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1. Introduction

In the study on wild harmonic bundles [21], we were led to various interesting progress
in the theory of D-modules and meromorphic flat bundles. In this paper, we shall give a
survey on the classification of good meromorphic flat bundles in terms of Stokes filtra-
tions, which can be regarded as a higher-dimensional generalization of Riemann–Hilbert–
Birkhoff correspondence (see [5,14,15,25]).

Such a classification has been well established and classical for meromorphic flat bun-
dles on curves. It is done in two steps.

(i) We take a pullback via a ramified covering and the formal completion along the pole,
and then we obtain a nice decomposition, called the Hukuhara–Levelt–Turrittin
decomposition.

(ii) Although the decomposition is just formal in general, it can be lifted to a flat
decomposition on each small sector, and the ambiguity of lifting leads us to the
notion of Stokes structure.

In the higher-dimensional case, Majima [12] initiated a systematic study on asymptotic
analysis for meromorphic flat bundles, and Sabbah [23] revisited it. In some sense, they
studied the step (ii). Sabbah pointed out the significance of the step (i). In general, a
meromorphic flat bundle on a higher-dimensional variety has a bad singularity called a
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turning point, around which we cannot obtain a naive generalization of Hukuhara–Levelt–
Turrittin decomposition only after taking the formal completion and the pullback via a
ramified covering. So he proposed a conjecture which says that there exists a resolution
of turning points for meromorphic flat bundles. In [19] and [21], we have established it
in the algebraic case. (See also a survey paper [20].) Later, with a completely different
methods, Kedlaya established it in a more general situation [9,10].

For good meromorphic flat bundles, i.e. meromorphic flat bundles without turning
points, we can naturally generalize the step (ii), as studied in [12] and [23] (see also [21]).
In [21], we put our stress on a slightly different point from that in [12] and [23]. Although
a flat decomposition on a small sector is not canonical, it canonically determines the fil-
tration, called Stokes filtration. So we obtain a system of filtrations on multi-sectors,
which is Stokes structure. It gives us a method for classification of good meromorphic
flat bundles, i.e. the Riemann–Hilbert–Birkhoff correspondence. (See [23] and the more
ambitious [24] for different formulations.) We hope that it would be a part of the foun-
dation in the further study on meromorphic flat bundles and holonomic D-modules.

In this paper, we shall give a review on Riemann–Hilbert–Birkhoff correspondence for
good meromorphic flat bundles. Because our monograph [21] is long, contains several top-
ics, and studies Stokes structure with additional data in a slightly generalized situation,
the author expects that it might be useful to collect the related part from [21] in a simpli-
fied presentation. We will briefly mention applications of the Riemann–Hilbert–Birkhoff
correspondence. One is the deformation of a good meromorphic flat bundle caused by
variation of irregular values, which may be regarded as a higher-dimensional general-
ization in some results in [7]. Besides, it is important in our study on wild harmonic
bundles, the author thinks that it is of independent interest. The other is an application
to conjugate of holonomic D-modules, which is essentially due to Sabbah [23].

We will also give a small complementary result on good formal structure and good
lattice. In [23], Sabbah introduced the notion of good formal structure. Let X be a
complex manifold, and let D be a simple normal crossing hypersurface of X. Let D =⋃

i∈Λ Di be the irreducible decomposition. For each I ⊂ Λ, we put D◦
I :=

⋂
i∈I Di \⋃

j �∈I Dj . We have the decomposition D =
∐

D◦
I . Let (E , ∇) be a meromorphic flat bundle

on (X, D). Then, we say that (E , ∇) has the unramifiedly good formal structure, if the
formal completion of (E , ∇) along D◦

I has a Hukuhara–Levelt–Turrittin decomposition
for each I ⊂ Λ, and we say that (E , ∇) has the good formal structure, if it is locally the
descent of a meromorphic flat bundle with the unramifiedly good formal structure. We
have natural variants of this condition. For example, we have a weaker variant of good
formal structure: the formal completion of (E , ∇) at each point has a Hukuhara–Levelt–
Turrittin decomposition after a ramified extension (see § 2.1.4). A stronger variant is the
existence of a good lattice. (See § 2.3 of [21] for a good lattice. We will review a more
specific notion of good Deligne–Malgrange lattice in § 2.2.2 below.) In this paper, we
shall show that these conditions are equivalent. It may be useful to clarify the theory of
meromorphic flat bundles.

The author also gave a survey on good meromorphic flat bundles and Stokes structure
in a different way in § 5 of [22], based on an earlier version of [21]. In particular, an
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inductive use of partial Stokes structure is explained. It might look complicated, it seems
more convenient in some situation.

Contents of the paper

In § 2, after reviewing the notion of good Deligne–Malgrange lattices in both the for-
mal and complex analytic cases (§§ 2.1–2.2), we show that a meromorphic flat bundle
has a good Deligne–Malgrange lattice if and only if its formal completion at each point
has a good Deligne–Malgrange lattice (Proposition 2.18). In § 3, we review the notion of
Stokes structure. In § 4, we discuss Riemann–Hilbert–Birkhoff correspondence. In § 4.1,
we review that a Stokes structure is associated to an unramifiedly good meromorphic
flat bundle. In § 4.2, we state the Riemann–Hilbert–Birkhoff correspondence for unram-
ifiedly good meromorphic flat bundles. In § 4.3, we explain the deformation of a good
meromorphic flat bundles caused by variation of irregular values. In § 4.4, we consider
good meromorphic flat bundles on the conjugate complex manifolds, and its application
to the theory of D-modules.

2. Good meromorphic flat bundle

2.1. Formal case

2.1.1. Good set of irregular values

We use the partial order �Zn of Zn given by the comparison of each component,
i.e. a�Zn b ⇐⇒ ai � bi (∀i). Let 0 denote the zero in Zn.

Let R0 denote the ring of the formal power series C[[z1, . . . , zn]], and let R be the
localization of R0 with respect to zj (j = 1, . . . , �) for some 1 � � � n, i.e. R :=
R0[z−1

1 , . . . , z−1
� ]. For m = (mi) ∈ Zn, we put zm :=

∏n
i=1 zmi

i . For f =
∑

m∈Zn fmzm ∈
R0, we put S(f) := {m | fm �= 0} ∪ {0}. Let ord(f) denote the minimum of S(f), if it
exists.

For any a ∈ R/R0, we take any lift ã to R, and we set ord(a) := ord(ã), if the right-
hand side exists. It is independent of the choice of a lift ã. (We will often use the same
symbol a to denote a lift to R in the subsequent argument.) Recall that a finite subset
I ⊂ R/R0 is called a good set of irregular values, if the following conditions are satisfied:

• ord(a) exists for each element a ∈ I;

• ord(a − b) exists for any two distinct a, b ∈ I;

• the set {ord(a − b) | a, b ∈ I} is totally ordered with respect to the partial order
�Zn on Zn.

Remark 2.1. This kind of condition appeared in [23], but the third condition above is
slightly stronger than that in [23]. We use it to simplify our inductive arguments in our
study on Stokes structure as in [21].

Let I be a good set of irregular values. Note that the set {ord(a) | a ∈ I} is totally
ordered, because ord(a) �� ord(b) and ord(a) �� ord(b) imply that ord(a−b) does not exist.
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We set m(0) := min{ord(a) | a ∈ I}. We have the set T (I) := {ord(a − b) | a, b ∈ I}
contained in Zn

�0. Note m(0) �Zn m for any m ∈ T (I), because am �= 0 for some a ∈ I.
Since T (I) is assumed to be totally ordered with respect to the partial order �Zn , we
can take a sequence M := (m(0), m(1), m(2), . . . ,m(L), m(L + 1)) in Zn

�0 with the
following properties:

• T (I) ⊂ M and m(L + 1) = 0n;

• for each p � L, there exists 1 � h(p) � n such that m(p+1) = m(p)+δh(p), where
the jth entry of δj is 1, and the other entries are 0.

Note that such a sequence is not uniquely determined for I. Put i := h(0). For each
a ∈ Irr(∇), we have the expansion a =

∑
ajz

j
i . We denote amiz

mi
i by η̄m(0)(a), although

it depends on the choice of m(1). We obtain the map η̄m(0) : I → R. For a, b ∈ I, we
have η̄m(0)(a) = η̄m(0)(b) if and only if am(0) = bm(0).

It is often convenient to use a coordinate system such that ord(a − b) and ord(a) are
contained in the set

∐�
i=0 Zi

<0 × 0�−i for any a, b ∈ I. Such a coordinate system is called
admissible for I.

Let I be a good set of irregular values with an auxiliary sequence m(0), . . . ,m(L). For
each a ∈ I, we have the expansion a − η̄m(0)(a) =

∑
m�m(1) amzm. We obtain a finite

set S := {am(1) | a ∈ I} ⊂ C. The following lemma is clear.

Lemma 2.2. We take c ∈ C \ S. For each c ∈ R, the set Ic,c := {a − η̄m(0)(a) − czm(1) |
η̄m(0)(a) = c} is a good set of irregular values.

2.1.2. Unramifiedly good meromorphic flat bundle

Let M be a finitely generated R-module. Recall that a connection of M is a linear
map ∇ : M → M ⊗ Ω1

R/C
such that ∇(f · s) = df · s + f∇s for f ∈ R and s ∈ M. It is

called flat, if the curvature ∇ ◦ ∇ : M → M ⊗ Ω2
R/C

is 0. The inner product of ∇s and
a derivative v of R over C is denoted by ∇(v)s.

A finitely generated R0-submodule L ⊂ M is called a lattice, if L ⊗R0 R = M.

Definition 2.3. A lattice L of M is called logarithmic, if ∇(zi∂i)L ⊂ L for i = 1, . . . , �,
and ∇(∂i)L ⊂ L for i = � + 1, . . . , n.

A lattice L of M is called a-logarithmic for a ∈ R/R0 if (i) L is R0-free and (ii) ∇−dã

is logarithmic for a lift ã of a to R. If M has an a-logarithmic lattice, it is called a-regular.

Definition 2.4. A lattice L of M is called unramifiedly good, if there exist a good set
of irregular values Irr(∇) ⊂ R/R0 and a decomposition

(L, ∇) =
⊕

a∈Irr(∇)

(La, ∇a) (2.1)

such that ∇a are a-logarithmic. If M has an unramifiedly good lattice, we say that M
is an unramifiedly good meromorphic flat bundle on R.
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The decomposition (2.1) induces

M =
⊕

a∈Irr(∇)

La ⊗R0 R. (2.2)

The decompositions (2.1) and (2.2) are called irregular decomposition of L and M,
respectively.

Lemma 2.5. Let L and L′ be unramifiedly good lattices of M with irregular decompo-
sitions L =

⊕
a∈Irr(∇) La and L′ =

⊕
a∈Irr′(∇) L′

a. Then, we have La ⊗R0 R = L′
a ⊗R0 R

for any a ∈ Irr(∇)∪Irr′(∇). In particular, the decomposition (2.1) is uniquely determined
for L, and the decomposition (2.2) is uniquely determined for M.

Proof. The claims are well known in the one-variable case. The several-variables case
can be easily reduced to the one-variable case. �

Let L be an unramifiedly good lattice of (M, ∇) with the irregular decomposition
(2.1). Let m(0) be the minimum of {ord(a) | a ∈ Irr(∇)}. We put T := {am(0) | a ∈ I}.
Let π : Irr(∇) → T be the naturally defined map. For α ∈ T , we put Lα :=

⊕
π(a)=α La.

We have the ∇-flat decomposition L =
⊕

α∈T Lα. We will implicitly use the following
standard characterization of this decomposition.

Lemma 2.6. Assume that the ith component of m(0) is negative. Let L =
⊕

α L′
α be

a decomposition such that

(i) z−m(0)∇(zi∂i)L′
α ⊂ L′

α for each α ∈ T and

(ii) L′
α ⊗R C = Lα ⊗R C.

Then, we have L′
α = Lα.

Proof. By considering the eigendecomposition of the endomorphism of L/ziL induced
by zm(0)∇(zi∂i), we obtain that L′

α/ziL′
α = Lα/ziLα in L/ziL. By using Corollary 2.14

below, we obtain Lα = L′
α. �

2.1.3. Residue

If we are given an unramifiedly good lattice L, we obtain an endomorphism Resi(∇)
of L/ziL in a standard way. Namely, for any f ∈ La/ziLa, we take a lift f̃ ∈ L, and let
Resi(∇a)f be induced by ∇reg

a (zi∂i)f̃ , where ∇reg
a := ∇a − dã for a lift ã of a. We set

Resi(∇) :=
⊕

Resi(∇a) ∈ End(L/ziL). It is well defined for (L, ∇) in the sense that it
is independent of the choice of lifts f̃ , ã and the choice of the coordinate function zi. It
is well known and easy to see that the eigenvalues of Resi(∇) are contained in C.

Definition 2.7. Let L be an unramifiedly good lattice of M. If the eigenvalues α of
Resi(∇) satisfy 0 � Re(α) < 1, it is called an unramifiedly good Deligne–Malgrange
lattice of M.

It is standard and easy to show that such a lattice is unique, if it exists.
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2.1.4. Good meromorphic flat bundle

For a positive integer, let R(e) := C[[ζ1, . . . , ζ�, z�+1, . . . , zn]] for eth roots ζi of zi. If a
finitely generated R-module M is equipped with a flat connection, M(e) := R(e) ⊗R M
is equipped with an induced flat connection. It is naturally equipped with an action of
the Galois group G of R(e)/R. If M(e) has an unramifiedly good Deligne–Malgrange
lattice L(e), it is also equipped with a natural G-action, because of the uniqueness of
unramifiedly good Deligne–Malgrange lattice. The G-invariant part of L(e) is called the
descent of L(e).

Definition 2.8. (M, ∇) is called a good meromorphic flat bundle, if (M(e), ∇(e)) is an
unramifiedly good meromorphic flat bundle for some e > 0. In that case, the descent
of the unramifiedly good Deligne–Malgrange lattice of M(e) is called a good Deligne–
Malgrange lattice of M.

We remark that a meromorphic flat bundle does not have a good Deligne–Malgrange
lattice, in general. If it exists, it is unique, which follows from the uniqueness of unrami-
fiedly good Deligne–Malgrange lattice and the following standard and easy lemma.

Lemma 2.9. Assume that (M, ∇) is an unramifiedly good meromorphic flat bundle.
Then, (M(e), ∇(e)) is also an unramifiedly good meromorphic flat bundle for any e, and
the unramifiedly good Deligne–Malgrange lattice of M is the descent of that of M(e).

We recall that ramification of a good meromorphic flat bundle can be controlled by
that of its irregular values.

Lemma 2.10. Assume that (M(e), ∇(e)) is unramifiedly good for e > 0. If Irr(∇(e)) ⊂
R/R0, (M, ∇) is also unramifiedly good.

Proof. Let G be the Galois group of R(e)/R. Let L(e) ⊂ M(e) be a G-equivariant unram-
ifiedly good lattice of M(e). Because the G-action on Irr(∇(e)) is trivial, the irregular
decomposition L(e) =

⊕
L(e)

a is preserved by G. Hence, we have the decomposition of
the G-invariant part (L(e))G =

⊕
(L(e)

a )G, which gives the irregular decomposition of
(L(e))G, i.e. (L(e))G is an unramifiedly good lattice of M. �

We recall a bound of ramification index, which is also standard and well known.

Lemma 2.11. If (M, ∇) is good, (M(e0), ∇(e0)) is unramifiedly good, where e0 :=
(rankM)!.

Proof. It is well known in the one-variable case. Let us consider the several-variables
case. Take e such that (M(e), ∇(e)) is unramifiedly good. We may assume that e is divis-
ible by e0. According to Lemma 2.10, we have only to show that Irr(∇(e)) ⊂ R(e0)/R

(e0)
0 .

Take a ∈ Irr(∇(e)) and 1 � i � �. We have the expansion a =
∑

apζ
p
i , where ζi is an eth

root of zi. By using the result in the one-variable case, we can observe that ap = 0 unless
p is divisible by e/e0. Hence, we obtain that a ∈ R(e0)/R

(e0)
0 . �
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2.1.5. Preliminary from the one-variable case (appendix)

Let k be an integral domain over C. We consider R0 := k[[t]] and R := k((t)), which are
naturally equipped with a derivation ∂t. An R-module M is called differential module,
if it is equipped with the action of ∂t such that ∂t(fs) = ∂t(f)s + f∂ts for f ∈ R and
s ∈ M. We recall some basic facts on differential R-modules from [11] for reference in
our argument.

Extension of decomposition. Let M be a finitely generated differential R-free module
with an R0-free lattice L such that tM+1∂tL ⊂ L for some M > 0. Note that we
have an induced endomorphism G of L ⊗R0 k. Assume that there exists decomposi-
tion (L ⊗R0 k, G) = (V1, G1) ⊕ (V2, G2). For i �= j, we have the endomorphism G̃i,j of
Hom(Vi, Vj) given by G̃i,j(f) = f ◦ Gi − Gj ◦ f .

Lemma 2.12. If G̃i,j are invertible for (i, j) = (1, 2), (2, 1), then we have a decomposition
L = L1 ⊕ L2 such that

(i) tM+1∂tLi ⊂ Li and

(ii) Li ⊗ k = Vi.

Proof. We give only a sketch of a proof, by following [11]. Let v be a frame of L with
a decomposition v = (v1, v2) such that vi|t=0 give frames of Vi. Let A be the R0-valued
matrices determined by tM+1∂tv = vA. Then, A has the following decomposition corre-
sponding to v = (v1, v2):

A =

(
Ω1 0
0 Ω2

)
+

(
A11 A1,2

A2,1 A2,2

)
.

Here, Ωi are k-valued matrices determined by Givi = viΩi, and Ai,j are tR0-valued
matrices. We consider a change of the base of the following form:

v′ = vG, G = I +

(
0 X

Y 0

)
.

Here, the entries of X and Y are contained in tR0. We would like to take G such that

tM+1∂tv
′ = v′B, B =

(
Ω1 + Q1 0

0 Ω2 + Q2

)
. (2.3)

The relation of A, G and B are given by AG+ tM+1∂tG = GB. We obtain the equations
A11 + A12Y + Q1 = 0 and Ω2Y + A21 + A22Y + tM+1∂tY = Y Ω1 + Y Q1. By eliminating
Q1, we obtain the equation

Ω2Y − Y Ω1 + A21 + A22Y + tM+1∂tY + Y (A11 + A12Y ) = 0. (2.4)

By the assumption, we have the invertibility of the endomorphism on the space of k-
valued (r2, r1)-matrices, given by Z 
→ Ω2Z − ZΩ1, where ri := rankLi (i = 1, 2). By
using a t-expansion, we can find a solution of (2.4) in the space of tR0-valued matrices.
Similarly, we can find desired X and Q2. �
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Uniqueness.

Lemma 2.13. Let M be an R-free differential module. Assume that there exists an
R0-free lattice L ⊂ M and a ∈ R \ R0 such that t∂t − t∂ta preserves L. Then, any flat
section of M is 0.

Proof. Take f ∈ M such that ∂tf = 0. Assume f �= 0, and we will deduce a contradic-
tion. We can take N ∈ Z such that tNf ∈ L and the induced element of L/tL is non-zero.
By the assumption, we have

L � (t∂t − t∂ta)(tNf) = (N − t∂ta)tNf.

But, it is easy to see that (N −t∂ta)tNf �∈ L, and thus we have arrived at a contradiction.
�

Let Mi (i = 1, 2) be differential R-free modules with R0-free lattices Li such that
t∂t − t∂tai preserve Li.

Corollary 2.14. Assume a1 − a2 �= 0 in R/R0. Then, any flat morphism M1 → M2

is 0.

Let M be a differential R-module. Let E be an R0-lattice of M such that tm+1∂tE ⊂ E

for some m > 0. We have the induced endomorphism G of E|t=0.

Lemma 2.15. Let s ∈ M. If G is invertible, we have ∂ts = 0 if and only if s = 0.

Let Ei (i = 1, 2) be lattices of M such that tmi+1∂tEi ⊂ Ei for some mi > 0. Let Gi

be the endomorphism of Ei|t=0 induced by tmi+1∂t.

Lemma 2.16. Assume that Gi are semisimple and non-zero. Let Ti be the set of eigen-
values of Gi. Then, we have m1 = m2 and T1 = T2.

Proof. By extending k, we may assume that the eigenvalues of Gi are contained in k.
We have ∂t-decomposition Ei =

⊕
b∈Ti

Ei,b such that Ei,b|t=0 is the eigenspace of Gi

corresponding to b. We have the induced map ϕc,b : E1,b ⊗R → E2,c ⊗R. If m1 �= m2 or
if m1 = m2 but b �= c, we have ϕc,b = 0 by Lemma 2.15. Then, the claim of Lemma 2.16
follows. �

2.2. Complex analytic case

Let X be a complex manifold, and let D be a simple normal crossing hypersurface. Let
OX(∗D) denote the sheaf of meromorphic functions whose poles are contained in D. For
a point P of X, let OP̂ be the completion of OX at P . Let OP̂ (∗D) := OP̂ ⊗OX

OX(∗D).
For an OX -module M, let M|P̂ := M ⊗OX

OP̂ . We denote by M(X, D) (respectively
H(X)) the space of meromorphic functions on X whose poles are contained in D (respec-
tively holomorphic functions on X).
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2.2.1. Unramifiedly good meromorphic flat bundle

Let (E , ∇) be a meromorphic flat bundle on (X, D), E is a locally free OX(∗D)-coherent
sheaf with a flat connection ∇ : E → E ⊗ Ω1

X . Let E be a lattice of E , i.e. OX -coherent
subsheaf of E such that E ⊗ OX(∗D) = E .

Definition 2.17. (E , ∇) is called an unramifiedly good meromorphic flat bundle, if and
only if (E , ∇)|P̂ is an unramifiedly good meromorphic flat bundle for each P ∈ D.

We will show the following proposition in § 2.3.

Proposition 2.18. (E , ∇) is an unramifiedly good meromorphic flat bundle, if and only
if it has a lattice E ⊂ E such that E|P̂ is an unramifiedly good Deligne–Malgrange lattice
of (E , ∇)|P̂ for each P ∈ D.

A lattice E as in the proposition is called an unramifiedly good Deligne–Malgrange
lattice of (E , ∇). It is unique, if it exists. We will also prove the following proposition
in § 2.3.

Proposition 2.19. Let (E , ∇) be a good meromorphic flat bundle on (X, D). Then,
Irr(∇, P ) (P ∈ D) are contained in OX(∗D)P /OX,P , i.e. convergent. Moreover, the
system of good set of irregular values satisfies the following condition.

• Take a sufficiently small neighbourhood XP of P such that Irr(∇, P )⊂M(XP , DP ).
Then, for P ′ ∈ DP , Irr(∇, P ′) is the image of Irr(∇, P ) → OX(∗D)P ′/OX,P ′ .

In other words, (Irr(∇, P ) | P ∈ D) is a good system of irregular values on (X, D) in
the following sense.

Definition 2.20. A good system of irregular values on (X, D) is a tuple of finite subsets
IP ⊂ OX(∗D)P /OX,P (P ∈ D) satisfying the property in Proposition 2.19. Namely,

• Take a sufficiently small neighbourhood XP of P such that IP ⊂ M(XP , DP ).
Then, for P ′ ∈ DP , IP ′ is the image of IP → OX(∗D)P ′/OX,P ′ .

Remark 2.21. We can obtain formal decompositions along the intersection of divisors.
See Proposition 2.28 below. We can also obtain formal decompositions in various levels
along the union of divisors. See §§ 2.4.3–2.4.4 of [21].

Remark 2.22. After we proved Proposition 2.18 and Proposition 2.19 for this paper,
they are also included in the latest version of [21] because they are useful to simplify
and clarify the theory.

2.2.2. Good meromorphic flat bundle

Definition 2.23. (E , ∇) is called a good meromorphic flat bundle, if (E , ∇)|P̂ is a good
meromorphic flat bundle for each P ∈ D.

For a point P ∈ X, let XP denote a small neighbourhood of P in X, and we put
DP := XP ∩ D.
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Corollary 2.24. The following conditions are equivalent.

(A) (E , ∇) is a good meromorphic flat bundle on (X, D).

(B) There uniquely exists a lattice E ⊂ E such that E|P̂ is a good Deligne–Malgrange
lattice of (E , ∇)|P̂ for each P ∈ D.

(C) There uniquely exists a lattice E ⊂ E with the following property.

• For each P ∈ D, if we take a small neighbourhood XP , there exist a ramified
covering ϕP : (X ′

P , D′
P ) → (XP , DP ) such that (i) ϕ∗

P (E , ∇) is unramifiedly
good and (ii) E|XP

is the descent of the unramifiedly good Deligne–Malgrange
lattice of ϕ∗

P (E , ∇).

Proof. The implications (C) =⇒ (B) =⇒ (A) are clear. Let us consider the implication
(A) =⇒ (C). Let P ∈ D. If a small neighbourhood XP is sufficiently small, we have a
ramified covering ϕ : (X ′

P , D′
P ) → (XP , DP ) such that ϕ∗(E , ∇) has an unramifiedly good

Deligne–Malgrange lattice E′
P , according to Lemma 2.11 and Proposition 2.18. We obtain

the lattice EP as the descent of E′
P . If we have ramified coverings ϕ(i) : (X(i)

P , D
(i)
P ) →

(XP , DP ) (i = 1, 2) such that ϕ(i)∗(E , ∇) have unramifiedly good Deligne–Malgrange
lattices E

(i)
P , we can find ramified coverings ψ(i) : (X(3)

P , D
(3)
P ) → (X(i), D

(i)
P ) (i = 1, 2)

such that ϕ(1) ◦ψ(1) = ϕ(2) ◦ψ(2) =: ψ. Then, by Lemma 2.9, there exists an unramifiedly
good Deligne–Malgrange lattice E

(3)
P of ψ∗(E , ∇), and E

(i)
P (i = 1, 2) are the descent of

E
(3)
P with respect to ψ(i). Hence, we obtain that the descent of E

(i)
P with respect to

ϕ(i) are the same. Hence, by varying P and gluing EP , we obtain the desired global
lattice E. �

A lattice with the property in the theorem is called a good Deligne–Malgrange lattice.

2.3. Proof of Proposition 2.18 and Proposition 2.19

2.3.1. Deligne–Malgrange lattice

The ‘if’ part of Proposition 2.18 is clear. Our starting point for the proof of the ‘only
if’ part is a result due to Malgrange, which we review here.

Let X be a complex manifold with a normal crossing hypersurface D. The singular
part of D is denoted by D[2]. For a torsion-free sheaf F on X, let N(F ) denote the closed
subset of X determined by the condition that Q ∈ N(F ) if and only if the stalk of F at
Q is not locally free.

Let E be a lattice of a meromorphic flat bundle (E , ∇) on (X, D). Let Q be a smooth
point of D. Let XQ be a small neighbourhood of Q in X. We put DQ := XQ ∩D. If there
exist a good set of irregular values Irr(∇, Q) ⊂ M(XQ, DQ)/H(XQ) and a decomposition

(E, ∇)|D̂Q
=

⊕
a∈Irr(∇,Q)

(Êa, ∇̂a), (2.5)

such that ∇̂a are a-logarithmic with respect to Êa, then E is called an unramifiedly ‘good’
lattice of (E , ∇) around Q. In that case, we have the residue Res(∇) ∈ End(E|DQ

). If the
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eigenvalues α of Res(∇) satisfy 0 � Re α < 1, E is called an unramifiedly ‘good’ Deligne–
Malgrange lattice of (E , ∇) around Q. An unramifiedly ‘good’ Deligne–Malgrange lattice
is unique, if it exists. If there exists a ramified covering ϕQ : (X ′

Q, D′
Q) → (XQ, DQ) such

that ϕ∗
Q(E , ∇) has an unramifiedly ‘good’ Deligne–Malgrange lattice, its descent with

respect to ϕQ is called a ‘good’ Deligne–Malgrange lattice of (E , ∇) around Q. A ‘good’
Deligne–Malgrange lattice is unique, if it exists.

Remark 2.25. The condition ‘unramifiedly “good” Deligne–Malgrange’ implies ‘unram-
ifiedly good Deligne–Malgrange’, clearly. It is easy and standard to show that they are
actually equivalent. (See Lemma 2.32, for example. Note that Proposition 2.27 and Propo-
sition 2.28 can be shown much more easily if the divisor is smooth.)

We recall the work due to Malgrange on lattices of meromorphic flat bundles. (See
also the work due to Mebkhout [17,18] for a construction of lattices of regular singular
meromorphic flat bundles whose poles are not necessarily normal crossing.)

Proposition 2.26 (Malgrange [16]). Let (E , ∇) be a meromorphic flat bundle. There
exists a unique OX -reflexive lattice E ⊂ E which is generically ‘good’ Deligne–Malgrange
lattice, i.e. there exists a closed analytic subset Z ⊂ D with codimX(Z) � 2 and Z ⊃
D[2] ∪N(E), such that E|X\Z is ‘good’ Deligne–Malgrange lattice around any Q ∈ D\Z.
In particular, E|X\Z is a good Deligne–Malgrange lattice of E|X\Z .

See also Proposition 2.7.6 of [21], where we give a small complement that Z can be
taken as a closed analytic subset.

Such a lattice is called the Deligne–Malgrange lattice of (E , ∇). Our goal is to show
that the Deligne–Malgrange lattice is an unramifiedly good Deligne–Malgrange lattice if
(E , ∇) is unramifiedly good. (It also implies that the Deligne–Malgrange lattice is good
Deligne–Malgrange, if (E , ∇) is good, by Corollary 2.24.)

2.3.2. Openness of the good Deligne–Malgrange property

Let X be a complex manifold with a normal crossing hypersurface D. Take a point
p ∈ D. We denote by D̂ the formal complex analytic space obtained as the completion
of X along D (see [2] and [3]). Let (E , ∇) be a meromorphic flat bundle on (D̂, D). Let
E be a lattice of E . Make the following assumptions.

• E|P̂ is an unramifiedly good Deligne–Malgrange lattice of (E , ∇)|P̂ .

Proposition 2.27. The elements of Irr(∇, P ) are convergent, i.e. there exists a small
neighbourhood XP of P in X such that Irr(∇, P ) ⊂ M(XP , DP )/H(XP ). Moreover, the
following holds for any P ′ ∈ DP .

• E|P̂ ′ is an unramifiedly good Deligne–Malgrange lattice of (E , ∇)|P̂ ′ , and Irr(∇, P ′)
is the image of the natural map Irr(∇, P ) → OX(∗D)P ′/OX,P ′ .

Refinement. To show Proposition 2.27, we have only to consider the case X = ∆n, D =⋃�
i=1{zi = 0}, and P = (0, . . . , 0). In this case, we shall give a more refined statement.
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For any subset I ⊂ {1, . . . , �}, we set

DI :=
⋂
i∈I

{zi = 0} and D(I) :=
⋃
i∈I

{zi = 0}.

We denote by D̂I the formal complex analytic space obtained as the completion of
X along DI (see [2] and [3]). We also put Ic := {1, . . . , �} \ I. Once we know
Irr(∇, P ) ⊂ M(XP , DP )/H(XP ), let Irr(∇, I) denote the image of Irr(∇, P ) →
M(XP , DP )/M(XP , DP (Ic)).

Proposition 2.28. The elements of Irr(∇, P ) are convergent. Moreover, if XP is a
sufficiently small neighbourhood of P in X, for any subset I ⊂ �

¯
, we have a decomposition

(E, ∇)|D̂I,P
=

⊕
b∈Irr(∇,I)

(IÊb, I∇̂b) (2.6)

such that

(I∇̂b − db)(IÊb) ⊂ IÊb ⊗ (Ω1
X(log D(I)) + Ω1

X(∗D(Ic)))|XP
,

where we take a lift of b to M(XP , DP ).

Proof of Proposition 2.27. Let us show Proposition 2.27 by assuming Proposi-
tion 2.28. It is easy to observe that the decomposition (2.6) induces the irregular decom-
position of E|P̂ ′ for any P ′ ∈ DI \ D(Ic). We obtain the residue Resi(∇) of E|Di

from
(2.6) as in § 2.1.3, and the eigenvalues are constant on Di. Hence, if the eigenvalues α

of Resi(∇)|P satisfy 0 � Re(α) < 1, we can conclude that the eigenvalues of Resi(∇)|P̂ ′

(i ∈ I) also satisfy the condition. Thus, we obtain Proposition 2.27. �

Proof of Proposition 2.28. In the following, instead of considering a neighbourhood
XP , we will replace X by a small neighbourhood of P without mention, if it is necessary.

Step 1. We fix I ⊂ �
¯

for a moment. Let E be a free OD̂I
-module with a meromorphic

flat connection ∇ : E → E ⊗ Ω1
D̂I

(∗D). Assume that we are given the following.

• m ∈ Z�
�0 and i ∈ I such that mi < 0. We set m′ := m + δi.

• I ⊂ OP̂ (∗D) such that, for any a ∈ I, (i) z−mi
i a is independent of the variable zi

and (ii) z−ma ∈ OP̂ .

• A decomposition E|P̂ =
⊕

a∈I
PEa such that z−m′

(∇ − da)(PEa) ⊂ PEa ⊗
Ω1

P̂
(log D).

We set T := {(z−ma)(P ) | a ∈ I} ⊂ C. We have a naturally defined map π : I → T .
We set PEb :=

⊕
π(a)=b

PEa. Let H(DI) denote the space of holomorphic functions on
DI . Let R denote the localization of H(DI)[[zi | i ∈ I]] with respect to

∏�
i=1 zi.

Lemma 2.29. I is contained in R, and we have a flat decomposition E =
⊕

b∈T Eb

such that E
b|P̂ = PEb.
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Proof. First, we remark that z−m∇(zi∂i)PEa ⊂ PEa, and thus z−m∇(zi∂i)E ⊂ E. Let
F be the endomorphism of E|D̂I∩Di

induced by z−m∇(zi∂i). The eigendecomposition of
F|P is given by

E|P =
⊕
b∈T

PEb|P .

We obtain the unique decomposition E|D̂I∩Di
=

⊕
b∈T Gb such that (i) F (Gb) ⊂ Gb

and (ii) Gb|P = PEb|P . By comparing F and its completion at P , we obtain that I ⊂ R.
By using an argument in the proof of Lemma 2.12, we obtain the decomposition E =⊕

b∈T Eb such that (i) E
b|D̂I∩Di

= Gb and (ii) it is preserved by z−m∇(zi∂i). We obtain
E

b|P̂ = PEb by Lemma 2.6. In particular, the decomposition is ∇-flat. �

Step 2. For 1 � p � �, we put p
¯

:= {1, . . . , p}. We denote by D̂(p
¯
) the formal complex

analytic space obtained as the completion of X along D(p
¯
). Let E be a free OD̂(p

¯
)-module

with a meromorphic flat connection ∇ : E → E ⊗ Ω1
D̂(p

¯
)
(∗D). Assume that we are given

a good set of irregular values Irr(∇) ⊂ OP̂ (∗D(p
¯
))/OP̂ and a decomposition

(E, ∇)|P̂ =
⊕

a∈Irr(∇)

(PEa,
P∇a)

such that P∇a are a-logarithmic. For I ⊂ p
¯
, let Irr(∇, I) denote the image of Irr(∇) via

the natural map pI : OP̂ (∗D(p
¯
))/OP̂ → OP̂ (∗D(p

¯
))/OP̂ (∗D(I1)), where I1 := p

¯
\ I. For

each I and b ∈ Irr(∇, I), we set

PEb :=
⊕

a∈Irr(∇)
pI(a)=b

PEa.

Lemma 2.30. If we shrink X appropriately, Irr(∇) is contained in the image of
M(X, D(p

¯
))/H(X) → OP̂ (∗D(p

¯
))/OP̂ . For each I ⊂ p

¯
, we have a flat decomposition

E|D̂I
=

⊕
b∈Irr(∇,I)

IEb such that IE
b|P̂ = PEb.

Proof. We use an induction on the rank of E. We take an auxiliary sequence
m(0), . . . ,m(L) for Irr(∇). (We use m(0) and m(1) for η̄m(0).) We put T :=
{(z−m(0)a)(P ) | a ∈ Irr(∇)}. We have the naturally defined map q : Irr(∇) → T . For
each α ∈ T , we put PEα =

⊕
q(a)=α

PEa. Then, E|P̂ =
⊕

PEα is a flat decomposition.
Applying Lemma 2.29 with I = {h(0)}, we obtain that η̄m(0)(a) are meromorphic

functions for any a ∈ Irr(∇). Hence, by considering the tensor product with a meromor-
phic flat line bundle, we have only to consider the case in which T contains at least two
elements. (We remark that {b − a | b ∈ Irr(∇)} is a good set of irregular values for any
fixed a ∈ Irr(∇).) For simplicity, we assume that the coordinate system is admissible for
Irr(∇), and let k be determined by m(0) ∈ Zk

<0 × 0�−k.
Let I ⊂ p

¯
. If I ∩ k

¯
= ∅, then the trivial decomposition is the desired one. Let us

consider the case I ∩ k
¯

�= ∅. By taking i ∈ I ∩ k
¯
, and applying Lemma 2.29, we obtain

a flat decomposition E|D̂I
=

⊕
α∈T

IEα such that IEα = PEα. For I ⊂ J ⊂ k
¯

as above,
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we obtain IEα|D̂J
= JEα from IEα|P̂ = JEα|P̂ . Due to Lemma 2.31 below, we obtain the

flat decomposition

(E, ∇)|D̂(k
¯
) =

⊕
α∈T

(Eα, ∇α), such that Eα|D̂I
= IEα.

We may apply the hypothesis of the induction to (Eα, ∇α) on D(k
¯
), and we obtain

Lemma 2.30. �

We have used the following general lemma.

Lemma 2.31. Let V̂ be a free OD̂-module on X. Assume that we are given a decom-
position V̂|D̂I

=
⊕

IV̂a for each I ⊂ �
¯
, such that IV̂

a|D̂J
= JV̂a for any I ⊂ J . Then, we

have a unique decomposition V̂ =
⊕

V̂a on D̂, which induces the decompositions on D̂I .

Proof. Let Iπa be the projection of V̂|D̂I
onto IVa. Then, we have Iπ

a|D̂J
= Jπa. Let

v be a frame of V . Let IΠa ∈ Mr(OD̂I
) be determined by Iπa(v) = v · IΠa, where

r = rank(V ). Because IΠ
a|D̂J

= JΠa, we have Πa ∈ Mr(OD̂) such that Π
a|D̂I

= IΠa.
(Use the exact sequence in the proof of Proposition 4.1 in [6], for example.) Let πa be the
endomorphism of V̂ given by πa(v|D̂) = v|D̂ · Πa, and let V̂a be the image of πa. Then,
V̂ =

⊕
V̂a gives the desired decomposition. �

Step 3. We can complete the proof of Proposition 2.28 by applying Lemma 2.30 to
(E, ∇)|D̂. �

2.3.3. The smooth divisor case

Let us prove Proposition 2.18 and Proposition 2.19 in the case that D is smooth.
Because of the uniqueness of a Deligne–Malgrange lattice, we have only to consider the
local case. Hence, we set X := ∆n and D := {z1 = 0}.

Step 1. Let D̂ denote the formal complex analytic space obtained as the completion
of X along D. We consider a meromorphic flat bundle (E , ∇) on (D̂, D) satisfying the
following.

(C) (E , ∇)|P̂ has an unramifiedly good Deligne–Malgrange lattice PE for each P ∈ D.

Lemma 2.32. Let E be an OD̂-locally free lattice of E such that E|P̂ = PE for any
P ∈ D. Then, the following hold.

• There exists I ∈ z−1
1 H(D)[z−1

1 ] such that I|P̂ = Irr(∇, P ) for any P ∈ D.

• We have a flat decomposition E =
⊕

a∈I Ea whose restriction to P̂ is the same as
the irregular decomposition of PE for any P ∈ D.

Proof. Let P ∈ D. Let XP be a small neighbourhood of P as in Proposition 2.27.
Namely, we have Irr(∇, P ) ⊂ M(XP , DP )/H(XP ), and Irr(∇, P ′) is the image of
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Irr(∇, P ) by the map M(XP , DP )/H(XP ) → OP̂ ′(∗DP )/OP̂ ′ for each P ′ ∈ DP . Then,
the first claim is clear. As in Proposition 2.28, we have a formal decomposition

E|D̂P
=

⊕
a∈Irr(∇,P )

E
a,D̂P

whose restriction to P̂ ′ is the same as the irregular decomposition of (E, ∇)|P̂ ′ , where
P ′ ∈ DP . For Pi ∈ D (i = 1, 2), we can take XPi

, DPi
and a decomposition

E|D̂Pi
=

⊕
a∈Irr(∇,Pi)

E
a,D̂Pi

.

The decomposition is the same on ̂DP1 ∩ DP2 . Hence, we can glue them, and we obtain
the desired decomposition E =

⊕
a∈I Ea. �

Step 2. Let (E , ∇) be a meromorphic flat bundle on (D̂, D) satisfying the condition (C)
above. We put Z := {z1 = z2 = 0}.

Lemma 2.33. Assume there exists an OD̂-free lattice E of E such that E|P̂ = PE for
each P ∈ D \ Z. Then, the following hold.

• There exists I ⊂ z−1
1 H(D)[z−1

1 ] such that I|Q̂ = Irr(∇, Q) for any Q ∈ D.

• We have a flat decomposition E =
⊕

a∈I Ea whose restriction to Q̂ is the same as
the irregular decomposition of QE for any Q ∈ D.

Proof. According to Lemma 2.32, we have only to show that E|Q̂ = QE for any Q ∈ Z.
Fix a point P ∈ D \ Z. Let γ be a loop in D \ Z starting and ending at P . By

Lemma 2.32, for each P ′ ∈ γ, we have a neighbourhood XP ′ such that Irr(∇, P ′) ⊂
M(XP ′ , DP ′)/H(XP ′) and Irr(∇, P ′′) is the image of Irr(∇, P ′) for any P ′′ ∈ DP ′ .
Hence, we obtain a map Irr(∇, P ) → Irr(∇, P ) induced by the analytic continuation
along γ. It depends only on the homotopy class of γ. Hence, we obtain a naturally
induced action of the fundamental group π1(D \ Z, P ) on Irr(∇, P ). In other words, the
family {Irr(∇, P ) | P ∈ D \ Z} gives a covering space of D \ Z. Note that if the action of
π1(D \ Z, P0) on Irr(∇, P0) is trivial for a point P0 ∈ D \ Z, the action of π1(D \ Z, P )
on Irr(∇, P ) is trivial for any P ∈ D \ Z.

Lemma 2.34. Let P0 ∈ D \ Z. Assume that the action of π1(D \ Z, P0) on Irr(∇, P0)
is trivial. Then, we have E|Q̂ = QE for any Q ∈ Z. In particular, by Lemma 2.32, the
conclusion of Lemma 2.33 holds under the assumption.

Proof. Because the action of π1(D \ Z, P ) on Irr(∇, P ) is trivial, we have I ⊂
z−1H(D \ Z)[z−1] such that I|P̂ ′ = Irr(∇, P ′) for any P ′ ∈ D \ Z. We set m :=
min{ordz1(a) | a ∈ I}. We use a descending induction on m. If m = 0, we can deduce
that ∇ is logarithmic with respect to E, and hence the claim is obvious. Let us consider
the step m + 1 =⇒ m. We put

T := {(z−m
1 z1∂1a)|D | a ∈ I} ⊂ H(D \ Z).
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For any P ∈ D\Z, we have z−m
1 ∇(z1∂1)(PE) ⊂ PE. Hence, we have z−m

1 ∇(z1∂1)E|D\Z ⊂
E|D\Z . We obtain z−m

1 ∇(z1∂1)E ⊂ E. Let G be the endomorphism of E|D induced by
z−m
1 ∇(z1∂1). Because the elements of T are the eigenvalues of G|D\Z , they are algebraic

over H(D). Hence, we obtain T ⊂ H(D).
Let Q ∈ Z. In the following, we will shrink X around Q without mention. Let N

be the H(D)((z1))-module corresponding to E , i.e. the space of the global sections of E .
We may assume that it is a free H(D)((z1))-module. Let L be the H(D)[[z1]]-lattice of N

corresponding to E. We put N ′ := N⊗M(D, Z)((z1)) and L′ := L⊗M(D, Z)[[z1]]. We have
the eigendecomposition of L′/z1L

′ with respect to G. By an argument as in Lemma 2.12,
it is extended to a decomposition L′ =

⊕
b∈T L′

b such that (z−m+1
1 ∂1 − b)L′

b ⊂ L′
b.

We put m(Q) := min{ordz1(a) | a ∈ Irr(∇, Q)} and

T (Q) := {(z−m(Q)+1
1 ∂1a)|D | a ∈ Irr(∇, Q)}.

Lemma 2.35. We have m(Q) = m, and T (Q) = T in the completion of OD,Q.

Proof. We may assume Q = (0, . . . , 0). We put N := N ⊗ OQ̂. It is equipped with an
unramifiedly good Deligne–Malgrange lattice QL with the irregular decomposition

QL =
⊕

a∈Irr(∇,Q)

QLa. (2.7)

Let κ : Irr(∇, Q) → T (Q) be the naturally defined map. For b ∈ T (Q), we put

QLb =
⊕

a∈κ−1(b)

QLa.

Then, we obtain the decomposition QL =
⊕

b∈T (Q)
QLb such that (z−m(Q)+1

1 ∂1−b)QLb ⊂
QLb for any b ∈ T (Q). By considering the extension to the field C((zn)) · · · ((z2))((z1)), and
by using Lemma 2.16, we obtain Lemma 2.35. �

Let us return to the proof of Lemma 2.34. By Lemma 2.35, we obtain that b1 − b2

are nowhere vanishing on D for distinct bi ∈ T . Hence, we have the eigendecomposition
of E|D with respect to G on D. By Lemma 2.12, it is extended to a decomposition
E =

⊕
b
Eb such that (z−m

1 ∇(z1∂1) − b)Eb ⊂ Eb. We have E
b|Q̂ = QLb, and hence the

decomposition is ∇-flat. Put Eb = Eb(∗D). We can apply the hypothesis of the induction
to Eb ⊗ L(−z−m

1 b/m), and the proof of Lemma 2.34 is finished. �

Then, Lemma 2.33 follows from the next lemma.

Lemma 2.36. The action of π1(D \ Z, P ) on Irr(∇, P ) is trivial. In particular, by
Lemma 2.34, the claim of Lemma 2.33 holds.

Proof. Because Irr(∇, P ) is finite, we can find a ramified covering ϕ : X ′ → X given
by ϕ(z1, ζ2, z3, . . . , zn) = (z1, ζ

e
2 , z3, . . . , zn) such that we can apply Lemma 2.34 to

ϕ∗(E , ∇) and ϕ∗E. Then, we have ϕ∗ Irr(∇, P ) ⊂ z−1
1 H(D′)[z−1

1 ] and ϕ∗ Irr(∇, P )|Q̂ =
ϕ∗ Irr(∇, Q). Hence, we can conclude that the action of π1(D \ Z, P ) is trivial. �
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Step 3. Let us observe that we can ignore the subsets whose codimension in X is larger
than 3. Let X := ∆n and D := {z1 = 0}. A subset I ⊂ M(X, D)/H(X) is called good,
if its image I|P̂ ⊂ OP̂ (∗D)/OP̂ is good for each P ∈ D. The following lemma is easy to
observe.

Lemma 2.37. Let Z ⊂ D be a closed analytic subset with codimD(Z) � 2. Let I ⊂
M(X \ Z, D \ Z)/H(X \ Z) be a finite subset such that its image I|P̂ ⊂ OP̂ (∗D)/OP̂ is
good for each P ∈ D \ Z. Then, we have I ⊂ M(X, D)/H(X), and it is good.

Proof. Let a ∈ I. By Hartogs property, we obtain that a ∈ M(X, D)/H(X). By the
assumption, aord(a) is nowhere vanishing on D \ Z. Because codimD(Z) � 2, we obtain
that aord(a) is nowhere vanishing. We can check the other claims similarly. �

Let (E , ∇) be a meromorphic flat connection on (X, D), i.e, E is a (not necessarily
locally free) coherent OX(∗D)-module with a meromorphic flat connection ∇ : E → E ⊗
Ω1

X . Let E be the Deligne–Malgrange lattice of (E , ∇). Make the following assumption.

• There exists a closed analytic subset Z ⊂ D with codimD(Z) � 2 such that E|X\Z

is an unramifiedly good Deligne–Malgrange lattice of (E , ∇)|X\Z .

Lemma 2.38. If the above condition is satisfied, E is an unramifiedly good Deligne–
Malgrange lattice of (E , ∇).

Proof. Since codimZ(D) � 2, we have a good set of irregular values I ⊂ M(X \ Z, D \
Z)/H(X \ Z) and the decomposition

(E, ∇)|D̂\Z
=

⊕
a∈I

(Fa,D\Z , ∇a)

such that each (Fa,D\Z , ∇a) is a-regular. By Lemma 2.37, we have I ⊂ M(X, D)/H(X).
Let πa denote the projection onto Fa,D\Z , which gives a section of End(E)|D̂\Z

.
Let us observe that πa is extended to a section of End(E)|D̂. It is easy to show the

following claim by using Hartogs theorem.

• Any section of O
D̂\Z

is extended to a section of OD̂.

Since E is reflexive, we can (locally) take an injection i : E → O⊕N
X for some large N

such that the cokernel Cok(i) is torsion-free. We can also take a surjection ϕ : O⊕M
X → E.

The morphisms i, ϕ and πa induce a morphism

Fa : O⊕M

X|D̂\Z
→ O⊕N

X|D̂\Z
.

It is extended to a morphism F̃a : O⊕M

D̂
→ O⊕N

D̂
. Since Cok(i) is torsion free, F̃a factors

through E|D̂. Let K := Ker(ϕ). The restriction of F̃a to K on D̂ \ Z is 0. Then, we obtain
F̃|K = 0 because O⊕N

D̂
is torsion-free. Thus, we obtain the induced maps πa : E|D̂ → E|D̂

for a ∈ I, which satisfy πa ◦ πa = πa, πa ◦ πb = 0 (a �= b), and
∑

πa = id. They give a
decomposition E =

⊕
a∈I Êa. Let us show that Êa are a-logarithmic. We have only to

consider the case a = 0.
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Take a point P ∈ D \ Z. We have the vector space V := Ê0|P . We have the endomor-
phism f of V induced by the residue. Let E′

0 := V ⊗ OX and ∇′
0 = d + f · dz1/z1. We

have the natural flat isomorphism (E′
0, ∇′

0)|π−1(P ) � (Ê0, ∇0)|π−1(P ). Since the codimen-
sion of Z in D is larger than 2, we obtain a flat isomorphism Φ0,D\Z : (E′

0, ∇′
0)|D̂\Z

�
(Ê0, ∇0)|D̂\Z

. Since E0 and E′
0 are reflexive, by the above argument, we can show that

Φ0,D\Z and its inverse are extended to a morphism on D̂. Thus, we are done. �

End of the proof in the smooth divisor case. Let (E , ∇) be a meromorphic flat sheaf on
(X, D). Assume that (E , ∇)|P̂ has an unramifiedly good Deligne–Malgrange lattice for
each P ∈ D.

Lemma 2.39. The Deligne–Malgrange lattice E of (E , ∇) is unramifiedly good Deligne–
Malgrange. Namely, the claim of Proposition 2.18 holds if D is smooth. The claim of
Proposition 2.19 also holds.

Proof. There exists a closed analytic subset Z ⊂ D with codimD(Z) � 2 such that
E|X\Z is locally free. There exists a closed analytic subset Z1 ⊂ D with codimD(Z ′) � 1
such that E|X\Z′ is unramifiedly good Deligne–Malgrange. By Lemma 2.33, we obtain
that E is unramifiedly good Deligne–Malgrange, around any smooth point of Z ′. Hence,
we obtain that there exists a closed analytic subset Z ′′ ⊂ D with codimD(Z ′′) � 2 such
that E|X\Z′′ is unramifiedly good Deligne–Malgrange. Then, by Lemma 2.38, we obtain
that E is unramifiedly good Deligne–Malgrange, i.e. the claim of Proposition 2.18 holds.
It is also clear that the claim of Proposition 2.19 holds. �

2.3.4. The normal crossing case

Since the claim is local, we set X := ∆n and D :=
⋃�

i=1{zi = 0}. We put ∂D1 :=
D1 ∩

⋃
2�j�� Dj . We put D◦

1 := D1 \ ∂D1.

Step 1. We regard M(D1, ∂D1)((z1)) as a differential ring equipped with the differential
∂1 := ∂/∂z1. Let N be a differential M(D1, ∂D1)((z1))-module with a M(D1, ∂D1)[[z1]]-
free lattice L. We put L′ := L ⊗ H(D◦

1)[[z1]]. Assume that we have I ⊂ z−1
1 H(D◦

1)[z−1
1 ]

and a decomposition L′ =
⊕

a∈I L′
a such that (i) (z1∂1 − z1∂1a)L′

a ⊂ L′
a and (ii) the

eigenvalues α of the induced morphism of L′
a/z1L′

a satisfy 0 � Re(α) < 1.

Lemma 2.40. I is contained in z−1
1 M(D1, ∂D1)[z−1

1 ], and we have a decomposition
L =

⊕
a∈I La such that (i) (z1∂1−z1∂1a)La ⊂ La and (ii) the eigenvalues α of the induced

morphism of La|z1=0 satisfy 0 � Re(α) < 1. Moreover, we have La ⊗ H(D◦
1)[[z1]] = L′

a.

Proof. We use a descending induction on m(L) := min{ordz1(a) | a ∈ I}. If m(L) = 0,
there is nothing to prove. Let us consider the case m(L) = m < 0. We put T (L) :=
{(mz−m

1 a)|z1=0 | a ∈ I}. Let us consider the endomorphism G of L/z1L induced by
z−m
1 ∇(z1∂1). Because the elements of T (L) are the eigenvalues of G, they are algebraic

over M(D1, ∂D1). Then, we can deduce T (L) ⊂ M(D1, ∂D1) from T (L) ⊂ H(D◦
1).

If |T (L)| = 1, by considering the tensor product with a meromorphic flat bundle of
rank one, we can reduce the issue to the case m(L) = m + 1. Let us consider the case
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|T (L)| � 2. It is standard that the eigendecomposition of L/z1L is uniquely extended
to a ∇-flat decomposition L =

⊕
b∈T (L) Lb (see Lemma 2.12). It is easy to observe that

m(Lb) � m, and |T (Lb)| � 1 if m(Lb) = m. Thus, we are done. �

Step 2. Let (E , ∇) be a meromorphic flat bundle on (X, D). Let (E , ∇) be a meromorphic
flat bundle on (X, D). Make the following assumptions.

• For each P ∈ D, (E , ∇)|P̂ has an unramifiedly good Deligne–Malgrange lattice.

• The Deligne–Malgrange lattice E of (E , ∇) is OX -locally free.

Let us show that E is unramifiedly good Deligne–Malgrange under the assumption. We
put D[2] :=

⋃
i �=j(Di ∩ Dj). We can take a ramified covering ϕ : (X, D) → (X, D) with

the following property.

• For each P ∈ Di \ D[2], the action of π1(Di \ D[2], P ) on Irr(ϕ∗∇, P ) is trivial.

By the argument in the proof of Lemma 2.36, we may and will assume that the above
property holds for (E , ∇) from the beginning. We have already known that E|X\D[2]

is unramifiedly good Deligne–Malgrange (Lemma 2.39). In particular, we have I ⊂
z−1
1 H(D◦

1)[z−1
1 ] and a decomposition E|D̂◦

1
=

⊕
a∈I Êa such that (∇(z1∂1)− z1∂1a)Êa ⊂

Êa.
Let M be the differential M(D1, ∂D1)((z1))-module corresponding to E , and let

L be the M(D1, ∂D1)[[z1]]-lattice induced by E. Applying Lemma 2.40, we obtain
I ⊂ z−1

1 M(D1, ∂D1)[z−1
1 ] and a decomposition L =

⊕
a∈I La such that (z1∂1 −

z1∂1a)La ⊂ La. Let K := C((zn)) · · · ((z2)). By the natural extension M(D1, ∂D1) ⊂ K, L⊗
K[[z1]] is the Deligne–Malgrange lattice of the differential module M := (N ⊗ K((z1)), ∂1).

Let OE be the unramifiedly good Deligne–Malgrange lattice of E|Ô with the irregular
decomposition OE =

⊕
a∈Irr(∇,O)

OEa. Let Irr(∇, 1) be the image of Irr(∇, O) via the
map OÔ(∗D)/OÔ → OÔ(∗D)/OÔ(∗D(�= 1)), where D(�= 1) :=

⋃
2�j�� Dj . It is easy to

see that K[[z1]] ⊗ OE is the good Deligne–Malgrange lattice of (M1, ∂1), and the set of
the irregular values is given by Irr(∇, 1). Hence, we obtain Irr(∇, 1) = I1 in z−1

1 K[z−1
1 ]

and OE ⊗ K[[z1]] = L1 ⊗ K[[z1]]. We can deduce a similar relation for each i = 2, . . . , �.

Lemma 2.41. We have Irr(∇, O) ⊂ M(X, D)/H(X).

Proof. We set S := {m ∈ Z� | m ��Z� 0}. (See § 2.1.1 for �Z� .) For i = 1, . . . , �, we put

Si := {m = (mj) ∈ S | mi < 0},

S�i := {m = (mj) ∈ S | mj � 0 (j < i), mi < 0}.

We have S =
∐

S�i. For any a ∈ Irr(∇, O), we have the expansion a =
∑

m∈S amzm.
Because its image to OÔ(∗D)/OÔ(D(�= 1)) is convergent, we obtain the convergence of∑

m∈S1
amzm. Similarly, we obtain the convergence of

∑
m∈Si

amzm for i = 2, . . . , �.
Then, we obtain the convergence of

∑
m∈S�i

amzm for i = 1, . . . , �. Then, we obtain the
convergence of a. �
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We take a frame v of OE. Let f be a section of E. We have the expression f =
∑

fpvp.
We obtain fp ∈ K[[z1]], and hence fp is z1-regular, i.e. fp does not contain the negative
power of z1. Similarly, we obtain that fp are zj-regular for j = 2, . . . , �. Thus, we obtain
E|Ô ⊂ OE. Similarly, we obtain OE ⊂ E|Ô, and hence E|Ô = OE. Thus, we obtain that
E is unramifiedly good Deligne–Malgrange lattice.

Step 3. Let us consider the case in which we do not assume that E is OX -locally free. We
have a closed analytic subset Z ⊂ D with codimD(Z) � 2 such that E|X\Z is OX -locally
free. Then, it is an unramifiedly good Deligne–Malgrange lattice of (E , ∇)|X\Z , according
to Step 2. We put D∗

1 := D1 \Z and ∂D∗
1 := ∂D1 \Z. We have I ⊂ z−1

1 M(D∗
1 , ∂D∗

1)[z−1
1 ]

and the irregular decomposition E|D̂∗
1

=
⊕

a∈I Êa,D∗
1
. By using the Hartogs property

and the argument in the proof of Lemma 2.38, we obtain I ⊂ z−1
1 M(D1, ∂D1)[z−1

1 ] and
a decomposition E|D̂1

=
⊕

a∈I Êa such that (i) (∇(z1∂1) − z1∂1a)Êa ⊂ Êa and (ii) the
eigenvalues α of the induced endomorphism of Êa|D1 satisfy 0 � Re(α) < 1. We have
E ⊗ K[[z1]] = OE ⊗ K[[z1]]. Let v be a frame of OE. Let f be a section of E. We have the
expression f =

∑
fpvp. Then, we obtain that fp is z1-regular. Similarly, we obtain that

fp are zj-regular (j = 1, . . . , �) and hence E|Ô ⊂ OE.
To show OE ⊂ E|Ô, we consider the dual. Put E∨ := HomOX(∗D)(E , OX(∗D)), which is

equipped with a naturally induced flat connection ∇. Put E∨ := HomOX
(E, OX), which

is a lattice of E∨. It is generically unramifiedly good lattice, and the eigenvalues α of the
residue satisfy −1 < Re(α) � 0. Put OE∨ := HomOÔ

(OE, OÔ) which is an unramifiedly
good lattice of (E∨, ∇)|Ô. The eigenvalues α of the residues satisfy −1 < Re(α) � 0.
Then, we obtain E∨

|Ô ⊂ OE∨ by the above argument. We have E∨
|Ô � HomOX

(E, OÔ) �
HomOÔ

(E|Ô, OÔ). Hence, we can conclude that OE = E|Ô. Thus, we obtain that E

is an unramifiedly good Deligne–Malgrange lattice of (E , ∇) at O, and the proof of
Proposition 2.18 is finished. Then, Proposition 2.19 follows from Proposition 2.27. �

3. Stokes structure

3.1. Preliminary

3.1.1. Filtration indexed by a finite ordered set

Let (I,�) be a finite ordered set. Let V be a vector space. In this section, a filtration F

of V indexed by (I,�) means a family of subspaces Fa ⊂ V (a ∈ I) with the following
properties.

• Fa ⊂ Fb if a � b.

• There exists a splitting V =
⊕

Va such that Fa =
⊕

b�a Vb.

We put F<a :=
∑

b<a Fb and GrF
a (V ) = Fa/F<a � Va. For a given subset S ⊂ I, we set

FS :=
∑

a∈S Fa.

Remark 3.1. Note that we assume the existence of splitting, which is unusual. We
consider the above type of filtration just for Stokes filtration.
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Let ϕ : (I,�) → (I ′, �′) be a morphism of ordered sets, and let F be a filtration
of V indexed by (I,�). Then, we have the induced filtration Fϕ indexed by (I ′, �′)
constructed inductively as follows:

Fϕ
b = Fϕ

<b +
∑

a∈ϕ−1(b)

Fa.

We set V ϕ
b :=

⊕
a∈ϕ−1(b) Va. Then, V =

⊕
b∈I′ V ϕ

b gives a splitting of Fϕ.

Definition 3.2. Let F and F ′ be filtrations of V indexed by (I,�) and (I ′, �′), respec-
tively. Let ϕ : (I,�) → (I ′, �′) be a morphism of ordered sets. We say that F and F ′ are
compatible over ϕ, if F ′ is the same as Fϕ above. If I = I ′ (but possibly (I,�) �= (I ′, �′))
and ϕ′ = id, we just say F and F ′ are compatible.

In the case I = I ′, we have the natural isomorphism GrF
a (V ) � GrF ′

a (V ).

Lemma 3.3. Let F be a filtration of V indexed by (I,�). Let �i (i ∈ Λ) be orders on I

such that (i) the identity ϕi : (I,�) → (I,�i) are order preserving and (ii) a � b if and
only if a �i b for any i ∈ Λ. Then, F can be reconstructed from Fϕi (i ∈ Λ) in the sense
Fa =

⋂
i∈Λ Fϕi

a .

Proof. We take a splitting V =
⊕

a∈I Va of the filtration F . Recall Fϕi
a =

⊕
b�ia

Vb.
Then, the claim of the lemma is clear. �

Let (I,�) be an ordered set, and let V be a finite-dimensional vector space equipped
with a filtration F indexed by (I,�). Let us give an induced filtration F∨ on the dual
vector space V ∨. We set I∨ := I and let �∨ be the order of I∨ defined by a �∨ b ⇐⇒
a � b. For distinction, we use the symbol −a if we regard a ∈ I as an element of I∨.
And, ‘−a �∨ −b’ is denoted by −a � −b.

We take a splitting V =
⊕

a∈I Va of the filtration F . In general, for a vector subspace
U ⊂ V , let U⊥ ⊂ V ∨ be {f ∈ V ∨ | f(v) = 0 ∀v ∈ U}. For each a ∈ I, let S(a) denote
the set of b ∈ I such that b �� a. We have the subspaces of V ∨ given as follows:

V ∨
−a :=

( ⊕
b �=a

Vb

)⊥
, F∨

−a(V ∨) :=
( ⊕

b∈S(a)

Vb

)⊥
.

The subspaces {F∨
−a(V ∨) | −a ∈ I∨} are well defined, and give a filtration of V ∨ indexed

by (I∨, �). The decomposition V ∨ =
⊕

−a∈I∨ V ∨
−a gives a splitting of the filtration F∨.

3.1.2. Induced orders on good set of irregular values

Let X be a complex manifold with a simple normal crossing hypersurface D. Let
π : X̃(D) → X be the real blowup. (In this paper, the real blowup along D means the
fibre products of the real blowup along the irreducible components, taken over X.)

Let IP ⊂ OX,P (∗D)/OX,P be a good set of irregular values, where P ∈ D. For each
Q ∈ π−1(P ), we shall introduce an order �Q on the set IP . We can take a coordinate
neighbourhood (XP , z1, . . . , zn) around P such that DP := XP ∩ D is expressed as
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⋃�

i=1{zi = 0}, and that IP ⊂ M(XP , DP )/H(XP ). We take a lift ã ∈ M(XP , DP ) for
each a ∈ IP . For each distinct a, b ∈ IP , we put

Fa,b := − Re(ã − b̃)|z− ord(a−b)|. (3.1)

It naturally induces a C∞-function on X̃P (DP ).

Definition 3.4. Let Q ∈ π−1(P ). We say a <Q b for distinct a, b ∈ IP , if Fa,b(Q) < 0.
We say a �Q b for a, b ∈ IP , if a <Q b or a = b. The relation �Q is a partial order
on IP .

It is easy to check that the condition is independent of the choice of a coordinate
system (z1, . . . , zn) and lifts ã. The following lemma is clear.

Lemma 3.5. For any Q ∈ π−1(D), there exists a neighbourhood N of Q in π−1(D)
such that, for any Q′ ∈ N , the map (Iπ(Q), �Q) → (Iπ(Q′), �Q′) is order preserving.

3.2. Stokes data

Let X be a complex manifold, and let D be a simple normal crossing hypersurface of
X. Let π : X̃(D) → X be the real blowup. Let I = (IP | P ∈ D) be a good system of
irregular values on (X, D). Let U be a locally connected subset of X̃(D), and let V be a
local system on U .

Definition 3.6. A Stokes datum of V over I is a tuple of filtrations F̃ = (F̃Q | Q ∈
U ∩ π−1(D)) of germs VQ indexed by (Iπ(Q), �Q) satisfying the following compatibility
condition.

• Let Q ∈ U ∩ π−1(D). Take a small neighbourhood N as in Lemma 3.5 such that
N ∩U is connected. For any Q′ ∈ U ∩N , we have the induced filtration F̃Q of VQ′ .
Then, (VQ′ , F̃Q) → (VQ′ , F̃Q′

) is compatible over (Iπ(Q), �Q) → (Iπ(Q′), �Q′).

Let Q and Q′ be as in Definition 3.6. If Q′ ∈ π−1(P ), we have Iπ(Q) = Iπ(Q′), and we
have an induced isomorphism

GrF̃Q

(V|UQ
)|UQ′ � GrF̃Q′

(V|UQ′ ).

Hence, we have the associated graded sheaf on a neighbourhood of π−1(P ) ∩ U in U ,
denoted by GrF̃ (Vπ−1(P )∩U ).

Let Vi (i = 1, 2) be local systems on U with Stokes data F̃ i over I. A morphism
F : (V1, F̃1) → (V2, F̃2) is defined to be a morphism of sheaves such that the induced
morphisms V1Q → V2Q preserve filtrations for any Q ∈ U ∩ π−1(D).

Remark 3.7. We are given only the filtrations indexed by (Iπ(Q), �Q) for Q ∈ π−1(D)∩
U in the definition of Stokes data. We shall observe that we can obtain more refined
filtrations in Proposition 3.16.
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Remark 3.8. ‘Stokes data’ in this paper is called ‘full pre-Stokes data’ in [21]. It was
useful to consider filtrations, called ‘partial Stokes filtrations’ in the level m(0), which are
indexed by the image of IP via η̄m(0). We also have partial Stokes filtrations in various
levels. It explains the meaning of the adjective ‘full’. In [21], we are interested in not
only meromorphic flat bundles but also their lattices. To describe an unramifiedly good
lattices, we need an additional data with a system of Stokes filtrations. It is called full
Stokes data in [21]. It explains the meaning of the prefix ‘pre’.

Because we are concerned with good meromorphic flat bundles in this paper, we use
the terminology ‘Stokes data’ in the sense of Definition 3.6.

3.3. Extension and uniqueness of Stokes structure

3.3.1. Category of Stokes data

Let X be a complex manifold with a simple normal crossing hypersurface D. Let G

be a finite group acting on (X, D). Let I be a good system of irregular values on (X, D)
which is G-equivariant in the sense g∗Ig(P ) = IP for any g ∈ G and P ∈ D.

Let V be a local system on X̃(D) with a G-action, i.e. for each g ∈ G, we are given
an isomorphism g∗V � V compatible with the group law. Let F̃ be a Stokes data of V.
For each g ∈ G, we have the induced Stokes data g∗F̃ of V. The Stokes data is called
G-equivariant if g∗F̃ = F̃ . The category of G-equivariant local system with Stokes data
on X̃(D) is denoted by SD(X, D, I)G. If G = {1}, it is denoted by SD(X, D, I).

3.3.2. Statement

We consider the following situation. Let p : X → B be a smooth fibration of complex
manifolds with a normal crossing hypersurface D. For simplicity, we make the following
assumptions.

• B is simply connected.

• We put Xb := X×Bb and Db := D×Bb for any b ∈ B. Then, (X, D) is topologically
a product of (Xb, Db) and B.

For example, we would like to consider the case (X, D) = (Xb, Db) × B as complex
manifolds.

Let I be a good system of irregular values on (X, D). Its restriction to Xb is denoted by
Ib. For an object (V, F̃) in SD(X, D, I), we have a naturally induced object (Vb, F̃b

) in
SD(Xb, Db, Ib), obtained as the restriction. Although the following theorem is a special
case of Corollary 4.4.4 in [21], we shall give a proof in § 3.3.6, to explain some more
detailed property of Stokes data.

Theorem 3.9. For any b ∈ B, the restriction Υ : SD(X, D, I) → SD(Xb, Db, Ib) is
equivalent.

Theorem 3.9 says that a Stokes data of Vb over Ib is uniquely extended to a data of
V over I in a functorial way.
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Remark 3.10. Theorem 3.9 (and Theorem 4.13 below) may be regarded as a higher-
dimensional generalization of Theorems 1 and 2 for the one-dimensional case in [7]. (See
also [26] for the local one-dimensional case.) These theorems imply that a variation of
irregular values causes a deformation of a Stokes data, or equivalently a good meromor-
phic flat bundle. In the one-dimensional case, or locally in the higher-dimensional case,
the coefficients of the irregular values make a universal family of such deformations. It
would be interesting to have a universal family when X is a projective variety.∗

Assume that a finite group G acts on (X, D) over B, and I is G-equivariant. By using
the uniqueness, we obtain the following.

Corollary 3.11. The restriction SD(X, D, I)G → SD(Xb, Db, Ib)G is an equivalence
for any b ∈ B.

3.3.3. Preliminary

We mention easy property of Stokes data. Let X be a complex manifold with a normal
crossing hypersurface D. Let π : X̃(D) → X be the real blowup. Let U be a locally
connected subset of π−1(D). Let V be a local system on U .

Lemma 3.12. Let F̃ i (i = 1, 2) be Stokes data of V.

• If there exists a dense subset U ′ ⊂ U such that F̃Q
1 = F̃Q

2 for Q ∈ U ′. Then, we
have F̃1 = F̃2.

• Let Z be any subset of U . If F̃Q
1 = F̃Q

2 for any Q ∈ Z, there exists a neighbourhood
Z ′ of Z such that F̃Q

1 = F̃Q
2 for any Q ∈ Z ′.

Proof. The first claim follows from Lemma 3.3. The second claim follows from the
compatibility of the system of filtrations. �

Let Vi (i = 1, 2) be local systems on U with a morphism F : V1 → V2. It is easy to
deduce the following corollary.

Corollary 3.13. Let F̃ i (i = 1, 2) be Stokes data of Vi.

• If there exists a dense subset U ′ ⊂ U such that F preserves F̃Q for Q ∈ U ′. Then,
F preserves F̃ .

• Let Z be any subset of U . If F preserves F̃Q for any Q ∈ Z, there exists a neigh-
bourhood Z ′ of Z such that F preserves F̃Q for any Q ∈ Z ′.

3.3.4. Filtration on a small convex set

We put X := ∆n, Di = {zi = 0}, D :=
⋃�

i=1 Di and D�
¯

:=
⋂�

i=1 Di. Let π : X̃(D) → X

be the real blowup. We have the natural identification π−1(D�
¯
) = (S1)� × D�

¯
by the

coordinate (z1, . . . , zn). We use the polar coordinate (θ1, . . . , θ�) for (S1)�, induced by
(z1, . . . , z�).

∗ This remark is thanks to the referee.
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Let I ⊂ M(X, D)/H(X) be a good set of irregular values. For a, b ∈ I, let Fa,b be
given by (3.1). For a subset A ⊂ π−1(D�

¯
), the order �A on I is given as in Definition 3.4.

Namely, we say a <A b for a, b ∈ I if Fa,b < 0 on A, and we say a �A b if we have a <A b

or a = b.

Condition 3.14. Let P ∈ D�
¯
. Let C be a closed convex subset of (S1)� satisfying the

following.

• There exist (θ(0)
1 , . . . , θ

(0)
� ) such that C is contained in {(θ1, . . . , θ�) | |θi − θ

(0)
i | <

π/2}. In particular, we can identify C with a closed region in Rn.

• We naturally regard C(P ) := C×{P} as a subset of π−1(D�
¯
). Then, for each distinct

pair (a, b) of I, if C(P ) ∩ F−1
a,b (0) �= ∅, it divides C(P ) into two closed regions.

The following lemma is clear.

Lemma 3.15. Let P and C be as in Condition 3.14. Then, there exists a small neigh-
bourhood B of P in D�

¯
such that the following holds.

• For any non-empty subset B0 ⊂ B, the order �C×B0 on I is the same as �C(P ).

In particular, for any P ′ ∈ B, the orders �C(P ) and �C(P ′) are the same, where C(P ′) :=
C × P ′.

Proposition 3.16. Let P and C be as in Condition 3.14. Let V be a local system on C(P )
with a Stokes data (F̃Q | Q ∈ C(P )). Then, there uniquely exists a global filtration F̃C(P )

indexed by (IP , �C(P )) such that, for any Q ∈ C(P ), the filtrations F̃C(P ) and F̃Q are
compatible over (IP , �C(P )) → (IP , �Q). In other words, there exists a decomposition
V =

⊕
a∈I Va, which gives a splitting of F̃Q for any Q ∈ C(P ).

Proof. In the proof, C(P ) is denoted by C for simplicity of the description. Let V be
the space of global sections of V. We have natural isomorphisms V � VQ for any Q ∈ C.
We regard that we are given filtrations F̃Q (Q ∈ C) on V. We shall show that there
uniquely exists a filtration F̃C of V such that for any Q ∈ C, the filtrations F̃C and F̃Q

are compatible over (IP , �C) → (IP , �Q).
For a, b ∈ IP , we have a �C b if and only if a �Q b for any Q ∈ C. Hence, the

uniqueness of such a filtration follows from Lemma 3.3.
Put Ha,b := F−1

a,b (0) for distinct a, b ∈ I. A connected component of C\
⋃

Ha,b is called
a chamber. If Q is contained in a chamber, then �Q is totally ordered. If Q and Q′ are
contained in the same chamber, we have �Q=�Q′ .

Take Q0 in a chamber, and let a be minimal with respect to �Q0 . Note that a is
also minimal with respect to �C . Let us observe that F̃Q0

a is contained in F̃Q
a for

any Q ∈ C. We take the interval I connecting Q and Q0. We take points R0 = Q0,
R1, R2, . . . , RN−1, RN = Q in I such that the open interval (Ri, Ri+1) is contained in
a chamber. For R′, R′′ ∈ (Ri, Ri+1), we have F̃R′

a = F̃R′′

a by the compatibility con-
dition for Stokes data. For R ∈ (Ri−1, Ri+1), we have F̃Ri

a ⊂ F̃R
a . For b ∈ I, Fa,b

is monotonously increasing along I from Q0 to Q around Ri. Hence, Fa,b(Ri) > 0 if
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and only if Fa,b(R) > 0 for R ∈ (Ri−1, Ri). It implies F̃R
a ⊂ F̃Ri

a for R ∈ (Ri−1, Ri).
Therefore, we obtain F̃Q0

a ⊂ F̃Q
a . We can also deduce that F̃Q0

a → GrF̃Q

a is an isomor-
phism for any Q. Hence, in particular, if b �= a is minimal with respect to �Q, we have
F̃Q

b
∩ F̃Q0

a = 0.
We put V0 := V/F̃Q0

a . For any Q ∈ C and b ∈ I, let F̃Q
b

(V0) be the image of F̃Q
b

(V) to
V0. Let V =

⊕
Vb,Q be a splitting of F̃Q. We remark that we may assume Va,Q = F̃Q0

a .
Then, it is easy to see that the images of Vb,Q gives a splitting of the filtration F̃Q(V0).
We can also easily observe that the system of filtrations (F̃Q(V0) | Q ∈ C) gives a Stokes
data of the local system V0 on C associated to V0.

Assume that we have filtrations F̃C for V0 and V with the desired property. Then,
F̃C

b (V0) is obtained as the image of F̃C
b (V). Actually, let V =

⊕
b∈I Vb be a splitting of

F̃C(V). We may assume Va = F̃Q0
a . The decomposition also gives a splitting of F̃Q(V)

for each Q ∈ C. We have the induced decomposition V0 =
⊕

V0,b, which gives a splitting
of F̃Q(V0) for each Q ∈ C. It implies that the decomposition gives a splitting of F̃C(V0)
by the uniqueness, and we can conclude that F̃C(V0) is obtained as the image of F̃C(V).

Let us show the claim of the proposition by using an induction on |I|. The case |I| = 1
is obvious. Let Q0 be a point in a chamber, and let a be the minimal with respect to
�Q0 . If a is the minimum with respect to �C , we can construct the desired filtration
of V as the pullback via V → V0. Assume that a is not the minimum. We can find a
point Q1 in a chamber such that a is not minimal with respect to �Q1 . Let b ∈ I be
minimal with respect to �Q1 . We remark F̃Q1

b
∩ F̃Q0

a = 0. We put V1 := V/F̃Q1
b

and
V2 := V/(F̃Q1

b
⊕ F̃Q0

a ). As remarked above, the associated local systems Vi (i = 0, 1, 2)
are equipped with the induced Stokes structure. By construction, we have

F̃Q
c (V) = F̃Q

c (V1) ×F̃Q
c (V2)

F̃Q
c (V0)

for any Q ∈ C and c ∈ I \ {a, b}.
By the hypothesis of the induction, Vi are equipped with the filtration F̃C with the

desired property. Note that F̃C(V2) is obtained as the image of F̃C(Vi) (i = 0, 1). We
put

F̃C
c (V) := F̃C

c (V0) ×F̃C
c (V2) F̃C

c (V1).

Let us check that F̃C(V) has the desired property. Let V2 =
⊕

V2,c be a splitting of
F̃C . Let Vc ⊂ F̃C

c (V) be a lift of V2,c. We put Va := F̃Q0
a and Vb := F̃Q1

b
. By using that

F̃C(V2) is obtained as the image of F̃C(Vi) (i = 0, 1), we can check that V =
⊕

Vc is
a splitting of the filtration F̃C . Similarly, we can check that it gives a splitting of each
F̃Q(V). Hence, F̃C is compatible with F̃Q for each Q ∈ C. �

3.3.5. Local extension

We continue to use the notation in § 3.3.4. Let V be a local system on X̃(D).

Lemma 3.17. Let P be a point of D�
¯
. A Stokes data of V|π−1(P ) is uniquely extended

to a Stokes data on a neighbourhood of π−1(P ) in X̃ (D).

Proof. For any Q ∈ π−1(P ), we take a small neighbourhood UQ in X̃(D) such that
�Q = �UQ

. We can find Q1, . . . , QN ∈ π−1(P ) such that π−1(P ) ⊂
⋃

UQi
. We may
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assume UQi
are the product Ci × B where B is a neighbourhood of P in [0, 1[� ×D�

¯
, and

Ci ⊂ (S1)�. (We use the natural identification X̃(D) � ([0, 1[ ×S1)� × D�
¯
.) As remarked

in the second claim of Lemma 3.12, for Q′ ∈ UQi
, we have the induced filtration F̃Q′,Qi

of VQ′ induced by F̃Qi and (IP , �Qi) → (Iπ(Q′), �Q′). For any R ∈ P × (Ci ∩Cj), there
exists a neighbourhood UR ⊂ UQi ∩ UQj

such that, for any Q′ ∈ UR, both F̃Q′,Qi and
F̃Q′,Qj are induced by F̃R and (IP , �R) → (Iπ(Q′), �Q′), and hence they are the same.
Therefore, by shrinking B, we obtain a Stokes structure Vπ−1(B) whose restriction to
π−1(P ) is the same as the given one. The uniqueness follows from the first claim of
Lemma 3.12.∗ �

Lemma 3.18. Let B be an open subset of D�
¯
, and let F̃ = (F̃Q | Q ∈ π−1(B)) be a

Stokes data on V|π−1(B). Let P be a point in the boundary of B such that, for any
small ball BP around P , the intersection B ∩BP is connected. Then, there exists a small
neighbourhood B1 of P in D�

¯
such that F̃ is uniquely extended to a Stokes data of

V|π−1(B∪B1).

Proof. Let Q ∈ π−1(P ). We take C as in Condition 3.14 with the following property.

• Q ∈ C(P ) and �Q=�C(P ).

We take a small neighbourhood B of P as in Lemma 3.15. We may assume B ∩ B is
connected.

Let P ′ ∈ B ∩B. We have the unique filtration F̃C(P ′) of V|C(P ′) as in Proposition 3.16.
It naturally induces a filtration of the restriction of V on a neighbourhood of C(P ′),
denoted by F̃C(P ′). If P ′′ ∈ B is sufficiently close to P ′, the restriction of F̃C(P ′) has the
property in Proposition 3.16 for the local system V|C(P ′′) with the Stokes data. Hence,
it is the same as F̃C(P ′′). Namely, we have the filtration F̃ (B∩B)×C of V|(B∩B)×C indexed
by (I, �Q) such that, for any Q′ ∈ (B ∩ B) × C, the filtrations F̃ (B∩B)×C and F̃Q′

are
compatible over (I, �Q) → (I, �Q′). Let F̃Q be the filtration of VQ indexed by (I, �Q),
induced by F̃ (B∩B)×C . It is independent of the choice of C. By construction, we obtain
that (F̃Q | Q ∈ π−1(P )) gives a Stokes data of V|π−1(P ). According to Lemma 3.17, if we
choose a small neighbourhood B1 of P in D�

¯
, it is extended to a Stokes data of V|π−1(B1).

By construction, the restriction of the Stokes data to π−1(B1∩B) are the same. Thus, we
obtain a desired extension. The uniqueness of the extension can be shown similarly. �

Let (Vi, F̃) (i = 1, 2) be objects in SD(X, D, I). Let F : V1 → V2 be a morphism of
local systems.

Lemma 3.19. Let B be an open subset of D�
¯

such that FQ is compatible with the
Stokes filtrations F̃Q(Vi,Q) for any Q ∈ π−1(B). Let P be a point in the boundary of
B. Then, there exists a small neighbourhood B1 of P in D�

¯
such that FQ is compatible

with the Stokes filtrations F̃Q(Vi,Q) for any Q ∈ π−1(B ∪ B1).

∗ The author thanks the referee for this simplified proof.

https://doi.org/10.1017/S1474748011000065 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000065


702 T. Mochizuki

Proof. Let Q ∈ π−1(P ). We take C and B as in the proof of Lemma 3.18. Then, the
Stokes filtration F̃Q(Vi) is reconstructed from the filtrations F̃Q′

from Q′ ∈ (B∩B)×C.
Hence, FQ is compatible with the filtrations F̃Q(Vi). Then, the claim of the lemma
follows from Corollary 3.13. �

3.3.6. Proof of Theorem 3.9

We use a topological identification (X, D) = (Xb, Db) × B.
The functor Υ is clearly faithful. Let us show that it is full. Let (Vi, F̃) be objects in

SD(X, D) with a morphism F b : (Vb
1, F̃

b
) → (Vb

2, F̃
b
). We have a unique morphism of

local systems F : V1 → V2 whose restriction to X̃b(Db) is equal to F b. Let us show that
F gives a morphism in SD(X, D). Let P b ∈ Db. By using Corollary 3.13 and Lemma 3.19,
we obtain that FQ preserves the filtrations F̃Q(Vi) for any Q ∈ π−1(P b ×B). Hence, the
functor Υ is full.

Let us show that Υ is essentially surjective and let (Vb, F̃b
) be an object in

SD(Xb, Db, Ib). We have a local system V on X̃(D) whose restriction to X̃b(Db) is
isomorphic to Vb. Let P b ∈ Db. Let b1 ∈ B. We take a path γb1 connecting b and b1 in
B. It naturally gives a path γP b,b1 connecting (P b, b1) in P 1 × B. By using Lemma 3.17
and Lemma 3.18 along γP b,b1 , we obtain a Stokes data of V|π−1(P b,b1). Because B is
simply connected, it is independent of the choice of γb. Thus, we obtain a system of
filtrations (F̃Q | Q ∈ π−1(D)). Let us check the compatibility condition. Let P b ∈ Db

and b1 ∈ B. We take a path γb1 connecting b and b1, which embeds the interval into B.
The image of γP b,b1 is also denoted by Γ . We obtain a Stokes data of V|π−1(Γ ). If we take
a small neighbourhood B of Γ , it is uniquely extended to a Stokes data F̃ ′

of V|π−1(B).
We may assume that B is of the form B1 × B2, where B1 is a neighbourhood of P b in
Xb, and B2 is a neighbourhood of b1 in B. Let (P b

2 , b2) be a point in B. Then, the Stokes
filtration F̃Q′

for Q ∈ π−1(P b
2 , b2) can be constructed with a path connecting (P b

2 , b2)
and (P b

2 , b) in B. Hence, it is the same as the filtration obtained from F̃ ′
, which implies

the compatibility condition. �

4. Riemann–Hilbert–Birkhoff correspondence

4.1. Stokes filtration of unramifiedly good meromorphic flat bundle

Let X be a complex manifold with a normal crossing hypersurface D. Let π : X̃(D) → X

be the real blowup. A holomorphic function on X̃(D) is a C∞-function on X̃(D) whose
restriction to X \D is holomorphic. (See [23] or [21, § 3.1.3] for more details.) Let OX̃(D)
be the sheaf of holomorphic functions on X̃(D). We put

OX̃(D)(∗D) := OX̃(D) ⊗π−1OX
π−1OX(∗D).

Let (E , ∇) be an unramifiedly good meromorphic flat bundle on (X, D). We put π∗E :=
π−1E ⊗π−1OX

OX̃(D), which is a locally free OX̃(D)(∗D)-module. For each Q ∈ π−1(D),
let π∗EQ denote the germ at Q, and π∗E|Q̂ denote the formal completion. The irregular
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decomposition of (E , ∇)|π̂(Q)
induces

π∗E|Q̂ =
⊕

a∈Irr(∇,π(Q))

QÊa.

We put
F̂Q

a (π∗E|Q̂) :=
⊕

b�Qa

QÊa.

The following is implied in Theorem 3.2.1 of [21].

Theorem 4.1. For any Q ∈ π−1(D), there exists a unique ∇-flat filtration F̃Q of π∗EQ

indexed by the ordered set (Irr(∇, π(Q)), �Q) with the following property.

(A) GrF̃Q

a (π∗EQ) are free OX̃(D)-modules, and F̃Q
a (π∗EQ)|Q̂ = F̂Q

a (π∗E|Q̂).

We can find a ∇-flat splitting of F̃Q, i.e. a ∇-flat decomposition π∗EQ =
⊕

EQ,a such
that F̃Q

a (π∗EQ) =
⊕

b�Qa
EQ,b.

The filtration F̃Q is called the Stokes filtration of E at Q.
The system of filtrations (F̃Q | Q ∈ π−1(D)) induces a Stokes data as follows. Let V

denote the local system on X̃(D) associated to (E , ∇)|X\D. For each Q ∈ π−1(D), the
stalk VQ is equipped with the filtration F̃Q(VQ) induced by F̃Q for π∗EQ. The following
theorem is also implied in Theorem 3.2.1 of [21].

Theorem 4.2. The system of filtrations (F̃Q | Q ∈ π−1(D)) is a Stokes data of V over
the good system of irregular values Irr(∇) = (Irr(∇, P ) | P ∈ D).

Let E be the unramifiedly good Deligne–Malgrange lattice of (E , ∇). We put π∗E :=
π−1E ⊗π−1OX

OX̃(D). For each Q ∈ π−1(D), let π∗EQ denote the germ at Q. The filtra-
tion F̃Q in Theorem 4.1 induces a filtration of π∗EQ, which is also denoted by F̃Q. The
following proposition is implied in Proposition 3.2.9 and Proposition 3.2.11 of [21].

Proposition 4.3. GrF̃Q

(π∗EQ) is a locally free OX̃(D)-module. We can find a ∇-flat
decomposition π∗EQ =

⊕
Ea,Q such that F̃Q

a (π∗EQ) =
⊕

b�Qa
Ea,Q.

Remark 4.4. Stokes filtration already appeared in the classical works on the classifica-
tion of meromorphic flat bundles on curves: see, for example, [14] and [15] (see also [5]).

Remark 4.5. In [21], F̃Q is called full Stokes filtration, because we also consider partial
Stokes filtration in various levels.

4.1.1. Some functoriality

We have the following functoriality, which is a special case of Proposition 3.2.3 of [21].
(See also an explanation in § 4.1.3.)

Proposition 4.6. Let (Ei, ∇i) (i = 1, 2) be unramifiedly good meromorphic flat bundles
on (X, D). Let F : E1 → E2 be a ∇-flat morphism. For simplicity, we assume that Irr(∇1)∪
Irr(∇2) is also good. Then, for each Q ∈ π−1(D), the induced morphism π∗E1Q → π∗E2Q

is compatible with the Stokes filtrations.
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We also have the functoriality for dual, which is a special case of Proposition 3.2.5
of [21]. We can easily deduce it by using the uniqueness in Theorem 4.1.

Proposition 4.7. Let (E , ∇) be an unramifiedly good meromorphic flat bundle on
(X, D). The Stokes filtration of (E∨, ∇∨) at Q ∈ π−1(D) is given by the procedure
in § 3.1.1.

4.1.2. The associated graded bundle

Let P ∈ D. By the compatibility condition of the system of Stokes filtrations, we obtain
the following associated graded locally free OX̃(D)(∗D)-module with a flat connection on
a neighbourhood of π−1(P ):

GrF̃ (π∗Eπ−1(P ), ∇) =
⊕

a∈Irr(∇,P )

(GrF̃
a (π∗Eπ−1(P )), ∇a).

By taking the pushforward via π, we obtain an OX(∗D)-module with a flat connection
on a neighbourhood XP of P :

GrF̃ (EP , ∇) =
⊕

a∈Irr(∇,P )

(GrF̃
a (EP ), ∇a).

Similarly, we obtain an OX̃(D)-module GrF̃ (π∗E|π−1(P )) and an OX -module GrF̃ (EP )
with induced meromorphic connections.

The following proposition is a special case of Proposition 3.2.8 and Proposition 3.2.9
of [21].

Proposition 4.8. GrF̃ (EP , ∇) is a graded meromorphic flat bundle with an unramifiedly
good Deligne–Malgrange lattice GrF̃ (EP ) on (XP , DP ) satisfying

GrF̃ (π∗Eπ−1(P ), ∇) � π∗ GrF̃ (EP , ∇), GrF̃ (π∗E|π−1(P )) � π∗ GrF̃ (EP ). (4.1)

We have a canonical isomorphism GrF̃ (EP , ∇)|P̂ � (E , ∇)|P̂ and GrF̃ (EP )|P̂ � E|P̂
compatible with the irregular decompositions. In particular, (GrF̃

a (EP ), ∇a) are a-regular.

Let (E1, ∇1) → (E2, ∇2) be a morphism of unramifiedly good meromorphic flat bundles.
For simplicity, we assume Irr(∇1, P ) ∪ Irr(∇2, P ) is good. Then, we have the induced
morphism on a neighbourhood of P :

GrF̃ (E1,P ) → GrF̃ (E2,P ).

For an unramifiedly good meromorphic flat bundle (E , ∇), we have the following canonical
isomorphism on a neighbourhood of P :

GrF̃ (E∨
P ) � GrF̃ (EP )∨.
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4.1.3. Splitting and frame

Let P ∈ D and Q ∈ π−1(P ). Let U be a sufficiently small neighbourhood of Q in X̃(D)
on which we have a flat decomposition

π∗(E , ∇)|U =
⊕

a∈Irr(∇,P )

(EU,a, ∇a) (4.2)

giving a splitting of the filtration F̃Q. The compatibility of the system of the filtrations
(Theorem 4.2) means, for each Q′ ∈ U , (4.2) induces a splitting of F̃Q′

of the germ π∗EQ′ .
Let (z1, . . . , zn) be a local coordinate around P for which D is locally expressed as⋃�
i=1{zi = 0}. We can take a frame ua of GrF̃

a (EP ) such that

∇ua = ua

(
da +

�∑
i=1

Ai
dzi

zi

)
, (4.3)

where Ai are constant matrices. If we take a flat splitting of F̃Q as in (4.2), it induces
a flat isomorphism π∗ GrF̃

a (E)|U � π∗E|U . Hence, we can obtain a frame vU = (va,U ) of
π∗E|U such that (4.3) holds for each va,U .

We can easily deduce Proposition 4.6 by using frames as above. Logically, Proposi-
tion 4.6 is more basic than the existence of such frames. But, we argue it for explanation.
We take flat splittings π∗Ei|U � π∗ GrF̃

a (Ei)|U of the filtration F̃Q on a small neigh-
bourhood U of Q for i = 1, 2. We have the corresponding decomposition F =

∑
Fa,b,U ,

where
Fa,b,U : π∗ GrF

b (E1)|U → π∗ GrF
b (E2)|U .

We have only to show that Fa,b = 0 unless b �Q a. We take frames u
(i)
a of GrF̃

a (EP )
as above. We have the expression Fa,b,U (u(1)

b
) = u

(2)
a Ba,b, where Ba,b be the matrix

valued function on U . By the flatness of Fa,b,U , we obtain that Ba,b satisfies a differential
equation. Because Ba,b is polynomial order in |z−1

i | (i = 1, . . . , �), we easily obtain
Ba,b = 0 unless a �Q b.

4.1.4. Characterization by growth order

Let (E , ∇) be an unramifiedly good meromorphic flat bundle on (X, D). Let Q ∈
π−1(D). Let U be a small neighbourhood of Q in X̃(D). Take any frame v of E|U . A ∇-flat
section of E|U\π−1(D) is expressed as f =

∑
fjvj , where fj are holomorphic functions on

U \π−1(D). Let f denote the tuple (fj). Then, the filtration F̃Q can be characterized as
follows, which is a special case of Proposition 3.2.6 in [21]. We can easily deduce it by
using the frame as in § 4.1.3.

Proposition 4.9. We have f ∈ F̃Q
a (π∗EQ) if and only if |eaf | is of polynomial order.

Remark 4.10. Let (z1, . . . , zn) be a coordinate system around π(Q) such that D is
expressed as

⋃�
i=1{zi = 0} around π(Q). We say that a function F on UQ \ π−1(D) is of

polynomial order, if |F | = O(
∏�

i=1 |zi|−N ) for some N > 0.
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4.2. Equivalence

Let X be a complex manifold with a normal crossing hypersurface D. Let I = (IP |
P ∈ D) be a good system of irregular values on (X, D). Let MF(X, D, I) be the category
of unramifiedly good meromorphic flat bundles (E , ∇) on (X, D) such that Irr(∇, P ) ⊂ IP

for each P ∈ D. We have a naturally defined functor

RHB: MF(X, D, I) → SD(X, D, I).

The following theorem is a special case of Corollary 4.3.2 of [21].

Theorem 4.11. The functor RHB is an equivalence.

Proof. We explain only the full faithfulness. It is clearly faithful. Let us show that it
is full. Let Ei (i = 1, 2) be unramifiedly good meromorphic flat bundles on (X, D). Let
F : E1|X\D → E2|X\D be a flat morphism preserving Stokes filtration at each Q ∈ π−1(D).
We would like to show that F is extended to a morphism E1 → E2. We have only to
consider the case X = ∆n and D =

⋃�
i=1{zi = 0}. We take frames vi of Ei. Let A be the

matrix determined by Fv1 = v2A. We have only to show that A is of polynomial order
in |zi|−1 (i = 1, . . . , �). For each Q ∈ π−1(D), we take flat splittings of F̃Q(π∗EiQ) as
in (4.2). We take frames uia of EiU,a as in § 4.1.3, which give frames ui of π∗Ei|U . Let B be
the matrix determined by Fu1 = u2B. By a direct computation, we obtain that B is of
polynomial order in |zi|−1 (i = 1, . . . , �) on U \π−1(D). Let Gi be the matrix determined
by vi = uiGi. Then, Gi and G−1

i are of polynomial order in |zi|−1 (i = 1, . . . , �) on
U \ π−1(D). Hence, we obtain that A is of polynomial order in |zi|−1 (i = 1, . . . , �) on
U \ π−1(D). By varying Q, we obtain the desired estimate for A. As for the essential
surjectivity, we refer to [21]. �

Let MF(X, D, I)G denote the category of G-equivariant unramifiedly good meromor-
phic flat bundles over I. It is easy to deduce the following as a corollary of Theorem 4.11.

Corollary 4.12. The functor RHB: MF(X, D, I)G → SD(X, D, I)G is an equivalence.

Let ϕ : (X ′, D′) → (X, D) be a ramified Galois covering with the Galois group G.
Let I ′ := ϕ∗I. We have naturally defined descent functors Des : MF(X ′, D′, I ′)G →
MF(X, D, I) and Des: SD(X ′, D′, I ′)G → SD(X, D, I). It is easy to obtain an equiva-
lence Des ◦ RHB � RHB ◦ Des.

4.3. Extension

We consider the situation in § 3.3.2. We obtain the following theorem from Theorem 3.9
and Theorem 4.1.

Theorem 4.13. The restriction MF(X, D, I) → MF(Xb, Db, Ib) is equivalent.

Let G be a finite group acting on (X, D) over B. Assume that I is G-equivariant in
the sense of § 3.3.1. By using the uniqueness, we easily obtain the following.

Corollary 4.14. The restriction MF(X, D, I)G → MF(Xb, Db, Ib)G is an equivalence.

In §§ 4.3.1–4.3.2, we shall explain easy examples of deformation. (See [21, § 4.5] for
more details.)
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4.3.1. Deformation E(T )

Let C be a simply connected compact region in Cm with a base point c0. We put
(X◦, D◦) := (X, D) × C. Let T be a holomorphic function on C such that T (c0) = 1. From
a good meromorphic flat bundle (E , ∇) on (X, D), we shall construct a good meromorphic
flat bundle (E , ∇)(T ) in a functorial way, such that (E , ∇)(T )

|X×{c0} = (E , ∇). (See [21,
§ 4.5.1] for more details.)

Unramified case. Let I be a good system of irregular values on (X, D). For each (P, c) ∈
D◦, we put

I(T )
(P,c) := {T a | a ∈ IP }.

Thus, we obtain a good system of irregular values I(T ) on (X◦, D◦). According to Theo-
rem 4.13, the restriction MF(X◦, D◦, I◦) → MF(X×{c0}, D×{c0}, I) is an equivalence.
Hence, for (E , ∇) ∈ MF(X, D, I), we have (E(T ), ∇(T )) ∈ MF(X◦, D◦, I(T )) such that
(E(T ), ∇(T ))|X×{c0} = (E , ∇). It is unique up to canonical isomorphisms.

Let ϕ : (X ′, D′) → (X, D) be a ramified Galois covering with the Galois group G.
We put I ′ := ϕ∗I. Take (E ′, ∇′) ∈ MF(X ′, D′, I ′)G. Let (E , ∇) ∈ MF(X, D, I) be the
descent of (E ′, ∇′). According to Corollary 4.14, (E ′, ∇′)(T ) is also G-equivariant.

Lemma 4.15. (E , ∇)(T ) is the descent of (E ′, ∇′)(T ).

Proof. Let (E1, ∇1) ∈ MF(X, D, I) be the descent of (E ′, ∇′)(T ). By construction, the
restrictions of (E , ∇)(T ) and (E1, ∇1) to X × {c0} are naturally isomorphic. By Theo-
rem 4.13, they are isomorphic on X◦. �

General case. Let (E , ∇) be a good meromorphic flat bundle on (X, D), which is not
necessarily unramified. For any P ∈ D, we can take a small neighbourhood XP and
a ramified covering ϕP : (X ′

P , D′
P ) → (XP , DP ) such that ϕ∗

P (E , ∇) is unramified. By
applying the procedure in the unramified case, we obtain the deformation (ϕ∗

P (E , ∇))(T )

on (X ′◦
P , D′◦

P ). By taking the descent, we obtain (E , ∇)(T )
P on (X◦

P , D◦
P ). It is well defined

up to canonical isomorphisms as a germ of a good meromorphic flat bundle at P × C,
according to Lemma 4.15. By gluing, we can globalize and obtain a good meromorphic
flat bundle (E , ∇)(T ) on (X◦, D◦).

Pullback. We explain the functoriality for pullback. Let X1 be a complex manifold
with a normal crossing hypersurface D1. Let F : X1 → X be a morphism such that
F−1(D) ⊂ D1. Let (E , ∇) be a good meromorphic flat bundle on (X, D). We obtain a
good meromorphic flat bundle (E1, ∇1) := F ∗(E , ∇) ⊗ OX1(∗D1) on (X1, D1). Let FC
be the induced morphism X◦

1 → X◦. Then, it is easy to obtain a natural isomorphism
(E1, ∇)(T ) � F ∗

C (E , ∇)(T ). Indeed, we have only to consider the local and unramified case,
and we have only to compare their restrictions to X×{c0} as in the proof of Lemma 4.15.

4.3.2. Deformation E(T )

Take T ∈ C \ {0} such that |arg(T )| < π/2. For a given good meromorphic flat bundle
(E , ∇) on (X, D), we shall construct a good meromorphic flat bundle (E(T ), ∇(T )) on
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(X, D) in a functorial way. We take a compact region C ⊂ C which contains 0 and 1,
and take a nowhere vanishing holomorphic function T : C → C such that (i) T (0) = 1,
(ii) T (1) = T and (iii) |arg(T )| < π/2. Then, we obtain the deformation (E(T ), ∇(T )) on
(X◦, D◦). By taking the specialization at c = 1, we obtain the desired (E(T ), ∇(T )). It
is easy to show that (E(T ), ∇(T )) is independent of the choice of (C, T ) up to canonical
isomorphisms. (See [21, § 4.5.2] for more details.)

Let I be a good system of irregular values on (X, D). For each P ∈ D, we put
I(T )

P := {Ta | a ∈ IP }, and we obtain a good system of irregular values I(T ) on (X, D).
The above construction gives MF(X, D, I) → MF(X, D, I(T )), in the unramified case. If
Ti ∈ C (i = 1, 2) satisfy |arg(Ti)| < π/2 and |arg(T1T2)| < π/2, then we have a canonical
isomorphism E(T1T2) � (E(T1))(T2).

Pullback. We explain the functoriality for pullback. Let X1 be a complex manifold with
a normal crossing hypersurface D1. Let F : X1 → X be a morphism such that F−1(D) ⊂
D1. Let E be a good meromorphic flat bundle of (E , ∇) on (X, D). We obtain a good
meromorphic flat bundle E1 := F ∗E ⊗ OX1(∗D1). Then, we have a natural isomorphism
E(T )
1 � F ∗E(T ), which follows from the functoriality of the construction in § 4.3.1 via

pullback.

4.3.3. Remark

This deformation procedure, grown out with the discussion with Sabbah, is one of the
key ingredient in our study on wild harmonic bundles [21]. Let (E, ∂̄E , θ, h) be a good
wild harmonic bundle on (X, D). We have the associated family of λ-flat bundles (E , D)
on Cλ × (X \ D). It is one of the main task to prolong it to a family of meromorphic
λ-flat bundles on Cλ × X.

For each complex number λ, we have the associated λ-flat bundle (Eλ, Dλ) on X \ D.
By considering the holomorphic sections in polynomial orders, we obtain a good mero-
morphic λ-flat bundle (PEλ, Dλ) on (X, D). However, in the non-tame case, we cannot
obtain a nice meromorphic object in family, if we consider holomorphic sections with
polynomial growth. Thus, the deformation procedure as above gets into our study on
wild harmonic bundles.

4.4. Conjugate

4.4.1. Good meromorphic flat bundle on the conjugate

Let X be a complex manifold with a normal crossing hypersurface D. Let X† be
the conjugate of X, i.e. X† = X as a C∞-manifold, but the complex structure is the
opposite one. Let I be a good system of irregular values on (X, D). For each P ∈ D, we
put ĪP := {ā | a ∈ IP }. Then, we obtain a good system of irregular values Ī on (X†, D†).

Let X̃†(D†) → X† be the real blowup of X† along D†. It is naturally identified with
X̃(D) as a C∞-manifold. For each Q ∈ π−1(P ), the orders �Q on IP and ĪP are the same
under the natural bijection. Hence, we have the natural identification SD(X, D, I) �
SD(X†, D†, Ī). It induces the following equivalences of categories:

MF(X, D, I) 
−→ SD(X, D, I) = SD(X†, D†, Ī) 
←− MF(X†, D†, Ī).
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For E ∈ MF(X, D, I), let Ec ∈ MF(X†, D†, Ī) be the corresponding object. It is deter-
mined up to canonical isomorphism. We put C(E)mod D := (E∨)c. It is naturally isomor-
phic to (Ec)∨, which can be shown by comparison of the associated Stokes structure.

Example 4.16. Let X = ∆n and D =
⋃�

i=1{zi = 0}. Let a ∈ M(X, D). If E = OX(∗D)e
with the connection ∇e = e(da +

∑
αi dzi/zi), then C(E)mod D = OX†(∗D†)e† with the

connection ∇e† = e†(d(−ā) +
∑

αi dz̄i/z̄i).

Prolongation of the pairing. Recall some sheaves from [23], which we refer to for more
detailed property. Let ι : X \D → X and ι̃ : X \D → X̃(D) be the natural inclusions. Let
Amod D

X̃(D)
be the subsheaf of ι̃∗OX\D which consists of the sections with moderate growth

along D. Let Dbmod D
X̃(D)

be the image of DbX̃(D) → ι̃∗DbX\D. Let Dbmod D
X be the image

of DbX → ι∗DbX\D.
Let E be an unramifiedly good meromorphic flat bundle on (X, D). We put

Emod D
X̃(D) := π−1(E) ⊗π−1(OX) Amod D

X̃(D) ,

C(E)mod D
X̃(D) := π−1(C(V )mod D) ⊗π−1(O

X† ) Amod D†

X̃†(D†).

Note that we have the natural pairing of V|X\D and C(V )mod D
|X\D to the sheaf of C∞-

functions on X \ D.

Proposition 4.17. It is naturally extended to the pairings

E × C(E)mod D → Db
mod D
X , Emod D

X̃(D) × C(E)mod D
X̃(D) → Db

mod D
X̃(D) .

Proof. Let us consider the second one. Take P ∈ D and Q ∈ π−1(P ). We put I :=
Irr(E , P ). We have Irr(C(E)mod D, P ) = Ī∨ := {−ā | a ∈ I}. We take a sufficiently small
neighbourhood U of Q in X̃(D), and a flat splitting π∗E|U =

⊕
a∈I EU,a of the filtration

F̃Q. We can take a frame ua of Emod D
U,a := EU,a ⊗ Amod D

X̃(D)
such that ∇ua = ua da.

Similarly, we can take a flat splitting

π∗C(E)mod D
|U =

⊕
b∈Ī∨

C(E)mod D
U,b

of the filtration F̃Q, and a frame wb of

C(E)mod D
U,b := C(E)mod D

U,b ⊗ Amod D†

X̃†(D†)

such that ∇wb = wb db.
Note that the filtration F̃Q for C(E)mod D is the same as that for E∨, under the iden-

tification of E∨
|X\D = C(E)mod D

|X\D as C∞-flat bundles. We also recall the functoriality of
the Stokes filtration in Proposition 4.7. Hence, the induced pairing between Emod D

U,a and
C(E)mod D

U,b is 0 unless − Re(a + b) �Q 0. If − Re(a + b) �Q 0 is satisfied, by a direct
computation, we can check that the pairing between Emod D

U,a and C(E)mod D
U,b is valued in

Dbmod D
X̃(D)

. The first one follows from the second one. �
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4.4.2. Conjugate of holonomic D-modules

We briefly mention an application to D-modules. We have a natural correspondence
between coherent OX -modules with flat connections, and coherent OX†-modules with
flat connections, through local systems. In [8], Kashiwara studied how to generalize it
for holonomic DX -modules. Let M be a regular singular holonomic DX -module. Let
DbX be the sheaf of distributions on X, which is naturally regarded as a bi-(DX , DX†)-
module. Hence, Exti

DX
(M, DbX) are naturally DX†-modules. In [8], he showed that

Exti
DX

(M, DbX) = 0 for i > 0, and CX(M) := HomDX
(M, DbX) is a regular singular

holonomic DX†-module. Let DX† denote the dual functor in the category of DX†-modules.
Then, M 
→ DX†CX(M) gives an appropriate generalization of the above correspon-
dence.

Sabbah [23] studied its generalization for holonomic D-modules which are not nec-
essarily regular singular. He essentially established that the problem can be reduced to
the existence of resolution of turning points and Riemann–Hilbert–Birkhoff correspon-
dence. We have already known the local existence of resolution of turning points due to
Kedlaya [9] (see [21] for the algebraic case). We have also prepared asymptotic analysis
for good meromorphic flat bundles over higher-dimensional varieties. Hence, it may be
appropriate to mention here that the problems can be solved formally. This is essen-
tially due to Sabbah. We will just indicate where detailed arguments are given. (See [23]
and [24] for more details.)

Let X be a complex manifold with a normal crossing hypersurface D. Let E be an
unramifiedly good meromorphic flat bundle on (X, D). From Proposition 4.17, we obtain
the following morphisms:

C(E)mod D → HomDX
(E , Db

mod D
X ) → R HomDX

(E , Db
mod D
X ), (4.4)

C(E)mod D
X̃(D) → HomDmod D

X̃(D)
(Emod D

X̃(D) , Db
mod D
X̃(D) ) → R HomDmod D

X̃(D)
(Emod D

X̃(D) , Db
mod D
X̃(D) ). (4.5)

Here, Dmod D
X̃(D)

:= π−1DX ⊗π−1OX
Amod D

X̃(D)
.

Proposition 4.18. The morphisms (4.4) and (4.5) are isomorphisms.

Proof. We may assume that X = ∆n and D =
⋃�

i=1{zi = 0}. Let us show (4.5). We have
only to consider the case E = OX(∗D)e with the connection ∇e = e(da +

∑
αi dzi/zi).

Then, the claim for (4.5) can be reduced to the Grothendieck–Dolbeault Lemma [23,
(II.1.17)] by the argument in [23, § II.3.3]. (See also the proof of Lemma 7 in [8].) Then,
we can formally deduce the claim for (4.4) from that for (4.5). (See the argument in [23,
pp. 67–68].) �

Corollary 4.19. Let M be a holonomic DX -module. We have Exti
DX

(M, DbX) = 0
unless i �= 0, and CX(M) := HomDX

(M, DbX) is a holonomic DX†-module. The functor
CX induces a contravariant equivalence between the derived categories of cohomologically
holonomic D-modules on X and X†.

Proof. As remarked on p. 66 of [23], Kashiwara’s argument in [8] permits us to reduce
the issue to the case that M is a meromorphic flat bundle on (X, D), where D is a normal
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crossing hypersurface. Since the claim is local, applying the local existence of resolution
of turning points [9] with the argument in [8], we can reduce the issue to the case that
M is a good meromorphic flat bundle on (X, D). As noted on p. 66 in [23], we have only
to show that R HomDX

(M, Dbmod D
X ) is a good meromorphic flat bundle on (X, D). By

the argument on p. 67 in [23], it can be reduced to the case that M is unramifiedly good.
Then, the claim follows from Proposition 4.18. �
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