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1. Introduction

In the study on wild harmonic bundles [21], we were led to various interesting progress
in the theory of D-modules and meromorphic flat bundles. In this paper, we shall give a
survey on the classification of good meromorphic flat bundles in terms of Stokes filtra-
tions, which can be regarded as a higher-dimensional generalization of Riemann—Hilbert—
Birkhoff correspondence (see [5,14,15,25]).

Such a classification has been well established and classical for meromorphic flat bun-
dles on curves. It is done in two steps.

(i) We take a pullback via a ramified covering and the formal completion along the pole,
and then we obtain a nice decomposition, called the Hukuhara—Levelt—Turrittin
decomposition.

(ii) Although the decomposition is just formal in general, it can be lifted to a flat
decomposition on each small sector, and the ambiguity of lifting leads us to the
notion of Stokes structure.

In the higher-dimensional case, Majima [12] initiated a systematic study on asymptotic
analysis for meromorphic flat bundles, and Sabbah [23] revisited it. In some sense, they
studied the step (ii). Sabbah pointed out the significance of the step (i). In general, a
meromorphic flat bundle on a higher-dimensional variety has a bad singularity called a
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turning point, around which we cannot obtain a naive generalization of Hukuhara—Levelt—
Turrittin decomposition only after taking the formal completion and the pullback via a
ramified covering. So he proposed a conjecture which says that there exists a resolution
of turning points for meromorphic flat bundles. In [19] and [21], we have established it
in the algebraic case. (See also a survey paper [20].) Later, with a completely different
methods, Kedlaya established it in a more general situation [9,10].

For good meromorphic flat bundles, i.e. meromorphic flat bundles without turning
points, we can naturally generalize the step (ii), as studied in [12] and [23] (see also [21]).
In [21], we put our stress on a slightly different point from that in [12] and [23]. Although
a flat decomposition on a small sector is not canonical, it canonically determines the fil-
tration, called Stokes filtration. So we obtain a system of filtrations on multi-sectors,
which is Stokes structure. It gives us a method for classification of good meromorphic
flat bundles, i.e. the Riemann—Hilbert-Birkhoff correspondence. (See [23] and the more
ambitious [24] for different formulations.) We hope that it would be a part of the foun-
dation in the further study on meromorphic flat bundles and holonomic D-modules.

In this paper, we shall give a review on Riemann—Hilbert—Birkhoff correspondence for
good meromorphic flat bundles. Because our monograph [21] is long, contains several top-
ics, and studies Stokes structure with additional data in a slightly generalized situation,
the author expects that it might be useful to collect the related part from [21] in a simpli-
fied presentation. We will briefly mention applications of the Riemann—Hilbert—Birkhoff
correspondence. One is the deformation of a good meromorphic flat bundle caused by
variation of irregular values, which may be regarded as a higher-dimensional general-
ization in some results in [7]. Besides, it is important in our study on wild harmonic
bundles, the author thinks that it is of independent interest. The other is an application
to conjugate of holonomic D-modules, which is essentially due to Sabbah [23].

We will also give a small complementary result on good formal structure and good
lattice. In [23], Sabbah introduced the notion of good formal structure. Let X be a
complex manifold, and let D be a simple normal crossing hypersurface of X. Let D =
Uiea Di be the irreducible decomposition. For each I C A, we put D7 := (\,c; Di \
U;gr Dj. We have the decomposition D = [[ Dj. Let (£, V) be a meromorphic flat bundle
on (X, D). Then, we say that (£,V) has the unramifiedly good formal structure, if the
formal completion of (£,V) along D$ has a Hukuhara-Levelt-Turrittin decomposition
for each I C A, and we say that (£, V) has the good formal structure, if it is locally the
descent of a meromorphic flat bundle with the unramifiedly good formal structure. We
have natural variants of this condition. For example, we have a weaker variant of good
formal structure: the formal completion of (€, V) at each point has a Hukuhara-Levelt—
Turrittin decomposition after a ramified extension (see §2.1.4). A stronger variant is the
existence of a good lattice. (See §2.3 of [21] for a good lattice. We will review a more
specific notion of good Deligne-Malgrange lattice in §2.2.2 below.) In this paper, we
shall show that these conditions are equivalent. It may be useful to clarify the theory of
meromorphic flat bundles.

The author also gave a survey on good meromorphic flat bundles and Stokes structure
in a different way in §5 of [22], based on an earlier version of [21]. In particular, an
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inductive use of partial Stokes structure is explained. It might look complicated, it seems
more convenient in some situation.

Contents of the paper

In §2, after reviewing the notion of good Deligne-Malgrange lattices in both the for-
mal and complex analytic cases (§§2.1-2.2), we show that a meromorphic flat bundle
has a good Deligne—Malgrange lattice if and only if its formal completion at each point
has a good Deligne-Malgrange lattice (Proposition 2.18). In § 3, we review the notion of
Stokes structure. In §4, we discuss Riemann—Hilbert—Birkhoff correspondence. In §4.1,
we review that a Stokes structure is associated to an unramifiedly good meromorphic
flat bundle. In §4.2, we state the Riemann—Hilbert—Birkhoff correspondence for unram-
ifiedly good meromorphic flat bundles. In §4.3, we explain the deformation of a good
meromorphic flat bundles caused by variation of irregular values. In §4.4, we consider
good meromorphic flat bundles on the conjugate complex manifolds, and its application
to the theory of D-modules.

2. Good meromorphic flat bundle

2.1. Formal case
2.1.1. Good set of irreqular values

We use the partial order <z» of Z"™ given by the comparison of each component,
ie. a<zn b <= a; < b; (Vi). Let 0 denote the zero in Z".
Let Ry denote the ring of the formal power series C[zy,...,2,], and let R be the

localization of Ry with respect to z; (j = 1,...,¢) for some 1 < £ < n, ie. R =
Roler!, ... 2z, ]. Form = (m;) € Z", weput 2™ := [}, 2" . For f =3, 7 fmz™ €
Ry, we put S(f) := {m | fm # 0} U {0}. Let ord(f) denote the minimum of S(f), if it
exists.

For any a € R/Ry, we take any lift a to R, and we set ord(a) := ord(a), if the right-
hand side exists. It is independent of the choice of a lift a. (We will often use the same
symbol a to denote a lift to R in the subsequent argument.) Recall that a finite subset
T C R/Ry is called a good set of irregular values, if the following conditions are satisfied:

e ord(a) exists for each element a € Z;
e ord(a — b) exists for any two distinct a,b € Z;

o the set {ord(a — b) | a,b € 7} is totally ordered with respect to the partial order
gzn on Z".

Remark 2.1. This kind of condition appeared in [23], but the third condition above is
slightly stronger than that in [23]. We use it to simplify our inductive arguments in our
study on Stokes structure as in [21].

Let Z be a good set of irregular values. Note that the set {ord(a) | a € Z} is totally
ordered, because ord(a) £ ord(b) and ord(a) ¥ ord(b) imply that ord(a—b) does not exist.
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We set m(0) := min{ord(a) | a € Z}. We have the set 7(Z) := {ord(a — b) | a,b € T}
contained in ZZ,. Note m(0) <z» m for any m € T(Z), because ap, # 0 for some a € 7.
Since T(Z) is assumed to be totally ordered with respect to the partial order <zn, we
can take a sequence M := (m(0),m(1),m(2),...,m(L),m(L + 1)) in ZZ, with the
following properties:

o T(I) c Mand m(L + 1) = 0,;

e for each p < L, there exists 1 < h(p) < n such that m(p+1) = m(p) + &y (), where
the jth entry of d; is 1, and the other entries are 0.

Note that such a sequence is not uniquely determined for Z. Put ¢ := h(0). For each
a € Irr(V), we have the expansion a = Y. a;z/. We denote a,,, 2 by Nm(0) (@), although
it depends on the choice of m(1). We obtain the map Mm(o): L — R. For a,b € 7, we
have ﬁm(o)(a) = ﬁm(O)(b) if and only if O (0) = bm(0)~

It is often convenient to use a coordinate system such that ord(a — b) and ord(a) are
contained in the set Hf:o Z' o % 0y_; for any a,b € Z. Such a coordinate system is called
admissible for 7.

Let Z be a good set of irregular values with an auxiliary sequence m(0), ..., m(L). For
each a € Z, we have the expansion a — flm(0) (@) = >_,,,5m(1) @m2z"". We obtain a finite
set S := {an) | a € I} C C. The following lemma is clear.

Lemma 2.2. We take c € C\S. For each ¢ € R, the set I . := {a — im0 (a) — cz™) |
Nm(0)(a) = ¢} is a good set of irregular values.

2.1.2. Unramifiedly good meromorphic flat bundle

Let M be a finitely generated R-module. Recall that a connection of M is a linear
map V:M%M@Q}Q/C such that V(f -s) =df-s+ fVsfor f € Rand s € M. It is
called flat, if the curvature VoV: M - M ® (212%/@ is 0. The inner product of Vs and
a derivative v of R over C is denoted by V(v)s.

A finitely generated Ryp-submodule £ C M is called a lattice, if L ®g, R = M.

Definition 2.3. A lattice £ of M is called logarithmic, if V(2;0;)L C L fori=1,... ¢,
and V(9;)L C Lfori=L+1,...,n.

A lattice £ of M is called a-logarithmic for a € R/ Ry if (i) £ is Ro-free and (ii) V —da
is logarithmic for a lift a of a to R. If M has an a-logarithmic lattice, it is called a-regular.

Definition 2.4. A lattice £ of M is called unramifiedly good, if there exist a good set
of irregular values Irr(V) C R/Ry and a decomposition

(£7v): @ (Eavva) (2'1)

a€lrr(V)

such that V, are a-logarithmic. If M has an unramifiedly good lattice, we say that M
is an unramifiedly good meromorphic flat bundle on R.
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The decomposition (2.1) induces

M = @ ,Cu ®RO R- (2'2)

aclrr(V)

The decompositions (2.1) and (2.2) are called irregular decomposition of £ and M,
respectively.

Lemma 2.5. Let £ and L' be unramifiedly good lattices of M with irregular decompo-
sitions £ = @ yerer(v) La and L = D1,y (v) La- Then, we have Lo ®p, R = L} ®p, R
for any a € Irr(V)UIrr’ (V). In particular, the decomposition (2.1) is uniquely determined
for L, and the decomposition (2.2) is uniquely determined for M.

Proof. The claims are well known in the one-variable case. The several-variables case
can be easily reduced to the one-variable case. U

Let £ be an unramifiedly good lattice of (M, V) with the irregular decomposition
(2.1). Let m(0) be the minimum of {ord(a) | a € Irr(V)}. We put T := {ap, () | a € Z}.
Let 7: Irr(V) — T be the naturally defined map. For a € T', we put Lo := €D, (4)=o La-
We have the V-flat decomposition £ = @, Lo We will implicitly use the following
standard characterization of this decomposition.

Lemma 2.6. Assume that the ith component of m(0) is negative. Let L = @@ L, be
a decomposition such that

(i) 2=™ON(2,0;) L., C L., for each a € T and

(i) £, ®rC=L,®rC.
Then, we have L], = L.
Proof. By considering the eigendecomposition of the endomorphism of £/z;£ induced
by 2™V (2;0;), we obtain that L)z L, = L]z Ly in L)z L. By using Corollary 2.14
below, we obtain £, = L,. O

2.1.3. Residue

If we are given an unramifiedly good lattice £, we obtain an endomorphism Res;(V)
of £/z;L in a standard way. Namely, for any f € L,/z;L,, we take a lift f e L, and let
Res;(Vq)f be induced by Vi®(z9;)f, where Vi® := V, — da for a lift @ of a. We set
Res; (V) := @ Res;(Va) € End(L/z;:L). Tt is well defined for (£, V) in the sense that it
is independent of the choice of lifts f , a and the choice of the coordinate function z;. It
is well known and easy to see that the eigenvalues of Res;(V) are contained in C.

Definition 2.7. Let £ be an unramifiedly good lattice of M. If the eigenvalues a of
Res; (V) satisfy 0 < Re(a) < 1, it is called an unramifiedly good Deligne-Malgrange
lattice of M.

It is standard and easy to show that such a lattice is unique, if it exists.
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2.1.4. Good meromorphic flat bundle

For a positive integer, let R(¢) := C[(1, ..., (e, 2041, - - -, 2n]) for eth roots ¢; of 2. If a
finitely generated R-module M is equipped with a flat connection, M(©) := R(¢) @ z M
is equipped with an induced flat connection. It is naturally equipped with an action of
the Galois group G of R(®)/R. If M(®) has an unramifiedly good Deligne-Malgrange
lattice £(), it is also equipped with a natural G-action, because of the uniqueness of
unramifiedly good Deligne-Malgrange lattice. The G-invariant part of £(¢) is called the
descent of £(¢).

Definition 2.8. (M, V) is called a good meromorphic flat bundle, if (M), V(¢)) is an
unramifiedly good meromorphic flat bundle for some e > 0. In that case, the descent
of the unramifiedly good Deligne-Malgrange lattice of M(®) is called a good Deligne-
Malgrange lattice of M.

We remark that a meromorphic flat bundle does not have a good Deligne-Malgrange
lattice, in general. If it exists, it is unique, which follows from the uniqueness of unrami-
fiedly good Deligne-Malgrange lattice and the following standard and easy lemma.

Lemma 2.9. Assume that (M, V) is an unramifiedly good meromorphic flat bundle.
Then, (M), V(®) is also an unramifiedly good meromorphic flat bundle for any e, and
the unramifiedly good Deligne-Malgrange lattice of M is the descent of that of M(©).

We recall that ramification of a good meromorphic flat bundle can be controlled by
that of its irregular values.

Lemma 2.10. Assume that (M(®),V(®)) is unramifiedly good for e > 0. If Irr(V(©))
R/Ry, (M, V) is also unramifiedly good.

Proof. Let G be the Galois group of R(e)/R. Let £(9) ¢ M(©) be a G-equivariant unram-
ifiedly good lattice of M(€). Because the G-action on Irr(V(®)) is trivial, the irregular
decomposition £(¢) = @Lﬁf) is preserved by G. Hence, we have the decomposition of
the G-invariant part (£(€)¢ = EB(L&E))G, which gives the irregular decomposition of
(LENE e, (£(9)C is an unramifiedly good lattice of M. O

We recall a bound of ramification index, which is also standard and well known.

Lemma 2.11. If (M, V) is good, (M(¢) V(€)) is unramifiedly good, where ey =
(rank M)!.

Proof. It is well known in the one-variable case. Let us consider the several-variables
case. Take e such that (M(©), V() is unramifiedly good. We may assume that e is divis-
ible by eg. According to Lemma 2.10, we have only to show that Trr(V(®)) C R(EO)/Réeo).
Take a € Irr(V(®)) and 1 < i < £. We have the expansion a = 3 ap¢?, where (; is an eth
root of z;. By using the result in the one-variable case, we can observe that a, = 0 unless
p is divisible by e/eq. Hence, we obtain that a € R(eo)/R(()e"). O
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2.1.5. Preliminary from the one-variable case (appendix)

Let k be an integral domain over C. We consider Ry := k[t] and R := k(t)), which are
naturally equipped with a derivation 0;. An R-module M is called differential module,
if it is equipped with the action of 9; such that d;(fs) = 3 (f)s + fd¢s for f € R and
s € M. We recall some basic facts on differential R-modules from [11] for reference in
our argument.

Ezxtension of decomposition. Let M be a finitely generated differential R-free module
with an Ro-free lattice £ such that tM*19,£ C L for some M > 0. Note that we
have an induced endomorphism G of £ ®x, k. Assume that there exists decomposi-
tion (£ ®r, k,G) = (V1,G1) & (Va, Ga). For i # j, we have the endomorphism éw of

Hom(V;, V;) given by G, ;(f) = fo Gy —Gjo f.

Lemma 2.12. Ifém are invertible for (i, 7) = (1,2),(2,1), then we have a decomposition
L = L1 ® Loy such that

(1) tM“at[,i C L; and
(i) L; @k =V,

Proof. We give only a sketch of a proof, by following [11]. Let v be a frame of £ with
a decomposition v = (v1, v3) such that Vjji—o give frames of V;. Let A be the Ro-valued
matrices determined by t**19,v = vA. Then, A has the following decomposition corre-

sponding to v = (v1, v2):
2 0 A Aip
A= + 2.
( 0 Qz) <A2,1 Az,z)

Here, (2; are k-valued matrices determined by G;v; = v;£2;, and A, ; are tRo-valued
matrices. We consider a change of the base of the following form:

v = vG, GIJr(g )0(>

Here, the entries of X and Y are contained in tRqy. We would like to take G such that

01+ 0
M+l =v'B, B=|"" : 2.
t atv v D, ( 0 92 + Q2> ( 3)

The relation of A, G and B are given by AG +t™+19,G = GB. We obtain the equations
A11 + A12Y + Ql =0 and QQY + A21 + A22Y + tM+1(9tY = YQ1 + YQ1 By eliminating
@1, we obtain the equation

Y =Y + Agy + ApY +tMF19,Y 4+ V(A + AY) = 0. (2.4)

By the assumption, we have the invertibility of the endomorphism on the space of k-
valued (rg,r1)-matrices, given by Z — (27 — Z {21, where r; := rank £; (i = 1,2). By
using a t-expansion, we can find a solution of (2.4) in the space of tRo-valued matrices.
Similarly, we can find desired X and @Qs. O
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Uniqueness.

Lemma 2.13. Let M be an R-free differential module. Assume that there exists an
Ro-free lattice L C M and a € R\ Ry such that td; — tO,a preserves L. Then, any flat
section of M is 0.

Proof. Take f € M such that 0;f = 0. Assume f # 0, and we will deduce a contradic-
tion. We can take N € Z such that t f € £ and the induced element of £/tL is non-zero.
By the assumption, we have

L3 (td; — tda)(tN f) = (N — tdpa)t™ f.

But, it is easy to see that (N —td;a)t™ f € L, and thus we have arrived at a contradiction.
O

Let M; (i = 1,2) be differential R-free modules with Ro-free lattices £; such that
t0; — tOsa; preserve L;.

Corollary 2.14. Assume a; — as # 0 in R/Rg. Then, any flat morphism My — M
is 0.

Let M be a differential R-module. Let E be an Ry-lattice of M such that t™ 19, F Cc E
for some m > 0. We have the induced endomorphism G of Ej;—g.

Lemma 2.15. Let s € M. If G is invertible, we have 0;s = 0 if and only if s = 0.

Let E; (i = 1,2) be lattices of M such that t™*+19,E; C E; for some m; > 0. Let G;
be the endomorphism of E;j;— induced by t™i+19,.

Lemma 2.16. Assume that G; are semisimple and non-zero. Let T; be the set of eigen-
values of G;. Then, we have my = mo and Ty = T5.

Proof. By extending k, we may assume that the eigenvalues of G; are contained in k.
We have 0;-decomposition F; = @beTi Ej; s such that E; y;—o is the eigenspace of G;
corresponding to b. We have the induced map ¢ p: E1p @R — Ey  ® R. If m; # my or
if m; = mo but b # ¢, we have . = 0 by Lemma 2.15. Then, the claim of Lemma 2.16
follows. O

2.2. Complex analytic case

Let X be a complex manifold, and let D be a simple normal crossing hypersurface. Let
Ox (D) denote the sheaf of meromorphic functions whose poles are contained in D. For
a point P of X, let Op be the completion of Ox at P. Let Op(xD) := Op ®o, Ox (xD).
For an Ox-module M, let M, := M ®0, Op. We denote by M(X, D) (respectively
H (X)) the space of meromorphic functions on X whose poles are contained in D (respec-
tively holomorphic functions on X).
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2.2.1. Unramifiedly good meromorphic flat bundle

Let (€, V) be a meromorphic flat bundle on (X, D), £ is a locally free Ox (¥ D)-coherent
sheaf with a flat connection V: & — € ® 2%. Let E be a lattice of &, i.e. Ox-coherent
subsheaf of £ such that E® Ox (xD) = €£.

Definition 2.17. (£,V) is called an unramifiedly good meromorphic flat bundle, if and
only if (&, V)‘ p is an unramifiedly good meromorphic flat bundle for each P € D.

We will show the following proposition in §2.3.

Proposition 2.18. (£,V) is an unramifiedly good meromorphic flat bundle, if and only
if it has a lattice E C &€ such that E‘p is an unramifiedly good Deligne—-Malgrange lattice
of (€,V),p for each P € D.

A lattice FE as in the proposition is called an unramifiedly good Deligne-Malgrange
lattice of (£,V). It is unique, if it exists. We will also prove the following proposition
in §2.3.

Proposition 2.19. Let (£,V) be a good meromorphic flat bundle on (X, D). Then,
Irr(V,P) (P € D) are contained in Ox(xD)p/Ox p, i.e. convergent. Moreover, the
system of good set of irregular values satisfies the following condition.

o Take a sufficiently small neighbourhood X p of P such that Irr(V, P) C M (Xp, Dp).
Then, for P’ € Dp, Irr(V, P') is the image of Irr(V, P) — Ox (xD)p//Ox p:.

In other words, (Irr(V, P) | P € D) is a good system of irregular values on (X, D) in
the following sense.

Definition 2.20. A good system of irregular values on (X, D) is a tuple of finite subsets
Ip C Ox(*D)p/Ox, p (P € D) satistying the property in Proposition 2.19. Namely,

e Take a sufficiently small neighbourhood Xp of P such that Zp € M(Xp,Dp).
Then, for P’ € Dp, Zp/ is the image of Zp — Ox (*D)p: /Ox pr.

Remark 2.21. We can obtain formal decompositions along the intersection of divisors.
See Proposition 2.28 below. We can also obtain formal decompositions in various levels
along the union of divisors. See §§2.4.3-2.4.4 of [21].

Remark 2.22. After we proved Proposition 2.18 and Proposition 2.19 for this paper,
they are also included in the latest version of [21] because they are useful to simplify
and clarify the theory.

2.2.2. Good meromorphic flat bundle

Definition 2.23. (£, V) is called a good meromorphic flat bundle, if (£, V) 5 is a good
meromorphic flat bundle for each P € D.

For a point P € X, let Xp denote a small neighbourhood of P in X, and we put
Dp:=XpnND.
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Corollary 2.24. The following conditions are equivalent.
(A) (€,V) is a good meromorphic flat bundle on (X, D).

(B) There uniquely exists a lattice E C £ such that Elp is a good Deligne-Malgrange
lattice of (€,V),p for each P € D.

(C) There uniquely exists a lattice E C £ with the following property.

e For each P € D, if we take a small neighbourhood X p, there exist a ramified
covering ¢p : (Xp,Dp) — (Xp,Dp) such that (i) ¢5(E,V) is unramifiedly
good and (ii) E|x,, is the descent of the unramifiedly good Deligne-Malgrange
lattice of (€, V).

Proof. The implications (C) = (B) = (A) are clear. Let us consider the implication
(A) = (C). Let P € D. If a small neighbourhood Xp is sufficiently small, we have a
ramified covering ¢: (Xp, D) — (Xp, Dp) such that ¢*(&, V) has an unramifiedly good
Deligne-Malgrange lattice E', according to Lemma 2.11 and Proposition 2.18. We obtain
the lattice Ep as the descent of E’. If we have ramified coverings () (Xl(f), Dg)) —
(Xp,Dp) gz = 1,2) such that p(?*(£, V) have unramifiedly good Deligne-Malgrange
lattices EI(; , we can find ramified coverings () (Xl(f),Dg’)) — (X(i),Dg)) (i=1,2)
such that ¢ oyp(M) = ) 04)(2) =: 4). Then, by Lemma 2.9, there exists an unramifiedly
good Deligne-Malgrange lattice El(g?’) of ¥*(€,V), and Eg) (i = 1,2) are the descent of
El(f’) with respect to ¥(9). Hence, we obtain that the descent of Eg) with respect to
0@ are the same. Hence, by varying P and gluing Ep, we obtain the desired global
lattice E. d

A lattice with the property in the theorem is called a good Deligne-Malgrange lattice.

2.3. Proof of Proposition 2.18 and Proposition 2.19
2.3.1. Deligne-Malgrange lattice

The ‘if” part of Proposition 2.18 is clear. Our starting point for the proof of the ‘only
if” part is a result due to Malgrange, which we review here.

Let X be a complex manifold with a normal crossing hypersurface D. The singular
part of D is denoted by D2, For a torsion-free sheaf F on X, let N (F) denote the closed
subset of X determined by the condition that @ € N(F) if and only if the stalk of F' at
Q@ is not locally free.

Let E be a lattice of a meromorphic flat bundle (£, V) on (X, D). Let @ be a smooth
point of D. Let X¢ be a small neighbourhood of @ in X. We put Dg := X ND. If there
exist a good set of irregular values Irr(V, Q) C M(Xq, Dq)/H(Xq) and a decomposition

(Eav)|EQ = @ (Eavﬁa)v (25)
aclrr(V,Q)

such that V, are a-logarithmic with respect to E,, then E is called an unramifiedly ‘good’
lattice of (£, V) around @. In that case, we have the residue Res(V) € End(E|p,, ). If the
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eigenvalues « of Res(V) satisfy 0 < Rea < 1, E is called an unramifiedly ‘good’ Deligne—
Malgrange lattice of (£, V) around Q. An unramifiedly ‘good’ Deligne-Malgrange lattice
is unique, if it exists. If there exists a ramified covering pq: (Xg, Dg) — (Xq, Dg) such
that ¢ (€, V) has an unramifiedly ‘good’ Deligne-Malgrange lattice, its descent with
respect to g is called a ‘good’ Deligne-Malgrange lattice of (€, V) around Q. A ‘good’
Deligne-Malgrange lattice is unique, if it exists.

Remark 2.25. The condition ‘unramifiedly “good” Deligne-Malgrange’ implies ‘unram-
ifiedly good Deligne-Malgrange’, clearly. It is easy and standard to show that they are
actually equivalent. (See Lemma 2.32, for example. Note that Proposition 2.27 and Propo-
sition 2.28 can be shown much more easily if the divisor is smooth.)

We recall the work due to Malgrange on lattices of meromorphic flat bundles. (See
also the work due to Mebkhout [17,18] for a construction of lattices of regular singular
meromorphic flat bundles whose poles are not necessarily normal crossing.)

Proposition 2.26 (Malgrange [16]). Let (£,V) be a meromorphic flat bundle. There
exists a unique O x-reflexive lattice E C £ which is generically ‘good’ Deligne-Malgrange
lattice, i.e. there exists a closed analytic subset Z C D with codimx(Z) > 2 and Z D
DPIUN(E), such that E|x\z is ‘good’ Deligne-Malgrange lattice around any Q € D\ Z.
In particular, F|x\z is a good Deligne-Malgrange lattice of £ x\ 7.

See also Proposition 2.7.6 of [21], where we give a small complement that Z can be
taken as a closed analytic subset.

Such a lattice is called the Deligne-Malgrange lattice of (£,V). Our goal is to show
that the Deligne-Malgrange lattice is an unramifiedly good Deligne-Malgrange lattice if
(€,V) is unramifiedly good. (It also implies that the Deligne-Malgrange lattice is good
Deligne-Malgrange, if (£,V) is good, by Corollary 2.24.)

2.3.2. Openness of the good Deligne—Malgrange property

Let X be a complex manifold with a normal crossing hypersurface D. Take a point
p € D. We denote by D the formal complex analytic space obtained as the completion
of X along D (see [2] and [3]). Let (£, V) be a meromorphic flat bundle on (D, D). Let
E be a lattice of £. Make the following assumptions.

* E|p is an unramifiedly good Deligne-Malgrange lattice of (&, V)‘ P

Proposition 2.27. The elements of Irr(V, P) are convergent, i.e. there exists a small
neighbourhood Xp of P in X such that Irr(V, P) C M(Xp,Dp)/H(Xp). Moreover, the
following holds for any P’ € Dp.

* E,p, is an unramifiedly good Deligne-Malgrange lattice of (&, V)l
is the image of the natural map Irr(V, P) — Ox (*D)p: /Ox pr.

and Irr(V, P’)

Pro

Refinement. To show Proposition 2.27, we have only to consider the case X = A", D =
Ule{zi =0}, and P = (0,...,0). In this case, we shall give a more refined statement.
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For any subset I C {1,...,¢}, we set

D;:= ﬂ{zl =0} and D(I):= U{Zz = 0}.

i€l icl

We denote by Dy the formal complex analytic space obtained as the completion of
X along Dy (see [2] and [3]). We also put I¢ := {1,...,£} \ I. Once we know
Irr(V,P) ¢ M(Xp,Dp)/H(Xp), let Irr(V,I) denote the image of Irr(V,P) —
M(Xp,Dp)/M(Xp,Dp(I°)).

Proposition 2.28. The elements of Irr(V, P) are convergent. Moreover, if Xp is a
sufficiently small neighbourhood of P in X, for any subset I C £, we have a decomposition

(EV)ip, = B (Be,'Ve) (2.6)
belrr(V,I)
such that
("Ve —db)("Ey) C "By @ (2% (log D(I)) + 2 (+D(I%))) x5,
where we take a lift of b to M(Xp, Dp).

Proof of Proposition 2.27. Let us show Proposition 2.27 by assuming Proposi-
tion 2.28. It is easy to observe that the decomposition (2.6) induces the irregular decom-
position of E,p, for any P" € Dy \ D(I°). We obtain the residue Res;(V) of E|p, from
(2.6) as in §2.1.3, and the eigenvalues are constant on D,. Hence, if the eigenvalues «
of Res;(V)|p satisfy 0 < Re(a) < 1, we can conclude that the eigenvalues of Resi(V)‘ P
(i € I) also satisfy the condition. Thus, we obtain Proposition 2.27. O

Proof of Proposition 2.28. In the following, instead of considering a neighbourhood
Xp, we will replace X by a small neighbourhood of P without mention, if it is necessary.

Step 1. We fix I C £ for a moment. Let E be a free Op -module with a meromorphic
flat connection V: E = E ® Q%) (xD). Assume that we are given the following.
I

e m 6220 and i € I such that m; < 0. We set m’ := m + §,.

e 7 C Op(*D) such that, for any a € Z, (i) z; " a is independent of the variable z;
and (ii) 27™a € Op.

e A decomposition Ep = @D.cr"Ea such that 27" (V — da)(PE,) c PE, ®
Q}a(logD).

We set T := {(z7™a)(P) | a € T} C C. We have a naturally defined map n: Z — T.
We set UFy := @ﬂ'(a):b PE,. Let H(Dg) denote the space of holomorphic functions on
Dy. Let R denote the localization of H(Dy)[z; | i € I] with respect to Hle zi.

Lemma 2.29. 7 is contained in R, and we have a flat decomposition E = @, Ep
such that Eb|13 = PE,.
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Proof. First, we remark that 2=™V(2,0;)'E, C YE,, and thus 2=™V(2,0;)E C E. Let
F be the endomorphism of E| DPinD, induced by 27™V(2;0;). The eigendecomposition of

Ejp =P "Eqp.
beT

F\p is given by

We obtain the unique decomposition E,p . = @per Go such that (i) F(Gy) C Go
and (ii) Gy p = PEb‘p. By comparing F' and its completion at P, we obtain that Z C R.
By using an argument in the proof of Lemma 2.12, we obtain the decomposition £ =
@ cr Eb such that (i) By p,;np; = Gu and (ii) it is preserved by 27™V(z;0;). We obtain
Eb| p= PE, by Lemma 2.6. In particular, the decomposition is V-flat. O

Step 2. For 1 < p < £, we put p := {1,...,p}. We denote by 15(13) the formal complex
analytic space obtained as the completion of X along D(p). Let E be a free O ﬁ(p)—module
with a meromorphic flat connection V: E — E ® 2L (*D). Assume that we are given
a good set of irregular values Irr(V) C Op(xD(p))/Op and a decomposition

(Evv)\P: @ (PECUPVCI)
aclrr(V)

such that 'V, are a-logarithmic. For I C p, let Irr(V, I) denote the image of Irr(V) via
the natural map pr: Op(xD(p))/Op — Op(xD(p))/Op(xD(11)), where I :=p\ I. For
each I and b € Irr(V, I), we set

PR, = @ PE,.

aclrr(V)
pr(a)=b

Lemma 2.30. If we shrink X appropriately, Irr(V) is contained in the image of
M(X,D(p))/H(X) = Op(xD(p))/Op. For each I C p, we have a flat decomposition
E|ﬁ1 = @belrr(v,f) IEb such that IEb|P = PEb.

Proof. We use an induction on the rank of E. We take an auxiliary sequence
m(0),...,m(L) for Irr(V). (We use m(0) and m(1) for #y,).) We put T :=
{(z=™©q)(P) | a € Irr(V)}. We have the naturally defined map ¢: Irr(V) — T. For
each a € T, we put ’E, = @ (@)= PE,. Then, Ep= @ FE, is a flat decomposition.

Applying Lemma 2.29 with I = {h(0)}, we obtain that 7, )(a) are meromorphic
functions for any a € Irr(V). Hence, by considering the tensor product with a meromor-
phic flat line bundle, we have only to consider the case in which 1" contains at least two
elements. (We remark that {b —a | b € Irr(V)} is a good set of irregular values for any
fixed a € Irr(V).) For simplicity, we assume that the coordinate system is admissible for
Irr(V), and let k be determined by m(0) € ZX x 0,_.

Let I C p. If INk = 0, then the trivial decomposition is the desired one. Let us
consider the case I Nk # (. By taking ¢ € I Nk, and applying Lemma 2.29, we obtain
a flat decomposition E‘[)I = @aeT 'E, such that 'E, = PE,. For I C J C k as above,
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we obtain IEa\f)J = 'E, from IEa|ﬁ’ = JEa|13~ Due to Lemma 2.31 below, we obtain the
flat decomposition

(B, V) ipa = @(anva)7 such that B, 5 = "Ea,.
aeT

We may apply the hypothesis of the induction to (E,,V,) on D(k), and we obtain
Lemma 2.30. O

We have used the following general lemma.

Lemma 2.31. Let V be a free Op-module on X. Assume that we are given a decom-
position V‘D =P Iy, for each I C {, such that V TV, for any I C J. Then, we
have a unique decomposition V= &b V4 on D Wh1ch 1nduces the decompositions on Dy.

Proof. Let ‘m, be the projection of V|D onto 'V,. Then, we have ! Talb, = . Let
v be a frame of V. Let 'Il, € M,(Op ) be determined by mq(v) = v Ha, where
r = rank(V'). Because HalD = JII,, we have II, € M,(O}) such that II,p, = I,.

(Use the exact sequence in the proof of Proposition 4.1 in [6 ] for example.) Let 74 be the
endomorphlsm of V given by ’/Ta(’U‘D) =Yp- 11, and let Va be the i image of my. Then,
V= é Va gives the desired decomposition. (I

Step 3. We can complete the proof of Proposition 2.28 by applying Lemma 2.30 to
(E,V)‘ b O

2.3.3. The smooth divisor case

Let us prove Proposition 2.18 and Proposition 2.19 in the case that D is smooth.
Because of the uniqueness of a Deligne-Malgrange lattice, we have only to consider the
local case. Hence, we set X := A™ and D := {z; = 0}.

Step 1. Let D denote the formal complex analytic space obtained as the completion
of X along D. We consider a meromorphic flat bundle (£,V) on (D, D) satisfying the
following.

C) (€,V) 5 has an unramifiedly good Deligne-Malgrange lattice ©E for each P € D.
|P

Lemma 2.32. Let £ be an Op-locally free lattice of £ such that E\P = PE for any
P € D. Then, the following hold.

e There exists T € z; " H(D)[z; '] such that T,

P = Irr(V, P) for any P € D.

e We have a flat decomposition E = @ .7 Es whose restriction to P is the same as

the irregular decomposition of *E for any P € D.

Proof. Let P € D. Let Xp be a small neighbourhood of P as in Proposition 2.27.
Namely, we have Irr(V,P) C M(Xp,Dp)/H(Xp), and Irr(V,P’) is the image of
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Irr(V, P) by the map M(Xp,Dp)/H(Xp) = Op,(xDp)/Op, for each P' € Dp. Then,
the first claim is clear. As in Proposition 2.28, we have a formal decomposition

Elf’P = @ Ea;f)P
a€lrr(V,P)

whose restriction to P’ is the same as the irregular decomposition of (E, V)‘ pr> Where
P’ € Dp. For P, € D (i =1,2), we can take Xp,, Dp, and a decomposition

E\EPi - @ Emﬁpi '
aclrr(V,P;)

The decomposition is the same on D pl/ﬁ\D p,. Hence, we can glue them, and we obtain
the desired decomposition E = @ .7 Fa. O

Step 2. Let (€, V) be a meromorphic flat bundle on (D, D) satisfying the condition (C)
above. We put Z := {z; = 2o = 0}.

Lemma 2.33. Assume there exists an Op-free lattice E of £ such that E‘p = PFE for
each P € D\ Z. Then, the following hold.

e There exists T C z; "H(D)[z; "] such that Lo ="1r(V,Q) for any Q € D.

e We have a flat decomposition E = @ .7 Ea whose restriction to Q is the same as
the irregular decomposition of F for any Q € D.

Proof. According to Lemma 2.32, we have only to show that E‘Q = QF for any Q € Z.

Fix a point P € D\ Z. Let 4 be a loop in D \ Z starting and ending at P. By
Lemma 2.32, for each P’ € 7, we have a neighbourhood Xp: such that Irr(V,P’) C
M(Xpr,Dp)/H(Xp/) and Irr(V, P"”) is the image of Irr(V, P’) for any P’ € Dp:.
Hence, we obtain a map Irr(V,P) — Irr(V, P) induced by the analytic continuation
along 7. It depends only on the homotopy class of . Hence, we obtain a naturally
induced action of the fundamental group 71 (D \ Z, P) on Irr(V, P). In other words, the
family {Irr(V, P) | P € D\ Z} gives a covering space of D\ Z. Note that if the action of
m(D\ Z, Py) on Irr(V, Py) is trivial for a point Py € D\ Z, the action of m (D \ Z, P)
on Irr(V, P) is trivial for any P € D\ Z.

Lemma 2.34. Let Py € D\ Z. Assume that the action of m1(D \ Z, Py) on Irt(V, Py)
is trivial. Then, we have E‘Q = QF for any Q € Z. In particular, by Lemma 2.32, the
conclusion of Lemma 2.33 holds under the assumption.

Proof. Because the action of m(D \ Z,P) on Irr(V,P) is trivial, we have Z C
"' H(D\ Z)[z7"] such that Z,5, = Trr(V,P’) for any P’ € D\ Z. We set m :=
min{ord,, (a) | a € Z}. We use a descending induction on m. If m = 0, we can deduce
that V is logarithmic with respect to E, and hence the claim is obvious. Let us consider
the step m + 1 = m. We put

T .= {(zfmzlala)‘p | ac I} C H(D \ Z)
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For any P € D\ Z, we have 21 "V (2101)("E) C TE. Hence, we have 27 ™V (2101) E|p\z C
E\p\z. We obtain z; "V (210,)E C E. Let G be the endomorphism of E|p induced by
21 "V/(2101). Because the elements of T' are the eigenvalues of G|p\ z, they are algebraic
over H(D). Hence, we obtain T'C H(D).

Let @ € Z. In the following, we will shrink X around @ without mention. Let N
be the H(D)(#1)-module corresponding to &, i.e. the space of the global sections of &.
We may assume that it is a free H(D)((z1)-module. Let L be the H(D)[z]-lattice of N
corresponding to E. We put N' := NQM (D, Z)(z1) and L' := LQM (D, Z)[#1]. We have
the eigendecomposition of L'/z; L’ with respect to G. By an argument as in Lemma 2.12,
it is extended to a decomposition L' = @1 Ly, such that (z; ™19, —b)L, C Ly.

We put m(Q) := min{ord,, (a) | a € Irr(V, Q) } and

T(Q) = {(z; ™V na)yp | a € 1rx(V, Q)}.
Lemma 2.35. We have m(Q) = m, and T(Q) = T in the completion of Op ¢.

Proof. We may assume @Q = (0,...,0). We put N := N® Op- It is equipped with an
unramifiedly good Deligne-Malgrange lattice £ with the irregular decomposition

L= Pp % (2.7)

aclrr(V,Q)

Let k: Irr(V, Q) — T(Q) be the naturally defined map. For b € T(Q), we put

%= P .

ack—1(b)

Then, we obtain the decomposition 9L = Decro) @Ly such that (me(Q)+161 —b)%L, C
QL for any b € T(Q). By considering the extension to the field C(z,) - - - (22))(21), and
by using Lemma 2.16, we obtain Lemma 2.35. O

Let us return to the proof of Lemma 2.34. By Lemma 2.35, we obtain that b; — bs
are nowhere vanishing on D for distinct b; € T. Hence, we have the eigendecomposition
of Ejp with respect to G on D. By Lemma 2.12, it is extended to a decomposition
E = @, By such that (21 "V (2101) — b)Ey C Ep. We have Ey 5 = QLp, and hence the
decomposition is V-flat. Put & = Ey(xD). We can apply the hypothesis of the induction
to & ® L(—z{ ™b/m), and the proof of Lemma 2.34 is finished. O

Then, Lemma 2.33 follows from the next lemma.

Lemma 2.36. The action of mi(D \ Z,P) on Irr(V, P) is trivial. In particular, by
Lemma 2.34, the claim of Lemma 2.33 holds.

Proof. Because Irr(V, P) is finite, we can find a ramified covering p: X’ — X given
by ¢(z1,C2,23,---,2n) = (21,(5,23,...,2n) such that we can apply Lemma 2.34 to
©*(E,V) and ¢*E. Then, we have ¢* Irr(V, P) C z; 'H(D')[2;'] and ¢* Irr(V, P) g =
©*Irr(V, Q). Hence, we can conclude that the action of 71(D \ Z, P) is trivial. O
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Step 3. Let us observe that we can ignore the subsets whose codimension in X is larger
than 3. Let X := A™ and D := {z; = 0}. A subset Z C M(X,D)/H(X) is called good,
if its image Z,5 C Op(+D)/Op is good for each P € D. The following lemma is easy to
observe.

Lemma 2.37. Let Z C D be a closed analytic subset with codimp(Z) > 2. Let T C
M(X\ Z,D\ Z)/H(X \ Z) be a finite subset such that its image I C Op(xD)/Op is
good for each P € D\ Z. Then, we have T C M(X,D)/H(X), and it is good.

Proof. Let a € Z. By Hartogs property, we obtain that a € M (X, D)/H(X). By the
assumption, dorq(q) is nowhere vanishing on D\ Z. Because codimp(Z) > 2, we obtain
that agq(a) is nowhere vanishing. We can check the other claims similarly. O

Let (£,V) be a meromorphic flat connection on (X, D), i.e, £ is a (not necessarily
locally free) coherent Ox (xD)-module with a meromorphic flat connection V: & - £ ®
2%. Let E be the Deligne-Malgrange lattice of (€, V). Make the following assumption.

e There exists a closed analytic subset Z C D with codimp(Z) > 2 such that E|x\z
is an unramifiedly good Deligne-Malgrange lattice of (£, V) x\z-

Lemma 2.38. If the above condition is satisfied, FE is an unramifiedly good Deligne—
Malgrange lattice of (€,V).

Proof. Since codimz(D) > 2, we have a good set of irregular values T C M (X \ Z, D\
Z)/H(X \ Z) and the decomposition

(E> v)‘[7\\z - @(Fu,D\Z7 Vu)
acl

such that each (Fy p\z, Va) is a-regular. By Lemma 2.37, we have Z C M (X, D)/H(X).
Let 7, denote the projection onto Fy p\z, which gives a section of End(E)‘E\\Z.

Let us observe that m, is extended to a section of End(E)‘ p- It is easy to show the
following claim by using Hartogs theorem.

e Any section of OD/\? is extended to a section of Op,.

Since E is reflexive, we can (locally) take an injection i: E — O?@N for some large N
such that the cokernel Cok(i) is torsion-free. We can also take a surjection ¢: OE’?M — E.
The morphisms i, ¢ and 7, induce a morphism

Fy: OPM__ , 09N __ |
X|D\Z X|D\Z

It is extended to a morphism Fj: OgM — O%N . Since Cok(i) is torsion free, F, factors
through E| 5. Let K := Ker(¢). The restriction of Fy to K on D\ Z is 0. Then, we obtain
Fix = 0 because O%N is torsion-free. Thus, we obtain the induced maps 7, : EIfJ — E‘f)
for a € Z, which satisfy mq o mq = 7q, Tg o7 = 0 (a # b), and Y 7, = id. They give a
decomposition E' = P ., E,. Let us show that E, are a-logarithmic. We have only to
consider the case a = 0.
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Take a point P € D\ Z. We have the vector space V := EAO‘ p. We have the endomor-
phism f of V induced by the residue. Let Ef, :==V ® Ox and V{ = d + f - dz1 /2. We
have the natural flat isomorphism (Eg, V()|r-1(p) =~ (EO, Vo)jx-1(p)- Since the codimen-
Sign of Z in D is larger than 2, we obtain a flat isomorphism @ p\ z: (Ey, Vg)‘[/)\\z
(Eo, VO)‘ PIVA Since Ey and E|, are reflexive, by the above argument, we can show that
Do,p\z and its inverse are extended to a morphism on D. Thus, we are done. (I

End of the proof in the smooth divisor case. Let (£,V) be a meromorphic flat sheaf on
(X, D). Assume that (&, V)‘ p has an unramifiedly good Deligne-Malgrange lattice for
each P € D.

Lemma 2.39. The Deligne-Malgrange lattice E of (€, V) is unramifiedly good Deligne—
Malgrange. Namely, the claim of Proposition 2.18 holds if D is smooth. The claim of
Proposition 2.19 also holds.

Proof. There exists a closed analytic subset Z C D with codimp(Z) > 2 such that
E|x\ z is locally free. There exists a closed analytic subset Z; C D with codimp(Z’) > 1
such that F)|x\z is unramifiedly good Deligne-Malgrange. By Lemma 2.33, we obtain
that F is unramifiedly good Deligne-Malgrange, around any smooth point of Z’. Hence,
we obtain that there exists a closed analytic subset Z” C D with codimp(Z”) > 2 such
that F|x\z~ is unramifiedly good Deligne-Malgrange. Then, by Lemma 2.38, we obtain
that F is unramifiedly good Deligne-Malgrange, i.e. the claim of Proposition 2.18 holds.
It is also clear that the claim of Proposition 2.19 holds. (I

2.3.4. The normal crossing case

Since the claim is local, we set X := A™ and D := Ule{zi =0}. We put 9D; :=
D1 N UQéjél Dj. We put DY = D1 \8D1

Step 1. We regard M (D;,0D1)(z1) as a differential ring equipped with the differential
01 := 0/9z1. Let N be a differential M (D1, 0D;)(z1)-module with a M(Dy,0D1)[z1]-
free lattice £. We put £ := L ® H(D$)[z1]. Assume that we have Z C z; "H(D$)[2; ]
and a decomposition £' = @ .7 L, such that (i) (2101 — z101a)L; C L and (ii) the
eigenvalues « of the induced morphism of £/ /z L satisfy 0 < Re(a) < 1.

Lemma 2.40. T is contained in z; 'M(Dy,0D1)[z; "], and we have a decomposition
L =@,z La such that (i) (2101 —2101a) L C Lq and (ii) the eigenvalues o of the induced
morphism of Lg)., ¢ satisty 0 < Re(a) < 1. Moreover, we have L, ® H(D?)[z1] = L.

Proof. We use a descending induction on m(L) := min{ord,, (a) | a € Z}. If m(L) = 0,
there is nothing to prove. Let us consider the case m(£) = m < 0. We put T(L) :=
{(mz7™a)|.,—0 | @ € Z}. Let us consider the endomorphism G of £/z1£ induced by
z1 "V (2101). Because the elements of T(L£) are the eigenvalues of G, they are algebraic
over M(D;1,0D1). Then, we can deduce T(L) C M(D;1,0D,) from T(L) C H(DY).
If IT(L)| = 1, by considering the tensor product with a meromorphic flat bundle of
rank one, we can reduce the issue to the case m(£) = m + 1. Let us consider the case
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|T(L)] > 2. It is standard that the eigendecomposition of £/z;L is uniquely extended
to a V-flat decomposition £ = @ycr(r) Lo (see Lemma 2.12). It is easy to observe that
m(Ls) = m, and |T'(Lp)| < 1 if m(Ly) = m. Thus, we are done. O

Step 2. Let (€, V) be a meromorphic flat bundle on (X, D). Let (€, V) be a meromorphic
flat bundle on (X, D). Make the following assumptions.

e For each P € D, (€, V)l p has an unramifiedly good Deligne-Malgrange lattice.
e The Deligne-Malgrange lattice E of (£,V) is Ox-locally free.

Let us show that F is unramifiedly good Deligne-Malgrange under the assumption. We
put D2 .= Uix;(Di N Dj). We can take a ramified covering ¢: (X, D) — (X, D) with
the following property.

e For each P € D;\ DP, the action of m;(D; \ DI?, P) on Trr(p*V, P) is trivial.

By the argument in the proof of Lemma 2.36, we may and will assume that the above
property holds for (£,V) from the beginning. We have already known that E\x\p
is unramiﬁedly good Deligne-Malgrange (Lemma 2.39). In particular, we have Z C

27 PH(D$)[2; '] and a decomposition Epe = .., Eq such that (V(2181) — 2101a)E, C
Eu.

Let M be the differential M (D;,0D;)(z1)-module corresponding to &, and let
L be the M(D;y,0D;)[z]-lattice induced by E. Applying Lemma 2.40, we obtain
T C 2z 'M(Dy,0D;)[2;"] and a decomposition £ = Dacr Lo such that (2101 —
21010)Lq C Lq. Let 8 := C((z,) - - - (22)). By the natural extension M(Dy,0D1) C &, L®
R[z1] is the Deligne-Malgrange lattice of the differential module 9 := (N ® K(z1)), 91).

Let F be the unramifiedly good Deligne-Malgrange lattice of 5 with the irregular
decomposition OF = Decin(v,0) OF,. Let Irr(V, 1) be the image of Irr(V, O) via the
map Op(*D)/Op = Op(xD)/Op(xD(# 1)), where D(# 1) := Uyg <, Dj- It is easy to
see that A[z1] ® OE is the good Deligne-Malgrange lattice of (9;,0;), and the set of
the irregular values is given by Irr(V, 1). Hence, we obtain Irr(V,1) = Z; in z; 'R[z; ]
and °F ® 8]z1] = £1 ® &]z1]. We can deduce a similar relation for each i = 2,..., /.

acl

Lemma 2.41. We have Irr(V,0) C M(X,D)/H(X).
Proof. We set S := {m € Z* | m %4 0}. (See §2.1.1 for <z.) For i = 1,...,¢, we put

Sizz{m:(mj)68|mi<0},
Sgi::{m:(mj)68|mj20(j<i), mz<0}

We have S = [[ Sg;. For any a € Irr(V, 0), we have the expansion a = ) s dpy 2™
Because its image to Ox(xD)/Op(D(# 1)) is convergent, we obtain the convergence of

Y -mes, 9mz™. Similarly, we obtain the convergence of 3, s amz™ for i =2,... 0
Then, we obtain the convergence of Zm€$<i 2™ for i =1,...,¢. Then, we obtain the
convergence of a. O
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We take a frame v of YE. Let f be a section of E. We have the expression f = Y fpUp-
We obtain f, € R]z1], and hence f, is z;-regular, i.e. f, does not contain the negative
power of z;. Similarly, we obtain that f, are z;-regular for j = 2,...,£. Thus, we obtain
E|() C ©F. Similarly, we obtain °F C E‘OA, and hence E‘OA = OF. Thus, we obtain that
FE is unramifiedly good Deligne-Malgrange lattice.

Step 3. Let us consider the case in which we do not assume that E is O x-locally free. We
have a closed analytic subset Z C D with codimp(Z) > 2 such that E|x\ 7 is Ox-locally
free. Then, it is an unramifiedly good Deligne-Malgrange lattice of (£, V)| x\ z, according
to Step 2. We put Dj := Dy \ Z and D5 := 9D, \ Z. We have T C z; ' M (D}, dD7%)[21 ]
and the irregular decomposition Elﬁf = P.cr Ea,Df~ By using the Hartogs property
and the argument in the proof of Lemma 2.38, we obtain Z C z; 'M(D1,dD;)[z; '] and
a decomposition Ejp = @uer E, such that (i) (V(2101) — 21810)Ey C F, and (i) the
eigenvalues o of the induced endomorphism of Fyjp, satisfy 0 < Re(a) < 1. We have
E ® &]z1] = °F ® &]21]. Let v be a frame of . Let f be a section of E. We have the
expression f = f,v,. Then, we obtain that f, is z;-regular. Similarly, we obtain that
fp are zj-regular (j =1,...,¢) and hence E|O c 9E.

To show °FE C E, 4, we consider the dual. Put &Y :=Homop, (+p)(€,Ox (D)), which is
equipped with a naturally induced flat connection V. Put EY := Home, (E, Ox), which
is a lattice of £V. It is generically unramifiedly good lattice, and the eigenvalues « of the
residue satisfy —1 < Re(e) < 0. Put °EY := Homo,, (°E, O) which is an unramifiedly
good lattice of (SV,V)IO. The eigenvalues « of the residues satisfy —1 < Re(a) < 0.
Then, we obtain EY, C OFY by the above argument. We have EY, ~Homo, (E,0p) ~
Homoe, (E\Ovoé)' Hence, we can conclude that °F = E. Thus, we obtain that E
is an unramifiedly good Deligne-Malgrange lattice of (£,V) at O, and the proof of
Proposition 2.18 is finished. Then, Proposition 2.19 follows from Proposition 2.27. U

3. Stokes structure
3.1. Preliminary

3.1.1. Filtration indezed by a finite ordered set

Let (I,<) be a finite ordered set. Let V' be a vector space. In this section, a filtration F
of V indexed by (I, <) means a family of subspaces F,, C V (a € I) with the following
properties.

o [, C Fyifa<hb.
e There exists a splitting V = @V, such that F, = @bga V.

We put Fe, =), Fp and Grl(V) = F,/F-, ~ V,. For a given subset S C I, we set
FS = ZaES Fa.

Remark 3.1. Note that we assume the existence of splitting, which is unusual. We
consider the above type of filtration just for Stokes filtration.
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Let ¢: (I,<) — (I',<') be a morphism of ordered sets, and let F' be a filtration
of V indexed by (I,<). Then, we have the induced filtration F¥ indexed by (I',<’)
constructed inductively as follows:

Ff=F%+ Y Fa
a€p=1(b)

We set V7 := P

Definition 3.2. Let F and F” be filtrations of V indexed by (I, <) and (I’, <’), respec-
tively. Let ¢: (I,<) — (I',<’) be a morphism of ordered sets. We say that F and F’ are
compatible over ¢, if F” is the same as F'¥ above. If I = I’ (but possibly (I, <) # (I’, <))
and ¢’ =id, we just say F' and F’ are compatible.

acp-1(p) Va- Then, V = @Dy Vi gives a splitting of F¥.

In the case I = I’, we have the natural isomorphism Gr% (V) ~ Gr ,(V).

Lemma 3.3. Let F be a filtration of V indexed by (I,<). Let <; (¢ € A) be orders on I
such that (i) the identity ¢;: (I,<) — (I, <;) are order preserving and (ii) a < b if and
only if a <; b for any i € A. Then, F can be reconstructed from F*% (i € A) in the sense
F, = ﬂieA Fre

Proof. We take a splitting V = P,c; Va of the filtration F. Recall Fi¥' = P, Vo-
Then, the claim of the lemma is clear. O

Let (I, <) be an ordered set, and let V' be a finite-dimensional vector space equipped
with a filtration F' indexed by (I, <). Let us give an induced filtration F¥ on the dual
vector space VV. We set IV := I and let <Y be the order of IV defined by a <V b <—
a > b. For distinction, we use the symbol —a if we regard a € I as an element of IV.
And, ‘—a <V —b is denoted by —a < —b.

We take a splitting V' = @, ; Vu of the filtration F. In general, for a vector subspace
UcV,letUtCcVVbe{feVV]|f(v)=0VYveU} For each a € I, let S(a) denote
the set of b € I such that b ¥ a. We have the subspaces of V'V given as follows:

b#a

The subspaces {FY, (V") | —a € IV} are well defined, and give a filtration of V'V indexed
by (IY,<). The decomposition V¥ = @_ ;v VY, gives a splitting of the filtration F.

3.1.2. Induced orders on good set of irregular values

Let X be a complex manifold with a simple normal crossing hypersurface D. Let
T X(D) — X be the real blowup. (In this paper, the real blowup along D means the
fibre products of the real blowup along the irreducible components, taken over X.)

Let Zp C Ox,p(*D)/Ox,p be a good set of irregular values, where P € D. For each
Q € n~1(P), we shall introduce an order < on the set Zp. We can take a coordinate
neighbourhood (Xp,z21,...,2,) around P such that Dp := Xp N D is expressed as
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U {z =0}, and that Zp ¢ M(Xp, Dp)/H(Xp). We take a lift & € M(Xp, Dp) for
each a € Zp. For each distinct a,b € Zp, we put

F,p := —Re(d — b)|z~crde=b)|, (3.1)

It naturally induces a C*°-function on Xp(Dp).

Definition 3.4. Let Q € 7~ !(P). We say a <¢ b for distinct a,b € Zp, if F,5(Q) < 0.
We say a <g b for a,b € Zp, if a <g b or a = b. The relation <g is a partial order
on Zp.

It is easy to check that the condition is independent of the choice of a coordinate
system (21, ...,2,) and lifts a. The following lemma is clear.

Lemma 3.5. For any Q € n~!(D), there exists a neighbourhood N of Q in 7=1(D)
such that, for any Q" € N, the map (Zr(g), <q) = (Zr), <q’) is order preserving.

3.2. Stokes data

Let X be a complex manifold, and let D be a simple normal crossing hypersurface of
X. Let m: X (D) — X be the real blowup. Let Z = (Zp | P € D) be a good system of
irregular values on (X, D). Let U be a locally connected subset of X (D), and let U be a
local system on U.

Definition 3.6. A Stokes datum of U over Z is a tuple of filtrations F = (FQ | Q €
UNa (D)) of germs Vg indexed by (Zr(g). <q) satisfying the following compatibility
condition.

e Let Q € UNn (D). Take a small neighbourhood A as in Lemma 3.5 such that
NNU is conn~ected. For any~Q’ € UNN, we have the induced filtration F? of Vo
Then, (Vg, F?) — (QYQ/J-'Q/) is compatible over (Z(q), <q) — (Zr(q/), <q')-

Let @ and Q' be as in Definition 3.6. If Q' € 7 !(P), we have Z,(q) = Zr(q:), and we
have an induced isomorphism

..Q ~Q/
Gr™ (Vg Dy =~ G (Buy,)-

Hence, we have the associated graded sheaf on a neighbourhood of #='(P)NU in U,
denoted by Gr}-(%ﬂ_l(p)ﬂu).

Let U; (i = 1,2) be local systems on U with Stokes data F,; over Z. A morphism
F: (01, F1) = (Vy, Fy) is defined to be a morphism of sheaves such that the induced
morphisms V1o — Vs preserve filtrations for any Q € U N 7~ YD).

Remark 3.7. We are given only the filtrations indexed by (Z,(q), <q) for Q@ € 7~ (D)N
U in the definition of Stokes data. We shall observe that we can obtain more refined
filtrations in Proposition 3.16.
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Remark 3.8. ‘Stokes data’ in this paper is called ‘full pre-Stokes data’ in [21]. It was
useful to consider filtrations, called ‘partial Stokes filtrations’ in the level m(0), which are
indexed by the image of Zp via 7, (0). We also have partial Stokes filtrations in various
levels. Tt explains the meaning of the adjective ‘full’. In [21], we are interested in not
only meromorphic flat bundles but also their lattices. To describe an unramifiedly good
lattices, we need an additional data with a system of Stokes filtrations. It is called full
Stokes data in [21]. It explains the meaning of the prefix ‘pre’.

Because we are concerned with good meromorphic flat bundles in this paper, we use
the terminology ‘Stokes data’ in the sense of Definition 3.6.

3.3. Extension and uniqueness of Stokes structure
3.3.1. Category of Stokes data

Let X be a complex manifold with a simple normal crossing hypersurface D. Let G
be a finite group acting on (X, D). Let Z be a good system of irregular values on (X, D)
which is G-equivariant in the sense g*Z,py = Zp for any g € G and P € D.

Let U be a local system on X (D) with a G-action, i.e. for each g € G, we are given
an isomorphism ¢*¥ ~ U compatible with the group law. Let F be a Stokes data of Q.
For each g € G, we have the induced Stokes data ¢*F of U. The Stokes data is called
G-equivariant if g* F = F. The category of G-equivariant local system with Stokes data
on X (D) is denoted by SD(X, D, Z)%. If G = {1}, it is denoted by SD(X, D, Z).

3.3.2. Statement

We consider the following situation. Let p: X — B be a smooth fibration of complex
manifolds with a normal crossing hypersurface D. For simplicity, we make the following
assumptions.

e B is simply connected.

e We put X := X xgband D’ := Dxgb for any b € B. Then, (X, D) is topologically
a product of (X?, D%) and B.

For example, we would like to consider the case (X,D) = (X® D) x B as complex
manifolds.

Let Z be a good system of irregular values on (X, D). Its restriction to X is denoted by
Z. For an object (%, F) in SD(X, D, Z), we have a naturally induced object (0, j:b) in
SD(X?, Db,Ib), obtained as the restriction. Although the following theorem is a special
case of Corollary 4.4.4 in [21], we shall give a proof in §3.3.6, to explain some more
detailed property of Stokes data.

Theorem 3.9. For any b € B, the restriction T: SD(X,D,Z) — SD(X®, D*, Z%) is
equivalent.

Theorem 3.9 says that a Stokes data of U° over ARE uniquely extended to a data of
U over Z in a functorial way.
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Remark 3.10. Theorem 3.9 (and Theorem 4.13 below) may be regarded as a higher-
dimensional generalization of Theorems 1 and 2 for the one-dimensional case in [7]. (See
also [26] for the local one-dimensional case.) These theorems imply that a variation of
irregular values causes a deformation of a Stokes data, or equivalently a good meromor-
phic flat bundle. In the one-dimensional case, or locally in the higher-dimensional case,
the coefficients of the irregular values make a universal family of such deformations. It
would be interesting to have a universal family when X is a projective variety.*

Assume that a finite group G acts on (X, D) over B, and T is G-equivariant. By using
the uniqueness, we obtain the following.

Corollary 3.11. The restriction SD(X, D,I)% — SD(Xb,Db,Ib)G is an equivalence
for any b € B.

3.3.3. Preliminary

We mention easy property of Stokes data. Let X be a complex manifold with a normal
crossing hypersurface D. Let m: X(D) — X be the real blowup. Let U be a locally
connected subset of 771(D). Let U be a local system on U.

Lemma 3.12. Let F; (i = 1,2) be Stokes data of U.

e If there exists a dense subset U' C U such that ]:"1Q = ]:"QQ for @ € U'. Then, we
have F1 = Fo>.

e Let Z be any subset of U. NIf]i'lQ = fQQ for any QQ € Z, there exists a neighbourhood
Z' of Z such that F2 = FS for any Q € Z'.

Proof. The first claim follows from Lemma 3.3. The second claim follows from the
compatibility of the system of filtrations. (I

Let ; (i = 1,2) be local systems on U with a morphism F': U; — Us. It is easy to
deduce the following corollary.

Corollary 3.13. Let F; (i = 1,2) be Stokes data of ;.

e If there exists a dense subset U’ C U such that F preserves F< for Q € U’. Then,
F preserves F.

e Let Z be any subset of U. If F preserves F? for any Q € Z, there exists a neigh-
bourhood Z' of Z such that F preserves F for any Q € Z'.

3.3.4. Filtration on a small convex set

We put X := A", D; = {2, =0}, D :=J\_, D; and D; := N_, D;. Let 7: X(D) — X
be the real blowup. We have the natural identification 7=1(D,) = (S')¢ x Dy by the
coordinate (zy,...,z,). We use the polar coordinate (y,...,6) for (S')¢, induced by
(Zl,...,Zg).

* This remark is thanks to the referee.
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Let T C M(X,D)/H(X) be a good set of irregular values. For a,b € Z, let F, , be
given by (3.1). For a subset A C m~1(Dy), the order <4 on Z is given as in Definition 3.4.
Namely, we say a <4 b for a,b € Zif F,p <0on A, and we say a <4 b if we havea <4 b
ora=n".

Condition 3.14. Let P € Dy. Let C be a closed convex subset of (S')¢ satisfying the
following.

e There exist (6\°,...,6\”)) such that C is contained in {(61,...,6;) | |6; — 6\V] <
m/2}. In particular, we can identify C with a closed region in R™.

e We naturally regard C(P) := Cx{P} as a subset of 7 ~(Dy). Then, for each distinct
pair (a,b) of Z, if C(P) N FJI}(O) # (), it divides C(P) into two closed regions.

The following lemma is clear.

Lemma 3.15. Let P and C be as in Condition 3.14. Then, there exists a small neigh-
bourhood B of P in D, such that the following holds.

e For any non-empty subset By C B, the order <cxp, onZ is the same as <¢(p).

In particular, for any P’ € B, the orders <¢(py and <c¢(p:y are the same, where C(P’) :=
CxP.

Proposition 3.16. Let P and C be as in Condition 3.14. Let U be a local system on C(P)
with a Stokes data (F9 | Q € C(P)). Then, there uniquely exists a global filtration F¢(*)
indexed by (Zp,<c(p)) such that, for any QQ € C(P), the filtrations FCP) and FQ are
compatible over (Zp,<c¢(p)) — (Zp,<q). In other words, there exists a decomposition
U = P,cr Vo, which gives a splitting of FQ for any Q € C(P).

Proof. In the proof, C(P) is denoted by C for simplicity of the description. Let U be
the space of global sections of . We have natural isomorphisms U ~ g for any @ € C.
We regard that we are given filtrations F? (Q € C) on 9. We shall show that there
uniquely exists a filtration F€ of U such that for any Q € C, the filtrations F€ and F<
are compatible over (Zp,<c) = (Zp, <g).

For a,b € Zp, we have a <¢ b if and only if a <¢g b for any @) € C. Hence, the
uniqueness of such a filtration follows from Lemma 3.3.

Put Hyp := F;é (0) for distinct a,b € Z. A connected component of C\|J Hg,p is called
a chamber. If @ is contained in a chamber, then <¢ is totally ordered. If @ and Q' are
contained in the same chamber, we have <g=<(.

Take Qo in a chamber, and let a be minimal with respect to <g,. Note that a is
also minimal with respect to <¢. Let us observe that .7:'?" is contained in .7:"(? for
any Q € C. We take the interval I connecting @) and @Qy. We take points Ry = Qo,
Ri,Rs,...,Ry_1,Ry = Q in I such that the open interval (R;, R;y1) is contained in
a chamber. For R',R" € (R;, Riy1), we have FE = FE' by the compatibility con-
dition for Stokes data. For R € (R;—1,R;+1), we have .7:'5 - ff For b € 7, Fyp
is monotonously increasing along I from Qo to @ around R;. Hence, Fyp(R;) > 0 if
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and only if F, s(R) > 0 for R E (Ri_1, R;). It implies F* c FL for R € (Ri—1, R;).
Therefore, we obtain F° C F&. We can also deduce that 20 — Gr is an isomor-
phism for any @. Hence, in particular, if b # a is minimal with respect to <, we have
FENFE =0.

We put Vg := V/FE. For any Q € C and b € Z, let fQ(QTO) be the image of ]:Q(‘B)
Uy. Let UV = G By ¢ be a splitting of FQ. We remark that we may assume Ugq g = ]—"QO
Then, it is easy to see that the images of Uy ¢ gives a splitting of the filtration FQ (Vo).
We can also easily observe that the system of filtrations (F?(Up) | Q € C) gives a Stokes
data of the local system U, on C associated to Y.

Assume that we have filtrations FC for Uy and U with the desired property. Then,
FE(By) is obtained as the i image of FE(0). Actually, let U = @Doez Vo be a splitting of
fC(SU) We may assume U, = Fy FQ0 . The decomposition also gives a splitting of F@ (V)
for each @ € C. We have the induced decomposition Uy = € Vo s, which gives a splitting
of FQ(Wy) for each Q € C. It implies that the decomposition gives a splitting of FC (L)
by the uniqueness, and we can conclude that F€(%) is obtained as the image of F€ ().

Let us show the claim of the proposition by using an induction on |Z|. The case |Z] = 1
is obvious. Let (Qyp be a point in a chamber, and let a be the minimal with respect to
<@, If a is the minimum with respect to <¢, we can construct the desired filtration
of U as the pullback via U — Yy. Assume that a is not the minimum. We can find a
point () in a chamber such that a is not minimal with respect to <g,. Let b € 7 be
minimal with respect to <¢,. We remark F2' 0 F&° = 0. We put U, := U/F2" and
Yy = ‘IT/(]—'Q1 F&). As remarked above, the associated local systems U; (i =0,1,2)
are equipped with the induced Stokes structure. By construction, we have

ch(Q]) :-7:—9(6131) ]:Q(m )-7'— (Q]O)

forany Q € C and c € 7\ {a,b}.

By the hypothesis of the induction, U, are equipped with the filtration FC with the
desired property. Note that F€(Us,) is obtained as the image of F¢(;) (i = 0,1). We
put

FE(B) = FE (Vo) X e gy Fe (B).
Let us check that FC () has the desired property. Let Ty = @ Vo be a splitting of
FC. Let U, C ff(%) be a lift of Vo .. We put Y, := F and B, = .7:"[?1. By using that
FC(0,) is obtained as the image of F€(;) (i = 0,1), we can check that U = @Y, is
a splitting of the filtration F¢. Similarly, we can check that it gives a splitting of each
FQ(). Hence, FC is compatible with F? for each Q € C. O

3.3.5. Local extension
We continue to use the notation in §3.3.4. Let U be a local system on X (D).

Lemma 3.17. Let P be a point of Dy. A Stokes data of U|.-1(p) is uniquely extended
to a Stokes data on a neighbourhood of 7='(P) in X (D).

Proof. For any Q € 7~ '(P), we take a small neighbourhood Ug in X (D) such that
<@ = <uy- We can find Qy,...,Qn € 7 '(P) such that 7= (P) C UUg,. We may
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assume U, are the product C; x B where B is a neighbourhood of P in [0, 1[* x D, and
C; C (S1)!. (We use the natural identification X (D) ~ ([0,1] xS") x Dy,.) As remarked
in the second claim of Lemma 3.12, for @)’ € Ug,, we have the induced filtration FQQi
of Ve induced by F@ and (Ip,<q,) — (Zrqr,<q')- For any R € P x (C;NC}), there
exists a neighbourhood Ur C Ug, NUg; such that, for any Q" € Ug, both FQQi and
FQ'Qi are induced by FE and (Zp,<g) — (Zr@),<q’), and hence they are the same.
Therefore, by shrinking B, we obtain a Stokes structure U -1y whose restriction to
7 1(P) is the same as the given one. The uniqueness follows from the first claim of
Lemma 3.12.% O

Lemma 3.18. Let B be an open subset of Dy, and let F = (F9 | Q € n~(B)) be a
Stokes data on U|.-1(py. Let P be a point in the boundary of B such that, for any
small ball Bp around P, the intersection BN Bp is connected. Then, there exists a small
neighbourhood By of P in Dy such that F is uniquely extended to a Stokes data of

V| r-1(BUB)-
Proof. Let Q € 7—1(P). We take C as in Condition 3.14 with the following property.
LONS C(P) and nggc(p).

We take a small neighbourhood B of P as in Lemma 3.15. We may assume B N B is
connected.

Let P’ € BN B. We have the unique filtration FCP) of U\c(py as in Proposition 3.16.
It naturally induces a filtration of the restriction of U on a neighbourhood of C(P’),
denoted by FCP') If P” € B is sufficiently close to P, the restriction of FC¢(') has the
property in Proposition 3.16 for the local system Uj¢(pr) with the Stokes data. Hence,
it is the same as FC(P"), Namely, we have the filtration FBB)*C of 0| (BnB)xc indexed
by (Z,<q) such that, for any Q" € (BN B) x C, the filtrations FB)*C and F' are
compatible over (Z,<q) — (Z,<¢q). Let F2 be the filtration of U, indexed by (Z,<q),
induced by F(BEMB)XC Tt is independent of the choice of C. By construction, we obtain
that (F9 | Q € 7~'(P)) gives a Stokes data of B r-1(p). According to Lemma 3.17, if we
choose a small neighbourhood B of P in Dy, it is extended to a Stokes data of U -1(p,)-
By construction, the restriction of the Stokes data to 7~ (B; N B) are the same. Thus, we
obtain a desired extension. The uniqueness of the extension can be shown similarly. O

Let (U;, F) (i = 1,2) be objects in SD(X, D, Z). Let F': U; — Ys be a morphism of
local systems.

Lemma 3.19. Let B be an open subset of Dy such that Fy is compatible with the
Stokes filtrations F9(0; g) for any Q € 7—'(B). Let P be a point in the boundary of
B. Then, there exists a small neighbourhood B; of P in Dy such that Fy is compatible
with the Stokes filtrations F9 (0, q) for any Q € m~*(B U By).

* The author thanks the referee for this simplified proof.
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Proof. Let Q € 7~ 1(P). We take C and B as in the proof of Lemma 3.18. Then, the
Stokes filtration F@(;) is reconstructed from the filtrations @' from Q' € (BN B) x C.
Hence, Fg is compatible with the filtrations F?(%;). Then, the claim of the lemma
follows from Corollary 3.13. O

3.3.6. Proof of Theorem 3.9

We use a topological identification (X, D) = (X%, D%) x B.

The functor 7 is clearly faithful. Let us show that it is full. Let (;, F) be objects in
SD(X, D) with a morphism F°: (Q]ll’,.’i-'b) — (%g,j:b). We have a unique morphism of
local systems F': ; — Uy whose restriction to X?(DP) is equal to F°. Let us show that
F gives a morphism in SD(X, D). Let P* € D®. By using Corollary 3.13 and Lemma 3.19,
we obtain that Fg preserves the filtrations F<(%;) for any Q € 7~ (P? x B). Hence, the
functor 7" is full.

Let us show that Y is essentially surjective and let (P, F b) be an object in
SD(X?, D, Z%). We have a local system 2 on X (D) whose restriction to X®(DP) is
isomorphic to U°. Let P® € D Let b; € B. We take a path 73, connecting b and b; in
B. It naturally gives a path yps ;, connecting (P%,by) in P! x B. By using Lemma 3.17
and Lemma 3.18 along 7yps 4, , we obtain a Stokes data of U -1(psy,). Because B is
simply connected, it is independent of the choice of ;. Thus, we obtain a system of
filtrations (F9 | Q € 7~ 1(D)). Let us check the compatibility condition. Let P* € DP
and b; € B. We take a path 73, connecting b and b;, which embeds the interval into B.
The image of yps 3, is also denoted by I'. We obtain a Stokes data of Q]|,,7i(lp). If we take
a small neighbourhood B of I', it is uniquely extended to a Stokes data F of U1 (z).
We may assume that B is of the form B; x Ba, where B; is a neighbourhood of P’ in
X? and By is a neighbourhood of by in B. Let (P?,by) be a point in B. Then, the Stokes
filtration F9 for Q € 7' (P?,by) can be constructed with a path connectmg (PY,by)
and (Pg,b) in B. Hence, it is the same as the filtration obtained from .7: which implies
the compatibility condition. |

4. Riemann—Hilbert—Birkhoff correspondence

4.1. Stokes filtration of unramifiedly good meromorphic flat bundle

Let X be a complex manifold with a normal crossing hypersurface D. Let w: X (D) — X
be the real blowup. A holomorphic function on X (D) is a C*®-function on X (D) whose
restriction to X'\ D is holomorphic. (See [23] or [21, §3.1.3] for more details.) Let O,
be the sheaf of holomorphic functions on X (D). We put

O%(py(*D) := Oz (py @r10y  'Ox(+D).
Let (€, V) be an unramifiedly good meromorphic flat bundle on (X, D). We put 7*& :=

T Q104 O (p), which is a locally free OX(D)(*D)—module. For each Q € m=1(D),
let 7*&q denote the germ at @, and ’/T*E‘ 0 denote the formal completion. The irregular
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decomposition of (€, V) — induces

|7 (Q)
*o Qs
vea- @ %
a€lrr(V,m(Q))

We put

fg(ﬂ*ﬁlé) = @ Q.

b<ga
The following is implied in Theorem 3.2.1 of [21].

Theorem 4.1. For any Q € 7~ (D), there exists a unique V-flat filtration FQ of &g
indexed by the ordered set (Irt(V, m(Q)), <g) with the following property.

(A) Ger (m*Eq) are free O py-modules, and f?(W*EQ)@ = ﬁ?(w*é’@).

We can find a V-flat splitting of FQ, ie. a V-flat decomposition 7€y = @ Eg.a such
that 7& (7*€q) = @< ya Erb-

The filtration F@ is called the Stokes filtration of £ at Q.

The system of filtrations (FQ | Q € 7~ (D)) induces a Stokes data as follows. Let U
denote the local system on X (D) associated to (&, V)ix\p- For each Q € 7~!(D), the
stalk Ug is equipped with the filtration fQ(QTQ) induced by F® for m*Eq. The following
theorem is also implied in Theorem 3.2.1 of [21].

Theorem 4.2. The system of filtrations (F9 | Q € 7~ (D)) is a Stokes data of U over
the good system of irregular values Irr(V) = (Irr(V, P) | P € D).

Let E be the unramifiedly good Deligne-Malgrange lattice of (£,V). We put 7*F :=
7r’1E~®rloX OX(D)' For each Q € m~1(D), let m*E¢ denote the germ at Q. The filtra-
tion F¢ in Theorem 4.1 induces a filtration of m* B¢, which is also denoted by F Q. The
following proposition is implied in Proposition 3.2.9 and Proposition 3.2.11 of [21].

Proposition 4.3. Gr”° (7" Eq) is a locally free O p)-module. We can find a V-flat
decomposition m*Eqg = @ E, o such that }"C?(W*EQ) =@o<ya Fag-

Remark 4.4. Stokes filtration already appeared in the classical works on the classifica-
tion of meromorphic flat bundles on curves: see, for example, [14] and [15] (see also [5]).

Remark 4.5. In [21], F< is called full Stokes filtration, because we also consider partial
Stokes filtration in various levels.

4.1.1. Some functoriality

We have the following functoriality, which is a special case of Proposition 3.2.3 of [21].
(See also an explanation in §4.1.3.)

Proposition 4.6. Let (&;,V;) (i = 1,2) be unramifiedly good meromorphic flat bundles
on (X, D). Let F: & — &; be a V-flat morphism. For simplicity, we assume that Irr(V1)U
Irr(Vs) is also good. Then, for each Q € 7—*(D), the induced morphism 7* &1 — T Exq
is compatible with the Stokes filtrations.
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We also have the functoriality for dual, which is a special case of Proposition 3.2.5
of [21]. We can easily deduce it by using the uniqueness in Theorem 4.1.

Proposition 4.7. Let (£,V) be an unramifiedly good meromorphic flat bundle on
(X, D). The Stokes filtration of (€V,VV) at Q € w~ (D) is given by the procedure
in §3.1.1.

4.1.2. The associated graded bundle

Let P € D. By the compatibility condition of the system of Stokes filtrations, we obtain
the following associated graded locally free O 5 (D) (*D)-module with a flat connection on
a neighbourhood of 7=1(P):

Gr¥ (" E1p), V)= P (Gl (7*Ex-1(p)), Va).
a€lrr(V,P)

By taking the pushforward via m, we obtain an Ox (*D)-module with a flat connection
on a neighbourhood Xp of P:

af(Ep, V)= P (Gr] (Ep),Va).
a€lrr(V,P)

Similarly, we obtain an Og p-module Grﬁ(w*E|rl(p)) and an Ox-module Grf:(Ep)
with induced meromorphic connections.

The following proposition is a special case of Proposition 3.2.8 and Proposition 3.2.9
of [21].

Proposition 4.8. Gr” (p, V) isa graded meromorphic flat bundle with an unramifiedly
good Deligne-Malgrange lattice Gr” (Ep) on (Xp, Dp) satisfying

G (7€ (p), V) = 1 G (Ep, V),  GrF (x*Eppr(py) = 7" Gr¥ (Bp).  (4.1)

We have a canonical isomorphism GI'f:(gp,V)lp ~ (€,V)p and GI‘]}(Ep)lp ~ Ep
compatible with the irregular decompositions. In particular, (Gr2 (Ep), V) are a-regular.

Let (&1,V1) = (&3, V2) be a morphism of unramifiedly good meromorphic flat bundles.
For simplicity, we assume Irr(Vy, P) U Irr(Vy, P) is good. Then, we have the induced
morphism on a neighbourhood of P:

Gr7 (£1.p) = GrT (Ea.p).

For an unramifiedly good meromorphic flat bundle (£, V), we have the following canonical
isomorphism on a neighbourhood of P:

Gr7 (£Y) ~ Gr7 (p)V.
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4.1.3. Splitting and frame

Let P € D and Q € 7~ 1(P). Let U be a sufficiently small neighbourhood of Q in X (D)
on which we have a flat decomposition

W*(S,V)W = @ (5u7a,vu) (4.2)
a€lrr(V,P)

giving a splitting of the filtration F?. The compatibility of the system of the filtrations
(Theorem 4.2) means, for each Q' € U, (4.2) induces a splitting of F9' of the germ 7*E¢.

Let (21,...,2,) be a local coordinate around P for which D is locally expressed as
Ule{zi = 0}. We can take a frame u, of Gr’ (£p) such that

L
dz;
Vg = ua (da +3 4 ZZ ) (4.3)
i=1 i

where A; are constant matrices. If we take a flat splitting of FQ asin (4.2), it induces
a flat isomorphism 7* Grf(&')‘u ~ 7*&)y. Hence, we can obtain a frame vy = (vqy) of
7%y such that (4.3) holds for each vqy.

We can easily deduce Proposition 4.6 by using frames as above. Logically, Proposi-
tion 4.6 is more basic than the existence of such frames. But, we argue it for explanation.
We take flat splittings 7*&;, ~ 7* Gr] (£ of the filtration F? on a small neigh-
bourhood U of @ for i = 1,2. We have the corresponding decomposition F' = > F; p 4,
where

Fopu:m" Gr{(é’l)‘u — ¥ Grbf(é'g)m.
We have only to show that Fy, = 0 unless b >g a. We take frames ugi) of Grf(é’p)
as above. We have the expression Fmb,u(uél)) = uElQ)Bavb, where By p be the matrix
valued function on U. By the flatness of Fj 14, we obtain that B, ; satisfies a differential
equation. Because Bgp is polynomial order in \z;1| (i = 1,...,¢), we easily obtain
Bgp =0 unless a <g b.

4.1.4. Characterization by growth order

Let (£,V) be an unramifiedly good meromorphic flat bundle on (X, D). Let Q €
7~1(D). Let U be a small neighbourhood of Q in X (D). Take any frame v of Eu- A V-flat
section of Ey\ »-1(p) is expressed as f = >~ fjv;, where f; are holomorphic functions on
U\ 7 H(D). Let f denote the tuple (f;). Then, the filtration F@ can be characterized as
follows, which is a special case of Proposition 3.2.6 in [21]. We can easily deduce it by
using the frame as in §4.1.3.

Proposition 4.9. We have f € ]}?(W*SQ) if and only if |e® f| is of polynomial order.

Remark 4.10. Let (z1,...,2,) be a coordinate system around m(@Q) such that D is
expressed as Ule{zi = 0} around 7(Q). We say that a function F on Ug \ 7= 1(D) is of
polynomial order, if |F| = O(Hf:1 |z;| =) for some N > 0.
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4.2. Equivalence

Let X be a complex manifold with a normal crossing hypersurface D. Let Z = (Zp |
P € D) be a good system of irregular values on (X, D). Let MF(X, D, T) be the category
of unramifiedly good meromorphic flat bundles (£, V) on (X, D) such that Irr(V, P) C Zp
for each P € D. We have a naturally defined functor

RHB: MF(X,D,Z) — SD(X,D,T).
The following theorem is a special case of Corollary 4.3.2 of [21].
Theorem 4.11. The functor RHB is an equivalence.

Proof. We explain only the full faithfulness. It is clearly faithful. Let us show that it
is full. Let &; (i = 1,2) be unramifiedly good meromorphic flat bundles on (X, D). Let
F: & x\p — & x\p be a flat morphism preserving Stokes filtration at each @ € 7~ Y(D).
We would like to show that F' is extended to a morphism & — &. We have only to
consider the case X = A™ and D = Ule{zi = 0}. We take frames v; of &;. Let A be the
matrix determined by Fv; = voA. We have only to show that A is of polynomial order
in |z|~! (i =1,...,£). For each Q € n~1(D), we take flat splittings of FO(1*E;q) as
in (4.2). We take frames u;q of i, as in §4.1.3, which give frames u; of 7*&;;,. Let B be
the matrix determined by F'u; = usB. By a direct computation, we obtain that B is of
polynomial order in |z;|~! (i =1,...,¢) on U \ 7~ 1(D). Let G; be the matrix determined
by v; = u;G;. Then, G; and Gi_1 are of polynomial order in |z|™! (i = 1,...,¢) on
U\ 7 1(D). Hence, we obtain that A is of polynomial order in |z;|~* (i = 1,...,¢) on
U\ 7 1(D). By varying Q, we obtain the desired estimate for A. As for the essential
surjectivity, we refer to [21]. O

Let MF(X, D,I)G denote the category of G-equivariant unramifiedly good meromor-
phic flat bundles over Z. It is easy to deduce the following as a corollary of Theorem 4.11.
Corollary 4.12. The functor RHB: MF(X, D, Z)% — SD(X, D,Z)% is an equivalence.

Let p: (X', D') — (X,D) be a ramified Galois covering with the Galois group G.
Let Z' := ¢*Z. We have naturally defined descent functors Des: MF(X’, D', )¢ —
MF(X, D,Z) and Des: SD(X’, D', Z')¢ — SD(X, D,Z). It is easy to obtain an equiva-
lence Des o RHB ~ RHB o Des.

4.3. Extension

We consider the situation in § 3.3.2. We obtain the following theorem from Theorem 3.9
and Theorem 4.1.

Theorem 4.13. The restriction MF(X, D, Z) — MF (X", D %) is equivalent.

Let G be a finite group acting on (X, D) over B. Assume that Z is G-equivariant in
the sense of §3.3.1. By using the uniqueness, we easily obtain the following.

Corollary 4.14. The restriction MF(X, D, Z)¢ — MF(X?, Db,Ib)G is an equivalence.

In §§4.3.1-4.3.2, we shall explain easy examples of deformation. (See [21, §4.5] for
more details.)
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4.3.1. Deformation ET)

Let C be a simply connected compact region in C™ with a base point c¢y. We put
(X°,D°) := (X, D) x C.Let T be a holomorphic function on C such that T (¢p) = 1. From
a good meromorphic flat bundle (€, V) on (X, D), we shall construct a good meromorphic
flat bundle (&, V)(7) in a functorial way, such that (&V)‘(;)X{CO} = (£,V). (See [21,
§4.5.1] for more details.)

Unramified case. Let Z be a good system of irregular values on (X, D). For each (P, ¢) €
D°, we put
I((pc) ={Ta|aecIp}

Thus, we obtain a good system of irregular values Z ) on (X°,D°). According to Theo-
rem 4.13, the restriction MF(X°, D°,Z°) — MF(X x{co}, D x{co},T) is an equivalence.
Hence, for (£,V) € MF(X, D, T), we have (£(7),V(T)) e MF(X°, D°, 7)) such that
(&, V(T))‘XX{CO} = (&,V). It is unique up to canonical isomorphisms.

Let ¢: (X', D') = (X,D) be a ramified Galois covering with the Galois group G.
We put Z' := ¢*Z. Take (£/,V') € MF(X', D', I")%. Let (£,V) € MF(X, D,Z) be the
descent of (£/,V’). According to Corollary 4.14, (£, V')(7) is also G-equivariant.

Lemma 4.15. (£,V)(7) is the descent of (£',V')(T).

Proof. Let (£1,V1) € MF(X, D, T) be the descent of (£’,V')(7). By construction, the
restrictions of (£, V)(7) and (£;,V1) to X x {co} are naturally isomorphic. By Theo-
rem 4.13, they are isomorphic on X°. O

General case. Let (£,V) be a good meromorphic flat bundle on (X, D), which is not
necessarily unramified. For any P € D, we can take a small neighbourhood Xp and
a ramified covering ¢p: (Xp,D%) — (Xp,Dp) such that ¢ (€, V) is unramified. By
applying the procedure in the unramified case, we obtain the deformation (¢} (€, )T
on (X3, D). By taking the descent, we obtain (&, V)g) on (Xp,D%). It is well defined
up to canonical isomorphisms as a germ of a good meromorphic flat bundle at P x C,
according to Lemma 4.15. By gluing, we can globalize and obtain a good meromorphic
flat bundle (£,V)(7) on (X°, D°).

Pullback. We explain the functoriality for pullback. Let X; be a complex manifold
with a normal crossing hypersurface D;. Let F': X; — X be a morphism such that
F~1(D) C D;. Let (£,V) be a good meromorphic flat bundle on (X, D). We obtain a
good meromorphic flat bundle (&;,V;) := F*(€,V)® Ox, (xD1) on (X1,D1). Let Fe
be the induced morphism X7 — X°. Then, it is easy to obtain a natural isomorphism
(&1, V)T ~ Fx(&,V) 7). Indeed, we have only to consider the local and unramified case,
and we have only to compare their restrictions to X x {co} as in the proof of Lemma 4.15.

4.3.2. Deformation &™)

Take T' € C\ {0} such that |arg(T")| < 7/2. For a given good meromorphic flat bundle
(£,V) on (X, D), we shall construct a good meromorphic flat bundle (£, V(™)) on
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(X, D) in a functorial way. We take a compact region C C C which contains 0 and 1,
and take a nowhere vanishing holomorphic function 7: C — C such that (i) 7(0) = 1,
(ii) 7(1) = T and (iii) |arg(7)| < 7/2. Then, we obtain the deformation (£(7), V(7)) on
(X°,D°). By taking the specialization at ¢ = 1, we obtain the desired (£, V(™). It
is easy to show that (£(™), V(7)) is independent of the choice of (C,7) up to canonical
isomorphisms. (See [21, §4.5.2] for more details.)

Let T be a good system of irregular values on (X, D). For each P € D, we put
II(DT) :={Ta|aeZp}, and we obtain a good system of irregular values Z") on (X, D).
The above construction gives MF(X, D, T) — MF(X, D,I(T)), in the unramified case. If
T; € C (i = 1,2) satisfy |arg(T;)| < 7/2 and |arg(T1T5)| < 7/2, then we have a canonical
isomorphism £(T172) ~ (£(T1))(T2),

Pullback. We explain the functoriality for pullback. Let X; be a complex manifold with
a normal crossing hypersurface D;. Let F': X; — X be a morphism such that F~1(D) C
D;. Let € be a good meromorphic flat bundle of (£,V) on (X, D). We obtain a good
meromorphic flat bundle & := F*€ ® Ox, (*D1). Then, we have a natural isomorphism
51(T) ~ F*&T) which follows from the functoriality of the construction in §4.3.1 via
pullback.

4.3.3. Remark

This deformation procedure, grown out with the discussion with Sabbah, is one of the
key ingredient in our study on wild harmonic bundles [21]. Let (E,dg,6,h) be a good
wild harmonic bundle on (X, D). We have the associated family of A-flat bundles (£, D)
on Cy x (X \ D). It is one of the main task to prolong it to a family of meromorphic
Aflat bundles on Cy x X.

For each complex number A, we have the associated A-flat bundle (£*,D*) on X \ D.
By considering the holomorphic sections in polynomial orders, we obtain a good mero-
morphic A-flat bundle (PE*, DY) on (X, D). However, in the non-tame case, we cannot
obtain a nice meromorphic object in family, if we consider holomorphic sections with
polynomial growth. Thus, the deformation procedure as above gets into our study on
wild harmonic bundles.

4.4. Conjugate
4.4.1. Good meromorphic flat bundle on the conjugate

Let X be a complex manifold with a normal crossing hypersurface D. Let X' be
the conjugate of X, i.e. XT = X as a C°°-manifold, but the complex structure is the
opposite one. Let Z be a good system of irregular values on (X, D). For each P € D, we
put Zp := {a | a € Zp}. Then, we obtain a good system of irregular values Z on (X T, DT).

Let XT(D') — X1 be the real blowup of Xt along DT. It is naturally identified with
X (D) as a C*®-manifold. For each Q € 7~'(P), the orders <g on Zp and Zp are the same
under the natural bijection. Hence, we have the natural identification SD(X, D,T) ~
SD(XT, D', Z). It induces the following equivalences of categories:

MF(X,D,Z) = SD(X, D,T) = SD(XT, D', Z) << MF(XT, DT, 7).
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For £ € MF(X, D, T), let £¢ € MF(XT, D!, Z) be the corresponding object. It is deter-
mined up to canonical isomorphism. We put C(£)™°4 P .= (£V)¢. It is naturally isomor-
phic to (£€)V, which can be shown by comparison of the associated Stokes structure.

Example 4.16. Let X = A" and D = Ule{zi =0}.Letae M(X,D).If € = Ox(xD)e
with the connection Ve = e(da + 3" a; dz;/z;), then C(£)™°4P = O (xD1)el with the
connection Vel = ef(d(—a) + > a; dz;/%).

Prolongation of the pairing. Recall some sheaves from [23], which we refer to for more
detailed property. Let ¢: X\ D — X and i: X\ D — X (D) be the natural inclusions. Let
.A;O%D be the subsheaf of 7.Ox\ p which consists of the sections with moderate growth
along D. Let @bm‘z%)D be the image of QbX(D) — 1.Dbx\p. Let 2672040 be the image
of Dbx — 1.Dbx\p-

Let £ be an unramifiedly good meromorphic flat bundle on (X, D). We put

Expy =7 (E) Or1(0x) AR (D)
pant — m m T
CENRyy =7 CV)™ D) @ri0,y) ARIDN

Note that we have the natural pairing of V|x\p and C(V )‘Ir}?{iDD to the sheaf of C'°°-
functions on X \ D.

Proposition 4.17. It is naturally extended to the pairings

ExCE)™IP = DuRIP, ERTY < C(E) 505, — DORY
Proof. Let us consider the second one. Take P € D and Q € 7w 1(P). We put Z :=
Irr(€, P). We have Irr(C(€)™°4P P) = IV := {—a | a € Z}. We take a sufficiently small
neighbourhood U of Q in X (D), and a flat splitting 7 “Eu = Baer Eu,a of the filtration
FQ. We can take a frame uq of Ezf}l";dD = & ®A;‘ng such that Vu, = u,da.
Similarly, we can take a flat splitting

— modD @ C modD
beZV

of the filtration F@, and a frame wy of

CEmWP =P @ ARD)
such that Vwy, = wy db.

Note that the filtration F for C(£)™°4 P is the same as that for £Y, under the iden-
tification of S‘VX\ p=C(& )‘“)1?{153 as C*°-flat bundles. We also recall the functoriality of
the Stokes filtration in Proposition 4.7. Hence, the induced pairing between Eﬁ‘;d D and
C(S)E,‘f’bdD is 0 unless —Re(a 4+ b) <@ 0. If —Re(a + b) < 0 is satisfied, by a direct

computation, we can check that the pairing between SmOdD and C(& )mOdD is valued in
@b;‘(’%j The first one follows from the second one. O
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4.4.2. Conjugate of holonomic D-modules

We briefly mention an application to D-modules. We have a natural correspondence
between coherent Ox-modules with flat connections, and coherent Oxi-modules with
flat connections, through local systems. In [8], Kashiwara studied how to generalize it
for holonomic Dx-modules. Let M be a regular singular holonomic Dx-module. Let
Dby be the sheaf of distributions on X, which is naturally regarded as a bi-(Dx, Dxt)-
module. Hence, Exty, (M, Dbx) are naturally Dxi-modules. In [8], he showed that
Extp, (M, Dbx) = 0 for i > 0, and Cx (M) := Homp, (M, Dbx) is a regular singular
holonomic D y+-module. Let D+ denote the dual functor in the category of Dy +-modules.
Then, M — Dx+Cx (M) gives an appropriate generalization of the above correspon-
dence.

Sabbah [23] studied its generalization for holonomic D-modules which are not nec-
essarily regular singular. He essentially established that the problem can be reduced to
the existence of resolution of turning points and Riemann—Hilbert—Birkhoff correspon-
dence. We have already known the local existence of resolution of turning points due to
Kedlaya [9] (see [21] for the algebraic case). We have also prepared asymptotic analysis
for good meromorphic flat bundles over higher-dimensional varieties. Hence, it may be
appropriate to mention here that the problems can be solved formally. This is essen-
tially due to Sabbah. We will just indicate where detailed arguments are given. (See [23]
and [24] for more details.)

Let X be a complex manifold with a normal crossing hypersurface D. Let £ be an
unramifiedly good meromorphic flat bundle on (X, D). From Proposition 4.17, we obtain
the following morphisms:

C(&)™1D _ Homp, (€,06%°1P) - RHomp, (£, D61 D), (4.4)
mod D mod D mod D mod D mod D
CERDY — Homppoa o (ER0Y DORILY) = RHompuosn (X057 DORL). (4.5)

Here, D%g)D =71 1Dx Q104 A;‘(’%f.

Proposition 4.18. The morphisms (4.4) and (4.5) are isomorphisms.

Proof. We may assume that X = A" and D = Ule{zi = 0}. Let us show (4.5). We have
only to consider the case & = Ox(xD)e with the connection Ve = e(da + > «; dz;/2;).
Then, the claim for (4.5) can be reduced to the Grothendieck—Dolbeault Lemma [23,
(I1.1.17)] by the argument in [23, §11.3.3]. (See also the proof of Lemma 7 in [8].) Then,
we can formally deduce the claim for (4.4) from that for (4.5). (See the argument in [23,
pp. 67-68].) O

Corollary 4.19. Let M be a holonomic Dx-module. We have Extp, (M,Dbx) = 0
unless i # 0, and Cx (M) := Homp, (M, Dbx) is a holonomic Dx+-module. The functor
Cx induces a contravariant equivalence between the derived categories of cohomologically
holonomic D-modules on X and X1,

Proof. Asremarked on p. 66 of [23], Kashiwara’s argument in [8] permits us to reduce
the issue to the case that M is a meromorphic flat bundle on (X, D), where D is a normal
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crossing hypersurface. Since the claim is local, applying the local existence of resolution
of turning points [9] with the argument in [8], we can reduce the issue to the case that
M is a good meromorphic flat bundle on (X, D). As noted on p. 66 in [23], we have only
to show that R Homp, (M, Db%°4P) is a good meromorphic flat bundle on (X, D). By
the argument on p. 67 in [23], it can be reduced to the case that M is unramifiedly good.
Then, the claim follows from Proposition 4.18. U
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