from other varimax solutions, and the
latter scores were more reliable than those derived from
oblique solutions. Equally weighted composites produced
more reliable difference scores than those from individual
measures, but were less reliable than scores derived from
factor methods. The superiority of factor based difference
scores was evident in terms of reliability and, more promi-
nently, in the reduced size of confidence intervals for inter-
preting cognitive discrepancies. The two major reasons for
the latter finding were greater reliability of factor compos-
ites and a smaller number of comparisons generated using
these methods.

The increased reliability and decreased confidence inter-
vals for neuropsychological difference scores were most
prominent for orthogonal factor solutions, supporting the
notion that the lack of correlation between factors was the
major reason for highly reliable difference scores. This con-
clusion is also bolstered by the fact that the promax rota-
tion, which begins as a varimax rotation and then allows
factors to correlate, yielded very poor reliability for the
resulting difference scores as a result of even higher corre-
lations between factors than those obtained for oblimin
rotations.

RCA–varimax scores tended to outperform scores from
other factor methods, although there were several impor-
tant caveats to this finding. The replicability of RCA–
varimax solutions was lower for the fourth factor than for
other methods. This result may be specific to the present
data or may indicate that RCA solutions are more sensitive
than other methods to small perturbations in observed cor-
relations. Findings also contradicted previous studies sug-

gesting that RCA produces similar factors to other methods
(Caruso & Cliff, 2000; Caruso & Witkiewitz, 2002); how-
ever this was only the case for the last factor extracted. For
PCA and PAF solutions, the last factor was primarily made
up of variables with low reliability (WCST–perseverative
errorsrxx 5 .64; WCST–categoriesrxx 5 .70), but for the
RCA–varimax solution the composition of this factor em-
phasized more reliable variables (WAIS–III POIrxx 5 .93;
Boston Naming Testrxx 5 .93). This may imply that RCA
produces similar initial factors to other techniques, but that
the emphasis on reliability in RCA causes subsequent fac-
tors to differ considerably from other factor methods.

Alternatively, the present findings may simply have re-
sulted from overfactoring, since more factors were retained
than indicated by Horn’s parallel analysis (HPA). Monte
Carlo studies are needed to determine whether consistent
differences are observed between RCA and other factor an-
alytic techniques. These studies should vary the reliability
of variables and the number of factors extracted to give a
clearer picture of the convergent validity of RCA with other
methods. Our findings suggest that use of accurate criteria
for determining the number of factors to extract, such as
HPA, may limit differences between RCA and other factor
solutions. Simulation work should also examine RCA–
oblimin solutions to determine whether this technique pro-
duces unstable solutions, as it did in the present study. In
the event that RCA solutions are found to be less replicable
or more sample dependent than other factor methods, the
present findings indicate that use of HPA in conjunction
with PCA or PAF varimax solutions is likely to yield factor
based neuropsychological difference scores that are highly
reliable. All difference scores obtained by comparing the
first three factors from both PCA and PAF varimax solu-
tions displayed reliabilities at or above .90.

Factor analytic procedures for deriving reliable cognitive
discrepancy scores are not a panacea for poorly constructed
tests, nor are they the only methods for conceptualizing
clinical interpretation of neuropsychological test batteries.
Methods such as profile analysis may prove to be even
more useful than the Fisherian techniques discussed in the
present paper. It should also be noted that, ultimately, the
effectiveness of any method in producing reliable compar-
isons is directly dependent upon the reliability of the indi-
vidual measures. We were struck by the lack of published
reports concerning the reliability of neuropsychological mea-
sures employed in the present study. For some tasks only
one report concerning either internal consistency or test–
retest reliability could be obtained. The lack of reliability
data suggests limited attention to the psychometric charac-
teristics of many frequently used neuropsychological mea-
sures, an undesirable state of affairs given the ever expanding
role of neuropsychological assessment (Fennell, 1995; Ivnik
et al., 2000). Examination of the existing literature also
indicated that several of the neuropsychological measures
included in this study did not meet the recommended level
of reliability for clinical use (.90). In particular, the tasks
with the poorest reliabilities tended to have small numbers

586 T.W. Frazier et al.

https://doi.org/10.1017/S1355617704104049 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617704104049


of items or only a single series of trials. For example, Trails
A and B and Grooved Pegboard are one-item tests and Ver-
bal Fluency is a three-item test. WCST consists of a series
of responses but each response is dependent upon previous
responses and therefore cannot be viewed as a multi-item
test.

Additional studies are needed to examine and improve
the psychometric characteristics of commonly used neuro-
psychological measures. Enhancing the reliability of future
neuropsychological measures will be especially important
for establishing the clinical utility of ipsative interpretive
methods in neuropsychological assessment. To accomplish
this purpose, test developers should not only focus on en-
hancing the reliability of individual measures, but should
also attempt to measure more specific cognitive processes.
Measuring more specific processes would enhance the re-
liability of factor-analytically derived difference scores by
increasing the saturation of factors and decreasing the cor-
relation between factors measuring different cognitive pro-
cesses. Decreasing the correlation between distinct measures
would facilitate the utility of difference scores based upon
oblique solutions. Oblique solutions are likely to better rep-
resent the true structure of a neuropsychological data set,
and having smaller correlations between factors would min-
imize the undesirable psychometric properties of the result-
ing difference scores.

The major limitation of the present study was the mod-
erate amount of missing data. We addressed this concern
using the best methodological approach available at present,
creating multiple imputations using the EM algorithm
(Graham & Schafer, 1999). Analyses examining the missing-
at-random assumption indicated a small, but significant,
negative relationship between missingness and most mea-
sures. This suggests that individuals with missing data were
generally more impaired than individuals with complete
data and presents a problem for inferential analyses. How-
ever, the present study investigated the relationships be-
tween variables and not inferences about means. Therefore,
violation of the missing-at-random assumption may not have
been as problematic for the present study. List-wise analy-
ses performed for 478 people with complete data were highly
consistent with imputed data analyses, further supporting
the notion that missing data had little effect upon the struc-
ture of relationships between variables in the present
analyses.

Clinical Implications

Findings demonstrated that many commonly employed in-
dividual test difference scores have less than desirable lev-
els of reliability. This suggests that these differences should
not be the primary or exclusive set of comparisons exam-
ined in routine clinical use. In fact, in the present study,
individual test difference scores often did not meet the level
of reliability recommended for research (.70) and never met
the levels recommended for clinical use (.90; Nunnally &
Bernstein, 1994). Ipsative approaches relying on these scores

are likely to provide a less sensitive evaluation of individ-
uals’ cognitive strengths and weaknesses due to the large
differences required between individual measures to achieve
statistical significance. In contrast to single measure differ-
ence scores, orthogonal, differentially weighted factor scores,
particularly those derived from RCA, are likely to have
sufficient reliability to justify clinical use. Based upon this
conclusion, it is recommended that the procedures used in
the present study are applied in other neuropsychological
assessment settings to increase the utility of ipsative inter-
pretive approaches. Factor-based difference scores may
also be useful for increasing the interpretive yield of
existing co-normed, neuropsychological batteries. Applica-
tion of these methods may increase the benefits of fixed
versusflexible battery approaches to assessment by provid-
ing a more sensitive evaluation of cognitive strengths and
weaknesses.

Increasingly neuropsychologists are moving away from
traditional neuropsychological batteries, such as the
Halstead-Reitan, and are moving toward batteries combin-
ing one or more cognitive sub-batteries along with tradi-
tional neuropsychological tests (e.g., using one or more
of the following WAIS–III, WMS–III, Kaufmann Brief
Intelligence Test, Woodcock Johnson–III ability and achieve-
ment batteries). The sub-batteries included in these assess-
ments typically provide procedures for examining cognitive
discrepancies. However, the difference scores examined are
limited to the constructs measured by the instrument. Some
authors have suggested using multiple sub-batteries to pro-
vide more comprehensive coverage of cognitive function-
ing (Bauer, 2000). While this recommendation accomplishes
the intended goal of providing more comprehensive cover-
age of cognitive constructs, interpretation of these assess-
ments is limited in that difference scores can only be
computed within batteries and there are no formal proce-
dures to account for construct overlap.

Application of factor analytic methods, such as RCA, to
the entire neuropsychological battery will provide a more
sensitive evaluation of the broad cognitive domains as-
sessed by the entire battery than difference scores within
sub-batteries. Specifically, factor methods can be useful for
specifying the structure of the entire neuropsychological
battery. Once the structure is identified, factor-based differ-
ence scores can be computed to examine discrepancies be-
tween broad domains of functioning. In clinical settings
where factor based difference scores cannot be calculated,
the present findings suggest that equally weighted compos-
ite scores be computed instead of factor based difference
scores at this step of interpretation. This is because the dif-
ference scores resulting from equally weighted composites
are likely to have greater reliability than individual mea-
sure differences as long as the correlations between com-
posites are not large. As a second interpretive step, more
specific within and between-domain comparisons could be
calculated using difference scores computed as part of each
sub-battery. Lastly, difference scores between specific mea-
sures could be examined to further specify cognitive func-
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tioning. Any information gleaned from the latter two steps
should be considered tentative, however, given the lower
reliability and greater number of comparisons required.

In conclusion, this study was concerned with comparing
methods for improving the reliability of neuropsychologi-
cal difference scores. This research did not attempt to es-
tablish the predictive validity of the resulting scores. By
accomplishing the former goal, the present research dem-
onstrated that orthogonal, factor-based differences have the
potential to yield clinically useful information regarding
cognitive strengths and weaknesses. However, studies of
the predictive validity of orthogonal factor-based differ-
ence scores are necessary to firmly establish the usefulness
of these scores and justify the extra time required to com-
pute and interpret them.
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