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One of the successful feedback controls for skin-friction drag reduction designed by
Choi et al. (J. Fluid Mech., vol. 262, 1994, pp. 75–110), called ‘opposition control’,
has a limitation in application because the sensors need to be placed slightly away
from the wall, i.e. at y+ = 10, and measure the instantaneous wall-normal velocity.
In the present study we train convolutional neural networks using the database of
uncontrolled turbulent channel flow at Reτ = 178 to extract the spatial distributions of
the wall shear stresses and pressure that closely represent the wall-normal velocity at
y+ = 10. The correlations between the predicted wall-normal velocities at y+ = 10 from
the wall-variable distributions and true ones are very high, and they are 0.92, 0.96 and 0.96
for the streamwise and spanwise wall shear stresses and pressure, respectively. We perform
feedback controls of turbulent channel flow with instantaneous blowing and suction
determined by the trained convolutional neural networks from the measured wall-variable
distributions. The predicted wall-normal velocities during the controls have higher energy
at small to intermediate scales than the true ones, which degrades the control performance
in skin-friction drag reduction. By applying a low-pass filter to the predicted wall-normal
velocities to remove those scales, we reduce skin-friction drag by up to 18 % whose
amount is comparable to that by opposition control. The convolutional neural networks
trained at Reτ = 178 are also applied to a higher Reynolds number flow (Reτ = 578), and
provide a successful skin-friction drag reduction of 15 %.

Key words: drag reduction

1. Introduction

A feedback control method for skin-friction drag reduction by Choi, Moin & Kim
(1994), called opposition control, is a physics-based control strategy that mitigates
the strength of near-wall streamwise vortices in a channel by providing blowing and
suction at the wall (φ) which is 180◦ out-of-phase with the instantaneous wall-normal
velocity v above the wall. Choi et al. (1994) showed that the sensing-plane location of
y+ ≈ 10 (i.e. φ = −vy+≈10) was the optimal location providing 25 % skin-friction drag
reduction in a turbulent channel flow, where y+ = yuτ /ν, y is the wall-normal distance
from the wall, uτ is the wall shear velocity and ν is the kinematic viscosity. Later, a
number of studies have investigated the detailed characteristics of opposition control.

† Email address for correspondence: choi@snu.ac.kr
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Hammond, Bewley & Moin (1998) showed that the sensing-plane location of y+ = 15
provided slightly more drag reduction than that of y+ = 10. Chung & Talha (2011)
reported that the maximum drag-reduction rate with a given sensing location depended
on the amplitude of blowing/suction. For example, approximately 10 % drag reduction
was obtained with φ = −(vy+=25/5), whereas the drag increased with φ = −vy+=25. The
effect of the Reynolds number had been also investigated; the maximum drag-reduction
rate decreased as the Reynolds number increased (Chang, Collis & Ramakrishnan 2002;
Iwamoto, Suzuki & Kasagi 2002), but drag reduction of 20 % was still achieved at Reτ =
1000 with a sensing location of y+ = 13.5 (Wang, Huang & Xu 2016), where Reτ = uτ δ/ν
and δ is the channel half-height. Rebbeck & Choi (2001, 2006) experimentally conducted
opposition control with a single pair of sensing probe and actuator, and showed that strong
downwash motions near the wall were suppressed by the blowing at the wall.

Since it is difficult and even impractical to measure the instantaneous wall-normal
velocity v at y+ = 10 (v10 hereafter), opposition controls using predicted v10’s (vpred

10 ’s)
from wall variables such as the wall pressure and shear stresses have been searched for. For
example, Choi et al. (1994) conducted a Taylor series expansion on near-wall wall-normal
velocity,

v( y) = 1
2

y2 ∂
2v

∂y2

∣∣∣∣
w

+ · · · , (1.1)

where y = 0 is the wall location and the subscript w denotes the wall. Due to the continuity
(∂v/∂y = −∂u/∂x − ∂w/∂z),

v( y) = −1
2

y2

[
∂

∂x

∂u
∂y

∣∣∣∣
w

+ ∂

∂z
∂w
∂y

∣∣∣∣
w

]
+ · · · , (1.2)

where x and z are the streamwise and spanwise directions, respectively, and u and w are the
corresponding velocity components. Because the first term in the bracket had a negligible
correlation with v10,

v( y) ≈ −1
2

y2 ∂

∂z
∂w
∂y

∣∣∣∣
w

, (1.3)

and they applied

φ = v10,rms
∂

∂z
∂w
∂y

∣∣∣∣
w

/(
∂

∂z
∂w
∂y

∣∣∣∣
w

)
rms

, (1.4)

resulting in approximately 6 % drag reduction. The correlation coefficient between v10
and v predicted using this Taylor series expansion was ρv10 ≈ 0.75, which is not low but
not high enough to produce a significant amount of drag reduction. Here, the correlation
coefficient between v10 and ψ is defined as ρv10 = 〈v10(x, z, t)ψ(x, z, t)〉/(v10,rmsψrms),
where 〈 〉 denotes the averaging in the homogeneous directions (x, z) and time, and
the subscript rms indicates the root-mean square. Bewley & Protas (2004) retained
even high-order terms (up to the terms of O( y5)) in the Taylor series expansion, but
high-order terms rather degraded the correlation. Several studies have presented methods
of predicting the near-wall velocity from the flow variables at the wall or away from the
wall using direct numerical simulation (DNS) data. Podvin & Lumley (1998) conducted a
proper orthogonal decomposition (POD) to the streamwise and spanwise wall velocity
gradients (∂u/∂y|w and ∂w/∂y|w), and showed that near-wall streamwise streaks were
reconstructed well but wall-normal and spanwise velocities were not very well reproduced.
Bewley & Protas (2004) developed an adjoint-based estimator which was optimized by
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solving the adjoint Navier–Stokes equations. An estimator using all three wall variables
(∂u/∂y|w, ∂w/∂y|w and pw (wall pressure)) showed a better prediction of near-wall velocity
components for a turbulent channel flow at Reτ = 100 than that from the Taylor series
expansion, showing ρv10 ≈ 0.88. Hœpffner et al. (2005) and Chevalier et al. (2006)
developed a linear estimation model based on the linearized Navier–Stokes equations and
a Kalman filter. They improved the performance of the estimator by treating nonlinear
terms in the Navier–Stokes equations as the external forcings which were sampled from
DNS data, and obtained ρv10 ≈ 0.85 using three wall variables of ωy|w, ∂2v/∂y2|w, and
pw for a turbulent channel flow at Reτ = 100, where ωy|w is the wall-normal vorticity at
the wall. Illingworth, Monty & Marusic (2018) applied a linear estimator similar to that
of Chevalier et al. (2006) to a turbulent channel flow at Reτ = 1000, and predicted large
scale u at an arbitrary y location using all three velocity components at y+ = 197. A linear
estimator based on ∂u/∂y|w also reasonably predicted large scale u at an arbitrary y, but
its performance was not better than that using all three velocity components at y+ = 400
in a turbulent channel flow at Reτ = 2000 (Oehler, Garcia-Gutiérrez & Illingworth 2018).
Oehler & Illingworth (2018) used an estimator to impose a body forcing fb|y=yb predicted
by sensing u|y=ys or ∂u/∂y|w, for the minimization of the magnitude of the velocity
fluctuations in a turbulent channel flow at Reτ = 2000, and obtained a minimum value
when ys = 0.26δ and yb = 0.29δ.

Another approach for predicting v10 with the wall variables is using a neural
network. Lee et al. (1997) applied a neural network for the first time to perform
a control with v

pred
10 (predicted v10) in a turbulent channel flow at Reτ = 100. They

used the information of ∂w/∂y|w along the spanwise direction to predict v10 (i.e.
v

pred
10 (x, z) = f (∂w/∂y|w(x, z ± n
z)), n = 0, 1, 2, . . .), and showed that the spanwise

length of at least 90 wall units was required for accurately predicting v10 with ∂w/∂y|w’s,
resulting in ρv10 of approximately 0.85 and 18 % drag reduction. Lorang, Podvin & Le
Quéré (2008) obtained the first POD mode of v10 with a neural network by sensing whole
domain information of ∂w/∂y|w in a turbulent channel flow at Reτ = 140, and performed
a control with it, resulting in a drag reduction of 13 % which was slightly smaller than the
amount of drag reduction (14 %) with the method of Lee et al. (1997). The difference in
the amounts of drag reduction from those two studies may come from the difference in
the Reynolds numbers, i.e. Reτ = 100 versus 140. Milano & Koumoutsakos (2002) used
a neural network to predict high-order terms (O( y3)) of the Taylor series expansion of
near-wall velocity components by sensing pw, ∂u/∂y|w and ∂w/∂y|w, and the reconstructed
streamwise and spanwise velocities had correlations higher than 0.9, but ρv10 (obtained
from the continuity) was only approximately 0.6. Recently, Yun & Lee (2017) used pw to
predict v10 by a neural network with the streamwise and spanwise sensing lengths of 90
and 45 wall units, respectively, and showed ρv10 = 0.85. These previous studies showed
that the neural network is an attractive tool to predict v10 with wall-variable sensing, but
shallow neural networks (one nonlinear layer in Lee et al. (1997) and Lorang et al. (2008),
two nonlinear layers in Milano & Koumoutsakos (2002) and Yun & Lee (2017)) may not
be sufficient to yield a high ρv10 .

In recent years, machine learning, especially deep learning (LeCun, Bengio & Hinton
2015), has shown remarkable performance. Güemes, Discetti & Ianiro (2019) applied
an extended POD and convolutional neural networks, respectively, to reconstruct large-
and very large-scale motions in a turbulent channel flow based on the wall shear stress
measurement, and showed that the convolutional neural networks performed significantly
better than the extended POD. Kim & Lee (2020) used a nine-layer convolutional neural
network (CNN) to predict the heat flux at the wall using wall variables (pw, ∂u/∂y|w and
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∂w/∂y|w), and showed that the CNN outperformed a linear regression. So far, there is no
attempt to apply a CNN to the prediction of the near-wall flow (v10) from the flow variables
at the wall and to the flow control in a feedback manner. Therefore, in the present study
we first aim at predicting v10 using a CNN which is currently the most successful deep
learning method in discovering spatial distributions of a raw input that are closely related
to a desired output, where the wall flow variables (pw, ∂u/∂y|w and ∂w/∂y|w) and v10 are
the input and output, respectively, used in this study. We investigate how high ρv10 can be
achieved from the CNN as compared to fully connected neural networks (FCNN) used
in the previous studies (Lee et al. 1997; Milano & Koumoutsakos 2002; Lorang et al.
2008; Yun & Lee 2017). We then perform opposition control with vpred

10 predicted by the
CNN. Because the controlled flow is not available in practice, we train our CNN only
with the uncontrolled flow. Note that previous studies (Lee et al. 1997; Lorang et al. 2008)
used controlled flows to train the neural network. Finally, we apply the CNN to a higher
Reynolds number flow to see if the prediction and control capabilities are maintained
even if the CNN is trained with a lower Reynolds number flow. Details of the problem
setting, CNN, and numerical method are presented in § 2. The prediction performance of
the CNN is given in § 3. In § 4 we provide the results of control with vpred

10 from the CNN.
An application to a higher Reynolds number flow is given in § 5, followed by conclusions.
In the appendices the results from other machine learning techniques such as the random
forest and FCNN are given and their results are briefly discussed.

2. Methodology

2.1. Problem setting
In the present study we predict v10 from a spatial distribution of wall variables (χw) in
a turbulent channel flow, where a CNN is used to extract hidden features of χw which
may closely represent v10. We consider three different wall variables (χw = pw, ∂u/∂y|w
and ∂w/∂y|w) that are measurable quantities in real systems (Kasagi, Suzuki & Fukagata
2008). Each of these wall variables is used to predict v10 (figure 1) and is used for the
control. Since Bewley & Protas (2004) and Chevalier et al. (2006) showed that using more
wall variables improved the prediction performance, all three wall variables are also used
to predict v10 and the results are given in § 4.3. A region on the wall (coloured in yellow)
in figure 1 is an example of the sensing region of the wall variable χw whose streamwise
and spanwise lengths are approximately 90 wall units. The size of each sensing region
is selected considering those of previous studies in which at least 90 wall units in the
spanwise direction was required for ∂w/∂y|w (Lee et al. 1997), and 90 wall units in the
streamwise direction was sufficient for pw (Yun & Lee 2017). One of the wall variables is
the input of the present CNN (see below), and the output is vpred

10 at the centre location of
each sensing region. As we show below, this size is not big enough to include the influence
of v10 on the wall variables, but is still sufficient to have a high correlation between v10 and
v

pred
10 .
The two-point correlation coefficient ρ between v10 and χw in a turbulent channel flow

is defined as

ρ (
x,
z) = 〈v10(x, z, t)χw(x +
x, z +
z, t)〉
v10,rmsχw,rms

, (2.1)

where 〈v10〉 = 0, and 
x and 
z are the separation distances in the streamwise and
spanwise directions, respectively. Figure 2 shows the contours of the two-point correlations
for three different flows: (a–c) uncontrolled flow at Reτ = 178, (d–f ) controlled flow
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Ly(= 2δ)
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+≈ 90

lz
+≈ 90

χw

CNN

v10
pred

FIGURE 1. Schematic diagram on the relation between the predicted v at y+ = 10 (vpred
10 ) and

wall-variable distribution with a CNN in a turbulent channel flow. The input (χw) of the CNN is
one of pw, ∂u/∂y|w and ∂w/∂y|w, and the output is vpred

10 .

with opposition control (Choi et al. 1994) at Reτ = 178, and (g–i) uncontrolled flow at
Reτ = 578, where Reτ = uτoδ/ν and uτo is the wall shear velocity of the uncontrolled
flow. These correlation contours indicate that there are distinct regions of close relations
between v10 and χw. For the uncontrolled flow at Reτ = 178 (figure 2a–c), the wall
pressure has the highest correlation on the downstream of v10, but has the lowest maximum
correlation among three wall variables investigated in this study. The streamwise wall
shear rate ∂u/∂y|w has the highest correlation at the upstream of v10, whereas the
correlation with the spanwise wall shear rate ∂w/∂y|w is highest at slightly downstream
but sideways locations. The two-point correlation is highest for the spanwise wall shear
rate, but this correlation magnitude (ρ = 0.56) is not high enough to accurately predict
v10. Also, these correlation contours themselves do not provide how one can construct v10
from this information. Hence, in the present study, we construct v10 from the wall-variable
information in −45 < 
x+ < 45 and −45 < 
z+ < 45 using a CNN, and discuss how
high correlations can be obtained from this approach.

For the controlled flow at Reτ = 178 (figure 2d–f ), the correlations with pw and ∂w/∂y|w
are very similar to those for the uncontrolled flow. This suggests that a CNN trained with
the uncontrolled flow can be applied to predict v10 for the controlled flow and also to
control the flow in a feedback manner even without requiring training data of the controlled
flow. On the other hand, the correlations with ∂u/∂y|w have opposite signs in many places
to those for the uncontrolled flow. This is because the blowing and suction at the wall from
opposition control changes ∂u/∂y|w to be approximately 180◦ out-of-phase different from
v10. For the uncontrolled flow at Reτ = 578 (figure 2g–i), the correlations are very similar
to those at Reτ = 178, as the near-wall flow is well scaled in wall units, which suggests
that the CNN trained at a lower Reynolds number should be applicable to the flow at a
higher Reynolds number.

Note that near-wall flow structures are significantly changed by opposition control (Choi
et al. 1994; Hammond et al. 1998), and a higher Reynolds number flow contains smaller
scales than those at Reτ = 178. Therefore, the success of the present control based on a
CNN trained with uncontrolled flow at Reτ = 178 relies on the proper selection of wall
sensing variable that maintains a similar correlation coefficient with v10 for controlled and
higher Reynolds number flows. For the present turbulent channel flow, the wall sensing
variables satisfying this requirement are pw and ∂w/∂y|w, but ∂u/∂y|w fails to satisfy
this requirement. The details of the CNN used are provided in § 2.3. Other machine
learning techniques such as the Lasso, random forest and FCNN are also tested, and
comparisons of the prediction performance by different machine learning techniques are
given in appendix A.
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FIGURE 2. Contours of the correlation coefficients between v10 and χw: (a–c) uncontrolled flow
at Reτ = 178; (d–f ) controlled flow at Reτ = 178 by opposition control; (g–i) uncontrolled flow
at Reτ = 578. (a,d,g) χw = pw, (b,e,h) χw = ∂u/∂y|w and (c,f ,i) χw = ∂w/∂y|w. Solid circles
at the centre denote the location of v10 (
x = 
z = 0), and cross symbols are the locations of
the maximum correlation magnitude. The values of ρ at these locations are given at the bottom
of each figure. Here, 
x+ = 
xuτo/ν and 
z+ = 
zuτo/ν.

2.2. The dataset
The dataset (vtrue

10 , χw) for training a CNN is obtained from direct numerical simulation of
a turbulent channel flow at Reτ = 178, where vtrue

10 = v10. The governing equations for the
continuity and incompressible Navier–Stokes equations are

∂ui

∂xi
= 0, (2.2)

∂ui

∂t
+ ∂uiuj

∂xj
= − dP

dx1
δ1i − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
, (2.3)
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where xi (= (x, y, z)) are the Cartesian coordinates, ui (= (u, v,w)) are the corresponding
velocity components, p is the pressure fluctuation, −dP/dx1 is the mean pressure gradient
to maintain a constant mass flow rate in a channel. The Reynolds number is Re = 5600
based on the bulk velocity (ub) and channel height (2δ), and is 178 based on the wall
shear velocity of the uncontrolled flow (uτo ) and channel half-height (δ). A semi-implicit
fractional step method is used to solve (2.2) and (2.3), where a third-order Runge–Kutta
and the Crank–Nicolson schemes are used for the convection and diffusion terms,
respectively. For spatial derivatives, the second-order central difference scheme is used.
The no-slip condition is applied to the upper and lower walls, and periodic boundary
conditions are used in the wall-parallel directions. The computational domain size is
3πδ(x)× 2δ( y)× πδ(z) and the number of grid points is 192(x)× 129( y)× 128(z). In
the wall-normal direction a non-uniform grid is used with 
y+ ≈ 0.2 − 7.0 (dense grids
near the wall). Uniform grids are used in the wall-parallel directions with 
x+ ≈ 8.7 and

z+ ≈ 4.4.

The simulation starts with a laminar velocity profile with random perturbations and
continues until the flow reaches a fully developed state. Then, 740 instantaneous fields
of vtrue

10 and χw’s (= pw, ∂u/∂y|w, and ∂w/∂y|w) are stored during T+ = Tu2
τo
/ν = 29 560

with an interval of 
T+ = 40, where vtrue
10 is the label for output of a CNN (vpred

10 ), and
χw’s are the input whose domain size is approximately 90(l+x )× 90(l+z ) in wall units
(corresponding to 11 × 21 grid points, respectively), as shown in figure 1. Here, one
instantaneous field contains the information of χw’s and vtrue

10 at both sides of the channel.
The χw and vtrue

10 are normalized with their root-mean-square (subscript rms) values as

χ∗
w = χw − 〈χw〉

χw,rms
, v∗

10 = vtrue
10

vtrue
10,rms

, (2.4a,b)

where 〈χw〉 denotes the mean value of χw. The dataset of χ∗
w and v∗

10 is divided into three
sets of different sizes, i.e. training, validation and test sets. Only the training set is used
for optimizing a CNN. The validation set is used for checking the optimization process
at each training iteration, and the prediction performance is evaluated with the test set
after the whole training procedure is finished. We use 700 instantaneous fields (containing
34 406 400 pairs of χw’s and vtrue

10 ) for the training, and extract data at every third grid point
in the streamwise and spanwise directions (resulting in approximately 3.8 million pairs
of χw’s and vtrue

10 ), respectively, to exclude highly correlated data. Twenty instantaneous
fields (containing 983,040 pairs of χw’s and vtrue

10 ) are used for each validation and test
set. Here, we use the number of training data of Ntrain ≈ 3.8 × 106 which is approximately
three times that used in the ImageNet large-scale visual recognition challenge (ILSVRC)
for developing convolutional neural networks (Krizhevsky, Sutskever & Hinton 2012;
Simonyan & Zisserman 2014; Szegedy et al. 2014; He et al. 2015; Russakovsky et al.
2015). This is because the present training searches for the spatial correlations of χw’s and
vtrue

10 and, thus, it possesses some similarity with that of image recognition in the ILSVRC,
but it may require more training data due to the unsteady characteristics of the present
problem than that used in the ILSVRC. In appendix B we show that Ntrain ≈ 3.8 × 106 is
sufficient for the present problem.

2.3. Convolutional neural network
The CNN is a class of neural network, composed of input, hidden and output layers with
artificial neurones. The CNN uses a discrete convolution operation with filters to construct
the next layer keeping spatially two-dimensional feature maps. Therefore, unlike a FCNN
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FIGURE 3. Architecture of the CNN used in the present study. Each box and arrow after the
input and before the average pooling layer represent a hidden layer and flow of the feature
maps, respectively. Dimensions of the feature maps, denoted as [height (hm), width (wm), depth
(dm)], are given next to the arrows, and the size and number of filters (hf × wf × dinput, doutput,
respectively) are given inside each box. The hm and wm are the numbers of grid points of
the feature maps in the z and x directions, respectively. The hf and wf are the numbers of
filter weights in the z and x directions, respectively. Zero paddings are used to adjust the sizes
of hm and wm of the feature maps after convolution operations. Grey-coloured boxes are the
downsampling layers. A residual block without a downsampling layer (lower left figure) consists
of two hidden layers, and its output is the sum of the output from the last hidden layer f (x) and
the input of the residual block x . For a residual block with a downsampling layer (lower right
figure), its output is the sum of the output from the last hidden layer f (x) and the downsampled
input x∗, where downsampling (D∗) is carried out with the same filter size and stride as those
of the downsampling layer (D). For downsampling (D and D∗), zero padding is applied on the
bottom row or right column of a feature map when hm or wm of the input x is an odd number.

whose inputs to a neurone are outputs from all neurones in the previous layer, local outputs
from the previous layer in the CNN are inputs to a neurone, and neurones share the same
weights (LeCun et al. 1989, 2015). Figure 3 shows the architecture of the CNN used in
the present study. We use 17 hidden layers, one average pooling layer and one linear layer
adopting a residual block proposed by He et al. (2015). For the hidden layers without
downsampling, we use a filter size of 3 × 3 or 5 × 5, with a stride of 1 for the convolution,
where the stride is the magnitude of movement between applications of the filter to the
input feature map (Singh & Manure 2019). After the first and second downsampling layers,
the height (hm) and width (wm) of the feature maps are reduced by half, and the depth (dm)
is doubled, as in He et al. (2015). We use a convolution operation with a stride of 2 and
a filter size of 2 × 2 for the first and second downsampling layers. After hm or wm of the
feature map becomes equal to hf or wf of the filter, respectively, we use global average
pooling for the last downsampling (average pooling layer in figure 3), where the feature
map is averaged while keeping the depth unchanged. After the average pooling layer, the
feature map is connected to the linear layer to print out vpred

10 without an activation function.
In the present CNN Relu (Nair & Hinton 2010) is used as the activation function, and a
batch normalization (Ioffe & Szegedy 2015) is applied after each convolution operation.
All weights (wj) in the filters are initialized by the Xavier method (Glorot & Bengio 2010),
and they are optimized to minimize a given loss function defined as

L = 1
2N

N∑
i=1

(
v

pred
10 i − vtrue

10 i

vtrue
10,rms

)2

+ 0.025
∑

j

w2
j , (2.5)
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where N is the number of mini-batch data (256 in this study following He et al. 2015). An
adaptive moment estimation (Kingma & Ba 2014), which is a variant of gradient descent,
is used for updating the weights, and the gradients of the loss function with respect to
the weights are calculated through the back-propagation algorithm (Rumelhart, Hinton &
Williams 1986). We conduct early stopping to prevent overfitting (Bengio 2012). There
are many user-defined parameters in constructing a CNN. A study on these parameters is
conducted and its results are given in appendix B.

3. Prediction performance

In this section we estimate the performance of the CNN in predicting vtrue
10 with χw’s by

analysing the instantaneous and statistical quantities of vpred
10 ’s.

3.1. Multiple input (spatial distribution of χw) and single output (vpred
10 at a point)

The correlation coefficients between vtrue
10 and v

pred
10 ’s by the CNN with χw = pw,

∂u/∂y|w and ∂w/∂y|w are ρv10 = 0.95, 0.90 and 0.95, respectively, where ρv10 =
〈vtrue

10 (x, z, t)vpred
10 (x, z, t)〉/(vtrue

10,rmsv
pred
10,rms). These magnitudes are much bigger than the

maximum two-point correlations described before (ρ = 0.36, 0.50 and 0.56, respectively)
and also those from other machine learning techniques considered (appendix A). Figure 4
shows the instantaneous fields of vtrue

10 and vpred
10 ’s reconstructed by the CNN, together with

χw’s. Although the distributions of χw’s are very different from that of vtrue
10 , the CNN

captures most of the v10 field from all the wall variables investigated, indicating that the
CNN is an adequate tool to predict v10. To understand how v

pred
10 is correlated with χw,

we compute the saliency map proposed by Simonyan, Vedaldi & Zisserman (2013), and
provide the results in appendix C.

3.2. Multiple input and multiple output (spatial distributions of χw and vpred
10 )

Although the CNN in § 3.1 performed well, the reconstructed flow field vpred
10 (figure 4)

contained spatial oscillations that might provide numerical instability during feedback
control. To understand the source of these oscillations, we (i) try even numbers of grid
points (24 × 12) for χw to see if they came from zero paddings at the downsampling layers
owing to the use of odd numbers (21 × 11); (ii) use a continuous activation function,
y = tanh(x), since we used a discontinuous activation function (Relu), y = max(0, x);
(iii) apply a linear regression model (Lasso) with 21 × 11 grid points for χw. The spatial
oscillations in vpred

10 still exist for (i) and (ii), but disappear for (iii) (not shown in this
paper). This may indicate that the spatial oscillations in vpred

10 occur because it is nonlinearly
determined with χw by the CNN. Therefore, to obtain a smoother distribution of vpred

10
in space, we consider another CNN in this section in which multiple output (a spatial
distribution of vpred

10 ) is produced from multiple input (a spatial distribution of χw). We call
this CNN an MP-CNN, whereas the CNN in § 3.1 is called 1P-CNN.

Figure 5 shows the schematic diagrams of 1P-CNN and MP-CNN. For MP-CNN, we
keep the architectures of all hidden layers of 1P-CNN (17 hidden layers), and then add
three additional hidden layers. The sizes of the input wall variable χw and output vpred

10
are l+x × l+z ≈ 270 × 135 and 130 × 65, respectively, and the corresponding numbers of
grid points for the input and output are 32 × 32 and 16 × 16, respectively. The centre
positions of the input and output are the same. The input size in space should be taken to
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FIGURE 4. Contours of the instantaneous vtrue
10 , vpred

10 ’s and instantaneous χw’s: (a) vtrue
10 (DNS);

(b) vpred
10 from χw = pw; (c) vpred

10 from χw = ∂u/∂y|w; (d) vpred
10 from χw = ∂w/∂y|w; (e) pw;

( f ) ∂u/∂y|w; (g) ∂w/∂y|w.

be larger than the output size, because v10 at a point is correlated with the wall variables
nearby. As shown in figure 2, the maximum correlations between v10 and χw’s occur at
|
x+| ≤ 45 and |
z+| ≤ 15, and, thus, the input size, which is twice the output size,
should be enough to produce high performance of MP-CNN. The choice of the output
size, l+x × l+z ≈ 130 × 65, is rather arbitrary, but this size is at least comparable to the size
of a region of rapidly varying v10 (see, for example, figure 4). A dataset of χw and vtrue

10 are
obtained from direct numerical simulation of a turbulent channel flow as before. We apply
the generative adversarial networks (GAN; Goodfellow et al. 2014) to optimize MP-CNN,
because previous studies (Ledig et al. 2016; Lee & You 2019) showed that a CNN trained
with GAN produces more realistic images than using only the quadratic error as a loss
function. The details about GAN and loss function are described in appendix D.

Figure 6 shows v10, ∂v10/∂x and ∂v10/∂z from 1P-CNN and MP-CNN with χw =
∂u/∂y|w, respectively, together with those from DNS. The correlation coefficients between
the true (DNS) and predicted values with MP-CNN are ρ = 0.92, 0.87 and 0.91 for
v10, ∂v10/∂x and ∂v10/∂z, respectively, whereas those with 1P-CNN are ρ = 0.90, 0.81
and 0.89, respectively. The results of the correlation coefficients and reconstructed
fields (figure 6) indicate that the prediction performance is improved both quantitatively
and qualitatively with MP-CNN. Note that oscillations observed with 1P-CNN nearly
disappear with MP-CNN. For χw = pw, the correlation coefficients for v10, ∂v10/∂x and
∂v10/∂z are ρ = 0.96, 0.92 and 0.96 with MP-CNN, respectively, whereas those with
1P-CNN are ρ = 0.95, 0.89 and 0.95, respectively. For χw = ∂w/∂y|w, ρ = 0.96, 0.90 and
0.96 with MP-CNN, whereas ρ = 0.95, 0.89 and 0.95 with 1P-CNN. The reconstructions
with χw = pw and ∂w/∂y|w show results similar to those with χw = ∂u/∂y|w.

Figure 7 shows the streamwise and spanwise energy spectra of vpred
10 from χw = pw,

∂u/∂y|w and ∂w/∂y|w, together with those of vtrue
10 . Overall, both 1P-CNN and MP-CNN
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FIGURE 5. Schematics of the present convolutional neural networks: (a) 1P-CNN;
(b) MP-CNN. The detail of 1P-CNN is given in figure 3. For MP-CNN, the size and number
of filters are given in each box, and the dimensions of the feature maps are given next to each
arrow. The grey-coloured box is the deconvolution layer where the height and width of the feature
map increase twice.
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FIGURE 6. Contours of the instantaneous v10, ∂v10/∂x and ∂v10/∂z: (a–c) v10; (d–f ) ∂v10/∂x ;
(g–i) ∂v10/∂z. (a,d,g) are from DNS, and (b,e,h) and (c,f ,i) are from 1P-CNN and
MP-CNN with χw = ∂u/∂y|w, respectively. Here, ∂v10/∂x and ∂v10/∂z are calculated using
the second-order central difference. Flow variables are normalized with uτo and δ.

predict the energy spectra very well. At high wavenumbers, 1P-CNN exhibits severe
energy pile up both in the streamwise and spanwise wavenumbers, whereas MP-CNN
reduces the energy pile up in the streamwise wavenumber and matches the spanwise
energy spectrum nearly perfectly at all wavenumbers. This indicates that small-scale
motions of v10 is better predicted by MP-CNN than by 1P-CNN.
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∂u/∂y|w; (c, f ) χw = ∂w/∂y|w. Black circle, vtrue

10 (DNS); black line, vpred
10 with 1P-CNN; red

line, vpred
10 with MP-CNN.

An additional advantage of MP-CNN is a significant reduction of the computational
cost. Total of 192(x)× 128(z) prediction processes should be required to reconstruct
an entire v10 field with 1P-CNN, where one prediction process means one operation of
the CNN to print out vpred

10 with given χw. Because the number of the grid points of
v

pred
10 is 16(x)× 16(z) for MP-CNN, it requires only 192/16(x)× 128/16(z) prediction

processes to reconstruct an entire field. Although the computational cost for one prediction
process is greater for MP-CNN due to larger input and output sizes than for 1P-CNN,
the computational time required to reconstruct the entire field is approximately 40 times
smaller with MP-CNN than that with 1P-CNN.

4. Application to feedback control

In this section we apply MP-CNN to opposition control (Choi et al. 1994) for
skin-friction drag reduction, vw(x, z) = −vpred

10 (x, z), where vpred
10 is obtained from χw =

pw, ∂u/∂y|w, or ∂w/∂y|w. We train our MP-CNN with the uncontrolled turbulent channel
flow because the controlled flow data is not available in practical situations, and we
conduct an off-line control in which MP-CNN is not trained during the control. This
is different from the approaches taken by the previous studies (Lee et al. 1997; Lorang
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FIGURE 8. Scatter plots of vtrue
10 and vpred

10 : (a) χw = pw; (b) χw = ∂u/∂y|w; (c) χw = ∂w/∂y|w.
Here, χw’s and vtrue

10 are from the controlled flow with original opposition control (Choi et al.
1994), while MP-CNN is trained with the uncontrolled flow. A black line in each figure denotes
the slope of 1, and a red line is a fitting line for each scatter plot and is given at the bottom of
each figure.

et al. 2008) in which neural networks were trained with the controlled flow data from
opposition control. The rationale of using the CNN trained with the uncontrolled flow
for the present control was already explained in the discussion related to figure 2. The
control input vw is updated at every 20 computational time steps 
tc(= 20
t), where 
t
is the computational time step (
t+ = 
tu2

τo
/ν = 0.08). As observed in the previous study

(Lee, Kim & Choi 1998), the control performance is not degraded even if 
tc is greater
than 
t, and drag-reduction rate with 
tc = 20
t differs only by 0.5 % compared to that
with 
tc = 
t in our numerical simulation with opposition control.

4.1. Control with vpred
10

Figure 8 shows the scatter plots of vtrue
10 (from opposition control) and vpred

10 by MP-CNN
trained with the uncontrolled flow. The MP-CNN trained with the uncontrolled flow
completely loses its prediction performance for χw = ∂u/∂y|w (figure 8b), whereas it still
maintains approximately linear relations (but with slopes different from 1) for χw = pw

and ∂w/∂y|w. Therefore, we modify the magnitude of vpred
10 at each control time step such

that the control becomes

vw = −σvpred
10 with σ = 0.5vtrue

10,rms(uncontrolled)/vpred
10,rms, (4.1)

because vtrue
10,rms (controlled) ≈ 0.5vtrue

10,rms (uncontrolled) under opposition control (Kim &
Choi 2017). Instead of using σ in (4.1), the fitting lines given in figure 8 may be used
to determine σ . However, as these relations are a priori unknown in practical situations,
we use a simple relation (4.1) for the control. The correlation coefficients between vtrue

10

(controlled) and σvpred
10 ’s from χw = pw, ∂u/∂y|w and ∂w/∂y|w are ρv10 = 0.85, −0.08

and 0.84, respectively, and they are lower than those from the uncontrolled flow (0.96,
0.92 and 0.96, respectively). This is expected because the current MP-CNNs are trained
with the uncontrolled flow. Nevertheless, those correlation coefficients for χw = pw and
∂w/∂y|w are high enough to reconstruct v10 even for the controlled flow (figure 9).
Therefore, we perform a feedback control based on (4.1) and vpred

10 by MP-CNN trained
with the uncontrolled flow. Note that when MP-CNN is trained with the controlled flow,
ρv10 = 0.97, 0.98 and 0.98 for χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively.
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FIGURE 9. Contours of the instantaneous v10 from the controlled flow by opposition control:
(a) vtrue

10 ; (b) σvpred
10 from χw = pw; (c) σvpred

10 from χw = ∂w/∂y|w.
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FIGURE 10. Time histories of the mean pressure gradient in a turbulent channel flow at Reτ =
178: (a) MP-CNN and NN trained with the uncontrolled flow; (b) MP-CNN trained with the
controlled flow.

Figure 10 shows the time histories of the mean pressure gradient for the controls
based on MP-CNNs with χw = pw and ∂w/∂y|w, together with those based on a neural
network (NN). Here, we show the results from two different MP-CNNs, one trained
with the uncontrolled flow and the other trained with the controlled flow by opposition
control, respectively. For the first MP-CNN, we apply vw = −σvpred

10 , and for the latter,
vw = −vpred

10 . The NN considered has one hidden layer and one neurone (the output
of this NN is one point v10), which is the same model as that of Lee et al. (1997).
With opposition control, the drag is reduced by approximately 20 % from that of the
uncontrolled flow. Note that this amount of drag reduction is smaller than 25 % reported
by Choi et al. (1994). This difference may come from a numerical set-up such as the spatial
discretization method and grid resolution. In particular, Chang et al. (2002) and Chung &
Talha (2011) also reported approximately 20 % drag reduction with vw = −v10 at the same
Reynolds number.

When MP-CNN trained with the controlled flow is applied, the drag is reduced by
11 % and 16 % with χw = pw and ∂w/∂y|w, respectively (figure 10b). By the NN trained
with the controlled flow, vpred

10 continues to grow with vw = −vpred
10 , and the simulation

eventually diverges unless the magnitude of vw is forced to be smaller than a predetermined
constant. In the case of MP-CNN trained with the uncontrolled flow, the amounts of drag
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reduction are 10 % and 15 % with χw = pw and ∂w/∂y|w, respectively (figure 10a), which
are slightly lower than those by MP-CNN trained with the controlled flow. This result
indicates an excellent capability of reducing drag by the present MP-CNN trained with
the uncontrolled flow. By the NN trained with the uncontrolled flow, the amounts of
drag reduction are approximately 0 % and 12 %, respectively, for χw = pw and ∂w/∂y|w,
suggesting that the control performance of the NN depends more on the choice of the
input variable than that of MP-CNN, and is not better than that of MP-CNN. We also
conduct controls using MP-CNN trained with the uncontrolled flow for χw = ∂u/∂y|w,
and obtain 5 % drag reduction. Although vpred

10 with χw = ∂u/∂y|w is not quite similar to
vtrue

10 , drag reduction still occurs albeit its small amount. On the other hand, the amounts
of drag reduction with χw = pw and ∂w/∂y|w are different from each other, even though
their MP-CNN’s have similar prediction performance for the controlled flow. This is due
to the different sensitivity of pw and ∂w/∂y|w to the wall actuation. That is, as shown in
figure 8, the slope of a fitting line for χw = ∂w/∂y|w is closer to 1 than that for χw = pw.
Also, vpred

10,rms/v
true
10,rms from χw = ∂w/∂y|w is 1.6, but it is 2.2 from χw = pw.

4.2. Improving the control performance by filtering small to intermediate scales
Although the control based on the present MP-CNN performs quite well, the
drag-reduction performance is still lower than that of opposition control. In this section
we explain the reason for this lower drag reduction by MP-CNN and suggest a way to
improve the drag-reduction performance.

Figure 11 shows the streamwise and spanwise energy spectra of vtrue
10 and vpred

10 ’s for
the controlled flow by MP-CNN trained with the uncontrolled flow. As shown, the
energy spectra of vpred

10 ’s for pw and ∂w/∂y|w at low wavenumbers are quite similar to
those of vtrue

10 , but the energy spectra of vpred
10 for ∂u/∂y|w at all wavenumbers and for

pw and ∂w/∂y|w at intermediate to high wavenumbers are quite different from those of
vtrue

10 . Therefore, the intermediate to high wavenumber components of vpred
10 may degrade

the drag-reduction performance of the MP-CNN control. To test this conjecture, we
remove some length scales of vpred

10 by applying three different low-pass filters, where
the cut-off wavenumbers are (k+

x,c, k+
z,c) ≈ (0.150, 0.540), (0.075, 0.270) and (0.038,

0.135), respectively (hereafter, v10 with a low-pass filter is called ṽ10). The opposition
control, vw = −ṽtrue

10 , with the smallest cut-off wavenumbers (k+
x,c, k+

z,c) = (0.038, 0.135)
provides 18 % drag reduction, as opposed to 20 % drag reduction by the control with
all the wavenumber components. Lorang et al. (2008) also showed that opposition
controls with the POD- or Fourier-truncated v10 provided 15 % and 8 % drag reductions,
respectively, where the first streamwise and first three spanwise modes of the POD
and Fourier coefficients were used. The control by MP-CNN with a low-pass filter is
vw = −σ̃ ṽpred

10 , where σ̃ = 0.5vtrue
10,rms(uncontrolled)/ṽpred

10,rms. Table 1 shows the variation
of the drag-reduction rate with the low-pass filter, together with that of opposition
control (Choi et al. 1994). The low-pass filter at (k+

x,c, k+
z,c) = (0.038, 0.135) enhances

the control performance for all three input wall variables. Especially, the amount of drag
reduction by ∂w/∂y|w is quite comparable (18 %) to that by opposition control. Although
the controls with low-pass filters at higher cut-off wavenumbers are less effective,
the amounts of drag reduction are still meaningfully large. These results indicate that
the intermediate to high wavenumber components of vpred

10 degrade the drag-reduction
performance, and an elimination of those components enhances the drag-reduction
performance.
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10

FIGURE 11. Energy spectra of v10 from the controlled flow by MP-CNN: (a) streamwise
wavenumber; (b) spanwise wavenumber. Here, vpred

10 and χw’s are from the controlled flow
by MP-CNN trained with the uncontrolled flow, whereas vtrue

10 is from the controlled flow by
opposition control (Choi et al. 1994). Dashed lines in (a) denote k+

x = 0.038, 0.075 and 0.150,
and those in (b) correspond to k+

z = 0.135, 0.270 and 0.540, respectively.

(k+
x,c, k+

z,c)

DR (%) with the
opposition control DR (%) with MP-CNN

χw = pw χw = ∂u
∂y

∣∣∣∣
w

χw = ∂w
∂y

∣∣∣∣
w

Without filter 20 10 5 15
(0.150, 0.540) 20 14 6 14
(0.075, 0.270) 20 15 6 13
(0.038, 0.135) 18 17 11 18

TABLE 1. Variation of the drag-reduction rate (DR) by MP-CNN with the low-pass filter applied
to vpred

10 , together with that by opposition control. k+
x,c and k+

z,c are the streamwise and spanwise
cut-off wavenumbers, respectively.

4.3. Control based on all three wall-variable sensing
In this section we train MP-CNN using all three wall variables (pw, ∂u/∂y|w and ∂w/∂y|w)
with the uncontrolled flow at Reτ = 178 (called MP-CNN3 hereafter) instead of using
one of them as the input. The only difference in this MP-CNN3 from MP-CNN is the
input size, i.e. 32 × 32 × 3 instead of 32 × 32. For the uncontrolled flow, the correlation
from MP-CNN3 is ρv10 = 0.99, which is higher than those from MP-CNN using single χw
(ρv10 = 0.96, 0.92 and 0.96 for χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively), indicating
that more input wall variables provide a higher correlation with vtrue

10 for the uncontrolled
flow. On the other hand, for the controlled flow, the scatter plot of vtrue

10 and vpred
10 from

MP-CNN3 (figure 12a) demonstrates that its correlation (ρv10 = 0.83) is very similar to
those (ρv10 = 0.85 and 0.84) from MP-CNNs with χw = pw and ∂w/∂y|w, respectively,
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FIGURE 12. Scatter plot of vtrue
10 and vpred

10 from MP-CNN3 (controlled flow) and mean pressure
gradient at Reτ = 178: (a) scatter plot; (b) mean pressure gradient. In (a) a black line denotes
the slope of 1, and a red line is a fitting line for the scatter plot and is given at the bottom of the
figure. In (b), black line, uncontrolled flow; black dashes, opposition control (Choi et al. 1994);
red line, control by MP-CNN3; blue dashes, control by MP-CNN with pw; blue line, control by
MP-CNN with ∂w/∂y|w.

but its slope of the fitting line is larger than that from MP-CNN with χw = ∂w/∂y|w and
slightly smaller than that with χw = pw (see also figure 8).

We apply MP-CNN3 to the control with vw = −σvpred
10 (4.1). The amount of drag

reduction by this MP-CNN3 is 12 %, which is higher and lower than those obtained
by MP-CNNs trained with χw = pw and ∂w/∂y|w, respectively (figure 12b). This result
indicates that a good prediction of the correlation by a CNN for uncontrolled flow does
not guarantee a good performance in the present feedback control. A similar inconsistency
has been also observed with a priori and a posteriori tests of a subgrid-scale model in large
eddy simulation (Park, Yoo & Choi 2005).

5. Application to a higher Reynolds number flow

In this section we investigate if MP-CNN trained at a low Reynolds number can maintain
the prediction capability and drag-reduction performance for a higher Reynolds number
flow. A higher Reynolds number considered is Reτ = 578, but MP-CNN is trained at Reτ =
178. We conduct a direct numerical simulation for a turbulent channel flow at Reτ = 578.
The computational domain size is πδ(x)× 2δ( y)× 0.5πδ(z), and the grid resolutions
are 
x+ ≈ 9.5 and 
z+ ≈ 4.7, respectively. These grid resolutions in wall units are very
similar to but not the same as those at Reτ = 178 (
x+ ≈ 8.7 and 
z+ ≈ 4.4). As we
show below, this small difference in wall units does not affect the prediction of v10 at
Reτ = 578. However, the numbers of grid points for the input (χw) and output (vpred

10 ) of
MP-CNN should be taken to be the same as those at Reτ = 178, i.e. 32 × 32 and 16 × 16,
respectively. The input and output of MP-CNN are normalized as in (2.4a,b): χ∗

w = (χw −
〈χw〉)/χw,rms and vpred∗

10 = v
pred
10 /vtrue

10,rms. Another MP-CNN is separately trained with the
flow at Reτ = 578 to estimate the prediction capability of MP-CNN trained at Reτ = 178.
Hereafter, MP-CNN178 and MP-CNN578 represent MP-CNNs trained at Reτ = 178 and
578, respectively.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.690


904 A24-18 J. Park and H. Choi

0

0

z+

0 160 320

160

z+

0 160 320

160

0

z+

0 160 320

160

0

z+

x+ x+ x+
0 160 320

160

0
0 160 320

160

0
0 160 320

160

0
0 160 320

160

0
0 160 320

160

0
0 160 320

160

0
0 160 320

160

2

–2

2

–2

2

–2

v10 / uτo

v10 / uτo

v10 / uτo

(a)

(b) (c) (d)

(h) (i) ( j)

(e) ( f ) (g)

6
χ∗

w

–6

FIGURE 13. Contours of the instantaneous v10 and χw’s at Reτ = 578 (uncontrolled flow):
(a) vtrue

10 ; (b–d) vpred
10 by MP-CNN178; (e–g) vpred

10 by MP-CNN578; (h) pw; (i) ∂u/∂y|w;
(j) ∂w/∂y|w. The input wall variables for (b,e), (c,f ) and (d,g) are χw = pw, ∂u/∂y|w and
∂w/∂y|w, respectively.

Opposition control MP-CNN178 MP-CNN578

χw pw
∂u
∂y

∣∣∣∣
w

∂w
∂y

∣∣∣∣
w

pw
∂u
∂y

∣∣∣∣
w

∂w
∂y

∣∣∣∣
w

DR (%) 19 10 4 15 11 6 14

TABLE 2. Drag-reduction rates with MP-CNN178 and MP-CNN578 at Reτ = 578.

Figure 13 shows the instantaneous v10’s at Reτ = 578 from DNS and predicted
by MP-CNN178 and MP-CNN578 with χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively.
The correlation coefficients between vtrue

10 and vpred
10 ’s by MP-CNN178 with pw, ∂u/∂y|w

and ∂w/∂y|w are 0.94, 0.90 and 0.94, respectively, whereas those by MP-CNN578 are
0.95, 0.91 and 0.95, respectively. Hence, MP-CNN178 predicts not only the magnitude of
v10 but also its spatial distribution at Reτ = 578. This is because the flow near the wall is
well scaled in wall units (Hoyas & Jiménez 2006; Jiménez 2013).

Finally, we apply MP-CNN178 to the control of a turbulent channel flow at Reτ = 578.
The control method is the same as in § 4.1. Table 2 shows the drag-reduction rates from
MP-CNN178 and MP-CNN578. We obtain 10 %, 4 % and 15 % drag reductions by the
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controls based on MP-CNN178 with χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively. These
amounts of drag reduction are nearly the same as those from the controls based on
MP-CNN578. Therefore, the present MP-CNN is found to maintain the prediction and
control capabilities even for a higher Reynolds number flow.

6. Conclusions

In the present study we applied convolutional neural networks to predict the wall-normal
velocity at y+ = 10 (v10) from the spatial information of the wall variables such as
χw = pw, ∂u/∂y|w and ∂w/∂y|w. A CNN was trained with uncontrolled turbulent channel
flow at Reτ = 178 for each of the three wall variables. The correlation coefficients
between true and predicted v10’s (vtrue

10 and v
pred
10 , respectively) were 0.95, 0.90 and

0.95 for χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively, when the convolutional neural
networks were trained to predict v10 at a point from a spatial distribution of χw. When
we further improved convolutional neural networks to predict a spatial distribution of v10

for the elimination of local oscillations that existed in vpred
10 , the correlation coefficients

slightly increased to be 0.96, 0.92 and 0.96, respectively, and the small scales of v10

were better predicted. The improved convolutional neural networks were applied to
the control of turbulent channel flow for skin-friction drag reduction, vw = −σvpred

10 ,
where σ = 0.5 vtrue

10,rms (uncontrolled)/vpred
10,rms. Drag reductions were 10 %, 5 %, 15 % by the

convolutional neural networks with χw = pw, ∂u/∂y|w and ∂w/∂y|w, respectively. Note
that the present approach is different from those of the previous studies (Lee et al. 1997;
Lorang et al. 2008), in that the present approach trained convolutional neural networks
using the uncontrolled flow, while the previous ones used controlled flows for training
neural networks. The lower drag reductions obtained by the present CNN were caused by
its over-prediction of small to intermediate scales of v10. An elimination of these scales
by applying a low-pass filter increased the drag-reduction rates up to 18 % whose amount
is comparable to that of opposition control (Choi et al. 1994). We also applied a CNN
based on all three wall variables (pw, ∂u/∂y|w and ∂w/∂y|w), but the control performance
based on this CNN was lower than that with χw = ∂w/∂y|w alone. Finally, convolutional
neural networks trained at Reτ = 178 were applied to control a higher Reynolds number
flow (Reτ = 578), resulting in similar amounts of drag reduction, showing the prediction
and control capability of the present convolutional neural networks.

In the present numerical study the size of the input wall variable is l+x ≈ 270 and
l+z ≈ 135 with the resolution of 
l+x ≈ 8.7 and 
l+z ≈ 4.4. In experiments, Yamagami,
Suzuki & Kasagi (2005) measured ∂u/∂y|w along the spanwise direction (l+z ≈ 170 with

l+z ≈ 10), Yoshino, Suzuki & Kasagi (2008) conducted a feedback control by measuring
∂u/∂y|w along the spanwise direction (l+z ≈ 560 with 
l+z ≈ 12), and Mäteling, Klaas &
Schröder (2020) measured both ∂u/∂y|w and ∂w/∂y|w in the streamwise and spanwise
directions (l+x ≈ 90 and l+z ≈ 50 with 
l+x ≈ 6 and 
l+z ≈ 6). Therefore, the present
feedback control may be realized experimentally.

In the present study we applied convolutional neural networks to the control of turbulent
channel flow in the framework of opposition control, and, thus, the drag-reduction
performance cannot surpass that of original opposition control (Choi et al. 1994). Thus,
the next step may be to develop a machine learning method, not relying on opposition
control. One of the promising methods is to train a CNN with a reinforcement learning
algorithm (Silver et al. 2016) which finds the best control input (blowing and suction at
the wall) for a given state (wall variables) to get maximum reward (drag reduction). In this
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case, the CNN should be trained during control, and the loss function can be, for example,
skin-friction drag itself or Reynolds shear stress near the wall. The control performance
of this approach may be compared with those of the optimal and suboptimal controls
(Abergel & Temam 1990; Choi et al. 1993; Lee et al. 1998; Bewley, Moin & Temam 2001;
Lee et al. 2001).
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Appendix A. Other machine learning techniques and their prediction performance

We compare the performance of the CNN with that of other machine learning techniques
such as the least absolute shrinkage and selection operator (Lasso), random forest (RF),
and FCNN. The outputs from these techniques are vpred

10 at a point as described in § 2.1.
The Lasso (Tibshirani 1996) is a linear model, which approximates v10 as vpred

10 = w0 +∑n
j=1 wjχwj, where wj’s ( j = 0, 1, 2, . . . , n) are the weight parameters to be optimized.

The loss function is the sum of the quadratic error and L1 norm regularization term
(= λ∑n

j=0 |wj|) with λ = 0.01 in this study. The RF (Breiman 2001) is ensemble-averaged
decision trees, and these trees are composed of if-then-else binary decision nodes. The
depth and number of trees (dRF and NRF, respectively) are major user-defined parameters,
and we select dRF = 30 and NRF = 30. The FCNN is the most basic architecture of the
neural network, and we use four hidden layers with 256 neurones per layer. Table 3
shows that the numbers of hidden layers and neurones used are sufficient for the present
prediction problem. The loss function and method for optimization are the same as those
of the CNN. The user-defined parameters in Lasso and RF are also selected from several
parametric studies.

Figure 14 shows the variations of the quadratic error (the first term on the right-hand
side of (2.5)) and correlation coefficient between vtrue

10 and vpred
10 with the machine learning

techniques and input wall variables. The prediction performance of the Lasso is the worst
among the machine learning techniques investigated, because it is a linear representation.
The RF has better performance than Lasso, but does not significantly improve the
performance. On the other hand, the predictions are greatly improved by the neural
networks, especially by the CNN. The prediction of the CNN is better than that of the
FCNN, because convolution operations are more appropriate to recognize local patterns
of an image-like input than fully connected structures (LeCun et al. 2015).

Appendix B. Parametric study on 1P-CNN

Figure 15 shows the schematic diagram of 1P-CNN for vpred
10 at a point, as described in

§ 2.3. There are many parameters to determine the prediction performance of 1P-CNN,
e.g. the number of the residual blocks, the dimensions of the feature maps and the number
of training data. When the number of training data is sufficient, the CNN with the residual
blocks continues to improve the prediction performance as the number of hidden layers
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(Nhl,Nnr) χw = pw χw = ∂u
∂y

∣∣∣∣
w

χw = ∂w
∂y

∣∣∣∣
w

(1, 1024) 0.80 0.76 0.90
(2, 512) 0.85 0.80 0.92
(3, 256) 0.86 0.80 0.92
(3, 512) 0.87 0.80 0.93
(4, 128) 0.86 0.80 0.92
(4, 256) 0.87 0.80 0.93
(4, 512) 0.87 0.80 0.93
(8, 512) 0.87 0.80 0.92

TABLE 3. Variation of the correlation coefficients (ρv10 ) between vtrue
10 and vpred

10 (FCNNs) with
the numbers of hidden layers (Nhl) and neurones per layer (Nnr).
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FIGURE 14. Prediction performance of machine learning techniques with the input wall
variables: (a) quadratic error; (b) correlation coefficient between vtrue

10 and vpred
10 .
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FIGURE 15. Schematic diagram of 1P-CNN with residual blocks. After one hidden layer behind
the input wall variable, we locate n1, n2 and n3 residual blocks, and change the dimensions of
the feature maps. For example, from n1 to n2 residual blocks, [21, 11, fm] are changed to [11, 6,
2fm]. Note that one residual block consists of two hidden layers, as described in the caption of
figure 3.

increases, unlike the CNN without the residual block (He et al. 2015). Therefore, we first
set the maximum number of training data to be approximately three times (Ntrain = 3.8 ×
106) that used in the ImageNet large-scale visual recognition challenge.

Table 4 and figure 16 show the variations of the correlation coefficient between vtrue
10 and

v
pred
10 and the quadratic error with the parameters of 1P-CNN, respectively. First, we change

the number of the residual blocks from (n1, n2, n3) = (1, 1, 1) to (4, 4, 4). As shown,
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Case Ntrain n1 n2 n3 Nhl fm ρv10( pw) ρv10

(
∂u
∂y

∣∣∣∣
w

)
ρv10

(
∂w
∂y

∣∣∣∣
w

)

CNNref 3.8 × 106 3 2 3 17 16 0.95 0.90 0.95

CNN111 3.8 × 106 1 1 1 7 16 0.92 0.87 0.94
CNN222 3.8 × 106 2 2 2 13 16 0.94 0.89 0.95
CNN444 3.8 × 106 4 4 4 25 16 0.95 0.91 0.96

CNNf 8 3.8 × 106 3 2 3 17 8 0.93 0.88 0.95
CNNf 24 3.8 × 106 3 2 3 17 24 0.95 0.91 0.96

CNN0.5M 0.5 × 106 3 2 3 17 16 0.93 0.86 0.94
CNN1M 1 × 106 3 2 3 17 16 0.94 0.88 0.95
CNN2M 2 × 106 3 2 3 17 16 0.94 0.89 0.95
CNN5M 5 × 106 3 2 3 17 16 0.95 0.90 0.96

TABLE 4. Variations of the correlation coefficient between vtrue
10 and vpred

10 with the parameters
of 1P-CNN. Here, n1, n2 and n3 are the numbers of the residual blocks, fm is the depth of the
feature map after the first hidden layer (see figure 15), Nhl is the number of total hidden layers
and Ntrain is the number of training data (Ntrain = 1 contains 21 × 11 data of χw’s and one data
of vtrue

10 ). We denote by CNNref the reference case for comparison.

0.15

0.10
LQE

0.05

0

0.15

0.10

0.05

0

0.15

0.10

0.05

0
CNN111 CNN222 CNN444 CNNf 8 CNNf 24CNNrefCNNref 0.5 1 2 3.8 5

Ntrain(×106)

(a) (b) (c)

FIGURE 16. Variations of the quadratic error LQE with the parameters used in 1P-CNN:
(a) n1, n2 and n3; (b) fm; (c) Ntrain . ——, pw; - - - -, ∂u/∂y|w; – · – · –, ∂w/∂y|w. Black and
red lines denote LQE’s for the training and test datasets, respectively.

the correlation and quadratic error nearly converge at (n1, n2, n3) = (3, 2, 3) (reference
case), although the quadratic error for ∂u/∂y|w requires slightly more residual blocks for
convergence. Then, we change the depth of the feature map from fm = 8 to 24, showing that
fm = 16 provides reasonable convergence of ρv10 and LQE. Lastly, the number of training
data is changed from 0.5 × 106 to 5 × 106. For χw = ∂u/∂y|w, the quadratic error for the
training data shows a non-monotonic behaviour with increasing Ntrain , which is due to
the overfitting for Ntrain ≤ 1.0 × 106. For all of the wall variables, however, the quadratic
errors nearly converge at Ntrain = 3.8 × 106, indicating that the number of training data
used in the present study is adequate for training the CNNref . Therefore, we conclude that
the parameters used for the CNNref are good enough to predict v10 (ρv10 ≥ 0.9 for all three
wall variables considered).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.690


Machine-learning-based feedback control 904 A24-23

44

0

–44
–43.5 43.50

44

0

–44
–43.5 43.50

44

0

–44
–43.5 43.50

z+

x+ x+ x+
S̄m S̄m

–1 –0.5 0.5
S̄m

–0.4 0.41

(a) (b) (c)

FIGURE 17. Averaged saliency map S̄m from the CNN4: (a) χw = pw; (b) χw = ∂u/∂y|w;
(c) χw = ∂w/∂y|w. Solid circles at the origin are the location of v10.

Appendix C. Saliency map for visualizing vpred
10 with χw

The saliency map Sm, proposed by Simonyan et al. (2013), of vpred
10 at a grid point

with respect to χw at 21 × 11 grid points is defined as Sm = ∂v
pred∗
10 (χ∗

w)/∂χ
∗
w, where

v
pred∗
10 = v

pred
10 /vtrue

10,rms, and χ∗
w is defined in (2.4a). In the case of a linear model, vpred∗

10 =
w0 +∑

wjχ
∗
wj and, thus, Sm is the same as the weight wj distribution. Therefore, the

saliency maps shown here indicate the dominant patterns of the wall variables correlated
with vpred

10 . We use an averaged saliency map S̄m over 3.8 million training dataset due to
unrecognizable patterns in the instantaneous Sm caused by the nonlinear characteristics of
the CNN, where the degree of the nonlinearity depends on the number of hidden layers
(see also Kim & Lee 2020). The S̄m obtained from the present CNN with 17 hidden layers
does not provide any meaningful distribution of χw due to a highly nonlinear nature of
the CNN (see below). Therefore, we additionally train two different convolutional neural
networks with lower numbers of hidden layers (4 and 7 hidden layers) for the visualization
of the correlation. These convolutional neural networks are called CNN4 and CNN7,
respectively, whereas the CNN with 17 hidden layers is called CNN17. The correlation
coefficients between vtrue

10 and vpred
10 ’s from χw = pw, ∂u/∂y|w and ∂w/∂y|w are ρv10 = 0.88,

0.82 and 0.93 from the CNN4, and 0.90, 0.84 and 0.93 from the CNN7, respectively. These
correlations are lower than those from the CNN17.

Figure 17 shows S̄m from the CNN4 for three input wall variables. For χw = pw, the
dominant feature of S̄m is a narrow region of negative S̄m elongated in the streamwise
direction (−13 ≤ x+ ≤ 30 near z+ = 0), and also a region of positive S̄m at x+ = 35.
This distribution of S̄m is quite different from that of the two-point correlation shown
in figure 2(a), although the locations of maximum correlation are similar to each other
(highest S̄m and ρ occur at x+ = 17 and 26, respectively). The distribution of S̄m for
χw = ∂u/∂y|w is quite noisy and is very different from that of the two-point correlation
(figure 2b). It is difficult to extract a meaningful distribution of the correlation from
this figure. The distribution of S̄m for χw = ∂w/∂y|w is also very different from that
of the two-point correlation (figure 2c), in that maximum S̄m occurs at x+ = 35 (but
local maxima at z+ = ±4.4 around x = 0 are also captured). Figure 18 shows the
spatial distributions of S̄m from the CNN7 and CNN17 for χw = pw and ∂w/∂y|w. The
saliency map S̄m for χw = ∂u/∂y|w is not shown here because the patterns are completely
unrecognizable. With increasing the number of the hidden layers, the distribution of S̄m
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FIGURE 18. Averaged saliency maps S̄m from the CNN7 and CNN17: (a) CNN7 with
χw = pw; (b) CNN7 with χw = ∂w/∂y|w; (c) CNN17 with χw = pw; (d) CNN17 with χw =
∂w/∂y|w.
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downsampling layers.

becomes more difficult to interpret, especially for the CNN17. These results indicate that
the saliency maps themselves do not necessarily provide important physical relations due
to the nonlinearity in the CNN, although they may capture some of physical relations for a
certain problem. Therefore, despite the advantage of achieving higher correlations between
vtrue

10 and vpred
10 from more hidden layers, it is more difficult to visualize and understand the

process within the CNN.

Appendix D. Generative adversarial networks

Figure 19(a) shows the structure of the generative adversarial networks (GAN;
Goodfellow et al. 2014) used in the present study. The generator (G) is MP-CNN, and
an additional convolutional neural network (figure 19b) is used for the discriminator (D).
The discriminator takes vtrue

10 or vpred
10 as the input, and prints out a value between 0 and 1 by

using sigmoid function ( f (x) = 1/(1 + e−x)) at the output. The discriminator is used only
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for training MP-CNN and is discarded after training. The GAN uses two loss functions:

LGAN,G = − log
{

D
(
v

pred
10

)}
for (G), (D 1)

LGAN,D = − log
{
D
(
vtrue

10

)}− log
{

1 − D
(
v

pred
10

)}
for (D). (D 2)

In the present study the total loss functions for (G) and (D) are given as Ltotal (G) = LQE +
0.01LGAN,G and Ltotal (D) = LGAN,D, respectively, where

LQE = 1
2NNx Nz

N∑
l=1

Nx∑
i=1

Nz∑
k=1

(
vtrue

10i,k,l
− v

pred
10i,k,l

vtrue
10,rms

)2

, (D 3)

N is the number of dataset, and Nx and Nz are the numbers of grid points for the output
v

pred
10 .
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