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ON THE STANDARD TWIST OF THE L-FUNCTIONS
OF HALF-INTEGRAL WEIGHT CUSP FORMS

JERZY KACZOROWSKI and ALBERTO PERELLI

Abstract. The standard twist F (s, α) of L-functions F (s) in the Selberg class

has several interesting properties and plays a central role in the Selberg class

theory. It is therefore natural to study its finer analytic properties, for example

the functional equation. Here we deal with a special case, where F (s) satisfies a

functional equation with the same Γ-factor of the L-functions associated with

the cusp forms of half-integral weight; for simplicity we present our results

directly for such L-functions. We show that the standard twist F (s, α) satisfies a

functional equation reflecting s to 1 − s, whose shape is not far from a Riemann-

type functional equation of degree 2 and may be regarded as a degree 2 analog

of the Hurwitz–Lerch functional equation. We also deduce some results on the

growth on vertical strips and on the distribution of zeros of F (s, α).

§1. Introduction

1.1 Motivations

In [9, 11] and [14] we introduced and studied the standard twist

(1.1) F (s, α) =
∞∑
n=1

a(n)

ns
e(−αn1/d)

of any given function F (s) from the extended Selberg class S]; here a(n)

and d > 0 are, respectively, the Dirichlet coefficients and the degree of F (s),

e(x) = e2πix and α > 0. We refer to the next subsection for precise definitions

of the quantities we introduce in this subsection; here we recall only that the

class S] consists, roughly, of the Dirichlet series with analytic continuation

to the whole complex plane and satisfying a general functional equation of

Riemann type. In particular, essentially all L-functions arising from number

theory and automorphic forms belong, at least conditionally, to S].
The main known properties of F (s, α) are as follows; in order to keep a

lighter notation, we shall always assume that F (s) is normalized in a way

to be explained in Section 1.2; such a normalization is always satisfied by
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the classical L-functions. For every F ∈ S] and α > 0, the series in (1.1)

converges absolutely for σ > 1 and F (s, α) has meromorphic continuation

to C. More precisely, if α does not belong to the spectrum Spec(F ) of F (s),

an infinite discrete subset of R+ to be defined in the next subsection, then

F (s, α) is an entire function of finite order, while if α ∈ Spec(F ), then its

only singularities are at most simple poles at the points

(1.2) s` =
d+ 1

2d
− `

d
, `= 0, 1, . . . .

In addition,

ress=s0F (s, α) = CF
a(nα)

n1−s0α

, CF 6= 0;

hence F (s, α) has always a simple pole at s= s0 when α ∈ Spec(F ).

Moreover, F (s, α) has polynomial growth on every vertical strip, although

the known bounds are weak in general. We refer to our papers [11] and [14]

for these and other results.

At present, the interest of the standard twist comes mainly from the fact

that it plays a central role in the Selberg class theory. The main aim of such a

theory is describing the structure of the Selberg class S, roughly the subclass

of the functions F ∈ S] with a general Euler product and satisfying the

Ramanujan conjecture a(n)� nε. It is expected that S coincides with the

class of automorphic L-functions and hence, in particular, that the degree

d is always an integer. The above properties of the standard twist, often

coupled with those of other nonlinear twists, have been exploited to verify

such an expectation for every degree in the range 0< d < 2; see Conrey–

Ghosh [4] and our papers [9] and [12]. A very simple example is the following

proof of the nonexistence of functions in S] with degree 0< d < 1: for d in

such a range we have that s0 > 1, see (1.2); hence, choosing α ∈ Spec(F ),

F (s, α) would have a pole in the region of absolute convergence.

It is therefore natural to ask for a description of the finer analytic

properties of F (s, α), and in particular to raise the following problems.

(i) Does F (s, α) satisfy a functional equation relating s to 1− s? We refer

to the discussion at the end of Section 1.3 for additional information

related to this problem.

(ii) Study of the finer polar structure of F (s, α), in particular the existence

of finitely or infinitely many poles at the points (1.2); examples of both

type exist, see Remark 3.
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152 J. KACZOROWSKI AND A. PERELLI

(iii) Give precise convexity bounds for the Lindelöf µ-function of F (s, α)

(1.3) µ(σ) = µF (σ, α) = inf{ξ : F (σ + it, α)� (1 + |t|)ξ as |t| →∞}.

(iv) Determine location and counting of the zeros of F (s, α), distinguishing

between trivial and nontrivial zeros.

(v) Other analytic problems on F (s, α) like bounds for moments, sharp

uniform bounds in α, etc.

None of these problems is solved at present when the degree d of F (s) is

> 2; in this paper we give a first contribution, in the framework of a special

family of degree 2 L-functions.

1.2 Definitions and notation

The extended Selberg class S] consists of nonidentically vanishing Dirich-

let series F (s), absolutely convergent for σ > 1, such that (s− 1)mF (s) is

entire of finite order for some integer m and satisfying a functional equation

of type

(1.4) Qs
r∏
j=1

Γ(λjs+ µj)F (s) = ωQ1−s
r∏
j=1

Γ(λj(1− s) + µj)F (1− s)

with |ω|= 1, Q> 0, λj > 0 and <µj > 0. We refer to Selberg [25], Conrey–

Ghosh [4], to our survey papers [7, 10, 21–24] and to the forthcoming

book [17] for definitions, examples and the basic theory of the class S].
We recall that degree d, conductor q and ξ-invariant of F (s) are defined,

respectively, by

(1.5) d= 2
r∑
j=1

λj , q = (2π)dQ2
r∏
j=1

λ
2λj
j , ξ = 2

r∑
j=1

(
µj −

1

2

)
= η + idθ

with η, θ ∈ R. Throughout the paper we always assume that F (s) is

normalized by the condition θ = 0. Moreover, we write nα = qd−dαd and

the spectrum of F (s) is defined as

Spec(F ) = {α > 0 : nα ∈ N with a(nα) 6= 0}.

1.3 Setup of the problem

As already pointed out, to gain experience on the problems listed in

Section 1.1 we consider the following special case related to half-integral
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weight modular forms. Their Hecke L-functions satisfy a special functional

equation, and by a lucky coincidence we can apply certain methods

developed after Linnik in our papers, and in particular in [16].

Let f be a cusp form of half-integral weight κ= k/2 and level N , where

k > 0 is an odd integer and 4 |N , and Lf (s) be the associated Hecke L-

function. Then Lf (s) is entire and satisfies the functional equation

(1.6) Λf (s) = ωΛf∗(κ− s), where Λf (s) =

(√
N

2π

)s
Γ(s)Lf (s),

ω = i−κ and f∗ is related to f by f∗(z) = (
√
Nz)−κf(−1/Nz). Note that

Lf∗(s) is also entire and has properties similar to Lf (s). We refer to Ogg [19]

and to Miyake [18, Section 4.3] for the basic analytic theory of modular

forms, and to Bruinier [2] for a detailed exposition of the half-integral weight

case.

Comparing functional equations (1.4) and (1.6), it is clear that the

function Lf (s) does not belong to the extended Selberg class S]. However,

it comes close after the normalization s 7→ s+ (κ− 1)/2. Indeed, writing

(1.7) F (s) = Lf

(
s+

κ− 1

2

)
and F ∗(s) = Lf∗

(
s+

κ− 1

2

)
,

the functional equation (1.6) becomes

(1.8)(√
N

2π

)s
Γ

(
s+

κ− 1

2

)
F (s) = ω

(√
N

2π

)1−s
Γ

(
1− s+

κ− 1

2

)
F ∗(1− s).

Although this is not exactly of the form (1.4) (indeed F ∗(s) is not necessarily

equal to F (s), and for k = 1 we have (κ− 1)/2 = (k − 2)/4< 0), most results

in the Selberg class theory hold in this case as well. Note that the other

requirements of S] are satisfied by F (s), as it can be checked by the

argument in Iwaniec [5, proof of Theorem 5.1 and Corollary 5.2] (see also

Kaczorowski et al. [8, proof of the Theorem] and Carletti et al. [3, pp. 217–

218]). In particular, both F (s) and F ∗(s) are absolutely convergent for σ > 1.

Note also that, in view of (1.8), F (s) has degree d= 2 and conductor q =N .

From now on we consider cusp forms f of weight κ and level N as above,

and the normalized Hecke L-functions F (s) and F ∗(s) as in (1.7). We denote

by a(n) and a∗(n) their Dirichlet coefficients, respectively, and let F (s, α)

be the standard twist of F (s), defined by (1.1) with d= 2 in this case. Then,

minor formal modifications to [11, proof of Theorem 1], or [14, Theorems 1
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and 2], give the following properties of F (s, α). Writing in this special case

(1.9) nα =Nα2/4 and Spec∗(F ) = {α > 0 : a∗(nα) 6= 0},

where a∗(nα) = 0 if nα 6∈ N, we have that F (s, α) is entire if α 6∈ Spec∗(F ).

If α ∈ Spec∗(F ), then F (s, α) is meromorphic over C with at most simple

poles at

(1.10) s` =
3

4
− `

2
`= 0, 1, . . .

(in this case the condition θ = 0 is satisfied) and

(1.11) ress=s0F (s, α) = CF
a∗(nα)

n
1/4
α

CF 6= 0.

Moreover, in all cases F (s, α) has polynomial growth on vertical strips.

The main result of this paper is the affirmative answer to problem (i) in

Section 1.1 in this special case, that is, F (s, α) satisfies a functional equation

relating s to 1− s by means of the Γ function. Once this is obtained, more

or less standard techniques allow to solve some of the other problems in the

list, in particular (ii)–(iv). However, the output is somehow unconventional

in some cases, for example, for the trivial zeros. Of course, the functional

equation of F (s, α) may be of independent interest inside the modular forms

theory, as it provides new information about the associated L-functions.

Before stating the main theorem, we recall that in [13] we proved that if a

function F ∈ S] has degree > 2 and satisfies the Ramanujan conjecture (i.e.,

a(n)� nε), then the standard twist F (s, α) does not belong to S]. Actually,

a variant of the arguments in [13], which we sketch in the Appendix, proves

under the same assumptions the stronger assertion that F (s, α) does not

satisfy a functional equation of type (1.4). Nevertheless, in the case of

half-integral weight modular forms, F (s, α) satisfies a functional equation

reflecting s into 1− s via suitable Γ-factors.

Remark 1. The Ramanujan conjecture is crucial for our results in [13].

Indeed, for certain Dirichlet L-functions, say L1(s), the standard twists

L1(s, α) are still degree 1 functions of S] for suitable values of α. But such

L1(s) can be lifted to degree 2 functions L2(s) by letting s 7→ 2s− 1/2, and

for the same values of α their standard twists L2(s, α) satisfy a degree 2

functional equation of type (1.8), with κ= 1/2 or κ= 3/2. Moreover, when

κ= 3/2 both L2(s) and L2(s, α) belong to S]. However, such L2(s)’s do
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not satisfy the Ramanujan conjecture, thus showing that this hypothesis

is crucial in [13]; also, it turns out that such L-functions are related with

half-integral weight modular forms. We refer to [15, Section 2] for the basic

properties of lifts in S]. Apart from these special cases, we do not know

examples of functions F (s), satisfying a functional equation of type (1.4)

with degree d> 2 but not the Ramanujan conjecture, with standard twist

F (s, α) also satisfying a functional equation of type (1.4).

1.4 Functional equation

Let f be a cusp form of half-integral weight κ= k/2 and level N , F (s)

and F ∗(s) be as in (1.7), F (s, α) be the standard twist of F (s), and a∗(n)

be the coefficients of F ∗(s). We write

(1.12)

k = 2h+ 1 with h ∈ {0, 1, 2 . . .}, µ= (2h− 1)/4, h∗ = max(0, h− 1),

(1.13)

ν =±
√
n with n= 1, 2, . . . and να =

√
nα with nα as in (1.9).

Moreover, for `= 0, . . . , h∗ we also write

(1.14) F ∗` (s, α) = e−iπsF+
` (s, α) + eiπsF−` (s, α),

where, putting

(1.15) c∗(ν2) = c∗` (ν
2) =


−eiπµa∗(ν2) if ν > 1,

eiπ(1/2+`−µ)a∗(ν2) if −να < ν 6−1,

e−iπµa∗(ν2) if ν <−να,

the generalized Dirichlet series F±` (s, α) are defined by

(1.16)

F+
` (s, α) =

∑
ν>−να

c∗(ν2)

|ν|1/2+`|ν + να|2s−1/2−`
,

F−` (s, α) =
∑

ν<−να

c∗(ν2)

|ν|1/2+`|ν + να|2s−1/2−`
;

see also (2.27) for more information on the shape of (1.16). Note that, thanks

to the convergence properties of F ∗(s), such generalized Dirichlet series are

absolutely convergent for σ > 1. Note also that the second range in (1.15) is

empty if 0 6 nα 6 1. Finally we define the coefficients a` = a`(h
∗) by means
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156 J. KACZOROWSKI AND A. PERELLI

of the following polynomial identity

(1.17)
∏

16j6h∗

(X + 2j − 1) =
h∗∑
`=0

a`
∏

06ν6h∗−1−`
(X + ν),

where, throughout the paper, an empty product equals 1; note that a0 = 1

for every h∗ > 0. With the above notation we have

Theorem. Let α > 0 and `= 0, . . . , h∗. Then the functions F ∗` (s, α) are

entire and F (s, α) satisfies the functional equation

(1.18)

F (s, α) =
ω

i
√

2π

(√
N

4π

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)F ∗` (1− s, α).

Note that functional equation (1.18) is not exactly of Riemann type,

but not far from it. Indeed, one can see from the proofs of Lemma 2.1

and Corollary 1 that the functions F±` (s, α) can be expressed as a kind of

stratification of F ∗(s); by this we mean that each F±` (s, α) is related to

a combination of shifts of F ∗(s), see (2.29), (2.32) and (2.34). Therefore,

(1.18) resembles the asymmetric form of the functional equation of F (s),

and hence F (s, α) is expected to behave essentially as a degree 2 function in

the extended Selberg class S]; this is confirmed by the results below. Note

also that letting α= 0 in (1.18) one obtains the asymmetric form of the

functional equation of F (s). Indeed, for every `= 0, . . . , h∗ we have

F ∗` (1− s, 0) = (eiπ(s+µ) − e−iπ(s+µ))F ∗(1− s),

and following the initial steps of the proof of the Theorem one can easily

rebuild the Γ-factor of F (s) from the Γ-factors in (1.18).

Remark 2. We obtain the functional equation in the theorem thanks

to the special form of the Γ-factor in (1.8), which enables the explicit

computation of a certain hypergeometric function arising in the proof, see

(2.12) and (2.13). Obviously, we can get the same result for any F ∈ S] with

the same Γ-factor in its functional equation. Moreover, similar arguments

can be carried over for a certain class of Γ-factors, for example of type

Γ(ds/2 + µ) with any d> 1 and suitable real values of µ, thus producing

analogous functional equations for the standard twists of the corresponding

L-functions. Here we restrict ourselves to the case of (1.7) for simplicity,

since it already covers an interesting classical case. We also remark that, as

https://doi.org/10.1017/nmj.2018.48 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.48


STANDARD TWIST OF L-FUNCTIONS OF HALF-INTEGRAL WEIGHT CUSP FORMS 157

it is, our method does not apply to the case of classical modular forms of

integral weight, nor to the Maass forms. Actually, we do not even expect

a functional equation as in the theorem in such cases. For example, we

know from [6] that there are integral weight modular forms whose associated

standard twist has infinitely many poles at the points s` in (1.2) when α is

in the spectrum, and this is not coherent with a functional equation of type

(1.18).

Remark 3. Let F ∈ S] and α ∈ Spec(F ). We already pointed out in

Section 1.1 that F (s, α) has at most simple poles at the points s= s` in (1.2),

and from Remark 2 we see that there are cases where s= s` is actually a pole

for infinitely many `’s. On the other hand, only s= s0 is a pole in the case

F (s) = ζ(s). The existence of infinitely or finitely many poles at the points

s= s` depends on the structure of certain quotients of Γ functions related to

the hypergeometric function arising as Mellin transform of the Γ-factors in

the functional equation of F (s). In the case treated in the theorem, it follows

directly from the functional equation (1.18) that F (s, α) is holomorphic

apart possibly at s= s` with `= 0, . . . , h∗, since the functions F ∗` (s, α) are

entire. An explicit expression for the residue κ`(α) of F (s, α) at s= s`,

`= 0, . . . , h∗, is given in (2.23). Moreover, (1.18) provides an alternative

expression for such residues. We also note that, whatever the value of α is,

the coefficient a∗(nα) never appears on the right hand side of (1.18) (see

(1.14) and (1.16)), but it pops up on the left hand side of (1.18) when α ∈
Spec∗(F ), inside the residue at s= s0 (see (1.11)).

In the next three subsections we prove some corollaries of our main result;

hence F (s) is as in (1.7) and F (s, α) is its standard twist in such corollaries.

We also introduce several constants, sometimes explicitly depending on α; it

is however clear that in general all such constants may depend on f and α.

1.5 Order of growth

Functional equation (1.18) and the properties of the functions F ∗` (s, α)

open the possibility of a further study of the standard twist F (s, α). We

already know that F (s, α) has polynomial growth on vertical strips, see [11,

Theorem 2], but the bounds there are definitely weak from a quantitative

viewpoint. The functions F±` (s, α) have polynomial growth on vertical strips

as well, see Lemma 2.1, and for each choice of ± we denote by

(1.19) µ±(σ) = inf{ξ : F±0 (σ + it, α)� |t|ξ as t→±∞}
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the one-sided Lindelöf µ-function of F±0 (s, α). One checks by standard

arguments (see Titchmarsh [26, Section 9.41]) that the main properties of

the Lindelöf µ-function of Dirichlet series are satisfied by µ±(σ) as well,

namely µ±(σ) is continuous, convex, nonnegative and strictly decreasing

until it becomes identically vanishing. Moreover, let

(1.20) µ∗(σ) = max(µ+(σ), µ−(σ)).

Under the same assumptions of the previous subsection, with the above

notation and recalling (1.3) we have the following degree 2 convexity bound

for F (s, α).

Corollary 1. Let α > 0 and `= 0, . . . , h∗. Then the functions

F±` (s, α) are entire with polynomial growth on vertical strips, and

µ(σ) = 1− 2σ + µ∗(1− σ).

Hence

µ(σ) = 0 for σ > 1 and µ(σ) = 1− 2σ for σ 6 0,

and the same holds for µ∗(σ). Comparing with the bounds for the general

standard twist in [11, Theorem 2], we see that Corollary 1 is definitely

sharper, of course in the special case under consideration.

1.6 Trivial zeros

Our next two results study the zeros of F (s, α), denoted as usual by

ρ= β + iγ. We first study the trivial zeros, although distinguishing between

trivial and nontrivial zeros is more delicate and unconventional in this case.

Indeed, due to the shape of F ∗` (s, α) and to the lack of Euler product, trivial

zeros come from the interferences between the two terms on the right hand

side of (1.14), rather than from the poles of the Γ-factors as in the classical

cases. As it will be clear in a moment, in this paper we restrict ourselves to

a rough definition of trivial zeros, which in principle does not locate them

uniquely. Recalling (1.12)–(1.15) let

ν+ = ν+(α) be the value ν >−να for which c∗(ν2) 6= 0 and

|ν + να| is minimum,

ν− = ν−(α) be the value ν <−να for which c∗(ν2) 6= 0 and

|ν + να| is minimum
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and write

(1.21) m± =m±(α) = |ν± + να| and c∗± =
√
m±

c∗0(ν
2
±)

|ν±|1/2
= ρ±e

iθ± ;

clearly, m±, ρ± > 0, θ± ∈ [0, 2π) and ρ±, θ± depend on α. Further, writing

as usual s= σ + it, let `(α) be the line of equation

t=
σ

π
log

(
m+

m−

)
+

1

2π
log

(
ρ+m

2
−

ρ−m2
+

)
,

and for ε > 0 let

(1.22) Lε(α) = {s ∈ C with distance < ε from the line `(α)}.

Then the trivial zeros of F (s, α) may be defined as the zeros contained in

the part of the tubular region Lδ(α) with σ <−σ−, with suitable δ > 0 and

σ− > 0. Indeed, under the same assumptions of Section 1.4 we have

Corollary 2. Let α > 0. Then there exist δ > 0 and σ− > 0 such

that F (s, α) 6= 0 for σ <−σ− unless s ∈ Lδ(α). More precisely, there exists

c1(α)> 0 with the property that for every 0< ε < c1(α) there exists σε > 0

such that

(i) F (s, α) 6= 0 for σ <−σε unless s ∈ Lε(α),

(ii) there exist infinitely many zeros of F (s, α) in Lε(α) with β <−σε.

Hence we may choose as σ− any fixed value larger than the infimum of the

σε’s, and δ accordingly, although in principle this does not define uniquely

the trivial zeros. However, denoting by Tε(R, α) the number of the zeros in

Lε(α) with −R6 β <−σε, it is clear from the proof of Corollary 2 that as

R→+∞

(1.23) Tε(R, α) = c2(α)R+Oε(1)

for any given α > 0, with some c2(α) 6= 0 (see in particular (3.8)). Hence

trivial zeros are well defined by the above choice, apart from a finite number

of them. Note that letting α= 0 we obtain that the line in (1.22) becomes

the real axis, since ν− =−ν+ and hence m− =m+ and ρ− = ρ+ in this case.

Of course, this is consistent with the trivial zeros of F (s), which lie on the

real axis thanks to the special form of (1.8), and with asymptotic formula

(1.23).
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Remark 4. Note that when α varies in such a way that
√
n < να <√

n+ 1 with some n ∈ N, the coefficients of the line in (1.22) may in principle

continuously vary between −∞ and +∞. But when να hits the square root

of an integer, the position of such a line may change suddenly. This shows

an interesting discontinuity in the α-behavior of F (s, α).

1.7 Nontrivial zeros

Now we turn to the nontrivial zeros of F (s, α). Let σ+ be the upper

bound of the real parts of the zeros of F (s, α) and σ− be as in the previous

subsection. The nontrivial zeros of F (s, α) are those in the vertical strip

−σ− 6 σ 6 σ+, thus the zeros of F (s, α) are the disjoint union of trivial

and nontrivial zeros. Let

(1.24) NF (T, α) = |{ρ= β + iγ : F (ρ, α) = 0, σ− 6 β 6 σ+, |γ|6 T}|

be the counting function of the nontrivial zeros, and let n be the smallest

n with a(n) 6= 0. A suitable application of the argument principle gives the

following analog of the Riemann–von Mangoldt formula.

Corollary 3. Let α > 0. Then as T →∞ we have

(1.25) NF (T, α) =
2

π
T log T +

T

π
log

(
N

nm+m−(2πe)2

)
+O(log T ).

Again, note that letting α= 0 in Corollary 3 we get the well known

asymptotic formula for the counting function of the nontrivial zeros of F (s),

obtained substituting m+m− by n in (1.25), since indeed m+m− = n in this

case. Also, thanks to the constant 2 in the main term of (1.25), Corollary 3

shows once more the degree 2 behavior of F (s, α). Further, when α varies

we can observe a similar phenomenon as in Remark 4 in the behavior of the

coefficient of T in (1.25).

We conclude remarking that several other problems can be studied

once the functional equation is established, for example Voronoi type

formulas and related estimates for nonlinear exponential sums, with modular

coefficients in the case treated in this paper. We shall return on these and

other questions in a future paper. Anyway, already the above theorem shows

that the standard twist F (s, α) is a respectable object from the L-functions

point of view, at least in the case of half-integral weight modular forms.

Moreover, although the arguments in this paper are not sufficient to prove

the functional equation of F (s, α) for general F ∈ S], we believe that indeed
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F (s, α) satisfies a suitable functional equation in such a general case. Again,

we shall return on this question in a future paper, but here we add a final

remark.

Remark 5. Thanks to the characterization in [9] of the degree 1

functions of S] as linear combinations of Dirichlet L-functions over Dirichlet

polynomials from S], the standard twists of degree 1 functions in S] are

closely related to the Hurwitz–Lerch zeta function

L(s, α, λ) =

∞∑
n=0

e(−nα)

(n+ λ)s
0 6 α < 2π, 0< λ6 1.

Since such zeta functions satisfy a functional equation, see for example,

Berndt [1], one certainly expects that the standard twits of degree 1

functions satisfy a functional equation of Hurwitz–Lerch type. Since (1.18)

may clearly be regarded as a degree 2 analog of the Hurwitz–Lerch functional

equation, and the same holds in the higher degree cases mentioned in

Remark 2, it is not unreasonable to expect that, in general, standard twists

satisfy a kind of general functional equation of Hurwitz–Lerch type.

§2. Proof of the Theorem and Corollary 1

2.1 Basic formula

For convenience we write

(2.1) Q=
√
N/2π,

thus, recalling (1.12), functional equation (1.8) becomes

(2.2) QsΓ(s+ µ)F (s) = ωQ1−sΓ(1− s+ µ)F ∗(1− s).

By the reflection formula Γ(z)−1 = Γ(1− z) sin(πz)/π with z = s+ µ, we

transform (2.2) in the asymmetric form

F (s) =
ωQ1−2s

π
Γ(1− s+ µ)Γ(1− s− µ) sin π(s+ µ)F ∗(1− s).

Therefore, writing for h∗ as in (1.12)

(2.3) µ∗ =
2h∗ + 1

4
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and observing that µ=±µ∗ if h∗ = 0 and µ= µ∗ if h∗ > 1, for every h∗ > 0

we rewrite the above functional equation as

(2.4) F (s) =
ωQ1−2s

π
Γ(1− s+ µ∗)Γ(1− s− µ∗) sin π(s+ µ)F ∗(1− s).

Thanks to the special value of µ (and hence of µ∗) in (1.12) we may suitably

transform the two Γ-factors in (2.4). To this and, since µ∗ − h∗ =−µ∗ + 1/2,

we first apply h∗-times the factorial formula to the first Γ-factor in (2.4) to

get (recall that an empty product equals 1)

Γ(1− s+ µ∗) = Γ(1− s− µ∗ + 1/2)
∏

16j6h∗

(1− s+ µ∗ − j).

Then we apply the duplication formula Γ(z)Γ(z + 1/2) = π1/221−2zΓ(2z)

with z = 1− s− µ∗. In view of (2.3), a simple computation shows that (2.4)

becomes

F (s) =
2ω√
2π

(
Q

2

)1−2s
Γ(2(1− s)− 1/2− h∗)

×
( ∏

16j6h∗

(2(1− s)− 1/2− h∗ + 2j − 1)

)
sin π(s+ µ)F ∗(1− s).(2.5)

Applying identity (1.17) with X = 2(1− s)− 1/2− h∗ we see that (2.5) can

be written as

(2.6)

F (s) =
2ω√
2π

(
Q

2

)1−2s
(

h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)

)
sin π(s+ µ)F ∗(1− s).

Let now

(2.7) X > 1, α > 0, zX =
1

X
+ 2πiα

and

(2.8) FX(s, α) =

∞∑
n=1

a(n)

ns
e(−α

√
n)e−

√
n/X =

∞∑
n=1

a(n)

ns
e−zX

√
n;

clearly, FX(s, α) converges for every s ∈ C. Given K > 0, for −K < σ < 0

by Mellin’s transform we have

FX(s, α) =
1

2πi

∫
(2(K+2))

F

(
s+

w

2

)
Γ(w)z−wX dw,
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then we shift the line of integration to <w = δ; here and later, δ > 0 is

a sufficiently small constant, not necessarily the same at each occurrence.

Since F (s) is entire, for −K < σ <−δ we may use functional equation (2.6)

and expand F ∗(1− s− w/2) to obtain

FX(s, α) =
2ω√
2π

(
Q

2

)1−2s ∞∑
n=1

a∗(n)

n1−s

h∗∑
`=0

a`

× 1

2πi

∫
(δ)

Γ(2(1− s)− 1/2− `− w)Γ(w) sin π

(
s+

w

2
+ µ

)
×
(
QzX
2
√
n

)−w
dw.(2.9)

Using the expression sin πz = (eiπz − e−iπz)/2i we rewrite (2.9) as

FX(s, α) =
ω

i
√

2π

(
Q

2

)1−2s ∞∑
n=1

a∗(n)

n1−s

h∗∑
`=0

a`

× (eiπ(s+µ)H(s+ `/2, zX(n, α))

− e−iπ(s+µ)H(s+ `/2,−zX(n, α))),(2.10)

where

(2.11) zX(n, α) =
παQ√
n
− i Q

2X
√
n

in view of (2.7), and

(2.12) H(s, z) =
1

2πi

∫
(δ)

Γ(2(1− s)− 1/2− w)Γ(w)z−w dw.

An explicit expression for the function H(s, z) can be obtained from

the formula for the Mellin–Barnes integral in (3.3.9) of Paris–Kaminski

[20, Ch. 3], namely

(2.13)
1

2πi

∫
(c)

Γ(ξ − w)Γ(w)z−w dw = Γ(ξ)(1 + z)−ξ

provided 0< c < <ξ and |arg z|< π. To evaluate H(s+ `/2,±zX(n, α)) we

have to check the first condition, the second one being certainly satisfied

in our case. Recalling that we already have the condition −K < σ <−δ,
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we choose K = h∗ + 10 and

(2.14)

−2δ < σ <−δ if h∗ 6 2 and sh∗+1 + δ < σ < sh∗ − δ if h∗ > 3,

so in view of (1.10) the first condition required by (2.13) is also satisfied for

every 0 6 `6 h∗. Therefore, from (2.12) and (2.13) we get

(2.15)

H(s+ `/2,±zX(n, α)) = Γ(2(1− s)− 1/2− `)(1± zX(n, α))2(s−s`),

and inserting (2.15) into (2.10) we obtain, for σ as in (2.14), the basic

formula

FX(s, α) =
ω

i
√

2π

(
Q

2

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)
∞∑
n=1

a∗(n)

n1−s

× {eiπ(s+µ)(1 + zX(n, α))2(s−s`) − e−iπ(s+µ)(1− zX(n, α))2(s−s`)},(2.16)

where ω, a`, zX(n, α) and s` are given by (1.8), (1.17), (2.11) and (1.10),

respectively. Note that the series in (2.16) is absolutely convergent since

σ < 0 and |(1± zX(n, α))2(s−s`)| → 1 as n→∞.

2.2 Limit as X →∞
Letting X →∞ in (2.16) requires some care. Indeed, the limit of FX(s, α)

is clearly F (s, α) for every α > 0 when σ > 1, but (2.16) holds in a

different range, namely for s as in (2.14). Moreover, the limit of the term

(1− zX(n, α))2(s−s`) is not always well defined, since as X →∞ we have

1− zX(n, α)→ 1− παQ/
√
n, which may vanish for suitable values of α

and n. Actually, in view of (2.1) and of the definition of nα and Spec∗(F )

in (1.9), such critical values of α and n arise when α ∈ Spec∗(F ) and

n= nα. Therefore, before letting X →∞ we derive a different expression

for FX(s, α).

Since we already have information on the analytic properties of F (s, α),

see Section 1.1 or [11] and [14], we now consider FX(s, α) as the twist of

F (s, α) by e−
√
n/X , see (2.8). Hence, by Mellin’s transform, for s as in (2.14),

X > 1 and K = h∗ + 10 we have

FX(s, α) =
1

2πi

∫
(2(K+2))

F

(
s+

w

2
, α

)
Γ(w)Xw dw.

The integrand has simple poles at w =−r, r = 0, 1, . . . and, as already

mentioned in the Introduction, at most simple poles at w = 2(s` − s), where
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s` are defined by (1.10). We denote by ρ`(α) the residue of F (s+ w/2, α)

at w = 2(s` − s); clearly

(2.17) ρ`(α) = 2κ`(α)

where κ`(α) is the residue of F (s, α) at s`. We shift the line of integration

to <w =−δ (once more, with a sufficiently small δ > 0, not necessarily the

same as at previous places), thus collecting residues of the poles at w = 0

and, recalling that s is as in (2.14), also at w = 2(s` − s) with 0 6 `6 h∗.

Therefore, still for s as in (2.14), we get

FX(s, α) = F (s, α) +
h∗∑
`=0

ρ`(α)Γ(2(s` − s))X2(s`−s)

+
1

2πi

∫
(−δ)

F

(
s+

w

2
, α

)
Γ(w)Xw dw

= F (s, α) + ΣX(s, α) + IX(s, α),(2.18)

say. Moreover, since F (s, α) has polynomial growth, see [11, 14] or the

Introduction, as X →∞ we have

(2.19) IX(s, α)�X−δ
∫
(−δ)

∣∣∣∣F(s+
w

2
, α

)
Γ(w) dw

∣∣∣∣→ 0.

On the other hand, rewriting (2.16) as (recall that a∗(nα) = 0 if nα 6∈ N)

FX(s, α) =
ω

i
√

2π

(
Q

2

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)

×

{
eiπ(s+µ)

∞∑
n=1

a∗(n)

n1−s
(1 + zX(n, α))2(s−s`)

− e−iπ(s+µ)
∞∑
n=1
n6=nα

a∗(n)

n1−s
(1− zX(n, α))2(s−s`)

− e−iπ(s+µ)
a∗(nα)

n1−sα
(1− zX(nα, α))2(s−s`)

}
= AX(s, α)−BX(s, α)− CX(s, α)(2.20)
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say, from (2.18) and (2.20) we get, for X > 1 and s as in (2.14), that

(2.21)

F (s, α) =AX(s, α)−BX(s, α)− (CX(s, α) + ΣX(s, α))− IX(s, α).

From (2.19) and (2.20) it is clear that, as X →∞, IX(s, α), AX(s, α) and

BX(s, α) tend, respectively, to 0 and to well defined functions A(s, α) and

B(s, α), say, in the range (2.14). Later on we shall compute explicitly

such functions, but first we treat the critical term CX(s, α) + ΣX(s, α),

depending on α belonging to Spec∗(F ) or not. Actually, we show that in

both cases CX(s, α) + ΣX(s, α) vanishes identically.

Suppose first that α 6∈ Spec∗(F ). Then F (s, α) is entire and a∗(nα) = 0;

hence both CX(s, α) and ΣX(s, α) vanish identically. Suppose now α ∈
Spec∗(F ). Then from (1.9), (2.1) and (2.11) we have

1− zX(nα, α) = i
Q

2X
√
nα
.

Since in view of (1.10) we have 2(s` − s) = 2(1− s)− 1/2− `, and recalling

the definition of conductor q of F (s) in (1.5), by a simple computation we

obtain

CX(s, α) =

h∗∑
`=0

π`(α)Γ(2(s` − s))X2(s`−s)

with

(2.22) π`(α) =− iωa`√
2π

a∗(nα)

n1−s`α

(√
N

4π

)1−2s`
e−iπ(s`+µ).

Since <(s` − s)> 0 for s as in (2.14), comparing ΣX(s, α) in (2.18) with

the above expression for CX(s, α) and observing that all other terms in

(2.21) remain bounded as X →∞, we deduce that CX(s, α) + ΣX(s, α)

must vanish identically. In particular, thanks to (2.17) and (2.22) the residue

κ`(α) of F (s, α) at s= s` is explicitly given by

(2.23) κ`(α) =
iωa`

2
√

2π

a∗(nα)

n1−s`α

(√
N

4π

)1−2s`
e−iπ(s`+µ) `= 0, . . . , h∗,

where ω, a` and µ are defined by (1.6), (1.17) and (1.12), respectively.

Finally we may let X →∞ in (2.21) thus getting, for every α > 0 and s

as in (2.14), that

(2.24) F (s, α) =A(s, α)−B(s, α).
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2.3 Functional equation

We first compute A(s, α) and B(s, α). Note that by (1.9), (1.13) and (2.1)

παQ=
√
nα = να.

Hence, letting X →∞, from (2.11) and (2.20) we obtain at once that

A(s, α) =
ω

i
√

2π

(
Q

2

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)eiπ(s+µ)

×
∞∑
n=1

a∗(n)

n1−s

(
1 +

να√
n

)2(s−s`)
.(2.25)

From (1.9) and (2.11) we see that for n < nα the real part of 1− zX(n, α)

is negative; hence for such n’s we have

lim
X→∞

(1− zX(n, α))2(s−s`) =

∣∣∣∣1− να√
n

∣∣∣∣2(s−s`) eiπ2(s−s`).
Therefore, arguing as for A(s, α) and recalling that an empty sum equals 0,

we get

B(s, α) =
ω

i
√

2π

(
Q

2

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)e−iπ(s+µ)

×

{
eiπ2(s−s`)

∑
16n<nα

a∗(n)

n1−s

∣∣∣∣1− να√
n

∣∣∣∣2(s−s`)

+
∑
n>nα

a∗(n)

n1−s

∣∣∣∣1− να√
n

∣∣∣∣2(s−s`)
}
.(2.26)

Note, as after (2.16), that the series in (2.25) and (2.26) are absolutely

convergent since σ < 0.

Next we give a uniform shape to the generalized Dirichlet series in A(s, α)

and B(s, α). To accomplish this we recall that ν =±
√
n with n= 1, 2 . . . ;

hence for ν 6=−να we have

(2.27)
1

|ν|2(1−s`)|ν + να|2(s`−s)
=


1

n1−s

(
1 +

να√
n

)2(s−s`)
if ν > 1,

1

n1−s

∣∣∣∣1− να√
n

∣∣∣∣2(s−s`) if ν 6−1.
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Therefore, a simple computation based on (2.24)–(2.27) and (1.10) shows

that for s as in (2.14) we have

(2.28) F (s, α) =
ω

i
√

2π

(
Q

2

)1−2s h∗∑
`=0

a`Γ(2(1− s)− 1/2− `)F ∗` (1− s, α)

with F ∗` (s, α) as in (1.14). The Theorem now follows by analytic continua-

tion from (2.1), (2.28) and the following lemma.

Lemma 2.1. Let α > 0 and `= 0, . . . , h∗. Then the functions F±` (s, α)

are entire with polynomial growth on vertical strips.

Proof. We prove the lemma by showing that the F±` (s, α)’s are close to

certain stratifications of F ∗(s). Let H > ν2α + 1 be an integer to be chosen

later on. From (2.27) and the definition of F±` (s, α), see (1.16), for σ > 1 we

have

(2.29) F±` (s, α) =
∑
n>H

c∗(n)

ns

(
1± να√

n

)−2s+1/2+`

+G±` (s)

with certain generalized Dirichlet polynomials G±` (s) =G±`,H(s, α), which

are entire. Writing

(2.30) ρ=−2s+ 1/2 + `

we have (
1± να√

n

)ρ
=
∞∑
r=0

(±1)r
(
ρ

r

)(
να√
n

)r
= Σ1 + Σ2,

where Σ1 is the sum over r 6R and Σ2 over r >R+ 1, R being an arbitrarily

large positive integer. Clearly∣∣∣∣(±1)r
(
ρ

r

)∣∣∣∣6 |ρ||ρ+ 1| · · · |ρ+ r − 1|
r!

6
r∏
j=1

(1 + |ρ|/j) 6 (1 + |ρ|)r;

therefore, writing

(2.31) K =Ks,`,α = (1 + |ρ|)να

and choosing H > 2K2, for n>H we obtain

Σ2�
∞∑

r=R+1

(
K√
n

)r
=

(
K√
n

)R+1 1

1−K/
√
n
�
(
K√
n

)R+1

.
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Consequently we have∑
n>H

c∗(n)

ns

(
1± να√

n

)ρ
=
∑
n>H

c∗(n)

ns

∑
r6R

(±1)r
(
ρ

r

)(
να√
n

)r
+O

(
KR+1

∑
n>H

|c∗(n)|
nσ+(R+1)/2

)
= E±1 (s) + E±2 (s),(2.32)

say, where E±j (s) = E±j,`,H,R(s, α).

Let K be any compact subset of C intersecting the half-plane σ > 1 and

choose

(2.33) H =HK,`,α = 2[max
s∈K

K2] + 1.

Then E±2 (s) is a double series of holomorphic functions, absolutely and

uniformly convergent in {σ >−(R− 1)/2} ∩ K. Now observe that, in view

of (1.15), for n>H we have, depending on the choice of ± in F±` (s, α),

c∗(n) =∓e±iπµa∗(n).

Therefore, rearranging terms we obtain

E±1 (s) = ∓e±iπµ
∑
r6R

(±1)r
(
ρ

r

)
νrα
∑
n>H

a∗(n)

ns+r/2

= ∓e±iπµ
∑
r6R

(±1)r
(
ρ

r

)
νrα(F ∗(s+ r/2)−D∗(s+ r/2))

=
∑
r6R

Q±r (s)F ∗(s+ r/2) + E±3 (s),(2.34)

where D∗(s) =D∗H(s) is a Dirichlet polynomial, the Q±r (s) =Q±r,`(s, α) are

polynomials and E±3 (s) = E±3,`,H,R(s, α) is an entire function. Thus E±1 (s)

is also entire thanks to the properties of F ∗(s), and hence from (2.29)–

(2.34) we deduce that the generalized Dirichlet series F±` (s, α), absolutely

convergent for σ > 1, are actually entire functions since R and K are

arbitrary.

To prove that F±` (s, α) have polynomial growth on vertical strips we

write, in view of (2.29), (2.30) and (2.32),

(2.35) F±` (s, α) =G±` (s) + E±1 (s) + E±2 (s)

https://doi.org/10.1017/nmj.2018.48 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.48


170 J. KACZOROWSKI AND A. PERELLI

and recall that the functions on the right hand side depend on H.

Moreover, from (2.30), (2.31), (2.33) and choosing K to be the rectangle

[−(R− 2)/2, 2]× [−|t|, |t|], we have that

H �R (|t|+ 1)2

uniformly for −(R− 2)/2 6 σ 6 2. Since the (generalized) Dirichlet polyno-

mials involved in (2.35) have length �H and coefficients closely related

with a∗(n), recalling that F ∗(s) has polynomial growth on vertical strips we

see from (2.32), (2.34) and (2.35) that

F±` (s, α)�R (|t|+ 1)c(R)

with some c(R)> 0, uniformly for −(R− 2)/2 6 σ 6 2 with an arbitrarily

large R> 0.

2.4 Proof of Corollary 1

The first assertion is already proved in Lemma 2.1. We note preliminarily

that from (1.14) we have

inf{ξ : e−π|t||F ∗` (σ + it, α)| � |t|ξ as |t| →∞}> 0

for every σ, since F±` (s, α) are generalized Dirichlet series with polynomial

growth on vertical strips. Hence Stirling’s formula coupled with (1.18) shows

that

(2.36) µ(σ) > 1− 2σ,

since the factorial formula of the Γ function implies that for `= 0, . . . , h∗

(2.37) Γ(2(1− s)− 1/2− `) = Γ(2(1− s)− 1/2)/P`(s)

with certain polynomials P`(s) of degree ` and P0(s)≡ 1. Now we proceed

in a similar way as in Lemma 2.1 to show that F±` (s, α) are a kind of

stratification of F±0 (s, α). Clearly we may write |ν||ν + να|, with ν =±
√
n

and n large enough, as ν(ν ± να) with ν =
√
n. Hence, choosing V > 0

sufficiently large, for `= 0, . . . , h∗ we write

F±` (s, α) =
∑
ν>V

c∗(ν2)

ν1/2+`(ν ± να)2s−1/2−`
+D±` (s, α)

= G±` (s, α) +D±` (s, α),(2.38)
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say, where D±` (s, α) are generalized Dirichlet polynomials. Moreover, since(
ν

ν ± να

)−`
=

(
1∓ να

ν ± να

)−`
=
∞∑
r=0

(∓να)r
(
−`
r

)
1

(ν ± να)r
,

we have

G±` (s, α) =
∞∑
r=0

(∓να)r
(
−`
r

)
G±0 (s+ r/2, α)

and therefore by (2.38)

F±` (s, α) =

∞∑
r=0

(∓να)r
(
−`
r

)
(F±0 (s+ r/2, α)−D±0 (s+ r/2, α)) +D±` (s, α).

Hence, since the generalized Dirichlet series are bounded in the half-plane

of absolute convergence, for every σ there exists K =K(σ) such that as

|t| →∞

(2.39) F±` (1− s, α) =
K∑
r=0

(∓να)r
(
−`
r

)
F±0 (1− s+ r/2, α) +O(1).

From (1.14), (1.18) and (2.39) we therefore have

(2.40)

F (s, α) = eas+b
h∗∑
`=0

a`Γ(2(1− s)− 1/2− `){H`(1− s, α) +O(eπ|t|)}

with suitable a ∈ R, b ∈ C and

H`(1− s, α) = e−iπ(1−s)
K∑
r=0

(−να)r
(
−`
r

)
F+
0 (1− s+ r/2, α)

+ eiπ(1−s)
K∑
r=0

(να)r
(
−`
r

)
F−0 (1− s+ r/2, α)

= H+
` (1− s, α) +H−` (1− s, α),

say. Note that if t→+∞, then H+
` (1− s, α) has exponential decay since

F+
0 (s, α) has polynomial growth, and similarly for H−` (1− s, α) if t→−∞.

Suppose that µ∗(1− σ) = 0, and hence by (1.20) also µ±(1− σ) = 0. Then,

again by Stirling’s formula and (2.37), from (2.40) we get that µ(σ) 6 1− 2σ

https://doi.org/10.1017/nmj.2018.48 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.48


172 J. KACZOROWSKI AND A. PERELLI

and therefore by (2.36)

µ(σ) = 1− 2σ = 1− 2σ + µ∗(1− σ)

in this case. Suppose now that µ∗(1− σ)> 0. Then, thanks to definitions

(1.19) and (1.20), the error term in (2.40) is negligible and, still by Stirling’s

formula and (2.37), from (2.40) we get

inf{ξ : F (s, α)� |t|ξ}=

{
1− 2σ + µ−(1− σ) if t→+∞,
1− 2σ + µ+(1− σ) if t→−∞.

The proof of the corollary is now complete.

§3. Proof of Corollaries 2 and 3

3.1 Proof of Corollary 2

We start recalling the notation of Section 1.6 and writing

Σ(s) =
h∗∑
`=0

a`Γ(2s− 1/2− `)F ∗` (s, α);

note that by (1.18) the zeros of F (s, α) coincide with those of Σ(1− s). By

(2.37) we write, again with obvious polynomials Q`(s) of degree `,

(3.1) Σ(s) = Γ(2s− 1/2)

h∗∑
`=0

a`
F ∗` (s, α)

Q`(s)
= Γ(2s− 1/2)H(s),

say. Moreover, thanks to the definition of F±` (s, α) and of ν±, we have

(3.2) F±` (s, α) =
c∗(ν2±)

|ν2±|1/2|ν± + να|2s−1/2

(
|ν± + να|
|ν±|

)`
(1 + h±` (s)),

where h±` (s) are holomorphic and satisfy, uniformly for t ∈ R and `=

0, . . . , h∗ as σ→+∞,

h±` (s) = o(1).

Hence, recalling the definition of m± and c∗± in (1.21), and that deg Q` > 1

for `> 1, from (1.14), (3.1) and (3.2) we obtain

(3.3) Σ(s) = Γ(2s− 1/2)

(
e−iπs

c∗+
m2s

+

(1 + h+(s)) + eiπs
c∗−
m2s
−

(1 + h−(s))

)
,
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where h±(s) are holomorphic and satisfy, uniformly for t ∈ R as σ→+∞,

(3.4) h±(s) = o(1).

In order to detect the zeros of Σ(1− s) with σ < 0 we write

W (s) = e−iπs
c∗+
m2s

+

+ eiπs
c∗−
m2s
−

and study the zeros of W (1− s); an application of Rouché’s theorem will

then allow to get corresponding results for Σ(1− s). Since −1 = eiπ, in view

of (1.21) we have that W (1− s) = 0 if and only if

e−iπ(1−σ−it)ρ+e
iθ+m

−2(1−σ−it)
+ = eiπ(1−σ−it)+iπρ−e

iθ−m
−2(1−σ−it)
− ,

that is,

ei(π(σ−1)+θ++2t logm+)e−πt+log ρ++2(σ−1) logm+

= ei(−πσ+θ−+2t logm−)eπt+log ρ−+2(σ−1) logm− .(3.5)

Hence the moduli of the two sides of (3.5) are equal provided

(3.6)
σ

π
log

(
m+

m−

)
− t+

1

2π
log

(
ρ+m

2
−

ρ−m2
+

)
= 0,

while the arguments are equal provided for some k ∈ Z

(3.7) 2πσ − 2t log

(
m−
m+

)
+ θ+ − θ− − (2k + 1)π = 0.

Since the lines in (3.6) and (3.7) are orthogonal, as k varies over Z they

have infinitely many intersections in the half-plane σ < 0. Hence W (1− s)
has infinitely many zeros on the part of the line (3.6) with σ < 0, and the line

(3.6) is exactly the same line in the definition of Lε(α), see (1.22). Moreover,

the number of such zeros in −R6 σ <−σ0 clearly equals

(3.8) c2(α)R+Oσ0(1),

with a certain c2(α) 6= 0, for any σ0 > 0.

Now we write

V (s) = e−iπs
c∗+
m2s

+

h+(s) + eiπs
c∗−
m2s
−
h−(s),
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thus by (3.1) and (3.3)

(3.9) H(1− s) =W (1− s) + V (1− s).

In view of the above argument, Corollary 2 will follow if we show that there

exists c > 0 such that for every sufficiently small ε > 0

|W (1− s)| > cεmax

(∣∣∣∣∣e−iπ(1−s) c∗+

m
2(1−s)
+

∣∣∣∣∣ ,
∣∣∣∣∣eiπ(1−s) c∗−

m
2(1−s)
−

∣∣∣∣∣
)

= cερ(1− s),(3.10)

say, for s 6∈ Lε(α) with σ < 0 and for s on the vertical segmentsRn = Lε(α) ∩
{σ =−Rn}, where Rn > 0, n> 1, is a suitable increasing sequence tending

to +∞. Indeed, by (3.4), for σ→−∞ we have

(3.11) V (1− s) = o(ρ(1− s))

uniformly for t ∈ R; hence (3.9)–(3.11) imply that H(1− s) 6= 0 for s 6∈ Lε(α)

and σ <−σε for some σε > 0. Therefore, Corollary 2(i) follows from (1.18)

and (3.1). Moreover, given n0 with Rn0 > σε, let Pε be the parallelogram

with sides Rn0 , Rn with n > n0 and the two segments of boundary of Lε(α)

with real part between −Rn and −Rn0 . Then by the same reason as before,

for s ∈ Pε we have

|W (1− s)|> |V (1− s)|;

hence by Rouché’s theorem H(1− s) has inside Pε the same number of zeros

as W (1− s). Therefore, Corollary 2(ii) follows by letting n→∞, since we

already detected the zeros of W (1− s), and the poles of Γ(2(1− s)− 1/2)

cannot cancel such zeros.

It remains to prove (3.10). We already know that∣∣∣∣∣e−iπ(1−s) c∗+

m
2(1−s)
+

∣∣∣∣∣=

∣∣∣∣∣eiπ(1−s) c∗−

m
2(1−s)
−

∣∣∣∣∣= ρ̃(σ),

say, when s is on the line (3.6). Writing such a line as t= t(σ), we denote

the points s 6∈ Lε(α) with σ < 0 as s= σ + i(t(σ) + δ) with |δ|> ε. Then in

view of (3.5) we have

W (1− s) = eiθ1(s)ρ̃(σ)e−πδ + eiθ2(s)ρ̃(σ)eπδ
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with certain θj(s) ∈ R. Hence with a certain c > 0 we have

|W (1− s)|> ρ̃(σ)(eπ|δ| − e−π|δ|) > cερ̃(σ)eπ|δ| = cερ(1− s),

as it is easy to check analysing the two cases ε6 |δ|6 1 and |δ|> 1. A similar

lower bound can be obtained for s ∈Rn as follows. By continuity, between

two consecutive intersections of the lines (3.6) and (3.7) in the half-plane

σ < 0, there is a value of σ such that the two terms in W (1− s) have the

same argument when s= σ + it(σ). Then we choose the Rn to be these

values of σ, thus

Rn = {Rn + i(t(Rn) + δ), |δ|< ε}.

Due to the shape of such arguments, see (3.5), and since 0< ε < c1(α) and

c1(α) can be chosen sufficiently small depending on F (s) and α, the absolute

value of the difference between the above arguments when s runs over Rn
is bounded by π/100, say. Hence

|W (1− s)|> cρ(1− s)

for s ∈Rn, and (3.10) follows. Corollary 2 is therefore proved.

3.2 Proof of Corollary 3

Let NF (T, α) be as in (1.24), T0 > 0, a > σ− and b > σ+ be sufficiently

large,

N+(T ) = {ρ= β + iγ : F (ρ, α) = 0 with −a6 σ 6 b and T0 < γ 6 T}

and similarly for N−(T ), with −T 6 γ <−T0. Then in view of the results

in Section 1.6, see in particular (1.23), we have

(3.12) NF (T, α) =N+(T ) +N−(T ) +O(1).

Corollary 3 will follow from a suitable application to N±(T ) of the classical

technique for the Riemann–von Mangoldt formula based on the argument

principle; we give only a sketch of the proof, mainly in order to compute

the slightly nonstandard coefficient of T in (1.25).

Let R+ be the rectangle joining the points −a+ iT0, b+ iT0, b+ iT and

−a+ iT with positive orientation, and denote by Lj , j = 1, . . . , 4, its sides,

starting with the lower horizontal side. Hence

(3.13) N+(T ) =
1

2π

4∑
j=1

∆Lj arg F (s, α) =
1

2π
(∆1 + · · ·+ ∆4),
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say, and clearly

(3.14) ∆1 =O(1).

Recalling the definition of n in Section 1.7 we have

F (s, α) =
1

ns

(
a(n)e(−α

√
n) +

∑
n>n

a(n)e(−α
√
n)

(n/n)s

)

=
1

ns
(a(n)e(−α

√
n) + o(1))

uniformly for s ∈ L2 as b→∞; hence for b sufficiently large

(3.15) ∆2 =−T log n+O(1).

For the treatment of L3 we consider the conjugate function

F (s,−α) =
∞∑
n=1

a(n)e(α
√
n)

ns
,

so that

2<F (σ + iT, α) = F (σ + iT, α) + F (σ − iT,−α) = f(σ),

say. We follow the standard approach of bounding the variation of the

argument of F (s, α) on L3 by means of the number of zeros of <F (σ + iT, α)

on the segment −a6 σ 6 b. In turn, such number is bounded via Jensen’s

inequality by the number of zeros of the holomorphic function f(s) on the

circle of radius r = (a+ b)/2 and center s0 = (b− a)/2. Since F (s, α) has

polynomial growth on vertical strips we obtain

(3.16) ∆3 =O(log T ).

On L4 we use functional equation (1.18). Using once again the factorial

formula for the Γ function as in (2.37) and (3.1), in view of the definition

of F ∗` (s, α) in (1.14) and of m± in (1.21) we get, uniformly for s ∈ L4 as

a→∞, that

F (s, α) = ce−iπs

( √
N

4πm−

)−2s
Γ(2(1− s)− 1/2)(1 + o(1))
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with a certain constant c ∈ C, c 6= 0. Hence for a sufficiently large, from

Stirling’s formula we obtain

(3.17) ∆4 = 2T log T + T log

(
N

(2πem−)2

)
+O(1),

therefore from (3.13)–(3.17) we finally deduce that

(3.18) N+(T ) =
1

π
T log T +

T

2π
log

(
N

n(2πem−)2

)
+O(log T ).

A completely analogous argument, applied to the rectangle R− joining

the points −a− iT , b− iT , b− iT0 and −a− iT0, with positive orientation,

shows that

(3.19) N−(T ) =
1

π
T log T +

T

2π
log

(
N

n(2πem+)2

)
+O(log T ).

Corollary 3 follows now from (3.12), (3.18) and (3.19).
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Appendix

Here we prove an assertion made in Section 1.3, namely that if a function

F ∈ S] has degree > 2 and satisfies the Ramanujan conjecture, then its

standard twist F (s, α) does not satisfy a functional equation of type (1.4).

Since the argument is similar to [13, proof of Theorem 1], which asserts

the slightly weaker statement that F (s, α) does not belong to S] under the

same hypotheses on F (s), we only give a sketch of the proof.

Fact 1. The standard twist L(s, β) of L(s) is meromorphic on C with all

poles (if any) on a certain horizontal left half-line, and away from its poles

is � e|s|
c

for some c > 0 as |s| →∞. Moreover, if β ∈ Spec(L) then L(s, β)

has a pole at the right end of such half-line. Further, all nonlinear twists of

L(s) of type
∞∑
n=1

a(n)

ns
e(−α0n

1/d − α1n
λ),

where α0 > 0, α1 > 0 and 0< λ < 1/d, are entire.
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Fact 1 follows as a special case from [14, Theorems 1–3].

Fact 2. If the standard twist L(s, α) satisfies a functional equation of

type (1.4), then the results in Fact 1 hold also with L(s, α) in place of L(s).

Indeed, [14, Theorems 1–3] are proved for functions belonging to S], but

under the assumption in Fact 2 we have:

(i) L(s, α) is absolutely convergent for σ > 1;

(ii) L(s, α) has the meromorphic structure described in Fact 1;

(iii) L(s, α) satisfies a functional equation of type (1.4).

Fact 2 now follows observing that (i)–(iii) differ from the definition of S]
only by condition (ii); moreover, one can check that the arguments leading to

the above quoted theorems do not depend on the presence of a pole at s= 1

only, as in the case of S], and still work if the function under consideration

satisfies (ii). From Facts 1 and 2, and the arguments in [13, Theorem 1],

we now derive the following result, thus justifying the assertion made in

Section 1.3.

Proposition A.1. If F ∈ S] has degree > 2 and satisfies the Ramanu-

jan conjecture, then the standard twist F (s, α) does not satisfy a functional

equation of type (1.4).

Note that Proposition A.1 in the case α 6∈ Spec(F ) is an immediate

consequence of the above mentioned [13, Theorem 1]. Indeed, in this case

F (s, α) satisfies the first two conditions in the definition of S]; hence the

fact that F (s, α) does not belong to S] means simply that F (s, α) does not

satisfy functional equation (1.4).

Proof of Proposition A.1. Let dF and a(n) denote, respectively, degree

and Dirichlet coefficients of F (s), write

G(s) = F (s, α)

and assume that G(s) satisfies (1.4). Then we can define degree dG and

spectrum Spec(G) of G(s) and, thanks to Fact 2, G(s) has the properties

described in Fact 1 for L(s).

We may assume that dG > dF , otherwise we replace F (s) by G(s) in what

follows. If dG > dF we choose β ∈ Spec(G) and note from Fact 1, applied

to G(s), that the standard twist G(s, β) is not entire. Moreover, it can be
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written as

G(s, β) =

∞∑
n=1

aF (n)

ns
e(−αn1/dF − βn1/dG).

But, since β > 0 and 0< 1/dG < 1/dF , from Fact 1 applied to F (s) we have

that G(s, β) is entire, a contradiction.

Thus we have that dF = dG = d> 2, say. Now we follow [13, proof of

Theorem 1] (see p. 150, after (2.1) there) and obtain that the Dirichlet series

of G(s), and hence of F (s) as well, is absolutely convergent for σ > 1/d.

This gives a contradiction, since [11, Corollary 3] states that the abscissa of

absolute convergence of F (s) is > (d+ 1)/2d.

We finally remark that the Ramanujan conjecture enters the part of

[13, proof of Theorem] which we followed without giving details, and is

used to show the absolute convergence for σ > 1/d.
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