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Stability of momentumless wakes
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The caudal fin of swimming animals can be modelled as a thrust-producing flapping
foil. When considered alone, such a foil produces on average a jet wake with a
positive net momentum. It has been argued that the instability characteristics of these
averaged wakes are linked to the propulsion efficiency of swimming animals. Here,
we reconsider this question by taking into account both the thrust and the drag
exerted on a self-propelled swimming body. To do so, we study the stability of a
family of momentumless wakes, constructed as the Oseen approximation of a force
doublet moving at constant velocity. By performing a local stability analysis, we first
show that these wakes undergo a transition from absolute to convective instability.
Then, using the time stepper approach by integrating the linearised Navier–Stokes
system, we investigate the global stability and reveal the influence of a non-parallel
base flow as well as the role of the locally absolutely unstable upstream region
in the wake. Finally, to complete the global scenario, we address the nonlinear
evolution of the wake disturbance. These results are then discussed in the context
of aquatic locomotion. According to the present stability results, and assuming the
Oseen approximation whose validity has been assessed only for moderate Reynolds
number, the momentumless wake of aquatic animals is generally stable, whereas
the corresponding thrust part is unstable. It is therefore essential to consider all
forces exerted on a self-propelled animal when discussing its wake stability and its
propulsion efficiency.

Key words: absolute/convective instability, swimming/flying, wakes/jets

1. Introduction
Numerous undulatory swimming animals produce thrust with their caudal fins, while

the anterior part of their body remains almost rigid (Lauder & Tytell 2005). Motivated
by applications to artificial propellers, these caudal fins have inspired studies on
thrust generation by oscillating rigid foils (e.g. Freymouth 1988; Koochesfahani 1989;
Schouveiler, Hover & Triantafyllou 2005; Godoy-Diana, Aider & Wesfreid 2008)
and oscillating flexible foils (e.g. Alben et al. 2012; Moored et al. 2012; Dewey
et al. 2013; Quinn, Lauder & Smits 2014; Paraz, Schouveiler & Eloy 2016). In these
studies, the thrust production and the propulsion efficiency are often linked to the
characteristics of the wake, with the idea that most of the dynamical information is
contained in the fish ‘footprint’ (Müller et al. 1997).
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The question of whether the oscillating frequency of a foil, or in the context of
fish swimming, the tailbeat frequency, is somewhat related to the wake instability
frequency has first been addressed by Triantafyllou, Triantafyllou & Grosenbaugh
(1993). In their seminal paper, they considered the stability of the average experimental
flow behind a pitching foil, as reported by Koochesfahani (1989). The principal wake
parameter is the Strouhal number, St= fA/U, with f the oscillating frequency, U the
flow velocity and A the width of the wake, taken to be the peak-to-peak amplitude
of the foil trailing edge. From linear stability analyses, they found that these jet
wake profiles are convectively unstable and are likely to behave as noise amplifiers
when excited close to the resonance frequency with a maximum amplification for
0.25< St< 0.35 (see also Huerre & Monkewitz 1990).

Studying experimentally rigid foils activated in pitch and heave, Triantafyllou
et al. (1993), and later Schouveiler et al. (2005), showed that the Froude efficiency
(i.e. the ratio between thrust power and input power) reaches a maximum within
the same range of Strouhal number. They argued that swimming performance is
intimately linked to the characteristics of the wake instability. Similar correlations
between the flapping frequency and the frequency associated with the maximum
amplification of the jet wake have also been reported in numerical simulations
(e.g. Lewin & Haj-Hariri 2003). It has also been claimed that swimming animals
benefit from this efficiency peak by swimming within the same range of Strouhal
number: 0.25 < St < 0.35 (Triantafyllou et al. 1993; Taylor, Nudds & Thomas
2003), although this argument is still debated today (Eloy 2012; van Leeuwen,
Voesenek & Müller 2015). More recently this so-called ‘wake resonance theory’ has
been re-examined by Moored et al. (2012, 2014), who performed stability analyses
on averaged experimental profiles using a locally parallel flow assumption. They
concluded that multiple local maximal efficiencies can be reached, each corresponding
to a frequency of a different unstable mode of the averaged wake profile. However,
despite correlations between these two frequencies, the causal link between the
stability properties of the averaged wake profile and the swimming performances has
so far proved difficult to establish.

The wake resonance theory is based on a simplifying assumption: both the stability
analyses and the experimental studies only consider the wake generated by a thrust-
producing foil and neglect the influence of the rest of the body. Yet, when a self-
propelled body swims at constant speed, thrust and drag balance on average, and the
wake behind such a body is momentumless.

Considering that the features of wakes behind swimming bodies can be reduced
to a combination of spatially localised forces acting on the fluid, a family of
momentumless wakes has been proposed by Afanasyev (2004). In this work, the
flow induced by non-translating localised forces (described, for instance, by Cantwell
1986) is generalised to the case of forces translating at constant velocity. When a
doublet of such translating forces is considered, a family of momentumless wakes
parametrised by the intensity of the force doublet, the swimming velocity and the
Reynolds number is obtained (figure 1). The objective of the present work is to
address the stability of such momentumless wakes.

The paper is organised as follows. In § 2, the analytical description and the
dimensional analysis of the wake profile is given. The locally parallel stability
characteristics of the wake profiles are then computed in § 3. The profiles are shown
to undergo a transition from a convective to absolute instability in the Reynolds
number–force doublet intensity space. The non-parallelism of the wake base flow and
the nonlinear behaviour of the unstable modes are addressed in § 4 by performing
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FIGURE 1. (Colour online) Illustration of the wake produced by a force doublet Q placed
in a uniform flow velocity U.

a global stability analysis through time stepping of the Navier–Stokes system. In
§ 5, we discuss whether the present approach may apply to swimming animals by
considering empirical data on animals with different lengths. We also discuss the
connection between the momentumless wake profiles and jet profiles. Finally, some
tentative conclusions are given in § 6.

2. Family of momentumless wakes
A self-propelled body moving at constant velocity experiences a drag equal and

opposite to the thrust produced. Both thrust and drag trigger a momentum transfer
between the self-propelled body and the fluid. In the fluid this momentum is evidenced
by the emission of vortex dipoles in two dimensions and vortex rings in three
dimensions. In the far field, these two opposite forces can be reduced to a translating
force doublet in a fixed coordinate framework as being described by Afanasyev
(2004).

In the Stokes approximation, the two-dimensional streamfunction of a single
impulsive force located at the origin of the coordinate system (x∗, y∗) (noting
dimensional quantities with ∗) is given by (Cantwell 1986; Afanasyev 2004)

ψ∗I∗(I
∗, x∗, y∗, t∗)= I∗y∗

2π(x∗2 + y∗2)
(1− exp (−ξ 2)), (2.1)

with

ξ =
√

x∗2 + y∗2

4 ν∗t∗
, (2.2)

I∗ the impulsive force intensity ([I∗] = L3T−1) and ν∗ the kinematic viscosity. The
streamfunction of two opposite forces separated by distance ε∗ is

ψ∗(x∗, y∗, t∗)=ψ∗I∗(x∗ + ε∗/2, y∗, t∗)−ψ∗I∗(x∗ − ε∗/2, y∗, t∗), (2.3)

which, in the limit ε∗→ 0, reduces to

ψ∗M∗(M
∗, x∗, y∗, t∗)= ε∗ ∂ψ

∗
I∗

∂x∗
= M∗x∗y∗

π(x∗2 + y∗2)2
(1− (1+ ξ 2) exp (−ξ 2)), (2.4)
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with M∗([M∗] = L4T−1) the doublet intensity

M∗ = lim
ε∗→0,I→∞

I∗ε∗. (2.5)

Let a force, either a single force or a force doublet, move with a constant speed U∗
in the negative x∗ direction. By solving the diffusion–advection equation corresponding
to the Oseen approximation, we can obtain the streamfunction of a moving force with
intensity J∗ ([J∗] = L3T−2) for a single force or Q∗ ([Q∗] = L4T−2) for a force doublet

ψ∗J∗ or Q∗(J
∗ or Q∗, x∗, y∗, t∗)=

∫ t∗

0
ψ∗I∗ or M∗(J

∗ or Q∗, x∗ −U∗(t∗ − τ ∗), y∗, t∗ − τ ∗) dτ ∗.

(2.6)
Taking the derivative of (2.6) with respect to y∗, we obtain the expression for the
steady streamwise velocity u∗(x∗, y∗, t∗).

To make this problem dimensionless, we choose the constant swimming speed U∗
as the reference velocity, and

δ∗ =
√
ν∗x∗

U∗
, (2.7)

as the reference length, which is analogous to a boundary-layer reference length.
Noting dimensionless variables without stars, we have

x= x∗

δ∗
= Re= U∗δ∗

ν∗
=
√

U∗x∗

ν∗
, (2.8)

Re being the Reynolds number.
According to the expression of the streamfunction (2.6), for sufficiently large

integration time, we obtain a steady-state solution with dimensionless streamwise
velocity profiles for the single force and force doublet given by (in the framework
attached to the translating body)

uJ(Re, y)= 1+ J
2πRe

∫ ∞
0
ΦJ[Re− (t− τ), y, t− τ ] dτ , (2.9)

uQ(Re, y)= 1+ Q
πRe2

∫ ∞
0
ΦQ[Re− (t− τ), y, t− τ ] dτ , (2.10)

with

ΦJ(Re, y, t)= e−ξ2

(Re2 + y2)2
((eξ

2 − 1)(Re2 + y2)+ 2y2(1+ ξ 2 − eξ
2
)), (2.11)

ΦQ(Re, y, t)= Re e−ξ2

(Re2 + y2)3
((Re2 − 3y2)eξ

2 − (Re2 − 3y2)(1+ ξ 2)+ 2ξ 4y2), (2.12)

and

ξ = 1
2

√
Re

√
Re2 + y2

t
. (2.13)

The dimensionless intensities of the single force and doublet are given by

J = J∗

U∗ν∗
and Q= Q∗

ν∗2 , (2.14a,b)
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these two quantities being connected via the doublet size ε∗ through

Q= ε
∗J∗

ν∗2 = ε Re J, (2.15)

where ε = ε∗/δ∗.
The expression (2.10) describes a family of momentumless wakes, parametrised by

the dimensionless force doublet intensity Q and the Reynolds number Re (Re can also
be viewed as a dimensionless streamwise distance). In the same manner, equation (2.9)
is a family of jet wakes parametrised by the force intensity J and Re. In § 3, we
will study the linear stability of the momentumless wakes with a locally parallel flow
assumption. In § 4, we will consider a non-parallel case in which we also need the
lateral velocity component which is given by

vQ(Re, y)=− Q
πRe2

∫ ∞
0
ϕQ[Re− (t− τ), y, t− τ ] dτ , (2.16)

ϕQ(Re, y, t)= y e−ξ2

(Re2 + y2)3
(−(3Re2 − y2)eξ

2 + (3Re2 − y2)(1+ ξ 2)+ 2ξ 4Re2). (2.17)

The linear stability of the jet–wake profile family (2.9) will be considered in § 5, in
connection with the momentumless wake instability results.

3. Linear stability analysis
A locally parallel linear stability analysis is performed by numerically solving

the linearised Navier–Stokes equations around the wake profile given by (2.10).
Perturbations are expressed as normal modes, that isu

v
p

=
û(y)
v̂(y)
p̂(y)

 ei(αx−ωt), (3.1)

with ω ∈ C their frequency and α ∈ C their wavenumber. For a given force doublet
intensity Q and Reynolds number Re, there is an infinite number of frequencies
solution of a Orr–Sommerfeld-type eigenvalue problem, each corresponding to a
different eigenmode.

To solve this eigenvalue problem, a Chebyshev collocation discretisation has been
used in the y-direction. Since we want to account for the infinite domain in the
y-direction, and because the base flow has large variations in a narrow region around
y = 0 (rendering the problem relatively stiff), we use the following mapping (Peyret
2002)

y= aη√
1+ (a/H)2 − η2

, −H 6 y 6 H, (3.2)

with η ∈ [−1, 1] the Chebyshev collocation points. The typical parameter value used
for a is a= 1.5 and H has been chosen large enough for the perturbation to vanish
at y=±H. We found that for H larger than 30 the unstable modes could be captured
accurately and in order to guarantee the absence of finite height effects we used
H = 100. Given the stiffness of the problem, a thorough convergence study has been
performed and 1000 discretisation points have been considered, ensuring that the
eigenvalues ω are converged almost to machine accuracy.
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FIGURE 2. (Colour online) Mapping from (a) the α-plane to (b) the ω-plane for a wake
profile with Re= 1 and Q= 1000 (each line corresponds to a different value of αi). This
mapping shows a cusp (marked by the circle) on the upper half of the ω-plane, thus
indicating an absolute instability.

For each unstable eigenvalue (when Im(ω) > 0), the question naturally arises
whether the corresponding eigenmode is absolutely unstable or not. When the flow is
absolutely unstable, the linear instability dynamics of the flow is of an oscillator type,
in contrast to convectively unstable flows where initially triggered perturbation are
convected downstream (Huerre & Monkewitz 1990). To assess the convective/absolute
character of the instability, we can use the cusp map method described in Schmid
& Henningson (2000). This method consists in mapping the complex wavenumber
plane (α-plane) into the complex frequency plane (ω-plane), by computing the most
unstable complex frequency for a given complex wavenumber (figure 2). A cusp is
obtained when

dω0

dα
= 0, (3.3)

with α ∈ C. Absolute instability occurs when the imaginary part ω0,i > 0 and
convective instability occurs when ω0,i < 0. From a practical point of view, the
computation is started by looking for the most unstable complex frequencies ω
for a real wavenumbers α. Then, the imaginary part of the complex wavenumber
is gradually decreased, and for each value of this negative imaginary part αi, we
look for the most unstable frequencies, until we find a cusp as shown in figure 2
(corresponding here to an absolutely unstable case because the cusp appears for
ω0,i > 0). (Note that in the appendix A we compare and validate our procedure by
considering a wake model proposed in the literature.)

To find the transition between absolute and convective instability, we look for wake
parameters Re and Q, such that cusp appears for real frequency, i.e. ω0,i = 0. By
tracing the neutral curve and the absolute–convective transition curve together in the
(Re,Q)-plane, we obtain the instability map shown in figure 3(a). The (Re,Q)-plane
is divided into three regions: a stable region, a convectively unstable region and an
absolutely unstable region. As an example, two profiles corresponding respectively to
an absolutely unstable and a convectively unstable wake are shown in figure 3(c).

For larger Reynolds numbers Re (i.e. Re & 20), it is found that the transition
from absolute to convective instability occurs for Q ∝ Re3, while the neutral curve
satisfies Q∝ Re2. In this framework of the locally parallel flow assumption, we also
obtain the dimensionless frequency at the convective–absolute transition, which seems
to converge asymptotically to 0.93 as both the doublet intensity and the Reynolds
number increase as shown in figure 3(b).
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FIGURE 3. (Colour online) (a) Instability map in the Re–Q plane for a momentumless
wake. AU, CU and S stand respectively for absolutely unstable, convectively unstable
and stable. (b) Dimensionless frequency ω0,r at the convective–absolute transition.
(c) Absolutely unstable profile for Q= 105, Re= 10 (solid line), and convectively unstable
profile for Q= 105, Re= 30 (dashed line). Parameters of the two profiles are marked by
coloured rectangles in (a).

4. Global wake dynamics
4.1. Global linear stability

Given the non-parallelism of the wakes described by (2.6), a question naturally arises:
are the stability predictions based on the locally parallel flow assumption reliable? To
address this question, we perform a global linear stability analysis of the non-parallel
base flow.

For some inlet position x∗0, we define Re0 as the Reynolds number formed with the
reference length δ∗0 =

√
ν∗x∗0/U∗ at inflow. We define X as the dimensionless (using

δ∗0 ) distance from inflow and the corresponding local Reynolds number may be written
as

Re= Re0

√
1+ X

Re0
. (4.1)

The non-parallel evolution of the base flow may be taken into account by simply using
(4.1) in the base-flow (2.10) formula. The transverse coordinate Y made dimensionless
with δ∗0 is then

Y = y

√
1+ X

Re0
. (4.2)
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FIGURE 4. (Colour online) (a) Set of non-parallel profiles at Q0 = 1.9 × 105 on the
Q–Re-plane that illustrates our system. I is the inlet at Re0= 20 while IV is the outlet at
Re = 36.87. (b) Streamwise variation of the base flow used in the direct numerical
simulation at three different locations marked on (a).

The Navier–Stokes equations linearised around the non-parallel base flow U(X, Y)
become

∂

∂t
u=−(U · ∇)u− (u · ∇)U −∇p+ 1

Re0
∇2u, (4.3)

∇ · u= 0, (4.4)

where the streamwise and transverse components of U are given by (2.10) and (2.16)
respectively.

The domain we consider is shown by a straight dashed line in figure 4(a)
where I, II, III (corresponding to Re0 = 20, 21.83, 22.4 respectively) are the 3
different upstream inflow boundaries which have been used to solve the linearised
Navier–Stokes system, for the force doublet intensity Q0 = 1.9 × 105. The inflow
position I has been chosen to be inside the absolutely unstable parameter region,
whereas III is inside the convectively unstable domain, II being approximately on the
absolute–convective transition boundary. In all the computations performed the outflow
boundary corresponds to the point IV on the dashed line. The streamwise velocity
profiles at the positions I, III and IV are shown in figure 4(b), which illustrates the
important non-parallelism. Also, the profiles exhibit strong variations in Y which
makes necessary to use a high discretisation when aiming at solving the linearised
Navier–Stokes system (4.3) and (4.4).

In the context of large-scale global stability problems, time stepping approaches
have become increasingly popular during the last decade. A comprehensive presenta-
tion of those matrix-free methods for open-flow stability problems can be found
in Bagheri et al. (2009). Writing formally the linearised Navier–Stokes system as
∂q/∂t = Aq, the solution at time T for any initial condition q0 can formally be
written as q(T) = eATq0, whatever method of time integration for the linearised
Navier–Stokes system is used. Here, we are interested in the most amplified (or least
damped) eigenvalue and we apply a Rayleigh iteration procedure by iterative time
stepping, computing q(k+1)= eATq(k), by successively integrating over the time interval
T the linearised Navier–Stokes system.

For this purpose, the code documented in Marquillie & Ehrenstein (2002), which
is based on Chebyshev collocation method in the transverse Y-direction and finite
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difference in the streamwise direction has been adapted to our problem. In order to
obtain a fully resolved flow field, the transverse Y-direction is discretised with 600
points in the range −406 Y 6 40, which extends sufficiently far from the region with
significant variations of the base-flow profiles (cf. figure 4b). Note that in the direct
numerical simulation the coordinate system is now normalised by δ∗0 . The streamwise
direction is therefore discretised using 1X = 1x/δ∗0 = 0.02 and a fourth-order finite-
difference scheme is used. Since we used 2400 discretisation points in the streamwise
direction for the largest domain from I to IV, the distance from I to IV in the direct
numerical simulation coordinate system is X = 48.

The initial (divergence free) flow field q(0) considered is a Gaussian function(
u
v

)
= A

( −(Y − Y0)

(X − X0)σ
2
Y/σ

2
X

)
exp

(
−(X − X0)

2

2σ 2
X
− (Y − Y0)

2

2σ 2
Y

)
, (4.5)

centred at Y0= 0 and located relatively close to the inlet (with X0= 8 for the inlet at I)
the other parameters being σX = 0.5 and σY = 1. At the outlet, the advective boundary
condition

∂u
∂t
+Uad

∂u
∂X
= 0, (4.6)

has been considered. The value of Uad = 0.12 proved to be appropriate to let the
perturbation leave the domain without reflection. Also, the computed frequency of
oscillation of the global structure appeared to be fairly insensitive to the exact choice
of Uad (the values 0.12 or 0.06 for Uad giving the same global eigenvalue results).
A zero Dirichlet boundary condition proved to be convenient to avoid reflections at
inflow for the inlet positions II and III, the corresponding velocity profiles being
at the margin of absolute instability (position II) or convectively unstable (position
III) and no upstream propagating perturbations were encountered. For the inlet I,
inside the absolutely unstable region, upstream propagating perturbations are expected
and indeed the use of a Dirichlet condition led to spurious reflections at inflow and
ultimately divergence was encountered. An advective boundary condition (4.6) has
therefore also been applied at inflow in this case, with a negative advective velocity.
Given the weak absolute instability, a small (in absolute value) velocity proved to
be suitable and Uad = −10−3 has been chosen as about the smallest value such that
no perturbation wave reflections were encountered at inflow. The time interval T for
the successive flow snapshots has to be appropriately chosen such that it satisfies
the Nyquist criterion (cf. Bagheri et al. 2009), i.e. there should be at least two
sampling points in one period of oscillation. The value T = 1.1 has been considered,
which is small enough given that the period at the absolute–convective transition is
roughly 7.7.

In this time stepping Rayleigh procedure, the value

λ= eσT, (4.7)

with the largest module is recovered after convergence, which provides the global
leading stability eigenvalue σ = (log λ)/T . Note that the time exponential is written
eσ t (and not e−iωt as in the local analysis). To obtain both the instability amplification
rate and the frequency, a variant of the simple Rayleigh iteration has been considered,
by computing the coefficients γ0,k and γ1,k for every three steps in the procedure such
that

1
||q(k)||(γ0,kq(k)j + γ1,kq(k+1)

j + q(k+2)
j )= 0 (4.8)
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FIGURE 5. (Colour online) Most amplified global mode: real part of the streamwise
velocity perturbation.

Inlet σr σi

I 0.027 0.63
II 3.82× 10−3 0.51
III −3.57× 10−3 0.52

TABLE 1. Global linear eigenvalue σ = σr ± σi for three different inlets: inlet I
(Re0 = 20), inlet II (Re0 = 21.83) and inlet III (Re0 = 22.44).

(by selecting two components qj, j = j1, j2 of the vector fields to compute γ0,k, γ1,k).
Convergence implies that γ0,k→ γ0, γ1,k→ γ1, the complex conjugate pair of λ being
obtained by solving γ0+ γ1λ+ λ2= 0 and the leading stability eigenvalue σ = σr± iσi

is then calculated. This procedure has been applied for the different inlet locations and
the global eigenvalues are given in table 1.

For the inflow at I, σr is positive and a globally unstable mode is hence found.
The real part of the eigenfunction’s streamwise velocity component is shown in the
(X, Y)-plane in figure 5. The corresponding frequency, σi= 0.63, is different from the
frequency at the absolute–convective transition calculated by the local analysis of the
previous section: σi ≈ 0.8, which would be the expected instability frequency by the
global mode if the flow were only weakly non-parallel (Chomaz 2005). This illustrates
the influence of the base flow’s non-parallelism in the present problem.

Interestingly, for the inlet II very near the location of the absolute–convective
transition, the global mode is only weakly amplified and, for the inlet III in the
convectively unstable region, σr < 0 and the leading global mode is damped. This
provides evidence that the existence of a finite region of absolute instability is
necessary in this highly non-parallel case for a global unstable mode to emerge.

4.2. Nonlinear disturbance evolution
To assess how the global instability evolves when considering the full nonlinear
Navier–Stokes equations, the same numerical procedure as described above has been
used, by adding the nonlinear term −(u · ∇)u to the right-hand side of (4.3). The
same Gaussian-type initial condition (4.5) is considered, choosing an amplitude
A= 10−2. The inlet corresponds to Re0= 20 and the domain is reaching from I to IV
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FIGURE 6. (Colour online) Instantaneous field structures: (a) vorticity of the perturbation
and (b) total vorticity at t= 1140.

(cf. figure 4a). The discretisation is chosen to be the same as for the global stability
analysis and a semi-implicit time marching is used.

The instantaneous vorticity perturbation and the total vorticity in the fully nonlinear
regime (at t = 1140) is shown in figure 6. A reversed Bénard–von Kármán vortex
street can be observed in the second half of the flow domain. From the time evolution
of the perturbation, frequency spectra associated with the nonlinear dynamics can be
calculated (figure 7). The spectra have been computed at two different locations
slightly off the centreline: (X, Y)= (20, 1.06) and (X, Y)= (40, 1.06). Figure 8 shows
that the global nonlinear structure is tuned to a unique fundamental frequency of
σi = 0.646 (the harmonics being visible as well), which is in agreement with the
frequency of the linear global mode.

5. Application to swimming animals
5.1. Absolute instability

Figure 3(a) shows that, when the force doublet intensity is large enough (Q&100), the
near wake (corresponding to small Re) is always absolutely unstable. Moving further
away from the doublet, there is first a transition from absolute to convective instability,
and then to stability. The existence of an absolute region is important, because, in
that case, the wake is expected to behave like an oscillator triggering a self-sustained
instability process.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.645


Stability of momentumless wakes 327

1000 1050 1100 1150 1200

1000 1050 1100 1150 1200

0

0.3

–0.6

–0.3

0

0.2

–0.4

–0.2

t

(a)

(b)

FIGURE 7. Evolution of vorticity perturbation in time recorded at (a) (X, Y)= (20, 1.06)
and (b) (X, Y) = (40, 1.06). Both signals exhibit the same fundamental frequency
σi = 0.646 (figure 8).
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FIGURE 8. Frequency spectra of the vorticity perturbation shown in figure 7 for the time
range 400 6 t 6 1200.

To examine the consequences of the present stability analyses on a swimming
animal, we consider a self-propelled body of length L∗ and moving at a constant
speed U∗. In two dimensions, the skin friction drag (per unit length) exerted on this
swimmer is of the order of

F∗ ∼ ρ∗U∗2L∗Re−1/2
L∗ , (5.1)

which is nothing other than the Blasius boundary-layer law (Schlichting & Gersten
2003), where ReL∗ =U∗L∗/ν∗ is the Reynolds number based on body length.

For a constant swimming speed, this drag has to be balanced by an equal but
opposite thrust. Assuming that the points of application of these two forces are
separated by a distance of order L∗, the dimensional force doublet intensity can be
estimated to be

Q∗ = F∗L∗

ρ∗
∼U∗3/2L∗3/2

ν∗1/2
. (5.2)

At the transition from absolute to convective instability, we found Q = 18.4 Re3 for
Re> 10. By recalling that Re= U∗δ∗/ν∗ and by using the definition of Q in (2.14),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.645


328 M. R. Arbie, U. Ehrenstein and C. Eloy

we can infer the following relation

δ∗ac =
0.38
U∗

(Q∗ν∗)1/3, (5.3)

which states that the value of δ∗ corresponding to the absolute–convective transition
(denoted by δ∗ac), can be estimated from Q∗, U∗ and ν∗. Following the same line
of reasoning, the neutral stability curve corresponds to Q = 35.22 Re2 for Re > 10
(figure 3a) and is associated with a critical δ∗ above which the wake is stable

δ∗c =
0.17
U∗

Q∗1/2
. (5.4)

Let us first consider a fish swimming in water (ν∗ = 10−6 m2 s−1) having body
length L∗ = 10 cm and moving with a velocity U∗ = L∗ s−1. Based on (5.2), we have
Q∗ ≈ 10−6 m4 s−2. By substituting these values into (5.3) and (5.4), we find δ∗ac =
0.38 mm and δ∗c = 1.7 mm. These values are far smaller than the width of the wake or
the tailbeat amplitude, which is generally approximately one fifth of the body length
(Videler 1993). This means that, for a fish, the wake is likely to lie entirely in the
stable region (figure 3a).

Now consider the case of a swimming ascidian larva. The hydrodynamics of
locomotion for these small swimmers has been addressed in McHenry, Azizi &
Strother (2003), focusing in particular on the contribution of viscous and inertial
force to the production of thrust and drag during steady undulatory swimming. To
assess the relative importance of form drag and skin friction, the authors divide the
larva into a spherical head and a rectangular tail. With these hypotheses, they find
that only for small Reynolds numbers (ReL∗ < 10) is the drag almost entirely due to
skin friction, the contribution of form drag becoming increasingly important at higher
Reynolds numbers. In McHenry et al. (2003), the model is validated by comparisons
with measurements of thrust produced by ascidian larvae of body length L∗= 1.9 mm,
the value provided being approximately 6× 10−6 N for a mean swimming speed of
approximately 31 mm s−1. The corresponding Reynolds number is ReL∗ = 58.9 and
the two-dimensional skin-friction Blasius drag formula (5.1) used here would predict
a drag force (per unit length) of ∼2.4 × 10−4 N m−1. Although the extrapolation of
a two-dimensional model to a three-dimensional body geometry is problematic, we
may consider the analysis in Ehrenstein, Marquillie & Eloy (2014), who addressed
numerically the boundary layer of a periodically flapping plate with finite width
in uniform incoming flow, assessing the longitudinal skin-friction force expression
F∗3D=C3D

√
r〈|U⊥|〉 ρ∗U∗2L∗2Re−1/2

L∗ , with r the plate’s width to length ratio and 〈|U⊥|〉
the mean absolute value of the dimensionless (with the swimming speed) periodic
wall-normal velocity, the coefficient C3D being ≈1.8. This expression is equivalent
to (5.1), but these formulas, that aim at estimating drag for a swimming body, can
only give crude values that would need to be assessed with precise measurements
or numerical simulations. Assuming nevertheless this drag force law, we obtain a
skin-friction drag force of C 4.6× 10−7 N, which is to be compared to the measured
thrust of 6× 10−6 N, given the uncertainty of the value of the coefficient C.

Using the measured larva data in formula (5.2), we find a value Q∗ ≈ 4.5 ×
10−10 m4 s−2. Using (5.3), we then find δ∗ac ≈ 0.094 mm and δ∗c = 0.12 mm, which
correspond to approximately 5 % and 6.3 % of the body length respectively. In this
particular case, the wake is thus likely to be unstable and there may even be an
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FIGURE 9. (Colour online) Stability diagram of a jet wake profile of intensity J (dashed
line) and a momentumless wake profile of intensity Q (solid line).

absolute–convective transition in the near wake, provided that our model applies at
least qualitatively to this swimming ascidian larva case. It is however unclear whether
the instability properties of the wake will affect the swimmer performance since the
instability cannot produce momentum.

5.2. Momentumless wake versus jet wake
Triantafyllou et al. (1993) proposed that the swimming efficiency of a self-propelled
body reaches a maximum when there is a resonance between the frequency of the
wake instability and the tailbeat frequency. As it has already been noted in the
introduction, the wake profiles considered by Triantafyllou et al. (1993) are jets with
a net positive momentum. In the present study, we consider momentumless wake
profiles, but these wakes can still be decomposed into one part due to the thrust
and one due to the drag. To compare our results with those of Triantafyllou et al.
(1993), we propose to extract the thrust part of our family of momentumless wakes
and assess its stability properties.

We consider a swimming fish of body length L∗ and wake half-width or tailbeat
amplitude of approximately δ∗ ≈ 0.1L∗ (which is approximately the case for most
undulatory swimmers). Thrust is generally produced by the caudal fin or by the
posterior part of the body (Lighthill 1969), while skin friction is expected to decrease
along the length of the body as boundary-layer thickness increases. We can thus safely
assume that the separation distance between the points of application of thrust and
drag is in the interval 0.1L∗ < ε∗ < L∗, which means that the dimensionless doublet
size is in the interval 1 < ε < 10. Now, using (2.15), we find that the force doublet
intensity Q is connected to the thrust intensity J through the relation: J =Q/(εRe).

We now compare the stability properties of the momentumless profiles and jet
profiles. To do so, we have performed a linear stability analysis of the jet wake
profile of intensity J given by (2.9), using a method similar to that explained in § 3
for the momentumless wake profiles. The result of this analysis is shown in figure 9
together with the results of the momentumless wake. In these stability diagrams
plotted in the (Re,Q) or (Re, J)-plane, for a given doublet intensity Q and Reynolds
number Re, the corresponding jet thrust intensity (for a specific ε) has to be chosen
on the ordinate as J =Q/(εRe) and the stability property may be inferred.
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FIGURE 10. (Colour online) (a) Jet wake profiles of extracted thrust for three different
values of ε and (b) their corresponding most unstable modes. The parameters used are
Re= 103, Q= 106, and J =Q/(εRe).

Using again the example of a L∗ = 10 cm fish swimming at constant speed
U∗ = L∗ s−1, we have Re = U∗δ∗/ν∗ ≈ 103 and Q = Q∗/(ν∗2) ≈ 106. In that case,
the momentumless wake is stable according to figure 9. Yet, its jet counterpart
associated with the production of thrust only has an intensity 102 < J < 103 (with
1<ε < 10), which corresponds to an unstable wake profile. The same holds for larger
or faster fish. Hence, for most fish, the momentumless wake is stable while the jet
profile due to the thrust alone is unstable.

To go further, we plot in figure 10 three jet profiles for different values of ε together
with their stability properties. As stated above, for these values of ε, the profiles are
unstable (ωi > 0). Moreover, the (real) frequency ωr associated with the maximum of
ωi is almost constant: ωr≈ 0.5. This frequency correspond to a Strouhal number based
on the wake width Awake,

St≈ Awake ωr

2π
, (5.5)

where Awake is estimated as the y-distance between the two inflection points of the
thrust profiles. By substituting the value of Awake (Awake≈ 3.2 for all values of ε) and
ωr into (5.5), the Strouhal number is found to be St≈0.25. This result is similar to the
range of Strouhal number found by Triantafyllou et al. (1993) from stability analyses
of experimental jet profiles: 0.25< St < 0.35. However, as it has already been noted
above, the corresponding momentumless profiles, found when both thrust and drag
forces are taken into account, are stable (and therefore no Strouhal number can be
defined in that case). The physical basis for this difference is however unclear. It may
be due to the fact that velocity gradients are smaller in norm for the momentumless
wakes since the velocity increase due to the thrust tends to be compensated by the
velocity deficit due to the drag. Indeed, computing the maximum, in norm, of the
velocity gradient for the three jet profiles shown in figure 10(a), we find approximately
the values 0.12, 0.06 and 0.01, for respectively ε= 1, 2 and 10. The maximum values
of the growth rates decrease monotonically with the velocity gradient norm, as seen
in figure 10(b). The maximum of the velocity gradient for the corresponding stable
momentumless profile, not shown here, is however much smaller (max(|du/dy|) ≈
1.5× 10−4).
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FIGURE 11. (Colour online) Evolution of the steady Oseen solution from t= 0 (solid line)
to a new profile at t= 20 (dashed line) for Re= 20.78.

5.3. Limit of validity
We will now examine the limit of validity of the present results. We will first discuss
the validity of the Oseen approximation. We will then examine if the exchange of
momentum between the swimming body and the flow can be described by a force
doublet. Finally, we will discuss how three-dimensional effects may affect the results.

In the present analysis, the base flow is obtained in the Stokes approximation and
using the Oseen assumption. To assess the reliability of this approximation, the Oseen
solution has been considered as the initial condition for the full Navier–Stokes system
which has been integrated in time. The Oseen solution profile is held fixed at the
inlet as a Dirichlet boundary condition and at outflow an advective boundary condition
(similar to that for the flow perturbation in § 4) is considered. It is observed that
inside the domain, the Oseen solution slightly evolves from t = 0 to t = 20 (see
figure 11), but then the profile undergoes no significant change any more until t =
165. These quasi-steady profiles slightly different from the steady Oseen solution have
been considered for local stability computations, focusing in particular on position of
absolute to convective instability transition. This new transition is found roughly at
Re= 20.8 which is quite close to the value of Re= 21.83 (cf. figure 4a) for the pure
Oseen profile.

Pursuing the time integration of the Navier–Stokes system where the Oseen solution
has been used as initial condition, the flow starts to oscillate (for t > 165) and
ultimately the flow dynamics reaches nonlinear saturation. The vorticity pattern is
shown in figure 12 and the reverse von Kármán vortex street similar to figure 6(b) is
observed. Frequency spectra of the flow are depicted in figure 13 which shows that
the flow is tuned to a frequency of 0.66. This frequency is close to 0.646 found in
the analysis of § 4 with the Oseen approximation as the base flow. The similarity of
the results clearly lends credit that the Oseen assumption is justified, at least for the
relatively low Reynolds number considered.

The Oseen approximation has also been addressed in Gustafsson & Protas (2012),
who performed a detailed study on the solutions of the two-dimensional Oseen
equations for the flow behind an obstacle for a broad range of Reynolds number
(here, Reynolds number is based on the characteristic dimension of the obstacle).
They compared their study with numerical simulations of Fornberg (1985) on a
steady viscous flow around a two-dimensional cylinder. They concluded that the
flow structures have a number of similarities with that of Oseen flow in terms of
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FIGURE 12. (Colour online) Instantaneous vorticity field structure at t= 750.
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FIGURE 13. Frequency spectra of the vorticity in time recorded at two stations off-centre:
(a) (X, Y)= (30,−2.2) and (b) (X, Y)= (40,−2.2), for the time range 750 6 t 6 1200.

recirculation length, drag coefficient and separation angle. However, these similarities
can only be observed up to a Reynolds number of approximately 100. For higher
Reynolds number, the Oseen approximation is therefore debatable. In the present
context, we make the assumption that the family of momentumless wakes still
qualitatively describe the flow even for large Reynolds number. This assumption
could however be assessed in the future by performing stability analyses of different
families of momentumless wakes (e.g. profiles obtained from averaged nonlinear
numerical simulations).

The family of momentumless wake profiles used in the present study is obtained by
assuming that the contribution of thrust (respectively drag) forces can be reduced on
average to a point force. Further, we assume that the flow field is that of a force
doublet, which means that we consider the far field, i.e. distances large compared
to the separation distance between the points of application of thrust and drag. Yet,
as we saw above, most of the instability properties of the flow are related to the
near wake, where these hypotheses do not hold. Nevertheless, the family of wake
profiles used here captures qualitatively the principal features of momentumless wakes:
no net momentum, profiles parametrised by their amplitude and width. As already
proposed above, it would be interesting to extend the present investigation by studying
the stability of average profiles obtained from numerical simulations of self-propelled
bodies.

Finally, we may wonder how the present two-dimensional results may generalise to
three dimensions. First, it should be noted that the flow behind swimming animals is
generally ‘very three-dimensional’, or said differently, the wake in a given horizontal
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slice may appear to have a positive or negative momentum depending on its depth
(Müller et al. 1997; Drucker & Lauder 2000; Lauder & Drucker 2002; Nauen &
Lauder 2002). The only exception seems to be the flow behind eels (Tytell & Lauder
2004) and, of course, two-dimensional numerical simulations. An interesting avenue
for future works would be to extend the stability analyses to three dimensions.
But, at the present time, it is difficult to extrapolate our two-dimensional results
to three dimensions. It is however safe to assume that the stability properties of
a momentumless wake and its jet part will still be very different, even in three
dimensions.

6. Conclusion

In this paper, we have performed a linear stability analysis of a family of
momentumless wake profiles. As a base flow, we used the flow generated by
a translating force doublet in the Oseen approximation, as initially proposed
by Afanasyev (2004). This flow takes into account the opposite drag and thrust
that are exerted on average on a self-propelled body swimming at constant speed
U∗. For this family of momentumless wakes, a transition from absolute to convective
instability has been found, in contrast with the jet profiles usually considered for
bio-inspired propeller wakes that are only convectively unstable. Within the locally
parallel flow assumption, it was found that this transition occurs at

δ∗ac =
0.38
U∗

(Q∗ν∗)1/3, (6.1)

where δ∗ is a measure of the wake half-width and Q∗ is the intensity of the force
doublet. This value is too small to be meaningful for fish longer than approximately
1 cm. It may however be relevant for swimming organisms with low Reynolds
number such as tadpoles or larvae. For a specific dimensionless intensity of the force
doublet possibly in the range of centimetre size swimming organisms, the Oseen
approximation used in the model being validated only for the corresponding low
Reynolds number regimes, the linear as well as nonlinear wake dynamics has been
assessed for the non-parallel base flow. The existence of a global instability behaviour
tuned at a specific frequency is found, whenever the wake’s inflow boundary is chosen
in the locally absolute instability region.

The thrust part may be extracted from the momentumless wake profiles. When it is
intense enough, the corresponding jet profile is found to be (convectively) unstable,
even though the momentumless wake from which it has been extracted may well
be stable. Although further investigations on the Oseen approximation, different wake
profiles, and three dimensions, may be required, the present analysis demonstrates that
physical interpretations of swimming efficiency based on jet wakes have to be taken
with great care and cannot be easily transposed to a whole self-propelled body. In
other words, for swimming animals, the selection of Strouhal number through a ‘wake
resonance’, as originally proposed by Triantafyllou et al. (1993) and later revisited by
Moored et al. (2014), seems unlikely.
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FIGURE 14. (Colour online) Singlet force profile (dashed line) fitted to a generic bluff-
body wake profile proposed by Monkewitz (1988) (solid line).

Appendix A
In this appendix we briefly address, whether single force profiles of type (2.9) may

capture conventional mean wake profile characteristics, by appropriately tuning the
parameters. As an example, we consider the profile proposed by Monkewitz (1988)
and given by

U(y)= 1−Λ+ 2ΛF(y), (A 1)
Λ= (U∗c −U∗max)/(U

∗
c +U∗max), (A 2)

F(y)= (1+ sinh2N(y sinh−1(1)))−1. (A 3)

For particular values of the parameters (Λ=−1.105 and N = 1.34, at Re= 12.5) the
stability characteristics of the Monkewitz’s profile have been recomputed, showing that
the flow is absolutely unstable, the absolute frequency and wavenumber being

ω0 = 0.952+ i0.058, α0 = 0.8− i0.505. (A 4a,b)

These values are approximately equal to the values computed by Monkewitz (1988)
(see table I, page 1004), the small differences being probably due to a better
convergence here.

A single force streamfunction given by (2.6) can be, by appropriately choosing the
parameters, fitted to the generic profile proposed by Monkewitz (1988) (figure 14), by
following the same non-dimensionalisation as in this latter paper. We find that the best
fit is obtained for x= 5 and J= J∗/(2πl∗U∗2)=−0.804 (l∗ being the reference length),
when a constant velocity equal to 2 is added to the streamwise velocity.

We then performed the local stability analysis of this single force profile and found
that the absolutely unstable mode corresponds to

ω0 = 0.956+ i0.031, α0 = 0.8− i0.505. (A 5a,b)

These values are quite close to what was found for the generic profile proposed by
Monkewitz (1988), the amplification rate being slightly lower. Treating the Reynolds
number as an independent parameter, we found that the transition from absolute to
convective instability is approximately at Re= 9.75 with

ω0 = 0.945, α0 = 0.8− i0.505. (A 6a,b)
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This value of Reynolds number for the transition from absolute to convective
instability is similar to the result of Monkewitz (1988) (see figure 2, page 1001).

From these linear stability analyses, we first conclude that our method is validated
by the results of the literature. Second, these analyses show that the properties of the
instability are not very sensitive to the profile family used. In other words, the single
force model can qualitatively capture the instability properties of generic bluff-body
wake, and similarly the doublet force model is likely to capture the instability of a
momentumless wake.
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