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Experimental investigation of the acceleration
statistics and added-mass force of deformable
bubbles in intense turbulence
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We present an experimental investigation of the acceleration statistics and the added
mass tensor of deformable gas bubbles in turbulence. By simultaneously tracking both
bubbles and their surrounding flow in three dimensions, we find two independent ways
of estimating the bubble acceleration: either directly measured from three-dimensional
bubble trajectories or indirectly calculated from the bubble’s equation of motion. When
such an equation is projected onto the bubble frame, the added-mass coefficient becomes
a diagonal tensor with three elements being linked to the standard deviation of bubble
acceleration along three bubble principal axes. This constraint aids in experimentally
determining the added mass coefficient tensor. The obtained trend of CA seems to agree
with Lamb’s potential flow solutions for spheroids, suggesting that the added-mass force
on deformable bubbles can be modelled using spheroids with the same geometry and
orientation. In addition, the probability density function of the relative orientation between
the semi-major axis of deformed bubbles and the slip acceleration in turbulence is shown.
A surprising finding is that the bubble orientation, indicated by the bubble’s major axis, is
not random in turbulence but rather is preferentially aligned with the slip acceleration. The
degree of this alignment increases as bubbles deform more. Because accelerating along
the major axis of a more deformed bubble entails reduced added mass, the acceleration
standard deviation of deformable bubbles increases as a function of the bubble aspect
ratio.

Key words: bubble dynamics, multiphase flow, isotropic turbulence

1. Introduction

From breaking waves (Deane & Stokes 2002) and free surface turbulence (Yu,
Hendrickson & Yue 2020) to chemical and nuclear reactors (Michiyoshi & Serizawa 1986;
Jakobsen 2008), two-phase flows consisting of finite-sized deformable bubbles or droplets
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are ubiquitous in nature and industrial applications. Their complicated interaction with
the surrounding turbulent flows poses significant challenges to both numerical and
experimental methods (Verschoof et al. 2016; Loisy & Naso 2017; Alméras et al. 2019;
Du Cluzeau, Bois & Toutant 2019), as the interface deformation tends to modulate many
hydrodynamic forces experienced by bubbles/droplets. In particular, it is well known
that additional fluid forces tend to act upon an object as it accelerates relative to its
surrounding flow; in turbulence, however, this relative acceleration between the two phases
could originate either from the unsteady turbulent background flow or bubble/droplet
deformation.

To understand the added-mass force, consider a case of fluid suddenly exerting force F
on a neutrally buoyant object in translational motion without rotation (Batchelor 1967).
By applying the potential flow theory, this force can be expressed as a function of the
velocity potential (φ): F = −ρl

∫
(∂φ/∂t)n̂ dA, where ρl is the density of the ambient fluid.

Since the velocity potential can be expressed as ∂φ/∂t = u̇s · ΦΦΦ, this unsteady force can
be written as Fi = −ρl(as)j

∫
Φjni dA, where ΦΦΦ solely depends on the object’s shape.

Because the force Fi is linearly proportional to the object slip acceleration (as)j based
on Newton’s second law, the remaining coefficient (Aij = ρl

∫
Φjni dA) can be treated as

an induced or virtual mass, which must be added to the real mass of the object when
determining its response to a given applied force. The added-mass tensor A can be written
as ρlVbCA, where ρlVb is the mass of the object if filled with outside liquid with density ρl
and CA is the tensorial added-mass coefficient. In addition to the added mass in response
to translational acceleration, the potential flow analysis can also be extended to describe
an object’s response to a sudden torque from the surrounding fluid. In this case, the virtual
moment of inertia (D) must be added to the object’s own moment of inertia (J) when
calculating the resulting object’s angular acceleration (Lamb 1924; Brennen 1982).

For objects moving in unsteady flows with non-negligible viscous effects, in addition
to the added mass (moment of inertia), the vorticity generated on the body surface and
its subsequent diffusion and advection into the surrounding flow could also be important
(Howe 1995). To understand whether the added-mass coefficient will deviate from the
potential flow calculation due to the viscous effect, extensive investigations have been
attempted to quantify the CA of a spherical solid particle (Mei, Lawrence & Adrian 1991)
and bubble (Mei & Klausner 1992) in flows with small-amplitude oscillations, as well as a
rigid spherical particle in an oscillatory (Chang & Maxey 1994) and constantly accelerated
flow (Chang & Maxey 1995). These results all indicated that the added-mass coefficient
(CA) of a sphere is 0.5, independent of the particle Reynolds number, Strouhal number
and, more importantly, the slip (clean gas bubbles) and no-slip (rigid spheres) boundary
conditions. Note that finding that the added-mass force is independent of the object surface
boundary condition allows separating the hydrodynamic effects due to vorticity from
those described by the irrotational flow theory. The added-mass coefficient of objects
with arbitrary shapes calculated from the irrotational potential flow theory (Lamb 1924)
can therefore be directly applied to bubbles moving in turbulence with finite Reynolds
numbers.

After separating the added-mass force from other hydrodynamic forces that may depend
on the particle Reynolds number, the equation of particle motion, including both the
translational and rotational components, can be expressed following the generalized
Kelvin–Kirchhoff equations (Lamb 1924; Howe 1995),

(mbI + A)as + Ω × ((mbI + A)us) = F + (mb − ρlVb)g, (1.1a)

(J + D)as + Ω × ((J + D)Ω) + us × (Aus) = Γ , (1.1b)
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On the added-mass force of deformable bubbles in turbulence

where ΩΩΩ is the instantaneous angular velocity of the bubble, I and J are the unit tensor and
inertia tensor of the object, respectively. Here F and Γ are the force and torque arising from
the surrounding flow. For an oblate spheroid, the added-mass tensor A and added moment
of inertia tensor D are diagonal if they are in the body-axis frame along the particle’s axis
of symmetry. The last term on the right-hand side of (1.1a) accounts for the buoyancy
force with g being the gravitational constant. Here, (1.1a) and (1.1b) are fully coupled to
determine the translational and rotational momentum balance of a particle. They have to
be solved simultaneously along with the Navier–Stokes equation for the surrounding fluid
to determine the bubble motion.

This framework can be used to understand the non-rectilinear path of a bubble rising
in an otherwise quiescent medium (Mougin & Magnaudet 2006; Cano-Lozano et al.
2016; Mathai, Lohse & Sun 2020). A finite-sized bubble rising in a fluid at rest typically
begins with a straight vertical path which develops into a two-dimensional zigzag motion
followed by a spiral circular trajectory. Such a non-rectilinear motion of bubbles results
from the balance between the wake-induced hydrodynamic loads (forces and torques) and
the added-mass effects (Fernandes et al. 2008). Mougin & Magnaudet (2006) utilized
the generalized Kevin–Kirchhoff equation to extract the contributions of different forces
acting on a freely rising spheroidal bubble with a fixed shape. The added-mass force is
important for both zigzag and helix motions. During zigzag motions, the translational
added-mass force along the vertical direction is approximately 13 % of the buoyancy force.
For the helix motion, along the lateral direction, the centripetal added mass (Ω × (Aus))
balances the bubble acceleration in the direction normal to the bubble trajectory, while the
transverse added-mass force opposes the sum of the bubble lateral velocity change and the
buoyancy force projected to the lateral direction. These findings show that the added-mass
force is essential to the non-rectilinear motion of bubbles rising in an otherwise quiescent
aqueous medium.

Evaluating the added-mass force experimentally is quite challenging and it was
often conducted with the assistance of simulation. De Vries, Luther & Lohse (2002)
experimentally investigated an induced oscillation of a bubble, after being tripped
by a wire, while rising in quiescent water. This work showed that, without the
added-mass effects, the observed bubble path oscillations could not be reproduced through
calculations. Furthermore, Lavrenteva, Prakash & Nir (2016) studied the interaction of
air bubbles in low-Reynolds-number Taylor–Couette flows and demonstrated that the
added-mass force is key to explaining the observed separation of neighbouring bubbles
(Prakash et al. 2013).

Although these works clearly articulated the importance of the added-mass force
for bubbles, it remains elusive how to prescribe a correct added-mass tensor for a
deformable bubble subjected to intense turbulent acceleration where the deformation and
bubble orientation are strongly coupled with the surrounding flow. In the current work,
we intend to use simultaneous measurements of both bubbles and surrounding turbulence
to constrain the added-mass tensor of deforming bubbles in intense turbulence. In § 2, we
briefly introduce the experimental set-up and discuss the quantities needed to constrain the
added-mass tensor A experimentally. The analytical solutions for rigid geometries such as
spheres, spheroids and cylinders are discussed in appendix A, which are later used to verify
whether they can be directly applied to determine the added-mass effects experienced
by deformable bubbles, whose shapes and orientations are coupled with turbulence. The
procedure to estimate the added mass, including a constant CA (§ 3.2) and the full tensorial
form CA (§ 3.3) and how they depend on the bubble shape and orientation in turbulence
is introduced in § 3. Section 4 summarizes the paper and presents suggestions for future
research.
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2. Experimental methods

2.1. Experimental facility
Experiments were conducted in a vertical, 2.7-metre-tall water tunnel named V-ONSET
(Masuk et al. 2019b), which was specifically designed and built to study the interaction
of deformable air bubbles with intense turbulence. Nearly homogeneous and isotropic
turbulence (known as HIT) was maintained in this set-up via randomized high-speed
jets with speeds reaching up to 12 m s−1, which were driven by a pressurized water
tank connected to a 3-D-printed device, i.e. the jet array. This array consists of 88 jet
nozzles, each of which is controlled by a dedicated solenoid valve, and the array sits atop
an octagonal test section with a shape designed to provide flat optical windows covering
the tunnel’s perimeter. The mean turbulence energy dissipation rate in the measurement
section was approximately 〈ε〉 = 0.5 m2 s−3, with a Taylor-scale Reynolds number of
Reλ = 346.

Bubbles were injected from the bottom of the test section through a bubble bank
consisting of four islands of capillary needles with two different sizes. Most bubbles in
the test section were around 2–7 mm in diameter, with the majority around 3–4 mm. This
bubble size roughly ranges from 40η to 140η (η is the Kolmogorov scale), which falls
within the inertial range of turbulence. The injected bubbles slowly rise to the centre of
the test section, where they encounter turbulence. To extend the residence time of bubbles
in the interrogation volume, a downward mean flow was set at around 25 cm s−1 to slow
the bubble rise velocity. Additional set-up details and turbulence characteristics can be
found in Masuk et al. (2019b).

The data acquisition system consists of six high-speed cameras that can capture images
at 4000 frames per second at their full resolution of one megapixel. These six cameras were
strategically placed around the centre of the measurement section in order to optimize the
three-dimensional reconstruction of the bubble geometry. Furthermore, the water phase
was seeded with density-matched tracer particles in order to visualize the flows around
bubbles. Each camera has a dedicated light panel that casts the shadows of bubbles and
surrounding tracer particles onto the cameras’ imaging plane, and the two phases were
segmented from images based on their size and contrast. The silhouettes of bubbles
from all six cameras were combined using a recently developed virtual-camera visual
hull method (Masuk, Salibindla & Ni 2019a) to reconstruct their geometries. The tracer
particles were processed through another in-house particle tracking code (Tan et al. 2019,
2020) to analyse a high concentration of tracer particles around each bubble. In total, we
collected approximately 6942 bubble trajectories with 30–40 tracer particles surrounding
each bubble. These data sets will be used to extract the statistics of the bubble acceleration
and the added-mass force.

2.2. Summary of measurable quantities
This section summarizes the physical quantities measured through our experiments.
Figure 1 shows an example bubble trajectory approximately 400 frames in length, where
the reconstructed bubble geometries are plotted once every one hundred frames along the
trajectory. The geometry can be used to acquire the bubble size (D), aspect ratio (χ =
r1/r3) and the orientation of both semi-major (r̂1) and semi-minor (r̂3) axes. Moreover,
the three-dimensional locations of surface points on the reconstructed geometry can be
averaged to obtain the centre of mass of the bubble, which was tracked over time to
construct the bubble trajectory.
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Figure 1. Reconstructed three-dimensional trajectory of a bubble (D = 5.1 mm) over 0.1 s (400 frames). The
three dimensional (3-D) bubble geometries are shown every hundred frames as green blobs. The grey arrows
protruding from the centre of these blobs represent the instantaneous bubble velocities. A sphere around each
bubble represents a search volume that is used to seek tracer particles, whose locations for one time instant are
marked as yellow dots. Their velocity up

l are indicated in the zoomed-in picture. The blue arrows on one bubble
represent all the relevant forces experienced by the bubble.

To obtain the bubble velocity (ub) and acceleration (ab) along their trajectories,
each bubble track is then convoluted with a Gaussian kernel (Mordant, Crawford &
Bodenschatz 2004), which acts as a low-pass filter that reduces the positional uncertainties
to allow accurately estimating velocity and acceleration. The acceleration standard
deviation is sensitive to noise and the selected filter length, and we follow the procedure
introduced by Voth et al. (2002) to justify the filter length used. In figure 2(a), the standard

deviation of the bubble acceleration
√

〈a2
b〉 in the horizontal (x) direction is shown as

a function of the temporal filter width (τ ) normalized by the Kolmogorov time scale,

τη = 1.4 ms. The initial sharp decay of
√

〈a2
b〉 is due to the noise removal, while the later

gradual change is due to the signal being smoothed. These results are consistent with
previous findings (Voth et al. 2002; Ni, Huang & Xia 2012). A correct filter length can be
obtained by fitting the data with a superposition of a power law and an exponential function
to account for the fast and slow decays, respectively. The fit is shown as a solid line, while
the contribution of the exponential term alone is shown as a dashed line. The vertical
intercept of the dashed line at τ/τη = 0 provides the best estimate of the acceleration
standard deviation. Based on this value, the filter length of τ/τη = 0.58 was consistently
used to smooth the bubble trajectories.

The same procedure can be repeated to calculate the tracer velocity (up
l ) and acceleration

(ap
l ), where the superscript p represents individual tracer particles to distinguish them

from the locally averaged fluid properties that will be introduced later. In figure 2(a), the
same filter-length test has also been performed for tracer particles, and the results are very
close to bubbles. Therefore, the same filter length was adopted for both phases. Finally,
figure 2(b) shows the probability density functions (p.d.f.) for ab and ap

l in two different
directions, which both exhibit a stretched exponential shape that is consistent with previous
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Figure 2. (a) The standard deviation of the bubble and flow acceleration versus the filter length. For a
description of the solid lines and the dashed lines, please see the text below. (b) The distribution of the
normalized bubble and tracer accelerations in the horizontal direction using a fixed filter width of τ = 0.58τη.
The dashed line represents a Gaussian function with the same variance as the corresponding data.

works (Voth et al. 2002; Volk et al. 2008; Prakash et al. 2012). The acceleration p.d.f.s of
both finite-sized bubbles and small tracer particles are surprisingly close to each other,
which may be due to some competing effects. As shown by Qureshi et al. (2007) and
Brown, Warhaft & Voth (2009), for finite-sized neutrally buoyant particles, although the
acceleration p.d.f. shape changes little (except at tails Volk et al. (2011)) with finite size
effects, the acceleration variance should decrease as the particle size increases. On the
other hand, small microbubbles with a significant density difference but no finite-size
effect seem to experience large acceleration variance in turbulence (Volk et al. 2008;
Mathai et al. 2016). These two competing effects may neutralize each other, resulting in
finite-sized bubbles and tracers sharing similar acceleration p.d.f.s.

Figure 1 illustrates that, at each time instant along a bubble trajectory, a search volume
(grey semitransparent sphere) of radius Ds/2 (Ds = 4D, where D is the equivalent bubble
diameter) is used to seek tracer particles with velocity up

l in the vicinity of a bubble with its
centre of mass at location x0. Applying the Taylor expansion allows decomposition of the
flow field within this range into leading terms: ul(x0) and Ãijx

p
j , where ul = ∑n

p=1 up
l (x0 +

xp)/N is the local mean flow averaged over N selected tracer particles. This procedure can
be repeated to calculate the average flow acceleration al = ∑n

p=1 ap
l (x0 + xp)/N. Here Ãij

is the velocity gradient tensor around the bubble, and the tilde indicates that this gradient is
coarse grained at the bubble size. The symmetrical component of Ãij is the coarse-grained
strain-rate tensor, S̃ij . In addition, xp is the separation vector directed from the bubble
centre at x0 to the pth tracer particle. Here Ãij can be solved if there are four particles around
a bubble. On average, 30–40 particles were used to perform least squares fits by seeking
the minimum value of the squared residuals

∑
p[up

i − Ãijx
p
j ]2 (Pumir, Bodenschatz & Xu

2013; Ni et al. 2015). Several enforced criteria ensure that only the results with reliable
Ãij will be included in the statistics (Masuk, Salibindla & Ni 2020b). Due to the limited
particle concentration, applying a search diameter of Ds tends to underestimate Ãij around
a bubble with size D due to the larger filter effect (Ds > D). Because both Ds and D fall
in the inertial range, assuming a constant local energy dissipation rate enables correcting
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Ãij with a factor of (Ds/D)2/3 to account for the scale difference. Additional details using
different Ds to confirm this correction have been reported by Masuk et al. (2020b).

3. Results and discussion

3.1. Governing equation
To determine the motion of a deformable bubble in turbulence rigorously using the
generalized Kelvin–Kirchhoff equation (1.1), the force (F ) and torque (Γ ) from the
surrounding flow should be calculated by integrating the hydrodynamic stresses over the
entire bubble surface at each time instant along its trajectory. This calculation remains
impractical, however, due to the challenges of measuring the full three-dimensional flow
velocity very close to the bubble surface at a sufficiently high resolution. Instead of directly
measuring the total force, this paper expands the force on the right-hand side of (1.1a) by
following the formulation provided by Magnaudet & Eames (2000) for spherical bubbles
under the point-particle assumption, without considering the contribution of rotation.
Furthermore, the original equation is adapted for deformable non-spherical bubbles by
maintaining the tensorial form of the added-mass coefficient,

Vbρb
dub

dt
= ρlVbCA

(
Dul

Dt
− dub

dt

)
+ ρl

2
AbCD(ul − ub)|ul − ub| − Vb∇Pw + F h

+ ρlCL(ul − ub) × (∇ × ul) + Vb(ρl − ρb)gêz, (3.1)

where d/dt and D/Dt represent the material derivative along the bubble and tracer
Lagrangian trajectories, respectively. The five terms on the right-hand side of (3.1)
represent the drag (FD), pressure (FP), history (Fh), lift (FL) and the buoyancy (FG) forces,
respectively. Here, ∇Pw is the pressure gradient of flows around the bubble, ul is the
velocity of the unperturbed ambient flow taken at the centre of the bubble if the bubble
were absent, and us = ub − ul is the bubble slip velocity. The equation also contains other
constants, including the gravitational constant g and the density of water and gas, i.e. ρl
and ρb. Here Vb is the bubble volume and Ab is the projected area of a volume-equivalent
sphere. In addition, CD and CL are the drag and lift coefficients, respectively, and CA is
the added-mass coefficient tensor. In the previous work by Salibindla et al. (2020), the CD
and CL for bubbles with contaminated interfaces in intense turbulent environments were
determined based on the mean bubble and flow velocities, and they are

CD = max(24/Reb(1 + 0.15Re0.687
b ), min( f (Eo), f (Eo)/We1/3)), (3.2)

CL =

⎧⎪⎨
⎪⎩

2.671We3/5 We < 0.1,

1.25 − 1.608We3/5 0.1 < We < 0.9,

−0.23 0.9 < We,

, (3.3)

where f (Eo) = 8Eo/3(Eo + 4) is a function of the Eötvös number, i.e. Eo = (ρl −
ρb)gD2/σ . The bubble Reynolds number and Weber number are defined as Reb =
|ub − ul|D/νl and We = 2.13ρ(εD)2/3D/σ , respectively (2.13 is the Kolmogorov
constant for the second-order longitudinal structure function). Here We determines
the turbulence-induced deformation. The bubble size (D) was determined from the
three-dimensional shape reconstruction for each time instant along a bubble trajectory,
and instantaneous local flows and bubble velocity were used to calculate Reb and We.
The local Weber number is determined using We = ρ(λ̃3D)2D/σ , where λ̃3 is the
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smallest eigenvalue of the coarse-grained velocity gradient tensor (Ãij ) calculated around
each bubble. As shown in a previous work by Masuk et al. (2020b), this provides a
reliable method to evaluate the instantaneous We. These dimensionless numbers were then
substituted in (3.2) and (3.3) to determine the instantaneous drag and lift coefficients,
respectively.

Equation (3.1) ignores the contribution from the bubble rotation. For a deformable
bubble moving through water, two mechanisms enable bubbles to reorient: rotation or
deformation. In a quiescent medium, bubbles can reorient via rotation driven by the
unbalanced-wake-induced force. For finite-sized bubbles deforming in intense turbulence,
the reorientation was found to be dominated by deformation along a different direction
(Masuk et al. 2020a). Therefore, in accordance to this recent finding, the rotation of
the bubble (Ω) throughout the rest of this paper is assumed to be zero. As a result, the
hydrodynamic torque, the added moment of inertia and corresponding equation (1.1b) are
ignored for simplification.

After replacing the slip acceleration and the added-mass tensor A with as = dub/dt −
Dul/Dt and A = ρlVbCA, respectively, (3.1) can be rearranged to isolate the bubble
acceleration, which yields

dub

dt
= [Vb(ρbI + CAρl)]−1 ·

[
ρlVbCA · Dul

Dt
+ Vb(ρl − ρb)gêz

+ρl

2
AbCD(ul − ub)|ul − ub| + ρlCL(ul − ub) × (∇ × ul) − Vb∇Pw

]
, (3.4)

where [Vb(ρbI + CAρl)]−1 represents the inverse of the total mass tensor that includes
both the actual mass VbρbI and the added mass tensor VbCAρl. Because the determinant
of the total mass tensor is always non-zero, the tensor is invertible. The right-hand
side of (3.4) essentially calculates the dot product of the inverse of the total mass
tensor with the total hydrodynamic force (vector) applied on the bubble, which results
in the bubble acceleration vector dub/dt matching the left-hand side. Within the total
hydrodynamic force, we ignore the history forces acting on the bubble based on the
previous works by Takagi & Matsumoto (1996) and Magnaudet & Eames (2000), who
suggested that the effects of the history force are typically negligible for bubbles with a
large-Reb (Reb > 50). For finite-sized bubbles considered in this paper, the Reb ranges
between 200–4000, significantly greater than 50. Therefore, the history force is negligible
for bubbles considered in our studies. Most quantities on the right-hand side of (3.4)
can be directly determined for any given bubble trajectory (an example is shown in
figure 1), including the instantaneous velocities (ub, ul) and accelerations (ab = dub/dt,
al = Dul/Dt) of the bubbles and surrounding flow. The velocity gradients (∇ × ul) can
also be estimated based on the discussions in § 2.2. Instantaneous CD and CL can be
calculated from (3.2) and (3.3), respectively, based on Reb, Eo and We calculated from
instantaneous bubble and flow information. As aforementioned in § 2.2, ul, al and ∇ × ul
can be determined using the velocities of several tracer particles located within a distance
of two times the bubble diameter away from the centre of the bubble. If CA is known, the
entire right-hand side of (3.4) can be calculated for each bubble trajectory.

3.2. Constant CA

Equation (3.4) provides a method to estimate the added-mass coefficient since both sides
of the equation can be measured simultaneously and independently from the two phases,
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Figure 3. The time series of the vertical acceleration of (a) a weakly deformed bubble and (b) a strongly
deformed bubble. In conjunction with the measured results, the time series of the bubble acceleration calculated
from (3.4) using CA = 0.5, accompanied by the aspect ratio time trace, is also shown.

one side from the bubble statistics and the other side from the flow statistics, with the
only unknown being the added-mass coefficient. Because this equation should apply for
bubbles of any shape, the first step is to test bubbles with weak deformation since their
added-mass coefficient should be close to that of a sphere. The CA for a spherical particle
with three axes of symmetry can be simplified to a constant (CA). Lamb (1924) (article
92) analytically solved the added-mass coefficient of a sphere accelerating through fluid
following a rectilinear path and found that CA = 0.5 in the direction of motion. This
finding was followed by experiments (Sridhar & Katz 1995; Friedman & Katz 2002;
Kendoush, Sulaymon & Mohammed 2007) and numerical simulations (Magnaudet 1997;
Sankaranarayanan et al. 2002; Maliska & Paladino 2006), where the value of CA = 0.5
was consistently reported or used in different flow conditions. This work can be used to
examine whether our experiments produce consistent results with this expected value as
the bubble shape approaches the spherical limit.

Figure 3 shows two example time traces of the bubble’s vertical acceleration in
conjunction with their respective aspect ratio. For both cases, the bubble acceleration
measured from the bubble trajectory is shown as black circles, while the red dashed
lines indicate the calculations based on the right-hand side of (3.4) by using CA =
0.5. For the weakly deformed case (figure 3a), it is evident that the time trace of
the calculated ab is close to that of the measured results. This agreement suggests
that, despite the non-negligible measurement uncertainties of the second-order quantities
(e.g. velocity gradients and acceleration), this framework seems to successfully predict
ab. The assumption of using the added mass coefficient close to 0.5 seems to be
reasonable for bubbles close to the spherical shape. Furthermore, compared with
the weakly deformed case, applying CA = 0.5 seems to underpredict the acceleration
fluctuations of the strongly deformed bubble, as shown in figure 3(b). This indicates
that the acceleration fluctuation and added-mass coefficient may be coupled, and
both may change as a function of the bubble deformation. Strictly speaking, (3.4)
should only be applied to microbubbles with their sizes below the Kolmogorov scale
immersed in a surrounding linear flow. Here, we assume that this equation may
also work for finite-sized bubbles with their surrounding flow coarse-grained at the
bubble size.
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Figure 4. The distribution of (a) the horizontal bubble acceleration and (b) the horizontal bubble velocity,
obtained from the measured data (red square) and calculated from (3.4) with two different CA values of 0.3
(open circle) and 0.5 (open square).

Before discussing the dependence of CA on the geometry of finite-sized deformable
bubbles, we aim at identifying a statistical quantity that can be used to constrain CA. Since
CA is closely related to the acceleration fluctuation, the p.d.f.s of one component of the
calculated accelerations using two different values of CA are shown in figure 4(a). For
both CA, the calculated p.d.f.s exhibit a stretched exponential form, which is consistent
with our observations and other previous measurements of fluid acceleration in turbulence
(Voth et al. 2002; Volk et al. 2008; Prakash et al. 2012). Applying CA = 0.5 appears
to produce a p.d.f. that agrees with the measured results. Since CA = 0.5 was derived
for rigid spherical particles, this agreement suggests that a large portion of our bubbles
are not significantly deformed, which is consistent with the fact that 81 % of the bubbles
have an aspect ratio smaller than χ = 2. Despite the overall good agreement, some minor
deviation is observed at the tails for large acceleration, which indicates that CA = 0.5
may not work well for bubbles experiencing strong acceleration. This observation will
be further discussed later in this section. Moreover, the p.d.f. calculated by employing a
constant CA = 0.3 seems to spread wider about the central value, thereby overpredicting
the fluctuation of the bubble acceleration. This is expected since a smaller CA suggests
a reduced effective bubble inertia; under the same hydrodynamic forces, bubbles tend to
experience greater acceleration.

The same calculation is repeated for the p.d.f. of the bubble velocity to examine its
sensitivity to CA. Like the acceleration, the bubble velocity can be determined from
their trajectories or by integrating the calculated bubble acceleration from (3.4). The
p.d.f.s of one component of the horizontal bubble velocity calculated from such an
integration using both CA = 0.3 and 0.5 are shown in figure 4(b). Both p.d.f.s agree
with each other and the measured results, suggesting that the velocity p.d.f.s is less
sensitive to the value of CA. This is expected since many events with strong acceleration
are probably smoothed during integration and thus not reflected in the velocity p.d.f..
Similar findings were also reported by Calzavarini et al. (2012) for neutrally buoyant
finite-sized particles, which suggested that the acceleration statistics are dominated by
the inertial effects while the velocity statistics are dominated by the drag and history
effects.
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Figure 5. The standard deviation of the bubble acceleration along (a) the horizontal (x) and vertical (z)
directions in the laboratory frame and (b) the semi-major (r̂rr1) and semi-minor (r̂rr3) in the bubble body-axis
frame, normalized by the gravitational constant g, versus the bubble aspect ratio χ . The shaded areas in
panel (b) represent the range of acceleration standard deviation calculated by assuming that the added-mass
coefficient CA follows the potential flow solutions either for prolates or oblates.

3.3. Tensorial form of the added-mass coefficient
Based on the previous tests, we conclude that CA can be constrained by the acceleration

variance. The
√

〈a2
b〉 in both horizontal and vertical directions are shown in figure 5(a)

as a function of the bubble aspect ratio χ , where χ represents the track-averaged bubble

aspect ratio. The
√

〈a2
b〉 of both directions increase from approximately ∼2g to ∼10g. This

large value of
√

〈a2
b〉 can be attributed to the strong ambient turbulence around bubbles

with an average energy dissipation rate of 0.5 m2 s−3 (Masuk et al. 2019b). No significant
difference in acceleration between the two directions is observed since the buoyancy effect
is overwhelmed by the intense turbulence. The error bars in this figure were calculated

by dividing the data set into six equal subsets and calculating
√

〈a2
b〉 among these them,

similar to the work by Voth (2000).
Despite establishing a connection between the standard deviation of acceleration with

the added-mass coefficient, we have thus far been limited to a constant CA, which only
works for spherical particles. For deformable bubbles, the added-mass coefficient (CA) is
a full 3 × 3 second-rank tensor, where each element must be determined.

To address this challenge, we examine (3.1) and (3.4), which are formulated using the
added mass A and its coefficient CA defined in the laboratory frame with three coordinates
(êx, êy, êz). In a frame (R) aligned with the body axes of the bubble (r̂1, r̂2, r̂3), the
added-mass coefficient tensor can be denoted as CA

R. When bubbles undergo only affine
deformation, their shapes will remain spheroid with geometric symmetries. The CA

R can
then be simplified into a diagonal matrix (Newman 1977), i.e. CA

R ≡ diag(Cr1
A , Cr2

A , Cr3
A ),

with the superscripts (r1, r2, and r3) denoting one of the three principal bubble axes. The
two tensorial coefficients CA and CR

A and their corresponding frames can be connected
via a rotation matrix R, following CA = RT CA

R R. Our experiments provided a full
three dimensional (3-D) reconstruction of each bubble geometry, from which the bubble
body-axis frame (R) and the rotation matrix R at each time instant can be determined.
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In the bubble body-axis frame, (3.4) can be explicitly written as three independent
equations, linking each diagonal component of CCCR

A , i.e. Cr1
A , Cr2

A , Cr3
A , to the bubble

acceleration along one of the three bubble principal axes, i.e. ab,r1 , ab,r2 , ab,r3 , respectively.
Because both the bubble acceleration (ab) and its principal axes (r̂i, i = 1, 2, 3) can
be determined using our measurements, the projected acceleration ab,ri can be easily
calculated by using ab · r̂i for every bubble at every instant, which enables obtaining the
bubble standard deviation projected along the three bubble principal axes.

Figure 5(b) shows the bubble acceleration standard deviation projected along the
bubble semi-major (ab,r1) and semi-minor axes (ab,r3), respectively. Although the standard
deviations of ax and az in the laboratory frame appear to be very close to each other for all

bubble aspect ratios considered,
√

〈a2
b,r1

〉 is systematically larger than
√

〈a2
b,r3

〉, and their
differences increase as χ grows. This difference brings confidence to our experiments,
because if the bubble orientation is not well reconstructed, it is likely that the acceleration
standard deviations along both bubble principal axes do not show any difference, as with
what is shown in the laboratory coordinates along the x and z axes. In addition, because
the added-mass coefficient along the major axis accompanied by a smaller frontal area
(end-on configuration) should be smaller, the acceleration standard deviation should be
larger, which is consistent with the trend observed in figure 5(b).

The standard deviation of each acceleration component can be used to constrain one
respective component of CR

A , for which purpose an iterative fit was put forward. Consider
Cr1

A for example, where an initial guess of Cr1
A = 0.5 was used. For each iteration, Cr1

A was
updated by adding its value from the previous iteration with a small step. The acceleration
standard deviation was then calculated from the right-hand side of (3.4) by replacing CA
with a constant of Cr1

A and projecting all other terms to the direction of r̂rr1, and the resulting
acceleration was naturally in the direction of r̂rr1. The total squared difference between
the calculated acceleration standard deviation and those measured directly from bubble
trajectories was used to correct Cr1

A . The iteration continued until the difference using the
two independent methods ceased decreasing, and the same procedure was repeated for
each bubble aspect ratio χ . For each χ , in addition to the mean value, the uncertainty
of CA is estimated by repeating the same iterative fit to the upper and lower bounds of√

〈a2
b,r1

〉 in figure 5(b).

The calculated Cr1
A is shown as closed circles with error bars in figure 6. In the limit of

spherical and isolated bubbles, CA should be equal to 0.5. Although CA seems to have a
trend of getting close to 0.5 as χ approaches one, it is slightly larger than 0.5 at χ = 1.25.
One explanation for such a result is that bubbles in our experiments are not isolated;
the bubble volume concentration (φ) is kept close to 2 %, striking a balance between
acquiring sufficient data within an affordable period and possible contamination due to
bubble–bubble interaction. At this concentration, it has been shown that the bubble–bubble
interaction could entail non-negligible effects on CA with the largest reported value close
to CA = 1 at φ = 2 % by Pudasaini (2019) and the smallest value close to CA = 0.6 by
Sankaranarayanan et al. (2002).

In addition, CA seems to gradually decrease as χ increases, and we seek solutions from
Lamb’s potential flow models to understand this trend. Applying these models, however,
requires knowing whether the shape of deformed bubbles in turbulence follows prolate or
oblate spheroids as well as along which direction they are accelerating. Prolate and oblate
spheroids represent ideal approximations at extremes, but a typical deformed bubble is
shaped somewhere in-between. If a criterion of r2 smaller or larger than (r1 + r3)/2 is
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Figure 6. The added-mass coefficient tensor CA versus the bubble aspect ratio χ . Symbols represent one
diagonal element of CA along the bubble semi-major axis. Four lines indicate different elements of CA
calculated based on the Lamb’s model for prolates or oblates.

used to separate prolate from oblate bubbles in our results, approximately 59 % bubbles
are close to prolate spheroids, slightly higher than the remaining 41 % oblate-like bubbles.

Figure 6 shows four lines calculated using the Lamb’s potential flow model for prolate
and oblate spheroids accelerating either end-on (along r̂rr1) or broadside-on (along r̂rr3)
((A 1) in appendix A). All four lines begin from CA = 0.5 when χ = 1, as expected. For
either prolate or oblate spheroids accelerating end-on, CA reduces systematically as χ

increases. In this case, an increasing χ is equivalent to a reducing frontal area as spheroids
accelerate through fluid, which results in a smaller volume of fluid that needs to be
accelerated and hence a smaller CA. The same principle also applies to the opposite limit,
where spheroids accelerate broadside-on. In this case, as χ becomes larger, CA increases
along with the frontal area. In addition, CA of oblate spheroids increases more sharply
compared with that of prolate spheroids due to the difference in their broadside-projected
areas. For Cr1

A , only two lines for the end-on configurations are relevant. It is evident that

the acquired Cr1
A , constrained by

√
〈a2

b,r1
〉, agrees with these two lines. This implies that

the potential flow solution can accurately calculate the added mass coefficient, even for
deformable bubbles, at least for those accelerating end-on.

We notice that the error bars of Cr1
A are not symmetric around the mean, unlike those

for the measured
√

〈a2
b,r1

〉, because Cr1
A is inversely proportional to the bubble standard

deviation. When the lower limit of acceleration standard deviation approaches zero, the
estimated Cr1

A moves closer to infinity. The same argument applies also to the other
two components of the added mass tensor, Cr2

A and Cr3
A . Although both of them can be

determined following the same procedure for Cr1
A , their acceleration standard deviations

are so small that any small errors translate to large error bars in the plot of CA. In fact,
the error bars of Cr3

A , especially for large χ , are so large that they cover almost the
entire figure. Instead of showing them in figure 6, we decided to compare them with the
Lamb’s model prediction using the acceleration standard deviation in figure 5(b).
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Applying Lamb’s model to the right-hand side of (3.4) requires us to classify bubbles
into prolate or oblate spheroids. To simplify the problem, we assume all bubbles
are either prolate (CA

R ≡ diag(Cpe
A , Cpb

A , Cpb
A )) or oblate (CA

R ≡ diag(Coe
A , Coe

A , Cob
A )),

and the exact formulations of three diagonal values can be found in appendix A.
The calculated acceleration standard deviations along r̂rr1 and r̂rr3 are shown as the
two shaded areas in figure 5(b) with the upper bounds of both areas showing results
from all-prolate calculations and the lower bounds indicating results from all-oblate
calculations.

It is clear that the measured acceleration standard deviation along r̂rr1 falls right in the
middle of the shaded area, confirming that the measured results agree with the potential

flow calculation. But the measured
√

〈a2
b,r3

〉 seems to be higher than the predicted one from
the potential flow theory for large aspect ratios, χ > 2.25. One possible explanation is that
bubbles will experience necking when they undergo large deformation, which cause the
geometry to deviate away from spheroids by having a small broadside projected area. As a
result, the acceleration standard deviation along the bubble semi-minor axis may become
slightly larger than the one predicted by the potential flow theory assuming spheroidal
bubble shapes. In addition, we cannot completely rule out the possibility that bubbles with
larger aspect ratios may be under the influence of rotation based on (1.1). This could be

another reason for the observed difference between the measured and calculated
√

〈a2
b,r3

〉
at large χ .

Finally, in addition to CA, the added-mass force is also sensitive to the relative
orientation between the slip acceleration (aaas) with the bubble principal axes, because
this relative orientation determines if the bubble is preferentially accelerating end-on or
broadside-on and the final magnitude of the added-mass force. Figure 7 shows the p.d.f.
of the alignment between the bubble semi-major axis (r1) and slip acceleration (as), i.e.
〈âs · r̂1〉, for four different aspect ratios. If their orientations are completely random, the
p.d.f. of the dot product of the two unit vectors should follow a uniform distribution. A
peak at around zero would suggest a perpendicular orientation, whereas a peak close to
one would indicate an alignment between the two unit vectors. It can be seen that, in
figure 7, a consistent preferential alignment between the bubble semi-major axis with the
slip acceleration is observed for all aspect ratios considered, suggesting that bubbles prefer
to accelerate along their semi-major axis (end-on). Moreover, such a preference seems to
increase with χ as strongly deformed bubbles align better with the slip acceleration. Since
an end-on configuration implies a smaller added-mass coefficient and larger acceleration
fluctuation, this preferential alignment explains why the acceleration standard deviation
along both horizontal and vertical directions in the laboratory frame increases as a function
of the bubble aspect ratio.

It is surprising to find that the preferential alignment seems to be opposite to what
has been observed for bubbles rising in an otherwise quiescent medium, in which the
bubble semi-minor axis, instead of semi-major axis, is preferentially aligned with the
slip acceleration direction (Magnaudet & Eames 2000). This difference can be attributed
to the relationships among bubble deformable geometry, slip velocity, turbulent strains
and slip acceleration. Note that bubble deformation is not determined by the added mass
force; instead, it is driven by the gradient of dynamic pressure acting on its interface,
including the contribution of both the slip velocity and turbulent strains. As a result, the
bubble semi-minor axis shows preferential alignment with the slip velocity direction in
both a quiescent and a turbulent aqueous medium. It just happens that the slip velocity
and slip acceleration align with each other in a quiescent medium, which is not the
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〈âs . r̂1〉
Figure 7. Probability density function of the cosine of the angle between the bubble semi-major axis (r̂1) and

the slip acceleration (âs) for bubbles with different aspect ratios χ .

case in turbulence. In turbulence, as bubbles are deformed and elongated along its
major axis, the acceleration along its major axis tends to increase, which dominates
the slip acceleration. This explains the observed preferential alignment between the slip
acceleration and the bubble semi-major axis.

4. Summary

Bubbles in turbulence are subjected to multiple hydrodynamic forces that are sensitive
to the bubble geometry. Among them, the unsteady forces, such as the added-mass force,
have received very little attention due to the technical challenges in reliably extracting them
through experiments, despite their potential importance in turbulent multiphase flows. To
address this problem, we developed an experimental framework combining a vertical water
tunnel that produces intense turbulence with a diagnostic system that can simultaneously
measure gas bubbles and their surrounding turbulence in 3-D.

The lift and drag coefficients in the governing equation of motion for bubbles were
determined from the bubbles’ velocity and surrounding flow for different Reynolds
numbers and Weber numbers by Salibindla et al. (2020). Using these two coefficients, the
instantaneous acceleration of bubbles can be estimated from the surrounding flow velocity
and velocity gradients coarse-grained at the bubble size. The bubble acceleration can also
be directly extracted using the bubble trajectories. These two independent estimations of
the bubble acceleration enable constraining the added mass coefficient. Reliably extracting
the added-mass coefficient requires accurately measuring the turbulent velocity gradients,
acceleration of both phases and bubble reconstructed shapes in 3-D, which has really
pushed the 3-D flow measurements to the extreme.

The added-mass coefficient is a 3 × 3 tensor, which becomes a diagonal tensor with
only three unknown elements in the bubble body-axis frame. By projecting the entire
equation of motion onto the bubble principal axes, each diagonal element in the added
mass coefficient tensor can be uniquely linked to the standard deviation of the bubble
acceleration along each respective bubble axis, which can be measured through our
experiments with access to both bubble acceleration and their 3-D shapes. The acceleration
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Figure 8. Schematics of four configurations of accelerating spheroids with known analytical solutions of CA,
including (a) a prolate spheroid and (b) an oblate spheroid, accelerating along their semi-minor (r3) axis
(broadside-on) or semi-major (r1) axis (end-on).

standard deviation along the bubble semi-major axis increases with the bubble aspect
ratio χ . This shows that the added-mass coefficient along the bubble semi-major axis
for all values of χ can be determined, which seems to gradually decrease as χ increases.
The acquired dependence agrees with the prediction from the potential flow theory for
spheroids with the same aspect ratio accelerating end-on. This agreement can also be
extended to other axes, such as the bubble minor axis, although less accurately due to the
potential necking effect.

An additional finding is that deformed bubbles preferentially accelerate along their
semi-major axis, and this preference seems to increase with the bubble aspect ratio, which
suggests that bubbles tend to accelerate in turbulence end-on. This configuration results in
a smaller frontal area and less fluid volume being accelerated, which in turns increases
the bubble acceleration standard deviation. This explains why the observed bubble
acceleration standard deviation in both vertical and horizontal axes in the laboratory frame
rises as a function of χ .

Acknowledgements. We acknowledge the financial support from the National Science Foundation under the
award numbers: 1854475 and CAREER-1905103.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Rui Ni https://orcid.org/0000-0002-7178-1479.

Appendix A. Analytical solutions of the added-mass coefficient

Although the analytical solutions are available for both added mass and added moment
of inertia tensors, here we only consider the added-mass tensor as the bubble rotation is
ignored. A spheroid (oblate or prolate) or a cylinder is the simplest geometry to consider
after a sphere. A potential flow solution for a cylinder accelerating perpendicular to its long
axis shows that the added mass is equal to the mass of the fluid displaced by the cylinder
(Brennen 1982), i.e. CA = 1. Furthermore, extensive work has also been conducted to
analyse the dependence of added mass for a cylinder under oscillating flows to understand
the effect of vortex shedding on CA (Sarpkaya 1975). In addition to a cylinder, Lamb (1924)
analytically solved CA for both a prolate spheroid and an oblate spheroid in articles 114 and
373 of his book, respectively. For such geometries, CA was found to be a function of the
object aspect ratio and whether the spheroid particle is accelerating along its semi-major
(r1) axis (end-on) or its semi-minor (r3) axis (broadside-on). Figure 8 illustrates a prolate
spheroid and an oblate spheroid moving end-on or broadside-on. The analytical solutions
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for these four cases: prolate end-on (pe), prolate broadside-on (pb), oblate end-on (oe) and
oblate broadside-on (ob) are given as

Cpe
A = α1/(2 − α1); Cpb

A = β1/(2 − β1); Coe
A = α2/(2 − α2); Cob

A = β2/(2 − β2),
(A1a–d)

where, α1 = (1 − e2)/e3(ln((1 + e)/(1 − e)) − 2e), β1 = (1 − e2)/e3(e/(1 − e2) − 1/2
ln((1 + e)/(1 − e))), α2 = 2/e3(e − √

1 − e2 sin−1 e), β2 = 1/e3(
√

1 − e2 sin−1 e −
e(1 − e2)). Parameter e =

√
1 − 1/χ2 is the eccentricity of an object along its meridian

and χ = r1/r3 is the object aspect ratio.
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