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This paper presents a detailed investigation of the role played by the wave steepness in
connection with the statistical properties of the surface elevation and fluid kinematics
in irregular, directionally spread, deep-water wave fields initially given by a JONSWAP
spectrum. Using ensembles of large wave fields obtained from fully nonlinear simulations,
we first consider the statistical properties of the surface elevation. In that connection we
determine the probability density functions (PDFs) of the surface and crest elevations
for wave fields of relatively small to unprecedentedly large steepness, and compare them
with theoretical results from the literature in order to establish the latter’s accuracy. We
then consider certain statistical aspects of the fluid kinematics found at the surface and
of the fluid kinematics accompanying large crests, which to our knowledge marks the
first investigation of these properties in the literature. We first determine the PDFs of
the horizontal fluid velocities and accelerations as well as the vertical fluid acceleration
at the surface. Next, we investigate the joint PDF of the surface elevation and each of the
velocities and accelerations at the surface, and use it to determine the surface elevations for
which the velocities and accelerations at the surface are large. We then present an analysis
of the largest fluid velocities and accelerations found in the vicinity of large crests, and
compute the PDFs of these quantities. Finally, we consider the PDFs of the location at
which the largest velocities and accelerations occur relative to the crest.

Key words: surface gravity waves

1. Introduction

The proper design of marine structures is well known to require detailed knowledge
about the surface elevation of the surrounding waves. Since real ocean waves are inherently
irregular and random due to their spread in frequency, direction and phase, they are most
adequately described statistically, and for that reason the probability distributions of the
surface and crest elevations have recently attracted considerable attention. For example,
Onorato et al. (2009), Toffoli et al. (2010) and Xiao et al. (2013) have studied these
distributions, and their work has, among other things, led to the conclusion that the
probability of finding large surface and crest elevations decreases with the directional
spread of the wave field. From an engineering point of view, the surface elevation is,
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however, not the only interesting quantity, as the loads on the structures are ultimately
determined by the fluid kinematics that accompany the waves. Despite the great practical
importance of the distributions of the fluid velocities and accelerations, contributions to
the literature on these aspects have been relatively rare within the last 20 years. On the
theoretical side, Song & Wu (2000) have derived the probability density function (PDF)
of the fluid velocity at arbitrary depth to second order in wave steepness. Numerical
simulations have been carried out by Toffoli et al. (2012), who showed that the PDF of
the fluid velocity at the surface antiparallel to the surface deviates from that of a normal
distribution only for long-crested seas in which modulational instabilities may occur. Other
numerical studies have been performed by Sergeeva & Slunyaev (2013), who investigated
whether large fluid velocities at the surface only occur in connection with large surface
elevations, and Alberello et al. (2016), who demonstrated that second-order effects lead to
a negative skewness of the PDF of the fluid velocity below the surface. Finally, it has been
found from experiments with extreme breaking waves that the velocity and acceleration
fields exhibit a substantial degree of front/back asymmetry (Grue & Jensen 2006) and
that the results of common techniques for the estimation of the velocity profile from
measurements of the surface elevation may deviate substantially from the actual velocity
profiles for certain extreme waves (Alberello et al. 2018). Although the work mentioned
here certainly does not cover all contributions to the kinematics of irregular wave fields,
we note that e.g. a systematic study of the dependence of the statistical properties of the
fluid velocities and accelerations on the wave steepness has not been carried out until now.

Obtaining exact expressions in closed form for the PDFs of the surface elevation and the
fluid kinematics has so far proven an exceedingly difficult task due to the nonlinearity of
the governing equations. On the other hand, a number of approximate methods for finding
the PDFs exist, and for the surface and crest elevations two rather different approaches
seem to prevail. The first of these is the narrowband approach, with which a first-order
result was derived by Longuet-Higgins (1952) and a second-order result was found
by Tayfun (1980). Although its underlying assumptions are, when taken strictly, rarely
satisfied, the PDFs found using the narrowband approach are very simple and they require
no parameter estimation, as they incorporate the wave steepness explicitly. The second
approach is the Gram–Charlier method which was used for the first time in connection
with water waves by Longuet-Higgins (1963), and was used to determine the PDF of the
crest height one year later by Longuet-Higgins (1964). This approach is, in principle, free
of any assumptions about the wave field, and computing the PDF to arbitrarily high order
with this method is conceptually straightforward. The method, however, suffers from the
fact that it takes the wave steepness into account implicitly through the cumulants of the
underlying variable, which may require a substantial amount of data to estimate accurately.
In addition, the PDF may become (slightly) negative for sufficiently large negative surface
and crest elevations. For both approaches it holds, however, that only their formal accuracy
(i.e. the power of the steepness to which the error is proportional) is known a priori,
and that a comparison to experimental or numerical results must be carried out in order
to establish the actual accuracy for a specific steepness. It appears that the narrowband
approach has only been tested thoroughly in the case of weakly nonlinear wave fields,
while the Gram–Charlier approach is yet to be thoroughly examined in all cases.

The numerical simulation of large irregular wave fields remains a formidable task on
today’s computers, even when assuming the wave motion to be described by the potential
flow formalism. For that reason, most simulations of irregular wave fields have been
performed using either the nonlinear Schrödinger equation and variants hereof (see e.g.
Dysthe et al. (2003) and Socquet-Juglard et al. (2005) as well as the review by Onorato
& Suret (2016)), the Zakharov equation (see e.g. Annenkov & Shrira 2009, 2013, 2018)
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or a low-order truncation of the high-order spectral (HOS) method (see e.g. Toffoli et al.
2010; Xiao et al. 2013; Fedele et al. 2016), which are all weakly nonlinear models. While
computationally very efficient, their long term accuracy and robustness must be taken with
some degree of caution when used to simulate steep wave fields, since e.g. Dommermuth
& Yue (1987) have shown that their implementation of the HOS method could not be
used to simulate steady nonlinear waves in deep water steeper than approximately 80 % of
the limiting steepness. At the same time, the weakly nonlinear methods do not generally
offer the possibility of computing the velocity and acceleration fields below the surface,
and simulations based on different numerical methods are therefore necessary, if the
distributions of the fluid kinematics are to be determined.

This paper presents an attempt to partially fill the voids described above by studying
the statistical properties of both the surface elevation and the fluid kinematics of irregular,
directionally spread wave fields in deep water using a fully nonlinear numerical method.
Denoting the peak wavelength and period by λp and Tp, respectively, we simulate the
time evolution of wave fields of size 50λp × 50λp for times up to 100Tp using the
very recently developed pseudospectral method of Klahn, Madsen & Fuhrman (2020),
which solves the Laplace equation in the entire fluid domain using a stretching of the
vertical coordinate while utilizing an artificial boundary condition close to the surface
to maintain computational efficiency. The method has been shown to be capable of
delivering highly accurate results for challenging wave problems in deep water, and
is without doubt substantially more accurate and robust than the above mentioned
approximate methods. Moreover, the method has the ability to accurately compute the
fluid kinematics throughout the water column even below the steepest (non-breaking)
waves. Initializing the simulations from a directional JONSWAP spectrum, we use the
method for the time integration of the wave fields, and extract the statistical properties
of the surface and crest elevations, the fluid kinematics at the surface as well as the
largest fluid velocities and accelerations found in connection with very large crests. In
all cases we study the role played by the initial wave steepness ε0 = kpHm0(0)/2, where
kp = 2π/λp is the peak wavenumber and Hm0(t) is the significant wave height at time t
defined as

Hm0(t) = 4〈η(t)2〉1/2, (1.1)

where the angle brackets denote spatial averaging and η(t) denotes the surface elevation
at time t.

The remainder of the paper is structured as follows: in § 2 we give a detailed description
of the physical system under considerations and its governing equations, and we briefly
describe the numerical method used for the simulations. As our simulations are carried
out using artificial damping in order to obtain temporal stability, we discuss the effect of
the damping on the total energy and the wave steepness in § 3. In § 4 we present results for
the skewness and kurtosis of the surface elevation as well as the PDFs of the surface and
crest elevations, and we study the average surface elevation close to large crests. In § 5 we
investigate the PDFs of the horizontal fluid velocity and the horizontal and vertical fluid
accelerations at the surface, and discuss for which surface elevations large fluid velocities
and accelerations at the surface are found. In § 6 we determine the PDFs for the largest
horizontal fluid velocity and horizontal and vertical fluid accelerations found in connection
with large crests, as well as for the locations at which the largest fluid kinematics occur.
Finally, conclusions are drawn in § 7.
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2. Physical model, governing equations and numerical methods

We consider the time evolution of an irregular wave field which is spatially periodic in
the horizontal x- and y-directions over distances Lx and Ly , respectively. We assume the
water to be infinitely deep and its motion to be inviscid, incompressible and irrotational.
Moreover, we assume the surface to be single-valued, and we note that this assumption
implies that wave breaking cannot take place in the simulations. We choose the coordinate
system such that the (x, y)-plane coincides with the still water plane, and denote the
surface elevation at the point (x, y) at time t by η(x, y, t). Under the above assumptions,
the motion of the water is governed by the irrotational Euler equations, which we express
in terms of the velocity potential, Φ. Denoting the surface potential, Φ|z=η, by Φs we
follow Zakharov (1968) and write the equations as

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
= 0 for z < η, (2.1a)

∂Φ

∂z

∣∣∣∣
z→−∞

= 0, (2.1b)

∂η

∂t
=
(

1 +
(

∂η

∂x

)2

+
(

∂η

∂y

)2
)

ws − ∂η

∂x

∂Φs

∂x
− ∂η

∂y

∂Φs

∂y
, (2.1c)

∂Φs

∂t
= −gη − 1

2

((
∂Φs

∂x

)2

+
(

∂Φs

∂y

)2
)

+ 1
2

(
1 +

(
∂η

∂x

)2

+
(

∂η

∂y

)2
)

w2
s , (2.1d)

where ws = ∂zΦ|z=η is the vertical velocity of the fluid at the free surface and g is the
gravitational acceleration. This set of equations constitutes an initial value problem for η
and Φs, and the remainder of this section is devoted to a description of the initialization
of η and Φs, the numerical methods used for the time integration and the computational
parameters that we have used.

2.1. Initialization
Given values for the peak wavelength, λp, and the initial significant wave height, Hm0(0),
we initialize the irregular wave fields from the directional JONSWAP spectrum

S(ω, θ) = S0

(
ω

ωp

)−5

exp

(
−5

4

(
ω

ωp

)−4
)

γ exp(−(ω/ωp−1)2/(2σ 2))D(θ). (2.2)

Here, ωp is the peak frequency related to the peak wavenumber, kp, through the linear
dispersion relation for waves in deep water, ω = (gk)1/2, the parameter γ is 3.3 and σ =
0.07 if ω/ωp < 1 and 0.09 otherwise. Moreover, the directional spreading function D(θ)

is chosen to be

D(θ) =
{

cos2(θ) for |θ | ≤ π/2,

0 otherwise,
(2.3)

and the constant S0 is defined implicitly through the requirement

∫ 2π

0

∫ ∞

0
S(ω, θ) dω dθ =

(
Hm0(0)

4

)2

. (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.968


Statistical properties of surface irregular water waves 910 A23-5

We note that the choice of D(θ) gives rise to wave fields which possess a large directional
spreading, and for comparison we mention that the wave fields in this work have a larger
directional spreading than the wave fields studied by e.g. Onorato et al. (2009) and Toffoli
et al. (2010).

Due to the assumed spatial periodicity of the wave field, the numerical method assumes
η and Φs to be given by truncated Fourier series, i.e.

η(x, y, t) =
Nx −1∑

nx =−Nx

Ny−1∑
ny=−Ny

η̂nx ,ny exp
(
iknx ,ny · r

)
, (2.5a)

Φs(x, y, t) =
Nx −1∑

nx =−Nx

Ny−1∑
ny=−Ny

Φ̂nx ,ny exp
(
iknx ,ny · r

)
, (2.5b)

where r = (x, y) and knx ,ny = (2πnx/Lx , 2πny/Ly). The initialization of the wave field
thus amounts to computing the sets of Fourier coefficients {η̂nx ,ny } and {Φ̂nx ,ny } from
(2.2). To do so we follow the two-step procedure outlined by Tanaka (2001), in which the
frequency ωnx ,ny is related to knx ,ny by the linear deep-water dispersion relation ω2

nx ,ny
=

g|knx ,ny |. The first step of the method is to compute the so-called complex amplitude bnx ,ny

given by

bnx ,ny =
(

2π2g3

ω4
nx ,ny

Lx Ly
S(ωnx ,ny , θnx ,ny )

)1/2

eiφnx ,ny , (2.6)

in which φnx ,ny is a random number drawn from a uniform distribution over the
interval [0, 2π] and θnx ,ny is the angle between the x-axis and knx ,ny measured positively
counterclockwise. From the complex amplitude, η̂nx ,ny and Φ̂nx ,ny may then be calculated
using the relations

η̂nx ,ny =
( |knx ,ny |

2ωnx ,ny

)1/2 (
bnx ,ny + b∗

−nx ,−ny

)
, (2.7)

and

Φ̂nx ,ny = −i
(

ωnx ,ny

2|knx ,ny |
)1/2 (

bnx ,ny − b∗
−nx ,−ny

)
, (2.8)

where the symbol ∗ denotes complex conjugation.

2.2. Numerical methods
For the time integration of the wave field we use our recently developed pseudospectral
volumetric method (Klahn et al. 2020), which may be thought of as consisting of two
independent parts. The first part treats the time integration of η and Φs under the
assumption that ws is known. The second part deals with the computation of ws from
η and Φs and is inspired by the work of Nicholls (2011), as it utilizes the same strategy
to reduce the size of the computational domain when solving the Laplace equation (2.1a).
In what follows we will briefly describe these two parts, as well as how the method may
be used for the computation of the velocity and acceleration fields of the fluid. For a full
description and validation of the method we refer to our paper Klahn et al. (2020).
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2.2.1. Time integration
Based on the spatial periodicity of the wave field, the numerical method discretizes the

spatial part of (2.1c) and (2.1d) using the Fourier collocation method (see e.g. Kopriva
2009), in which the equations are satisfied identically at the set of grid points{

(xnx , yny ) =
(

Lx nx

2Nx
,

Lyny

2Ny

)∣∣∣∣ 1 ≤ nx ≤ 2Nx and 1 ≤ ny ≤ 2Ny

}
. (2.9)

The spatial derivatives of η and Φs at the grid points are calculated from the truncated
Fourier series (2.5), and the link between the grid point values and the expansion
coefficients is provided by the fast Fourier transform and its inverse. The spatial
discretization generates a system of coupled ordinary differential equations describing the
time evolution of the grid point values of η and Φs, and we integrate this system in time
using the classical fourth-order Runge–Kutta method with fixed step size Δt.

When carried out without any kind of energy dissipation, we have found the simulations
to be unstable in such a way that they blow up after a after a few peak periods. We
note that the unstable behaviour may be provoked by a combination of the facts that the
initial condition described above is based on linear theory, and that wave breaking is not
allowed in the simulations. As a remedy to the former, we use the adjustment scheme of
Dommermuth (2000) in which the nonlinear interactions among the Fourier coefficients
of η and Φs are ramped up smoothly on the time scale Ta. This is done by multiplying the
nonlinear terms of (2.1c) and (2.1d) by the function

R(t) = 1 − exp
(

−
(

t
Ta

)n)
, (2.10)

where n is a parameter to be specified. For a precise definition of what is meant by the
nonlinear terms in this connection we refer to the paper of Dommermuth. To combat
instabilities which arise, because our numerical method does not take wave breaking into
account, we follow Xiao et al. (2013) and multiply the (nx , ny)th Fourier coefficient of η

and Φs by the number

Dnx ,ny = exp

(
−
( |knx ,ny |

8kp

)30
)

, (2.11)

every time step. In this way energy is dissipated from the high end of the wavenumber
spectrum, consistent with what is found in laboratory and field experiments (see Xiao et al.
(2013) and references therein). This energy dissipation allows the simulations to be carried
out without instabilities, but we stress that it e.g. does not introduce the amplification of
fluid velocities occurring in connection with breaking waves (Alberello et al. 2018). If
such effects are to be taken into account, the potential flow formalism used in this work
must be abandoned and a numerical method based on the full Navier–Stokes equations
must be used.

2.2.2. Computation of ws from η and Φs

To compute ws from η and Φs, one must solve the Laplace problem consisting of (2.1a)
and (2.1b) supplemented with the boundary condition Φ|z=η = Φs. To do so, we divide
the fluid domain into an upper part with z > −b and a lower part with z < −b, where b
is a positive number such that the level z = −b lies below the lowest trough of the wave
field. By solving the Laplace equation analytically on the lower part of the domain, it can
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Statistical properties of surface irregular water waves 910 A23-7

be shown (see e.g. § 5 in the paper of Nicholls (2011)) that the full Laplace problem is
equivalent to solving the reduced problem

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
= 0 for − b < z < η, (2.12a)

Φ|z=η = Φs, (2.12b)

∂Φ

∂z
(x, y,−b) − T[Φ|z=−b] = 0, (2.12c)

on the upper part of the domain. Here, the linear operator T is defined by the action
T[eik·r] = |k|eik·r for all k, and we note that this definition of T differs slightly from the
definition used in Klahn et al. (2020) (see (11) in that paper), because we take the water to
be infinitely deep in this work. To solve the reduced Laplace problem (2.12) we make the
coordinate transformation (x, y, z) �→ (x, y, s) with s defined as

s(x, y, z) = 2z + b − η(x, y)

b + η(x, y)
, (2.13)

and define the function F by F(x, y, s(x, y, z)) = Φ(x, y, z). From the Laplace equation
(2.1a) and the chain rule it then follows that F must satisfy the equation

0 = ∂2F
∂x2

+ ∂2F
∂y2

+
((

∂s
∂x

)2

+
(

∂s
∂y

)2

+
(

∂s
∂z

)2
)

∂2F
∂s2

+ 2
∂s
∂x

∂2F
∂x∂s

+ 2
∂s
∂y

∂2F
∂y∂s

+
(

∂2s
∂x2

+ ∂2s
∂y2

)
∂F
∂s

, (2.14)

as well as the boundary conditions

F|s=1 = Φs, (2.15a)

2
b + η

∂F
∂s

(x, y,−1) − T[F(x, y,−1)] = 0. (2.15b)

To compute F numerically, we consider the set of grid points{
(xnx , yny , sns) | 1 ≤ nx ≤ 2Nx , 1 ≤ ny ≤ 2Ny and 0 ≤ ns ≤ Ns

}
, (2.16)

in which xnx and yny are given by (2.9) and sns is the nsth point of the
Legendre–Gauss–Lobatto quadrature of order Ns, ordered such that s0 = −1, i.e. from
left to right. We moreover assume that F is of the form

F(x, y, s) =
Nx −1∑

nx =−Nx

Ny−1∑
ny=−Ny

Ns∑
ns=0

F̂nx ,ny ,ns exp
(
iknx ,ny · r

)
lns(s), (2.17)

where lns is the nsth Lagrange polynomial of order Ns, and require the boundary conditions
(2.15) to be satisfied identically at the points where ns = Ns and ns = 0, respectively, and
the (2.14) to be satisfied at the remaining 4Nx Ny(Ns − 1) points. We solve the resulting
system of linear equations for the values F at the grid points using the generalized minimal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.968
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residual (GMRES) method (Saad & Schultz 1986) with a preconditioner inspired by the
work of Fuhrman & Bingham (2004). Finally, we compute ws from F using the relation

ws = ∂s
∂z

∂F
∂s

∣∣∣∣
s=1

, (2.18)

which follows directly from the definition of ws and the chain rule.

2.2.3. Computation of velocity and acceleration fields
By definition of the velocity potential, the velocity field, v = (vx , vy, vz)

T, is given by
the relation v = ∇Φ where ∇ = (∂x , ∂y, ∂z)

T is the gradient in Cartesian coordinates.
From this it follows that we can compute the velocity field as v = ∇̃F where the operator
∇̃ is defined as

∇̃ = ∇ + (∇s)
∂

∂s
, (2.19)

and it is understood that ∂zF = 0. The acceleration field, a = (ax , ay, az), is defined
through the relation a = (∂t + v · ∇)v and its computations requires somewhat more
effort, since the time derivative of the velocity potential, ∂tΦ, must be known. The
function ∂tΦ can be shown to satisfy the Laplace problem (2.12) but with the boundary
condition (2.12b) replaced by the condition (∂tΦ)|z=η = ∂tΦs − ws∂tη, and ∂tΦ can
therefore be obtained with the procedure described in § 2.2.2 to obtain Φ. Defining
G(x, y, s(x, y, z)) = ∂tΦ(x, y, z) at a fixed point in time we thus have

a = ∇̃G +
((

∇̃F
)

· ∇̃
) (

∇̃F
)

, (2.20)

which is used to compute the acceleration field.

2.3. Computational parameters and efficiency
In an attempt to add simplicity to the presentation, we have chosen to collect the values
of all computational parameters in this section. As basic dimensional parameters of the
wave fields we use the gravitational acceleration g = 9.81 m s−2 and the peak wavelength
λp = 275 m (corresponding to the peak period Tp = 13.3 s). We specify a wave field
through its initial steepness ε0 = kpHm0(0)/2, from which the initial significant wave
height is trivially computed. Throughout this paper ε0 takes the values 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, and for each value we simulate 20 realizations of the JONSWAP
spectrum (2.2). We take the computational domain to have dimensions Lx = Ly = 50λp
and discretize it using Nx = Ny = 512 corresponding to approximately 20 grid points per
peak wavelength, since the total number of points in each of the x- and y-directions is
2Nx = 2Ny = 1024, respectively. When integrating η and Φs in time we use the time step
Δt = Tp/50 corresponding to the Courant number (λp/Tp)/(Δt/Δx) ≈ 0.4, and we carry
out the time integration for the time interval 0 ≤ t ≤ 100Tp. For the adjustment scheme of
Dommermuth (2000) we choose the parameters in (2.10) as Ta = 10Tp and n = 4. When
solving the reduced Laplace problem (2.12) we choose b = 1.5Hm0 and take Ns = 10 such
that the upper part of the domain is discretized with 11 points in the vertical direction.
We note that if we had not used the artificial boundary condition, but instead worked with
a finite water depth, h, we would have had to require h = O(Lx) in order to simulate an
infinite water depth, and with the choice b = 1.5Hm0 one finds that this requirement leads
to h/b = O(100/ε0). As such, the artificial boundary condition enables us to work with
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a computational domain which is between several hundred and several thousand times
smaller than the entire fluid domain. The system of linear equations resulting from the
reduced Laplace equation is solved with the GMRES method using the relative tolerance
10−6.

The numerical method is implemented as a serial Matlab program, and the
computational bottleneck of the method is the reduced Laplace equation which is here
solved with 1024 × 1024 × 11 ≈ 11.5 × 106 grid points four times per time step. By
construction of the preconditioning strategy, the efficiency of the program varies with
ε0, but in all cases the wall-clock time per time step was typically limited from above
by 5 minutes such that the 100 peak periods of simulation were each completed in
approximately 2.5 weeks on the high performance computing cluster of the Technical
University of Denmark. We note that the simulations have thus cumulatively taken about
six years of computation time in total.

3. The effect of artificial damping

To avoid instabilities in the simulations, we have employed damping as described in
§ 2.2.1. As explained there, some kind of dissipation is expected to be needed to keep
the simulations stable as our numerical method assumes an irrotational flow with a
non-overturning surface. It is, nevertheless, important to keep in mind that the damping
employed in this work is essentially unphysical, and this section therefore assesses its
implications on the simulations.

Since the effects of friction and viscosity are entirely neglected in the potential flow
formalism, it is clear that the total mechanical energy of the system at time t,

E(t) = 1
2

∫ Ly

0

∫ Lx

0

(
Φs(x, y, t)

∂η

∂t
(x, y, t) + gη(x, y, t)2

)
dx dy, (3.1)

should be a constant of motion. Due to the damping, E, however, decreases during our
simulations as may be seen in figure 1(a), which shows E as a function of time for different
values of ε0. From the figure it may be seen that the energy stays constant for t � 10Tp
(corresponding to the initial ramping period) in all cases, and that it decreases with time for
10Tp � t at a rate depending on ε0. For the initial steepness ε0 = 0.05 the energy is reduced
by approximately 2.5 % after 100 peak periods, while it is reduced by approximately 12 %
and 38 % over the same time span when ε0 = 0.15 and 0.30, respectively. The loss of
energy causes the wave steepness to decay with time, and for that reason we will denote
the steepness at time t by ε(t) throughout this paper. The decay of ε(t) is illustrated in
figure 1(b) for different values of ε0, and it can be seen that (ε0 − ε(100Tp))/ε0 ≈ 1.5 %,
6.0 % and 21 % for ε0 = 0.05, 0.15 and 0.30, respectively. In this context it is interesting
to note that Xiao et al. (2013) reported a comparable reduction in the significant wave
height (and hence also the steepness, as these are proportional) between 6 % and 9 % over
approximately 40 peak wavelengths (corresponding to 80 peak periods when transforming
length to time using the group velocity) for cases similar to our case with ε0 = 0.15.

The above results imply that the statistical properties of the system can only be expected
to be stationary within the first 100 peak periods for small values of ε0. For large values
of ε0 they will necessarily change over time, and we address this issue for the statistical
properties of the surface elevation in the following section.
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FIGURE 1. (a) The total energy and (b) the steepness as a function of time for different values
of the initial steepness ε0. The legend applies to both figures.

4. Statistical properties of the surface elevation

In this section we consider some specific statistical properties of the surface elevation.
In §§ 4.1 and 4.2 we investigate the skewness and kurtosis of the surface elevation as well
as its PDF, and in that connection we will work with spatial averages, which we denote
by angle brackets, 〈·〉. In § 4.3 we consider the PDF of the crest elevation, and in order to
be consistent with theoretical results from the literature we use temporal averages at fixed
spatial locations. We denote these averages with overbars, · . Finally, we study the average
surface elevation around crests of large height at fixed points in time in § 4.4. It applies to
all sections that in order to make sure that the shown results are reasonably converged, we
compute them from data from 20 different realizations of the initial condition.

4.1. Skewness and kurtosis of the surface elevation
Following the above notation, we define the skewness and kurtosis of the surface elevation
at a fixed point in time as S = 〈η3〉/〈η2〉3/2 and K = 〈η4〉/〈η2〉2, respectively. As ε0
approaches 0, the surface elevation tends to be normally distributed and we thus have
S = 0 and K = 3 in that limit. Deviations from these numbers hence provide a measure
of the nonlinearity of the wave field. Our results for S and K as a function of time for
different values of ε0 are shown in figure 2, and from these a number of trends are clear.
First of all, both S and K increase significantly in the time interval 0 ≤ t � 10Tp due to
the nonlinear ramping procedure employed in the simulations. Moreover, both S and K
exhibit oscillations whose magnitudes seem independent of ε0. While the oscillations of
the skewness are rather small, those of the kurtosis are somewhat larger, and this may
be understood qualitatively from the following argument: The oscillations seem not to
depend on ε0, and in the limit ε0 → 0 the dimensionless surface elevation ζ = η/〈η2〉1/2

is normally distributed with zero mean and unit variance (see § 4.2), such that the variables
ζ 3 (corresponding to the skewness) and ζ 4 (corresponding to the kurtosis) have variances
15 and 96, respectively. It then follows that the uncertainty of the kurtosis is expected
to be (96/15)1/2 ≈ 2.5 times larger than the uncertainty of the skewness when using the
same number of measurements, since the confidence interval for any particular quantity
scales with its respective standard deviation. We note that an interesting corollary of
this short argument is that approximately 96/15 = 6.4 times as many measurements are
needed to obtain the kurtosis with the same uncertainty as the skewness, because the
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FIGURE 2. (a) The skewness S and (b) the kurtosis K as a function of time. The simulated
results are averages of 20 realizations of the initial condition, and the legend applies to both
figures.

width of the confidence interval is inversely proportional to the square root of the number
of measurements.

Now, after the initial ramping period (i.e. approximately the first 10 peak periods) a
larger value of ε0 is clearly seen to yield a larger skewness, which is in line with the
well-known fact that troughs flatten and crests sharpen as the steepness is increased. In all
cases, except for ε0 = 0.05 where the statistical noise is too large to make the conclusion,
the skewness decreases with time after the initial ramping period. For large values of ε0
the skewness decays more rapidly than for small values of ε0, which is explained by the
fact that the steepness decreases most rapidly when ε0 is large cf. figure 1(b).

From figure 2(b) it can be seen that at a fixed point in time, a larger value of ε0 leads to
a larger kurtosis. Also, when neglecting the oscillations due to statistical noise, it appears
that K approaches a steady state level for all values of ε0, although the time at which the
level is reached depends on ε0. This hints that the wave fields considered in this work
are driven away from their initial Gaussian state by bound wave nonlinearities. For had
the nonlinear interactions among the free waves been significant, the kurtosis should first
have reached a local maximum before decaying to a quasi-steady state (see e.g. Onorato
et al. 2009; Toffoli et al. 2010; Xiao et al. 2013). We note that the free wave interactions
are absent due to the short crestedness (or, equivalently, large directional spread) of the
wave fields considered in this work. In fact, Onorato et al. and Toffoli et al. have shown
from experiments and numerical simulations, respectively, that the kurtosis of wave fields
whose directional spreading is given by the function D(θ) = cosN(θ) is only affected by
free waves when N ≥ 90 up to values of 0.16 for the wave steepness. In that connection it
is of course interesting to note that the contribution of the free waves to the kurtosis in our
results is very small even for the steepness ε0 = 0.30, since this contribution is of third
order, and therefore should become substantial if just the wave steepness is large enough.

4.2. Distribution of the surface elevation
We now consider the PDF of the surface elevation at a fixed point in time, and investigate
how this function changes with the initial steepness ε0. In addition we compare our results
with the theoretical result of Longuet-Higgins (1963), who calculated the PDF of the
surface elevation in terms of a Gram–Charlier series based on the cumulants of η. Since the
instantaneous value of the steepness has been shown to depend on time, we start, however,
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FIGURE 3. The PDF of ζ for (a) ε0 = 0.05 and (b) ε0 = 0.30 at times t = 20Tp, t = 50Tp and
t = 100Tp. The legend applies to both figures, which have been computed using data from 20
realizations of the initial condition. The dashed line depicts the PDF of a normal distribution
with zero mean and unit variance for reference.

by considering how the PDF of the surface elevation changes with time for a fixed ε0 and
whether it only depends on the instantaneous value of ε(t).

4.2.1. Dependence on time and the instantaneous steepness
As the PDF of the surface elevation depends on the instantaneous steepness, ε(t), it,

strictly speaking, does not stay constant during our simulations. To quantify the change
over time for different values of ε0, we consider the PDF, p(ζ ), of the dimensionless
surface elevation ζ = η/〈η2〉1/2 at times t = 20Tp, t = 50Tp and t = 100Tp for ε0 =
0.05 and ε0 = 0.30, since the former represents the most stationary case and the latter
represents the case which changes the most. The PDF of ζ for ε0 = 0.05 at the three
times is shown in figure 3(a), and from this it is clear that the PDF changes only very
little with time, and we therefore consider it to be constant over time. On the other hand,
figure 3(b) shows that the PDF of ζ for ε0 = 0.30 does change over time, most notably for
large negative values of ζ . We note that for negative values of ζ , the change of the PDF
becomes visible on the scale of the figure when p(ζ ) � 10−2 while for positive values of
ζ the change can be seen in the figure when p(ζ ) � 10−5.

4.2.2. Representative cases and comparison to theory
We now consider the PDF of the surface elevation at time t = 50Tp, and investigate how

this function changes with ε0. From the previous section it is clear that this choice of t
is somewhat arbitrary since the PDF of ζ varies with time in the steepest cases, and that
results which are quantitatively slightly different could have been obtained by choosing a
different time. On the other hand, the kurtosis has cf. figure 2(b) reached its quasi steady
value at t = 50Tp for all values of ε0, and in that sense our investigation of the PDF of the
surface elevation is similar to the investigation of Toffoli et al. (2010), who determined
the PDF at the instant where the maximum kurtosis was recorded. For completeness we
mention that at t = 50Tp the values of the instantaneous steepness for wave fields with
ε0 = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 have decreased to ε(50Tp) = 0.05, 0.10, 0.14, 0.19,
0.22 and 0.25, respectively, in our simulations.

In addition to investigating the role played by ε0, we also assess the accuracy of the PDF
obtained analytically by Longuet-Higgins (1963). He calculated the PDF of the surface
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elevation in terms of a Gram–Charlier series, and upon assuming 〈η〉 = 0, his result for
the PDF of the non-dimensionalized surface elevation ζ reads

p(ζ ) = 1
(2π)1/2

exp
(

−ζ 2

2

)(
1 + 1

6
Λ3H3(ζ ) +

(
1
24

Λ4H4(ζ ) + 1
72

Λ2
3H6(ζ )

)
+ · · ·

)
,

(4.1)

where Λ3 = 〈η3〉/〈η2〉3/2 and Λ4 = 〈η4〉/〈η2〉2 − 3 denote the non-dimensional third- and
fourth-order cumulants of the surface elevation, which we estimate from simulation data.
Moreover, H3(ζ ), H4(ζ ) and H6(ζ ) are the probabalists’ Hermite polynomials of degree
three, four and six defined by

H3(ζ ) = ζ 3 − 3ζ, (4.2a)

H4(ζ ) = ζ 4 − 6ζ 2 + 3, (4.2b)

H6(ζ ) = ζ 6 − 15ζ 4 + 45ζ 2 − 15. (4.2c)

In what follows, we will refer to p(ζ ) as being of nth order when keeping the first n
terms (the parenthesis containing H4 and H6 counts as one term) of the Hermite series.
The first-order distribution is thus the well-known Gaussian distribution which is implied
by the central limit theorem in the case where the surface consists of a large number of
statistically independent components. The second-order distribution is seen to take the
effect of skewness into account (clearly Λ3 = S), while the third-order distribution also,
among other things, allows a non-zero kurtosis.

Our results for p(ζ ) for different values of ε0 at time t = 50Tp are shown in figure 4. For
ε0 = 0.05 the PDF is almost symmetrical around ζ = 0, and for the inequality p(ζ ) ≥ 10−6

to be satisfied, ζ must, to a good approximation, lie in the interval [−5, 5]. For larger
values of ε0, the PDF becomes increasingly positively skewed, and as a consequence the
inequality p(ζ ) ≥ 10−6 implies that ζ should be contained in the interval [−3.8, 6.3] for
ε0 = 0.30. While the mean value of ζ is less than 10−4 in magnitude in all cases, the tail
of p(ζ ) decays much more rapidly when ε0 is small than when ε0 is large. This fact is
reflected by the probabilities listed in tables 1 and 2, which directly show that it is much
more likely to find large surface elevations when ε0 is large than when ε0 is small.

Figure 4 also shows the first-, second- and third-order results of (4.1) for p(ζ ), and
it is clear that for ε0 = 0.05 all three orders provide a highly accurate approximation of
the simulated result. For larger values of ε0 the accuracy depends on the order of the
approximation, with the third-order result being the most accurate in all cases, although
it behaves strangely for large negative values of ζ . It is interesting to note that even the
third-order PDF underestimates the simulated results, given that the system is driven away
from its Gaussian state by bound wave nonlinearities for all values of ε0 as discussed in
§ 4.1. To quantify the accuracy of the approximate distributions, we have used them to
compute the probability that ζ is larger than 2, 3, 4 or 5 for different values of ε0. The
results are shown in tables 1 and 2, and from it we conclude as follows: The first-order
PDF always underpredicts the probability from the simulations, and it does so by factors
which are at least (for ε0 = 0.05) 1.04, 1.4, 1.8 and 2.6 and at most (for ε0 = 0.30) 1.3,
2.7, 9.7 and 75.9 for ζ ≥ 2, ζ ≥ 3, ζ ≥ 4 and ζ ≥ 5, respectively. The second-order
PDF almost predicts the same probability for ζ ≥ 2 as the simulation, and otherwise it
always underestimates the probability obtained from the simulations. For ε0 = 0.05 the
probability of the events ζ ≥ 3, ζ ≥ 4 and ζ ≥ 5 are underestimated by factors of 1.4, 1.8
and 2.6, while for ε0 = 0.30 the same events are underestimated by factors of 2.7, 9.7 and
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FIGURE 4. The simulated and theoretical PDFs of the non-dimensional surface elevation
ζ = η/〈η2〉1/2 for (a) ε0 = 0.05, (b) ε0 = 0.10, (c) ε0 = 0.15, (d) ε0 = 0.20, (e) ε0 = 0.25 and
( f ) ε0 = 0.30 all at time t = 50Tp. Each histogram is constructed from 20 realizations of the
initial condition. The legend applies to all figures.

22.0, respectively. Finally, the third-order result agrees very well with the simulations for
both ζ ≥ 2 and ζ ≥ 3. It predicts the probability of the event ζ ≥ 4 correctly within 30 %
for all values of ε0, while it maximally underestimates the probability of ζ ≥ 5 by a factor
of 3.5, which happens for ε0 = 0.30.

4.3. Distribution of crest height
Next we consider the distribution of the crest height as a function of ε0. We compute the
PDF of the crest height from time series of the surface elevation at approximately 2300
fixed points in space, arranged such that the minimum distance between two points is at
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ε0

0.05 0.10 0.15

P(ζ ≥ 2) First order 2.3 × 10−2 2.3 × 10−2 2.3 × 10−2

Second order 2.4 × 10−2 2.6 × 10−2 2.8 × 10−2

Third order 2.4 × 10−2 2.6 × 10−2 2.8 × 10−2

Simulated 2.4 × 10−2 2.6 × 10−2 2.8 × 10−2

P(ζ ≥ 3) First order 1.3 × 10−3 1.3 × 10−3 1.3 × 10−3

Second order 1.7 × 10−3 2.1 × 10−3 2.5 × 10−3

Third order 1.8 × 10−3 2.2 × 10−3 2.7 × 10−3

Simulated 1.8 × 10−3 2.2 × 10−3 2.7 × 10−3

P(ζ ≥ 4) First order 3.2 × 10−5 3.2 × 10−5 3.2 × 10−5

Second order 5.2 × 10−5 7.4 × 10−5 9.4 × 10−5

Third order 5.9 × 10−5 9.5 × 10−5 1.4 × 10−4

Simulated (5.7 ± 0.3) × 10−5 1.0 × 10−4 1.7 × 10−4

P(ζ ≥ 5) First order 2.9 × 10−7 2.9 × 10−7 2.9 × 10−7

Second order 6.6 × 10−7 1.0 × 10−6 1.4 × 10−6

Third order 9.0 × 10−7 1.9 × 10−6 3.3 × 10−6

Simulated (7.6 ± 3.7) × 10−7 (2.4 ± 0.7) × 10−6 (7.6 ± 1.2) × 10−6

TABLE 1. The probability of ζ being larger than 2, 3, 4 and 5, respectively, obtained from
simulations and the first-, second- and third-order PDFs from (4.1) for ε0 = 0.05, 0.10 and 0.15.
For the simulated results of the form a ± b, b denotes the half-width of the 95 % confidence
interval. In most cases the statistical uncertainty is smaller than the error introduced when
rounding the probabilities to two significant digits, and confidence intervals have therefore been
left out. The simulated results are obtained at time t = 50Tp from 20 realizations of the initial
condition.

least one peak wavelength, and only data for which 20Tp ≤ t ≤ 100Tp are used such that
the initial ramping period does not influence the result. For each time series the surface
elevation is said to have a crest at time tn = nΔt of height ηc = η(tn) if η(tn) > η(tn±1),
and we note that crest heights may be negative with this definition. As such, it differs
from the usual definition used in connection with zero-crossing analyses, where a crest is
defined as the highest point of an individual wave. If one insists that a crest height must be
positive, we here note that one may simply use the conditional PDF

p(ηc | ηc ≥ 0) = p(ηc)∫ ∞

0
p(ηc) dηc

(4.3)

in connection with our definition of a crest. In the following, we will, however, not pursue
this possibility, as we restrict our attention to the dependence of p(ηc) on the steepness,
and how well the theoretical distributions of Longuet-Higgins (1964) and Tayfun (1980)
compare to the simulation results.

The result of Longuet-Higgins builds on the work of Cartwright & Longuet-Higgins
(1956) and Longuet-Higgins (1963), and gives the PDF of ηc per unit time. Normalizing
by the total number of crests per unit time for the case where ε0 = 0, one finds that the
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ε0

0.20 0.25 0.30

P(ζ ≥ 2) First order 2.3 × 10−2 2.3 × 10−2 2.3 × 10−2

Second order 2.9 × 10−2 3.0 × 10−2 3.1 × 10−2

Third order 2.9 × 10−2 3.0 × 10−2 3.0 × 10−2

Simulated 2.8 × 10−2 2.9 × 10−2 3.0 × 10−2

P(ζ ≥ 3) First order 1.3 × 10−3 1.3 × 10−3 1.3 × 10−3

Second order 2.7 × 10−3 2.9 × 10−3 3.1 × 10−3

Third order 3.1 × 10−3 3.5 × 10−3 3.6 × 10−3

Simulated 3.1 × 10−3 3.4 × 10−3 3.5 × 10−3

P(ζ ≥ 4) First order 3.2 × 10−5 3.2 × 10−5 3.2 × 10−5

Second order 1.1 × 10−4 1.2 × 10−4 1.3 × 10−4

Third order 1.8 × 10−4 2.2 × 10−4 2.4 × 10−4

Simulated 2.4 × 10−4 2.9 × 10−4 3.1 × 10−4

P(ζ ≥ 5) First order 2.9 × 10−7 2.9 × 10−7 2.9 × 10−7

Second order 1.7 × 10−6 1.9 × 10−6 1.0 × 10−6

Third order 4.6 × 10−6 5.7 × 10−7 6.3 × 10−6

Simulated (1.4 ± 0.2) × 10−5 (1.9 ± 0.2) × 10−5 (2.2 ± 0.2) × 10−5

TABLE 2. Same as table 1 but with ε0 = 0.20, 0.25 and 0.30.

distribution of ζc = ηc/(η2)1/2 to second order (i.e. including the effects of skewness) is
given by

pLH(ζc) =
(

1 − ρ2

2π

)1/2 (
e−x2/2 − ρxF(x; ρ)

+ 1
6
Λ300

(((
1 − ρ2)3

x3 − (
3 − 9ρ2 + 5ρ4) x

)
e−x2/2

−
(
ρ
(
1 − ρ2)3

x4 − 6ρ
(
1 − ρ2)2

x2 + 3ρ
(
1 − ρ2))F(x; ρ)

)
+ 1

2
Λ201

(
ρ
(
2 − ρ2) x e−x2/2 +

((
1 − ρ2)2

x2 − (
1 − ρ2))F(x; ρ)

)

+ 1
2
Λ102x e−x2/2 + 1

6
Λ003ρx e−x2/2

−1
2
Λ120

((
1 − ρ2) x e−x2/2 + (

ρ − ρx2 + ρ3x2)F(x; ρ)
))

(4.4)

after correcting a few printing errors as well as an issue with the definition of the skewness
coefficients in the paper by Longuet-Higgins (1964). Here the numbers x and ρ and the
function F(x; ρ) are defined as

x = ζc(
1 − ρ2

)1/2 , ρ = ηηtt(
η2 η2

tt

)1/2 , F(x; ρ) = exp
(−x2(1 − ρ2)/2

) ∫ ∞

ρx
e−z2/2 dz,

(4.5a–c)
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while the different skewness coefficients are given by

Λp1p2p3 = (−1)p3(
1 − ρ2

)( p1+p3)/2

η
p1η

p2
t η

p3
tt(

η2
)p1/2 (

η2
t

)p2/2 (
η2

tt

)p3/2 . (4.6)

To compute these coefficients, we use a centred second-order finite difference scheme to
compute the time derivatives of η. In what follows we say that pLH(ζc) is of first order when
all skewness terms in (4.4) are neglected, and of second order if the entire expression is
used, and we note that the first order result for pLH(ζc) is the exact result for the PDF of
the crest height in the limit ε0 → 0.

The result of Tayfun is based on the assumption that the wave field is unidirectional with
an underlying narrowbanded frequency spectrum and is accurate to second order in wave
steepness. In the present notation the expression for the PDF reads

pT(ζc) = 2
ε

(
1 − 1

(εζc + 1)1/2

)
exp

(
− 2

ε2

(
(εζc + 1)1/2 − 1

)2
)

, (4.7)

and we have evaluated it taking ε = ε0. Using a Taylor series expansion, it is
straightforward to show that this expression reduces to the well-known Rayleigh
distribution ζc exp(−ζ 2

c /2) for narrowbanded waves as ε becomes vanishingly small,
and we note that this is fundamentally different from the crest height distribution of
Longuet-Higgins, which reduces to the exact result in the linear limit. For a discussion
and illustration of the difference between the PDFs in the linear limit we refer to the paper
by Cartwright & Longuet-Higgins (1956).

Our results for p(ζc) are shown for different values of ε0 in figure 5, which illustrates the
fact that the PDF becomes more skewed towards positive values of ζc as ε0 increases.
This may be seen quantitatively by noting that for the inequality p(ζc) ≥ 10−6 to be
approximately satisfied, ζc must lie in the interval [−2, 6] when ε0 = 0.05 and in the
interval [−2, 7.5] when ε0 = 0.30. The mean crest height varies only little with ε0,
and achieves its minimum, 1.10, for ε0 = 0.05 and its maximum, 1.17, for ε0 = 0.20. In
contrast, the mode (i.e. the most probable value of ζc) of the crest height distribution
monotonically increases in an approximately linear fashion with ε0, and is 0.77 for
ε0 = 0.05 and 0.89 for ε0 = 0.30.

The theoretical results of Longuet-Higgins and Tayfun are also shown in the figure,
and from these we conclude the following: The first-order PDF of Longuet-Higgins
is relatively accurate for ε0 = 0.05 only, as it overestimates the probability density of
large negative crest heights and drastically underestimates the probability density of large
positive crest heights larger for values of ε0. The second-order PDF of Longuet-Higgins
shares these drawbacks, but is somewhat more accurate than the first-order distribution. In
neither case do we consider a more quantitative comparison necessary to conclude that the
two PDFs are not useful to predict the probability of large crest heights in steep wave fields.
Finally, the second-order PDF of Tayfun is not capable of predicting negative crest heights
due to the narrowband assumption, but predicts the probability density of large positive
crest heights for large values of ε0 with very high accuracy. This is remarkable when
considering that the PDF is derived for unidirectional wave fields with a narrowbanded
frequency spectrum while the wave fields in this work are short-crested and the underlying
JONSWAP spectrum is not exactly narrowbanded. The good agreement is, however, not
completely unexpected, as e.g. Onorato et al. (2009) have previously demonstrated that
the Tayfun distribution performs well for wave fields whose statistical properties are
dominated by bound wave effects.
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FIGURE 5. The simulated and theoretical PDFs of the non-dimensional crest height ζc =
ηc/

(
η2
)1/2

for (a) ε0 = 0.05, (b) ε0 = 0.10, (c) ε0 = 0.15, (d) ε0 = 0.20, (e) ε0 = 0.25 and
( f ) ε0 = 0.30. Each histogram is constructed from 20 realizations of the initial condition and
uses data from the time interval 20 ≤ t ≤ 100Tp. The legend applies to all figures.

4.4. Average surface elevation around large crests
We conclude the study of the statistical properties of the surface elevation by considering
the average surface elevation around large crests at a fixed point in time. This is an old
problem to which, among others, Phillips, Gu & Donelan (1993) and Boccoti (2000) have
contributed solutions to lowest order in ε0, and Fedele & Tayfun (2009) have supplied
a solution that incorporates weak nonlinearity. Here we define the surface elevation to
have a crest at the location (xc, yc) with height ηc = η(xc, yc) if ηc ≥ η(x, y) for all
(x, y) satisfying the conditions |x − xc| ≤ λp/2 and |y − yc| ≤ λp/2, and we compute the
average surface elevation around crests with ηc ≥ Hm0 using data for which t ≥ 20Tp.
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(b)(a)

FIGURE 6. The average surface elevation in the domain {(x, y) | |x − xc| ≤ λp and |y − yc| ≤
λp} around crests higher than Hm0 for (a) ε = 0.05 and (b) ε = 0.30 seen from behind (i.e. for
x < xc). The vertical scale on the figures is the same. The figures are computed using data from
20 realizations of the initial condition at times later than 20Tp.

The result of the computation for ε0 = 0.05 and ε0 = 0.30 is shown in figure 6,
from which it may be seen that large crests, on average, become steeper and more
narrow as ε0 increases. Moreover, the trough behind the crest (i.e. for x < xc) is seen
to flatten and to come closer to the still water level for larger steepness. To make the
structure of large crests more clear, their contours are shown in figures 7(a) and 7(b).
The figures illustrate the fact that the average surface elevation around large crests
does, to a good approximation, possess the symmetry properties η(x, y) = η(−x,−y),
η(x, y) = η(−x, y) and η(x, y) = η(x,−y) when ε0 is small, while it only satisfies the
condition η(x, y) = η(x,−y) when ε0 is large. We note that the former result can be
explained qualitatively by the approximate result of Phillips et al., which states that the
surface elevation in the vicinity of a point where η is known to be large is expected to have
the shape of the surface elevation’s autocorrelation function,

Ψ (x, y) = E[η(x0, y0)η(x0 + x, y0 + y)], (4.8)

where E[·] denotes an average over all points (x0, y0). Since all points of the wave field
are statistically identical, Ψ does not depend on x0 and y0, and one may, for fixed values
of x and y, substitute x0 with x0 − x and y0 with y0 − y, which upon insertion in (4.8)
shows that Ψ (x, y) = Ψ (−x,−y). The two other symmetry properties may be shown in
an analogous way by utilizing the fact that the directional spreading function (2.3) satisfies
the condition D(θ) = D(−θ).

In order to check the actual accuracy of the approximate result of Phillips et al., the
average surface elevation around crests higher than Hm0 is compared to the autocorrelation
function along the line y = yc for ε0 = 0.05 and 0.30 in figures 7(c) and 7(d). For
ε0 = 0.05 the overall agreement is seen to be good, although the autocorrelation function
predicts the troughs to be slightly deeper than found from the simulation results. For
ε0 = 0.30 the agreement is in contrast very poor. The autocorrelation function severely
overpredicts the depth of the troughs and does also not capture the shape of the crest.
Moreover, the autocorrelation function predicts the average surface elevation around the
crest to be symmetrical, which it clearly is not.

5. Statistical properties of fluid kinematics at the surface

In this section we study the horizontal fluid velocity at the surface, v
(s)
h , the horizontal

fluid acceleration at the surface, a(s)
h , and the vertical fluid acceleration at the surface, a(s)

z ,
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FIGURE 7. (a,b) Contour lines of the average surface elevation in the domain {(x, y) | |x −
xc| ≤ λp and |y − yc| ≤ λp} around crests higher than Hm0 for (a) ε = 0.05 and (b) ε = 0.30.
The crest elevation has been normalized to 1. (c,d) Comparison of the average surface elevation
around crests higher than Hm0 and the autocorrelation function (4.8) computed at t = 50Tp for
(c) ε0 = 0.05 and (d) ε0 = 0.30. The legend applies to both (c) and (d). The figures are computed
using data from 20 realizations of the initial condition at times later than 20Tp.

at a fixed point in time as a function of the initial steepness. These quantities are defined
as

v
(s)
h = (

v2
x + v2

y

)1/2
∣∣∣
z=η

, (5.1a)

a(s)
h = (

a2
x + a2

y

)1/2
∣∣∣
z=η

, (5.1b)

a(s)
z = az|z=η, (5.1c)

and we normalize them by v0 = ε0(g/kp)
1/2 and a0 = ε0g, respectively, where the factor

ε0 is included in each case to account for the expected scaling based on linear theory.
Although the statistical properties of the wave field change slightly in time, we will again
use the results at t = 50Tp as a representative of the results for all t satisfying 20Tp ≤
t ≤ 100Tp, as we did in § 4.2. Since we have not been able to find a discussion of the
PDFs of v

(s)
h and a(s)

h in the literature and a(s)
z has also not received much attention, we

start by deriving the PDFs of v
(s)
h , a(s)

h and a(s)
z based on first-order theory using some

results obtained by Song & Wu (2000) in order to find out what to expect in the limit of
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small steepness. Using our simulation results we then go on to discuss how the exact PDFs
depend on ε0 and how they differ from the first-order results. Finally, we consider the joint
distribution of the fluid kinematics at the surface and the surface elevation, and ask for
what surface elevations velocities and accelerations of large magnitude occur. We note that
this question is motivated by the work of Sergeeva & Slunyaev (2013), who investigated
whether large fluid velocities at the surface only occur in connection with large surface
elevations.

Before proceeding, we want to draw attention to the fact that the distributions of the
fluid kinematics presented in this paper are not expected to be exhaustive descriptions of
the true distributions that may be measured in field experiments, since the effects of wave
breaking are not included in our simulations. In particular caution should be taken for the
wave fields with large values of ε0 where breaking is expected to occur more often than
for wave fields with small values of ε0. The reason for this warning is that breaking waves
have been found to exhibit substantially more violent kinematics than non-breaking waves.
For a discussion of the fluid kinematics of breaking waves we refer the reader to the papers
by Grue & Jensen (2006) and Alberello et al. (2018) as well as the references therein.

5.1. First-order distributions of the surface kinematics

To derive the PDF of v
(s)
h we start out by noting that when only terms to first order in ε0

are kept, (67) of Song & Wu (2000) immediately implies that the horizontal components
of the fluid velocity at the surface, v(s)

x and v(s)
y , are jointly normally distributed. Since the

directional spreading function (2.3) of the wave fields studied in this work possesses the
symmetry property D(θ) = D(−θ), it follows from (34) of Song & Wu that v(s)

x and v(s)
y

are uncorrelated, and their joint PDF can hence be expressed generically as

p
(
v(s)

x , v(s)
y

) = 1
2πσvx σvy

exp

⎛
⎝−1

2

⎛
⎝(v(s)

x

σvx

)2

+
(

v(s)
y

σvy

)2
⎞
⎠
⎞
⎠ , (5.2)

where σvx and σvy denote the standard deviations of v(s)
x and v(s)

y , respectively. By definition,
the cumulative distribution function of v

(s)
h is given by

P
(
v

(s)
h ≤ v

)
=
∫

v
(s)2
x +v

(s)2
y ≤v2

p
(
v(s)

x , v(s)
y

)
dv(s)

x dv(s)
y , (5.3)

and upon insertion of (5.2), differentiation with respect to v and some tedious, but
otherwise straightforward, algebraic manipulations, it can be shown that the PDF of v

(s)
h /v0

to first order in ε0 reads

p
(
v

(s)
h /v0

)
= 2

π

v
(s)
h v0

σvx σvy

∫ π/2

0
exp

⎛
⎝−1

2

(
v

(s)
h

σvx

)2 (
cos(x)2 +

(
σvx

σvy

)2

sin(x)2

)⎞⎠ dx .

(5.4)

We note that in the case where σvx = σvy the integral becomes trivial and p(v
(s)
h /v0) is

seen to be the PDF of a Rayleigh distribution. In the more general case where σvx /= σvy

and both standard deviations are non-zero, the integral can not be computed in terms of
elementary functions, but the notation may be simplified by using the modified Bessel
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function of order zero, I0. After a few calculations one finds that (5.4) can be rewritten
as

p
(
v

(s)
h /v0

)
= v

(s)
h v0

σvx σvy

exp

(
−1

4
v

(s)2

h

(
1

σ 2
vx

+ 1
σ 2

vy

))
I0

(
1
4
v

(s)2

h

(
1

σ 2
vx

− 1
σ 2

vy

))
, (5.5)

which is on a form that may be evaluated directly by a large number of software packages.
In order to find the standard deviations we have executed simulations with ε0 = O(10−6),
and found that σvx ≈ 0.556v0 and σvy ≈ 0.321v0, such that σvx /σvy ≈ 1.732 is very close
to the exact ratio

√
3 ≈ 1.732, which may be derived using (33) and (35) of Song & Wu.

To derive the PDF of a(s)
h we start by noting that the contribution from the nonlinear

convective terms to the horizontal components of the fluid acceleration at the surface,
a(s)

x and a(s)
y , vanish to first order in ε0. As a consequence, a(s)

x and a(s)
y are jointly

normally distributed to this order, and using the same argument about the symmetry of
the directional spreading function as above, their correlation can be shown to be zero.
This then implies that the derivation of the PDF of a(s)

h /a0 becomes exactly the same as
that of p(v

(s)
h /v0), and we are therefore content with stating the result, which is

p
(

a(s)
h /a0

)
= a(s)

h a0

σax σay

exp

(
−1

4
a(s)2

h

(
1

σ 2
ax

+ 1
σ 2

ay

))
I0

(
1
4

a(s)2

h

(
1

σ 2
ax

− 1
σ 2

ay

))
. (5.6)

Here, σax ≈ 0.831a0 and σax ≈ 0.489a0 are the standard deviations of a(s)
x and a(s)

y ,
respectively, and the actual values have again been found by simulating wave fields with
ε0 = O(10−6). We note that σax /σax ≈ 1.699 which is close to the expected ratio of

√
3 for

the directional spreading function (2.3).
Finally, it may readily be seen that a(s)

z follows a normal distribution to first order in ε0.
Hence, the PDF of a(s)

z /a0 to this order simply reads

p
(
a(s)

z /a0
) = a0

(2π)1/2σaz

exp

(
−1

2

(
a(s)

z

σaz

)2
)

, (5.7)

where a good approximation for the standard deviation of a(s)
z has been found to be σaz ≈

0.950a0 by simulating wave fields with ε0 = O(10−6). This concludes our derivation of
the PDFs of the quantities v

(s)
h , a(s)

h and a(s)
z to first order.

5.2. Nonlinear distributions of the surface kinematics

We now investigate the PDFs of v
(s)
h /v0, a(s)

h /a0 and a(s)
z /a0 obtained from our simulations

at time t = 50Tp for different values of ε0. The PDFs are shown in figure 8, from which it
may be seen that the PDFs of v

(s)
h /v0 and a(s)

h /a0 acquire a less rapidly decaying tail as ε0
increases from 0.05 to approximately 0.20, and that the PDFs are almost independent of
ε0 when the initial steepness is 0.20 or larger. In contrast, both the left and right tails of
the PDF of a(s)

z /a0 become more rapidly decaying as ε0 increases. The trend is, however,
most pronounced for small values of ε0. The PDFs of all three variables are quantitatively
described in table 3 through their modes, mean values and standard deviations. The table
shows that the modes and mean values of v

(s)
h /v0 and a(s)

h /a0 decrease with ε0, while the
opposite happens to be the case for a(s)

z /a0. The table also shows, surprisingly enough, that
the standard deviations of all three variables decrease with the initial steepness, and we
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FIGURE 8. The PDFs of (a,b) v
(s)
h /v0, (c,d) a(s)

h /a0 and (e, f ) a(s)
z /a0 at time t = 50Tp for

different values of ε0. The PDFs are computed from 20 realizations of the initial condition.
The legends of the first row apply to all rows. The dashed lines depict the first-order results given
by (5.5), (5.6) and (5.7), respectively.

v
(s)
h /v0 a(s)

h /a0 a(s)
z /a0

ε0 Mode Mean Std. dev. Mode Mean Std. dev. Mode Mean Std. dev.

0.05 0.36 0.51 0.29 0.53 0.69 0.39 0.00 0.03 0.79
0.10 0.35 0.49 0.28 0.47 0.66 0.37 0.05 0.06 0.74
0.15 0.35 0.48 0.28 0.46 0.62 0.36 0.05 0.08 0.70
0.20 0.32 0.45 0.27 0.42 0.58 0.34 0.07 0.09 0.64
0.25 0.31 0.42 0.26 0.38 0.54 0.31 0.06 0.09 0.59
0.30 0.29 0.39 0.24 0.36 0.50 0.29 0.07 0.10 0.54

TABLE 3. The modes, means and standard deviations of v
(s)
h /v0, a(s)

h /a0 and a(s)
z /a0 at time

t = 50Tp as a function of ε0. The values are computed from 20 realizations of the initial
condition.

can therefore in some sense conclude that the fluid kinematics at the surface become more
predictable as the initial steepness is increased. This statement should, however, be taken
cautiously, as the above description of the PDFs implicitly implies that the probability of
finding very large horizontal fluid velocities and accelerations at the surface increases with
the steepness.
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FIGURE 9. The joint PDFs of η/Hm0 and (a,d) v
(s)
h /v0, (b,e) a(s)

h /a0 and (c, f ) |a(s)
z |/a0 at time

t = 50Tp for ε0 = 0.05 (a–c) and ε0 = 0.30 (d–f ). All figures are produced using 20 realizations
of the initial condition.

In order to assess the accuracy of the first-order results (5.5), (5.6) and (5.7), we show
them as dashed lines in figure 8 together with the nonlinear results. From the figure we note
that the first-order result for the PDF of v

(s)
h matches the nonlinear results with ε0 ≤ 0.15

rather well, but also that the first-order results in all other cases deviate substantially from
the nonlinear results. In particular we note that for steep wave fields the first-order result
tends to underestimate the probability of large values of v

(s)
h and a(s)

h and overestimate the
probability of large values of a(s)

z .

5.3. Joint distribution of surface kinematics and surface elevation
The interest in very large surface and crest elevations is partly motivated by the fact
that they are typically accompanied by large fluid velocities and accelerations. There is,
however, no guarantee that a violent fluid flow is found only in the vicinity of large surface
elevations, since it e.g. has been shown by Sergeeva & Slunyaev (2013) that not all large
fluid velocities at the surface of unidirectional waves are found where the surface elevation
is large. In an attempt to find out for what surface elevations large fluid velocities and
accelerations at the surface occur, we have computed the joint PDF of η/Hm0 with each
of v

(s)
h /v0, a(s)

h /a0 and |a(s)
z |/a0 at time t = 50Tp for different values of ε0. The results

for ε0 = 0.05 and 0.30 are shown in figure 9, and from it we reach different conclusions
about the fluid kinematics at the surface when the initial steepness is small and when
it is large. When the initial steepness is small, we conclude that large values of v

(s)
h /v0

and |a(s)
z |/a0 are most likely found when the surface elevation is large in magnitude,

while large values of a(s)
h /a0 are most likely found when the surface elevation is small

in magnitude, i.e. close to the still water level. When the initial steepness is large, we
can make the same conclusion about a(s)

h /a0, but large values of v
(s)
h /v0 are now found

primarily when the surface elevation is large and positive, whereas large values of |a(s)
z |/a0

are mainly found when the surface elevation is large and negative. Even though the fluid
velocities and accelerations at the surface are important quantities, we stress at this point
that they cannot be expected to give the full picture of how violent the flow field actually is.
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For example we know from the work of Longuet-Higgins (1986) that when the steepness
becomes large enough, the downwards fluid acceleration at the crest of a steady nonlinear
wave may in fact be exceeded by up to approximately 20 % by the maximum downwards
fluid acceleration found vertically below the crest.

6. Statistical properties of fluid kinematics associated with large crests

In this section we present a detailed analysis of the largest fluid velocities and
accelerations appearing in connection with large crests. To do so, we consider the wave
field at fixed points in time with t ≥ 20Tp, and define the surface elevation to have a
crest at the location (xc, yc) with height ηc = η(xc, yc) in the same way as in § 4.4, i.e. if
ηc ≥ η(x, y) for all (x, y) satisfying the conditions |x − xc| ≤ λp/2 and |y − yc| ≤ λp/2.
We consider the extremum velocities and accelerations

v
(m)

h = max
{(

v2
x + v2

y

)1/2
}

, (6.1a)

a(m)

h = max
{(

a2
x + a2

y

)1/2
}

, (6.1b)

a(m)
z = min {az} , (6.1c)

where the maxima and minimum are computed over the region of space{
(x, y, z)

∣∣∣∣ |x − xc| ≤ λp

2
, |y − yc| ≤ λp

2
and − 1.5Hm0 ≤ z ≤ η(x, y)

}
, (6.2)

and note that the minimum value of az corresponds to the value having the largest
magnitude, since vertical accelerations are negative close to crests. We begin the analysis
by studying the influence of ε0 on the conditional distribution of these quantities given
that ηc ≥ Hm0. Next, we consider the distribution of the locations relative to the crest
at which v

(m)

h , a(m)

h and a(m)
z occur for crests higher than Hm0, and show that only the

horizontal acceleration attains its maximum away from the crest. For crests higher than
Hm0 we therefore subsequently investigate the distribution of the horizontal acceleration at
the crest,

a(c)
h = (

a2
x + a2

y

)1/2
∣∣∣
(x,y,z)=(xc,yc,ηc)

, (6.3)

relative to the maximum horizontal acceleration found in connection with the crest.

6.1. Conditional distributions of the extremum velocities and accelerations

Our results for the conditional PDFs of v
(m)

h /v0, a(m)

h /a0 and a(m)
z /a0 given that ηc ≥ Hm0 are

shown in figure 10 for different values of ε0. For all variables it holds that a larger value of
ε0 leads to a less rapidly decaying tail, in such a way that all PDFs are easily told apart on
the scale of the figure already around probability densities of magnitude 10−2. For v

(m)

h /v0
the tail changes most rapidly for ε0 ≤ 0.15 while for the accelerations the tail also changes
appreciably for larger values of ε0. From the figure it is also clear that the most likely
values of v

(m)

h /v0 and a(m)

h /a0 are only weakly dependent on the initial steepness while the
most likely value of a(m)

z /a0 quickly moves towards less negative values as ε0 is increased
from 0.05. The PDFs are quantitatively described in table 4, which lists the modes, mean
values and standard deviations of the three quantities as a function of ε0. From the table it
is interesting to note that the standard deviations of the three quantities increase with the
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v
(m)
h /v0 a(m)

h /a0 a(m)
z /a0

ε0 Mode Mean Std. dev. Mode Mean Std. dev. Mode Mean Std. dev.

0.05 2.27 2.29 0.22 2.51 2.59 0.33 −3.04 −3.03 0.30
0.10 2.38 2.42 0.27 2.46 2.58 0.39 −2.71 −2.71 0.24
0.15 2.48 2.58 0.32 2.52 2.66 0.50 −2.40 −2.41 0.20
0.20 2.51 2.66 0.37 2.46 2.81 0.65 −2.09 −2.21 0.25
0.25 2.53 2.70 0.38 2.56 2.95 0.78 −1.91 −2.11 0.34
0.30 2.55 2.71 0.36 2.58 3.11 0.93 −1.85 −2.11 0.48

TABLE 4. The conditional modes, means and standard deviations of v
(m)
h /v0, a(m)

h /a0 and
a(m)

z /a0 given that ηc ≥ Hm0 as a function of ε0.

initial steepness, which is the exact opposite trend than exhibited by the fluid velocities and
accelerations at the surface as discussed in § 5.2. In this connection it should in particular
be noted that while the standard deviations of v

(m)

h /a0 and a(m)
z /a0 merely increase by

factors of about 1.2 and 1.6, respectively, when ε0 is increased from 0.05 to 0.30, the
standard deviation of a(m)

h /a0 increases by a factor of approximately 2.8. Finally, we want
to draw attention to the fact that the mean of a(m)

h /a0 is smaller in magnitude than the mean
of a(m)

z /a0 for small values of ε0, while it is the other way around with a(m)

h /a0 exceeding
a(m)

z /a0 by approximately a factor 1.5 in magnitude for ε0 = 0.30.
The conditional distributions do, of course, not tell the whole story, as they do not

distinguish between crests of different heights as long as they are larger than Hm0. It turns
out, as one would expect, that if the initial steepness is kept constant, the average values of
v

(m)

h /v0, a(m)

h /a0 and a(m)
z /a0 tend to grow in magnitude with the crest height, and this fact is

illustrated in figure 11. The figure shows the averaged extremum velocity and accelerations

Vh(ηc; δ) = 1
N(ηc; δ)

N(ηc;δ)∑
n=1

v
(m)

h (n), (6.4a)

Ah(ηc; δ) = 1
N(ηc; δ)

N(ηc;δ)∑
n=1

a(m)

h (n), (6.4b)

Az(ηc; δ) = 1
N(ηc; δ)

N(ηc;δ)∑
n=1

a(m)
z (n), (6.4c)

where N(ηc; δ) is the number of crests with elevation in the interval [ηc − δ, ηc + δ),
v

(m)

h (n) is the value of v
(m)

h at the nth crest of appropriate elevation and a(m)

h (n) and a(m)
z (n)

are defined similarly. In this connection we note that Vh/v0 grows with ηc at a rate which is
nearly independent of ε0 and that Ah/a0 grows with ηc at rate which is highly dependent on
ε0. It can also be seen from the figure that the rate at which Az/a0 increases in magnitude
with ηc is almost independent of ε0 for small values of the initial steepness but does depend
on ε0 for large values of the initial steepness.
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FIGURE 10. The conditional PDFs of (a,b) v
(m)
h /v0, (c,d) a(m)

h /a0 and (e, f ) a(m)
z /a0 given that

ηc ≥ Hm0 for different values of ε. The PDFs are computed from 20 realizations of the initial
condition at times later than 20Tp. The legends of the first row apply to all rows.
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FIGURE 11. The non-dimensional average extremum velocity and accelerations Vh/v0, Ah/a0
and Az/a0 (full lines) with 95 % confidence intervals (dashed-dotted lines) as a function of the
crest height. The averages have been computed in steps of 0.02Hm0 with δ = 0.01Hm0, and the
legend applies to all figures.

6.2. Locations of the extremum fluid velocities and accelerations

Next, we consider the location at which v
(m)

h , a(m)

h and a(m)
z occur for crests of height

larger than Hm0. We denote these locations by (x (m)
vh

, y(m)
vh

, z(m)
vh

), (x (m)
ah

, y(m)
ah

, z(m)
ah

) and
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FIGURE 12. The joint conditional PDF of (x (m)
ah , y(m)

ah ) given that ηc ≥ Hm0 for (a) ε0 = 0.05,
(b) ε0 = 0.10, (c) ε0 = 0.15, (d) ε0 = 0.20, (e) ε0 = 0.25 and ( f ) ε0 = 0.30.

(x (m)
az

, y(m)
az

, z(m)
az

), respectively, and start by examining the location of the horizontal
acceleration.

The joint conditional PDF of (x (m)
ah

, y(m)
ah

) given that ηc ≥ Hm0 is shown in figure 12
for different values of ε0, and illustrates the fact that a(m)

h is most likely to be found
approximately 0.1λp away from the crest in the horizontal plane for all values of ε0. For
a small initial steepness, a(m)

h is found almost as often behind the crest (i.e. for x (m)
ah

< xc)
as in front of the crest (i.e. for x (m)

ah
> xc), while for large initial steepness a(m)

h is most
likely found in front of the crest. Moreover, we note that the conditional PDF becomes
more localized with as ε0 increases. Although not to the same degree, the conditional
distribution of the vertical location, z(m)

ah
, given that ηc ≥ Hm0 also becomes more localized

as ε0 increases. This may be seen in figure 13, which also shows that the most likely
position for a(m)

h to occur becomes increasingly negative as ε0 becomes large. As a result
the maximum horizontal acceleration is most likely found approximately 0.6Hm0 below
the crest when ε0 = 0.05, while for ε0 = 0.30 a(m)

h occurs most often about 0.7Hm0 below
the crest. Interestingly enough, the average value of z(m)

ah
does seemingly not depend on ε0

and is about −0.8Hm0 in all cases.
In contrast to a(m)

h , v
(m)

h and a(m)
z are typically found right at the crest with a very high

probability for all values of the steepness. This fact is illustrated for ε0 = 0.15 in figure 14
which shows the joint conditional PDFs of (x (m)

vh
, y(m)

vh
) and (x (m)

az
, y(m)

az
) given that ηc ≥ Hm0,

and in figure 15 which shows the conditional PDFs of z(m)
vh

and z(m)
az

given that ηc ≥ Hm0. In
this connection it is interesting to note that the maximum horizontal velocity sometimes,
although rarely, occurs somewhat below the crest which is never the case for regular waves.

6.3. Velocities and accelerations at the crest compared to maximum values
From the preceding section it is clear that the horizontal velocity and vertical acceleration
at the crest must typically be very similar to the corresponding maximum quantities
associated with the crest. On the other hand, the horizontal acceleration at the crest

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.968


Statistical properties of surface irregular water waves 910 A23-29

–0.2 –1.8 –1.4 –1.0 –0.6 –0.2–0.6–1.0–1.4–1.8
10–3

10–2

10–1

100

10–3

10–2

10–1

100

(m)(xah   – ηc)/Hm0
(m)(zah   – ηc)/Hm0

p(
z a h

/
H

m
0 
|η

c 
≥  H

m
0)

(m
)

ε0 = 0.05
ε0 = 0.10
ε0 = 0.15

ε0 = 0.20
ε0 = 0.25
ε0 = 0.30

(b)(a)

FIGURE 13. The conditional PDF of z(m)
ah given that ηc ≥ Hm0 for different values of ε0.

–0.3

–0.3

–0.2

–0.2

–0.1

–0.1

0

0

0.1

0.1

0.2

0.2

0.3
0

50

100

150

200

250

0

50

100

150

200
0.3

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
(m)(xvh   – xc)/λp

(m
)

(y
v
h 

  –
 y

c)
/λ

p

(m)(xaz   – xc)/λp

(m
)

(y
a z

   
– 

y c)
/λ

p

(b)(a)

FIGURE 14. The joint conditional PDFs of (a) (x (m)
vh , y(m)

vh ) and (b) (x (m)
az , y(m)

az ) given that
ηc ≥ Hm0 for ε0 = 0.15.

100

101

10–2

10–1

102

100

101

10–2

10–1

102

–0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05 0 –0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05 0

(b)(a)

p(
z v

h
 /H

m
0 
|η

c 
≥  H

m
0)

(m
)

(zvh   
– ηc)/Hm0)(m) (zaz    

– ηc)/Hm0)(m)

p(
z a z

 /
H

m
0 
|η

c 
≥  H

m
0)

(m
)

FIGURE 15. The conditional PDFs of (a) z(m)
vh and (b) z(m)

az given that ηc ≥ Hm0 for ε0 = 0.15.

may deviate substantially from the maximum horizontal acceleration, since the latter is
typically found a non-negligible distance away from the crest, and we here quantify the
deviation using the conditional PDF of a(c)

h /a(m)

h given that ηc ≥ Hm0. Figure 16 illustrates
the fact that the PDF acquires a less rapidly decaying tail with the steepness and that it
peaks around a(c)

h ≈ 0.1a(m)

h for all values of ε0. From integration of the PDF we moreover
conclude that the probability of a(c)

h exceeding a(m)

h /2 is less than approximately 1.2 % for
ε0 = 0.30 and significantly less for smaller values of the initial steepness.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.968


910 A23-30 M. Klahn, P. A. Madsen and D. R. Fuhrman

100

101

10–2

10–1

100

101

10–2

10–3

10–1

0.3 0.4 0.50.20.10

p(
a h(c

) /a
h(m

) |
η

c 
≥  H

m
0)

ah
(c)/ah

(m) ah
(c)/ah

(m)

ε0 = 0.05
ε0 = 0.10
ε0 = 0.15

ε0 = 0.20
ε0 = 0.25
ε0 = 0.30

0.80.70.60.50.40.30.20.10

(b)(a)

FIGURE 16. The conditional PDF of a(c)
h /a(m)

h given that ηc ≥ Hm0 for different values of ε0.

7. Conclusions

We have presented a numerical study of the statistical properties of the surface elevation
and the fluid kinematics of irregular wave fields with emphasis on the role of the initial
wave steepness ε0. The study was performed using the fully nonlinear numerical model
of Klahn et al. (2020), which is a pseudospectral volumetric method for solving the
irrotational Euler equations without any simplifying assumptions. In that regard this
investigation stands out, since most other numerical studies of irregular wave fields have
been carried out using either the nonlinear Schrödinger equation (Dysthe et al. 2003;
Socquet-Juglard et al. 2005), the Zakharov equation (Annenkov & Shrira 2009, 2013,
2018) or a low-order truncation of the HOS method (Toffoli et al. 2010; Xiao et al.
2013; Fedele et al. 2016). The wave fields under consideration were of size 50λp × 50λp,
discretized with approximately 20 points per peak wavelength and initialized from a
directional JONSWAP spectrum using a method due to Tanaka (2001).

We first considered the statistical properties of the surface elevation. Its skewness and
kurtosis were computed as a function of time, and it was shown that at a fixed point in time
a larger value of ε0 leads to larger values of the skewness and the kurtosis. Moreover, it was
found that while the skewness decreases with time when the steepness is large, the kurtosis
seemed to approach a steady state level for all values of ε0. Next, we showed that the PDF
of the surface elevation changes slightly over time in our simulations, with the change
mainly affecting the left tail of the PDF. With this result in mind, we considered the PDF of
the surface elevation at time t = 50Tp. This PDF was computed for different values of ε0,
and it was concluded that it acquires a less rapidly decaying tail for large positive surface
elevations as ε0 increases. The simulated results were compared to the first-, second-
and third-order approximations of the Gram–Charlier series derived by Longuet-Higgins
(1963), and a good agreement was found for all orders for small values of ε0. For large
values of ε0 the theoretical results were, however, found to underestimate the probability
of large positive surface elevations. Hereafter, we studied the PDF of the crest elevation,
whose dependence on the initial steepness was found to be qualitatively similar to that
of the PDF of the surface elevation. The theoretical results of Longuet-Higgins (1964)
and Tayfun (1980) were compared to the simulated results, and while the expressions
of Longuet-Higgins did not provide accurate results unless ε0 = 0.05, the expression of
Tayfun matched the results of the simulations remarkably well. In that connection it was
mentioned that the PDF of Tayfun is based on assumptions which are not satisfied by
the wave fields in this work, and it was therefore noted that its good agreement with the
simulated results should be regarded as a coincidence. We concluded the investigation
of the statistical properties of the surface elevation by considering the expected surface
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elevation in the vicinity of crests higher than the significant wave height, Hm0. The
symmetry properties of the surface elevation were discussed, and it was shown that two
out of the three mentioned symmetries are broken as the initial steepness becomes large.

Secondly, we considered various statistical aspects of the fluid kinematics encountered
in connection with irregular wave fields. The fluid kinematics of irregular waves have so
far only received very little attention in the literature, and none of the PDFs presented in
§§ 5 and 6 have to our knowledge been published elsewhere.

In § 5, we first considered the statistical properties of the horizontal fluid velocity and
horizontal and vertical fluid acceleration at the surface. Drawing on some results due
to Song & Wu (2000) we derived expressions for the PDFs of these quantities to first
order, and showed that already for ε0 these approximations are fairly inaccurate. When
increasing the initial steepness, the tails of the PDFs were found to become less rapidly
decaying in the case of the horizontal velocity and acceleration for larger values, and more
rapidly decaying in the case of the vertical acceleration. Moreover, the standard deviations
of all three quantities were found to become smaller when increasing the value of ε0.
Next, we investigated for what surface elevations large fluid kinematics at the surface
occur by considering the joint PDF of the surface elevation and the fluid velocities and
accelerations. For small values of ε0 we concluded that large horizontal velocities and
vertical accelerations at the surface are typically found when the surface elevation is of
large magnitude, while large horizontal accelerations at the surface are most often found
close to the still water level. For large values of ε0 the latter conclusion still holds, but
large horizontal velocities at the surface are in this case most often found when the surface
elevation is large and positive, while large vertical accelerations at the surface are most
likely found when the surface elevation is large and negative.

In § 6 we characterized the largest values of the horizontal velocity as well as horizontal
and vertical accelerations that accompany large crests. We computed the conditional PDFs
of these quantities given that the crest height is larger than Hm0, and showed that all PDFs
acquire less rapidly decaying tails as the initial steepness becomes large. Moreover, we
found that the standard deviations of all quantities become larger with ε0 which is in clear
contrast to the standard deviations of the fluid velocities and accelerations at the surface.
Following this, we studied the statistical distribution of the location where the extremum
velocities and accelerations occur. We concluded that for small values of ε0 the largest
horizontal acceleration is most likely found the distance 0.1λp either behind or in front of
the crest, while for large values of ε0 it is most likely found the same distance in front of
the crest. The largest horizontal velocity and vertical acceleration were in all cases most
likely to be found right at the crest. Finally, we considered the horizontal acceleration at
the crest relative to the maximum horizontal acceleration for crests higher than Hm0. For
all values of ε0 we found that the former is most often an order of magnitude smaller than
the latter, and that the probability of finding a horizontal acceleration at the crest which is
more than half the maximum horizontal acceleration found in connection with the crest is
only about 1.2 % in the case ε0 = 0.30 and smaller for smaller values of ε0.
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