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Abstract
In this work, we use a mathematical model of the property listing task dynamics and test its
ability to predict processing time in semantic and lexical decision tasks. The study aims at
exploring the temporal dynamics of semantic access in these tasks and showing that the
mathematical model captures essential aspects of semantic access, beyond the original task
for which it was developed. In two studies using the semantic and lexical decision tasks, we
used themathematical model’s coefficients to predict reaction times. Results showed that the
model was able to predict processing time in both tasks, accounting for an independent
portion of the total variance, relative to variance predicted by traditional psycholinguistic
variables (i.e., frequency, familiarity, concreteness imageability). Overall, this study provides
evidence of the mathematical model’s validity and generality, and offers insights regarding
the characterization of concrete and abstract words.

Keywords: lexical decision task; mathematical modeling; property listing; semantic access; semantic
decision task

1. Introduction
The current work uses a mathematical model of the property listing task (PLT,
Canessa & Chaigneau, 2020; Canessa et al., 2021) to predict processing time in
semantic and lexical decision tasks (SDT and LDT). In the PLT, people freely list
properties that are typically true of a given concept (Chaigneau et al., 2018; Hough &
Ferraris, 2010; Perri et al., 2012; Walker & Hennig, 2004; Wu & Barsalou, 2009).
Following an approach championed by Simon (1964), the model is formulated as a
set of differential equations that characterize the PLT’s listing dynamics (Canessa &
Chaigneau, 2020). Note that, though, we are interested in the underlying cognitive
mechanisms, our focus is on the variables’ functional relations. As discussed in the
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next section, several putative mechanisms could account for the empirical temporal
trends in PLT listing, but our goal is not to resolve between those different mechan-
isms. Thus, our theoretical claim is that the model summarizes various processing
mechanisms that could, in principle, account for the same trends in the data.

To provide evidence of the model’s generality, we now extend its applicability
beyond the original PLT task for which it was developed. The coefficients computed
when applying the PLT model for each concept used in the present study were
estimated from a PLT task in an independent study (Canessa et al., 2023). By using a
multiple regression approach, we now compare those coefficients’ ability to predict
reaction time (RT) in an SDT and LDT to other generally used psycholinguistic
variables that have been shown to be predictors in those tasks (concreteness, image-
ability, frequency familiarity) (Barber et al., 2013; Khanna & Cortese, 2021; Muraki
et al., 2020; Yap et al., 2015).

Because the concrete/abstract distinction continues to generate controversy, we
were particularly interested in differences in processing time attributable to different
levels in this continuum (Canessa et al., 2021). In particular, consider that abstract
concepts’ referents are not spatially and physically bounded, so they pose the question
of whether and how the cognitive system processes them differently from concrete
concepts. This is particularly challenging for embodied approaches to cognition (see
Dove, 2022; for discussions regarding varieties of abstract concepts, see also Barsalou,
2003; Borghi et al., 2018; Borghi et al., 2022; Langland-Hassan & Davis, 2023).

2. The mathematical model of the PLT
2.1. The PLT

The PLT and resulting semantic property norms (SPNs) are widely used in cognitive
research to investigate conceptual content and the organization of semantic memory
(SM; Canessa & Chaigneau, 2020; Chaigneau et al., 2018). Researchers apply the PLT
to elicit semantic properties that are typically associated with a given concept. These
properties serve as carefully controlled stimuli for experiments and can predict
performance in linguistic and nonlinguistic tasks.

Following the PLT, SPNs are created from the elicited properties, providing a
means of characterizing a semantic space. SPNs are matrices containing different
concepts and their corresponding property frequency distributions (Canessa et al.,
2020; Devereux et al., 2014; Kremer & Baroni, 2011; Lenci et al., 2013; McRae et al.,
2005; Montefinese et al., 2013; Vivas et al., 2017).

The PLT and associated SPNs have found applications in both basic cognitive
research and applied or field studies (Hough & Ferraris, 2010; Perri et al., 2012;
Walker &Hennig, 2004;Wu&Barsalou, 2009). These norms serve as tools for testing
theories, generating carefully controlled experimental stimuli and evaluating the
extraction of conceptual knowledge from corpora in computational linguistics
(Baroni & Lenci, 2008; Cree & McRae, 2003; Devereux et al., 2009; Fagarasan
et al., 2015; Taylor et al., 2011; Vigliocco et al., 2004; Wu & Barsalou, 2009).

2.2. PLT mathematical model

The PLT mathematical model describes the property listing process as it unfolds
using the listing order of properties (Canessa & Chaigneau, 2020). It has been
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validated with data collected in three different SPNs, spanning three countries (Italy,
Argentina and Chile), two different languages (Italian and two Spanish dialects), and
with 958 participants producing properties for 497 abstract and concrete concepts
and verbs (Canessa & Chaigneau, 2020). The following description of the model
summarizes those parts of the PLT model which were used in this paper (Canessa &
Chaigneau, 2020; Canessa et al., 2023). The PLTmodel describes the dynamics of the
listing process using six equations that relate four variables. Here, we use only two of
those six equations and the variables defined in Table 1. We must note that the
model’s equations are somewhat redundant, in the sense that some equations are
derived from the previous ones, allowing to relate all our variables in a singlemodel of
interrelated variables. The two equations we chose to keep for the analyses we report
are foundational of the model, in the sense that other equations that we could have
included are derived from them. Additionally, those two equations are the ones that
receive stronger support from data (in terms of R2 > 0.96) in the original study where
the corresponding coefficients were computed (Canessa et al., 2023).

First, themodel hypothesizes that as the PLT unfolds, participants’ property listing
rates decrease. This decreasing ratemay be due to different factors, such as decreasing
property availability, proactive interference (PI) and control processes such as
monitoring for intrusions and repetitions (probably not an exhaustive list). We are
not committed to any of the following factors, as our model attempts only to describe
the time course of listing.

In listing tasks, the frequency of each property is a powerful factor in recalling
from SM. In general, given a certain stimulus context, properties that are more
frequent in that context are more available for processing (Balota & Spieler, 1999;
Maki, 2007). Differences in availability could lead to changes in listing rates because
highly available properties, which tend to be produced at the beginning of the list,
may result in higher production rates than less available properties, which tend to be
produced at the end of the list.

Furthermore, listing properties requires managing access to long-term memory
(LTM) under PI conditions. In listing tasks, clusters of properties occur due to
facilitation among items in memory that are in the same semantic field (Abwender
et al., 2001; Hills et al., 2015; Rosen & Engle, 1997; Troyer, 2000). However, as a
semantic field is sampled, properties in short-termmemory proactively interfere with
other properties in the same field (Conway & Engle, 1994; Kane & Engle, 2000;
Wickens et al., 1963; 1976; 1981). PI is the interference caused by content already
recalled, in the retrieval of content not yet accessed from LTM. Consequently, in
listing tasks, memory performance decreases on successive trials (Keppel & Under-
wood, 1962). This phenomenon is called PI buildup (Fox et al., 2020; Kliegl & Bäuml,

Table 1. Variables employed to describe the PLT listing process dynamics used in the present analyses

Variable’s
symbol Definition

s Average cumulative number of properties produced through the listing process by all
participants in a PLT for a given concept

k Number of unique properties (i.e., without considering repetitions) produced by all
participants through the listing process in a PLT for a given concept

t Time at which properties are produced by each participant in a PLT for a given
concept (from cue onset)
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2021). It is known that this process is influenced by the semantic field from which
content is retrieved, because changes in semantic field increase performance (release
from PI;Wickens et al., 1976). The PI mechanism also suggests that the rate of listing
in the PLT will decrease with listing time.

Finally, when listing properties, subjects need to monitor for intrusions and
repetitions (Rosen & Engle, 1997). As participants continue listing, intrusions
and repetitions become increasingly likely, such that attentional resources are taxed
and listing properties becomes harder. This factor also implies that the rate of listing
will decrease with time.

All these issues imply that the property listing rate (i.e., how the average list size s
varies with time) should be inversely proportional to time, which can be expressed by
the differential equation ds/dt = 1 / t. Solving that equation gives eq. (1):

s= a0 + a1 ln tj j (1)

For empirical evidence for this functional form, see Canessa and Chaigneau (2020)
and Canessa et al. (2023)). The constants a0 and a1 come from solving the differential
equation and can be calculated from data through Ordinary Least Squares (OLS)
regression.

Another important relation in themodel is between s (average cumulative number
of properties) and k (number of different or unique properties produced through the
listing process). As discussed above, properties that are more available for listing
should be produced earlier in subjects’ lists and be of higher frequency. In contrast,
less available properties should be produced later and be more idiosyncratic. Thus,
given that k represents the total number of unique properties during the listing
process, the rate of increase in k should be directly proportional to s. In previous
research, k has been shown to increase with s at different rates depending on concept
type (Canessa & Chaigneau, 2020; Canessa et al., 2023). Concepts characterized by
highly available and shared properties, show a slow increase in k in the initial listing
phase, and a faster rate toward the end of lists, where the less shared, more
idiosyncratic properties emerge (i.e., a nonlinear increase). On the other hand,
concepts characterized by low availability properties show an approximately constant
rate of low-frequency properties, such that the rate of increase in k relative to s is
approximately constant (i.e., a linear increase).

Thus, to summarize both alternatives, we can say that the rate of increase of kwith
respect to s is constant and/or directly proportional to s. This can be expressed by the
differential equation dk/ds = e0 + e1 s. The solution to that equation is the following
expression:

k = e0 + e1s+ e2 s
2 (2)

The constants e0, e1 and e2 come from solving the differential equation and can be
calculated from data through regression methods such as OLS. Consequently, eq. (2)
allows analyzing whether the linear and/or quadratic terms are more prevalent for
each concept, according to the abovementioned arguments.

Note that eq. (2) is related to “semantic richness.” In general, richer concepts are
easier to process because they have a denser semantic neighborhood (i.e., a set of
closely knit and interrelated concepts), more semantically related terms (i.e., the
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sheer number of associates) or are characterized by more features (Mirman &
Magnuson, 2008; Yap et al., 2011). To illustrate, concrete concepts are generally
thought to be relatively rich, with more features, more associates and a set of
interrelated concepts (e.g., all things that people know about dogs). In contrast,
many abstract concepts are thought to be relatively poor, with only a few associates,
and depending strongly on the specific contexts in which they occur (e.g., the concept
beauty depends on the specific things about which beauty is being predicated).

In the model, coefficient e1 indicates that the increase of k relative to s is
approximately linear, due to more idiosyncratic and low-frequency properties being
uniformly distributed during subjects’ listing. Given that a richer concept should
evoke relatively few unique or idiosyncratic properties (i.e., those not strongly
associated to the cue word), this will cause k to grow at a smaller rate relative to s,
and the e1 slope representing the relation of k to s will be shallower. Relatedly, if
unique and low-frequency properties tend to occur at the end of subjects’ lists, then
the e2 coefficient will be significantly different from zero, showing that unique
properties increase k at a higher rate at the end of listing. Here, a relatively larger
slope indicates more semantic richness (i.e., people only diverge in their lists when
many accessible properties have been listed). The combined effect of both coefficients
allows eq. (2) to simultaneously represent the density of the unique properties during
listing and their distribution throughout listing, allowing the characterization of rich
concepts as low density of unique and low frequency properties and/or that accu-
mulate unique and low frequency properties toward the end of listing.

2.3. Computing the coefficients

To predict RTs in the SDT and LDT, we use the coefficients computed in Canessa
et al. (2023)). To that effect, that previous work conducted a SPN study involving
120 concepts (60 concrete and 60 abstract concepts). A total of 221 participants (all
Chilean Spanish native speakers) performed the PLT and the study measured RTs
from themoment the cue word was presented to themoment in which each semantic
property was produced. Note that this is an independent sample from the one that
was used for SDT and LDT studies reported here. Therefore, the previous data were
time series produced by each subject for each concept, reflecting their listing
processes (for details, see Canessa et al., 2023).

To estimate the coefficients, the same basic procedure used in Canessa and
Chaigneau (2020) was followed, which involves computing the regression equations
(OLS) for each concept, using the corresponding functional forms in eqs. (1) and (2)
and time series data (Canessa et al., 2023). The individual coefficients for each
concept used in the LDT and SDT tasks reported here can be found at the Open
Science Foundation (OSF, https://osf.io/zsn4c/).

3. SDT and LDT tasks
In the SDT, people must decide whether a given word shown on a screen is concrete
or abstract. It is widely assumed that in this task, semantic variables account for an
important amount of RT’s variance in the SDT (Pexman et al., 2017). In the LDT,
subjects must decide if a string of letters is a word or a pseudoword (i.e., a letter string
that can be pronounced but has no meaning). Though semantic variables play a role
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in the LDT (Pexman, 2012; Pexman et al., 2002), less variance is explained by those
semantic variables (Pexman, 2012), presumably because sub-lexical variables play
significant roles in aiding word recognition in the LDT (Plaut, 1997).

In our study, semantic variables were the three coefficients previously computed (a1,
e1 and e2), and the concreteness and imageability ratings for each concept. Sub-lexical
variableswere text frequency and ratings of familiarity. All these variables usually appear
as predictors in the SDTandLDT tasks (Barber et al., 2013). Because ourmaterials are in
Spanish, the variables of concreteness/abstractness, imageability, familiarity and fre-
quency of use were obtained from the EsPal database (Duchon et al., 2013).

To obtain a measure of concreteness/abstractness, researchers often rely on
subjective ratings collected in normative studies (Holcomb et al., 1999; Villani
et al., 2019). Instructions typically used for participants to generate concreteness
ratings are based on Spreen and Schulz (1966), and define concrete concepts as nouns
that refer to persons, places and things that can be perceived through the senses. On
the other hand, abstract concepts, which cannot be directly experienced through the
senses, should receive low concreteness ratings.

A second type of rating typically collected in databases is imageability, which
measures the ease with which a word can evoke mental images or sensory represen-
tations. Words with high imageability are often concrete and have strong sensory
associations, while abstract words may have lower imageability (Cortese & Fugett,
2004). As expected, given the instructions described above, concreteness and image-
ability tend to be highly correlated (Kousta et al., 2011). The reader will find that our
data show this same correlational pattern.

Familiarity is a subjective rating that assesses the degree of exposure to a particular
word that individuals have. It reflects how common and recognizable aword is within
a given population. Familiar words have been found to be easier to process than less
familiar words, though this seems not to be a linear relation (Bridger et al., 2014).

Word frequency refers to the frequency with which a word occurs in a given
language or corpus. It is often measured by counting the number of times a word
appears in written or spoken texts. High-frequency words are typically easier to
process and access from memory (Neville et al., 2019). Because frequency distribu-
tions are highly skewed and non-normal, a typical procedure is to take the logarithm
of frequency for statistical analyses. Frequency (or the log of frequency) has been
shown to predict access time (Segalowitz & Lane, 2000).

4. Predictions for the current work
In summary, we claim that the PLTmathematical model describes access to SM, and
that eqs. (1) and (2) reflect different but related aspects of that access. A higher a1
coefficient directly reflects easier access in the PLT and presumably a general easier
access to a concept’s semantic information. Coefficients e1 and e2 reflect semantic
richness, which implies differences in ease of processing. Relatively smaller e1
coefficient and/or a relatively larger e2 coefficient reflect a richer concept. Import-
antly, if the model describes ease of semantic access, then it should generalize beyond
the PLT task for which it was originally developed.

Following our review of the SDT and LDT tasks in the previous section, we
predicted that the semantic variables would account formore variance in SDT than in
the LDT. If the coefficients reflect ease of access to semantic content, then they should
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behave similarly to the other semantic variables (i.e., concreteness and imageability
ratings). In contrast, the sub-lexical variables (i.e., frequency and familiarity ratings)
should dominate in the LDT, though not exclusively of semantic variables.

Finally, we also aimed at testing whether the coefficients in the PLT model made
an independent contribution to the prediction of RTs in our tasks, relative to the
contribution made by their psycholinguistic counterparts. In particular, we were
interested in the model’s coefficients’ relationship to concreteness and imageability
ratings, because they have become the de facto operational definition of concreteness
(Löhr, 2022).

5. Preliminary correlation analysis
As a preliminary analysis, we computed Pearson correlations between our variables. To
linearize word frequency, we used Log frequency in all our analyses (Log10 of the word
token frequency in the EsPal database). Table 2 shows those correlations. Figure 1
shows scatterplots so the reader can get a sense of the data structure. As shown in
Table 2 and Figure 1, sub-lexical variables correlate with each other and semantic
variables also correlate with each other. Importantly, the PLTmodel coefficients cluster
with the semantic variables and not with the sub-lexical ones, consistent with our
hypothesis that the model’s coefficients reflect semantic access. Note also the positive
correlations shown by the a1 coefficient (higher coefficients indicate higher concrete-
ness ratings), but the negative correlations for the e1 coefficient (i.e., a larger e1
coefficient indicates lower concreteness ratings), consistent with our analysis of Eq. (2).

6. Methods
6.1. LDT study

In this study, participants had to decide whether a letter string presented on a
computer screen was a word or a pseudoword. We used concrete and abstract words
to check for evidence of semantic processing but expected to find that sub-lexical
variables explained most of the variance. Previous evidence showing small but

Table 2. Correlation matrix between sub-lexical and semantic variables with PLT model coefficients

Log
frequency Familiarity Imageability Concreteness

a1
coefficient

e1
coefficient

Log frequency —

Familiarity 0.20 —

.03
Imageability �.06 .26 —

.51 .003
Concreteness �.15 .16 .85 —

.10 .09 <.001
a1 coefficient �.08 .05 .42 .37 —

.40 .55 <.001 <.001
e1 coefficient .17 �.03 �.31 �.32 �.18 —

.07 .74 <.001 <.001 .05
e2 coefficient .00 �.07 .09 .08 .02 �.80

.97 .46 .36 .36 .85 <.001

Note: Pearson’s coefficients and p-values (in italics). Significant coefficients in bold.
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significant semantic effects (Pexman, 2012; Pexman et al., 2002), suggested that the
coefficients might also be predictive in this task. Consequently, we predicted that a
model with semantic and sub-lexical variables would be a good model, and therefore
adding the coefficients should improve the regression model in terms of predicted
variance (i.e., coefficients contribute independently).

6.1.1. Participants
Then, 101 undergraduate Spanish speaker students of Universidad Adolfo Ibáñez
voluntarily agreed to participate in the study (Mage = 21.58, SDage = 2.52; 23 females)
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and received a small no-monetary academic incentive. All participants gave their
informed consent to participate, and the study was approved by the Ethics Com-
mittee of Universidad Adolfo Ibáñez.

6.1.2. Materials and procedure
Materials consisted of 120 concepts (60 concrete and 60 abstract) used in a previous
study to validate the PLT mathematical model with RT (Canessa et al., 2023). Those
concepts were selected so that they were not significantly different in frequency of
use, familiarity and number of syllables. Also, the concrete and abstract concepts were
selected so that they had a substantial difference in their concreteness ratings between
those two types of concepts, so as to allow a good analysis of the difference between
abstract and concrete concepts as it is shown in Table 3.

We wanted that our results be as generalizable as possible, and not restricted to a
single or to a few types of abstract concepts. Thus, we selected a wide range of abstract
concepts including, abstract actions (e.g., errand); behavior descriptions (e.g., clum-
siness); personality traits (e.g., shyness); emotions (e.g., pity); physical (e.g., inertia) or
aesthetic (e.g., ugliness).

Additionally, 120 pseudowords were derived from their corresponding word.
Those pseudowords were produced from the 120 concepts controlling by relevant
lexical variables (number of letters, number of syllables and sub-syllabic structure),
with the multilingual pseudoword generator Wuggy (Keuleers & Brysbaert, 2010),
and using methods described in Perea et al. (2016) and in Keuleers and Brysbaert
(2010). While the pseudowords were derived from both concrete and abstract words,
it is important to note that all of them are considered to belong to a single category
(i.e., pseudowords).

The LDT was programmed using PsychoPy (Peirce et al., 2019). All words and
pseudowords were sequentially presented on a computer screen in random order,
controlling that trials in the same condition (i.e., concrete words, abstract words and
pseudowords) were not presented more than three times in a row. Each stimulus was
preceded by a fixation cross on the screen for 250 ms. After that, each stimulus was
displayed for 500 ms. The total duration of the trial was 2000 ms. Participants were
instructed to respond as fast as possible by pressing two different keys on a computer
keyboard. To control the effect of lateralized motor responses, we implemented a
counterbalancing strategy for the response keys following the completion of the first
half of trials (i.e., the key to indicate that a presented word/pseudoword was a real
word and the key to denote that the presented word/pseudoword was a pseudoword
were switched). At the beginning of each experimental block, a training session was
conducted using the same procedure (including the switching of the response keys)

Table 3. Mean values of lexical and sub-lexical variables for concrete and abstract concepts

Concrete Abstract t-Value p-Value

Frequency of use 12.15 13.33 �.39 .70
Log frequency 3.30 3.40 �1.33 .19
Familiarity 4.83 4.66 1.66 .10
Imageability 5.66 3.50 17.74 <.001
Concreteness 5.80 3.55 32.05 <.001
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employing different stimuli from those used in the actual experiment. Each partici-
pant took approximately 20 minutes to complete the task.

6.1.3. Results
To assess the performance on the LDT task, we measured accuracy (i.e., hit rate) and
response time (RT) for each participant. As has been frequently reported, responses
to words are faster (shorter RTs) and more accurate (higher hit rates) than responses
to pseudowords (e.g., Wühr & Heuer, 2022). Thus, finding this same pattern would
function as a sanity check for our data. Note, however, that our main regression
analyses were performed with RT as criterion, due to our interest on access and
processing speed.

As is a common practice in related studies (e.g., Yap et al., 2015), we excluded
incorrect trials and trials with RTs faster than 200 ms and 2.5 standard deviations
above the participant mean (12.28% of data was removed for RT analyses). To
compare accuracy and RTs across the different concept types, we performed a
2 × 2 repeated measures ANOVA, semantic content (concrete vs. abstract) and the
cue type (words vs. pseudowords) as factors. Recall that the pseudowords were
derived from a corresponding word, which is why we label them concrete or abstract,
even though they are not proper words. In total, we had 60 words and pseudowords
for concrete and abstract concepts. Table 4 shows the descriptive statistics.

To test for evidence of semantic processing, we performed 2 × 2 repeatedmeasures
ANOVAs using accuracy and RTs as dependent variables. For the accuracy-
dependent variable, we found a significant main effect of cue type (words
vs. pseudowords), F(1, 100) = 33.1,MSe = .01, p < .001, η2p= .25, no significant main
effect of semantic content (concrete vs. abstract), F(1, 100) = .40,MSe = .002, p = .53,
η2p = .004, and a significant interaction between cue type and semantic content,
F(1, 100) = 4.60,MSe = .001, p = .034, η2p = .04. As expected from previous literature
(Pexman, 2012), we found no statistical differences when comparing semantic
content (i.e., concrete vs. abstract words) for both types of cues (words
vs. pseudowords) (see Figure 2 panel A). The overall significant difference in the
ANOVA is driven by the words against pseudowords comparison.

When using RTs as dependent variable, we observed a significant main effect of
cue type, F(1, 100) = 296.3,MSe = .006, p < .001, η2p = .75. More specifically, we found
that participants’ RTs were slower when dealing with pseudowords (derived either
from concrete or abstract words) compared to real words. We did not find a main
effect of semantic content, F(1, 100) = .04, MSe < .001, p = .85, η2p = .001, nor an
interaction, F(1, 100) = .21, MSe < .001, p = .65, η2p = .002. This pattern of results
suggests that semantic content is not relevant for the LDT.However, the forthcoming
regression analyses offer a more nuanced view.

Table 4. Descriptive statistics on LDT performance

Type of concept Accuracy Response times

Concrete .91 (.11) .702 s (.14)
Abstract .91 (.11) .700 s (.14)
Concrete pseudoword .85 (.16) .835 s (.18)
Abstract pseudoword .84 (.14) .836 s (.18)

Note: Mean and SD (in parenthesis) for accuracy and RT in the LDT.
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6.1.4. Regression analyses
To assess the influence of the PLT mathematical model’s coefficients (i.e., a1, e1 and
e2), other semantic variables (concreteness and imageability) and sub-lexical vari-
ables (log frequency, familiarity) we performed multiple regressions following a
model comparison approach with nested models. In all our analyses, we compared
regression models’ fit to the data by testing differences in explained variances, and by
using the Akaike information criterion (AIC; Akaike, 1973; Hurvich & Tsai, 1991).
The AIC penalizes models with more parameters.

For the full data set (i.e., including concrete and abstract words), we fitted three
models to the data: sub-lexical only, model coefficients only and a full model
(combining sub-lexical with model coefficients). Table 5 shows the regression
estimates and their corresponding p values for each predictor for the full dataset in
the LDT. When performing analyses for the full dataset, it was not possible to use
concreteness or imageability ratings as predictors. Recall that words were selected
avoiding intermediate concreteness ratings and that in our data, the correlation
between both ratings was high (r = .85). Thus, concreteness and imageability were
(by design, and for the full dataset) highly correlated with RTs. Noteworthy, includ-
ing the coefficients in the complete model accounts for greater RT variance (36%) in
the LDT than in the other models. To test whether the models’ R2 values were
significantly different, we used an F test for nestedmodels (Hastie & Pregibon, 1992).
Our main question regarding R2s was whether there was a statistically significant
difference between models that can be accounted for by the addition of the math-
ematical model’s coefficients in the full regressionmodel. Results showed that the full
model was significantly better than the sub-lexical model (F(3, 114) = 3.79, p = .012)
and then the coefficients only model (F(2, 114) = 24.26, p < .001). Furthermore, the
full model showed a better AIC coefficient. Examining the full model shows that log
frequency, familiarity and coefficients a1 and e2 are significant.
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Figure 2.Mean accuracy and RTs in the lexical decision task (LDT).Note.Mean responses in accuracy (panel
A) and RTs (panel B) for the 2 × 2 repeated design in the LDT. Intervals show standard error of the mean.
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In contrast to the analysis for the entire data set, regressions within each level of the
concrete/abstract factor allowed us to use concreteness and imageability ratings along
with sub-lexical variables (i.e., the Sub-lexical+semantic model in Tables 6 and 7).
Although the complete model achieves a better fit to the data, with log frequency,
familiarity and coefficient a1 being significant, both for concrete (Table 6) and abstract
concepts (Table 7), the difference does not achieve significance. For concrete concepts,
the F test for nested models showed that the complete model was not significantly
better for predicting RTs than the sub-lexical+semantic model (F(3, 52) = 2.72,
p = .053). Similarly, for the abstract concepts data, the F test for nested models showed
that the complete model was not significantly better for predicting RTs than the sub-
lexical+semantic model (F(3, 52) = 2.77, p = .051). However, for both datasets, the AIC
shows that the full model that includes the equations’ coefficients is the bestmodel, and
coefficient a1 is significant in both models even in the presence of log frequency,
familiarity, concreteness and imageability (see Tables 6 and 7).

6.2. SDT study

In this study, participants had to decide whether a word presented on a computer
screen was abstract or concrete. We predicted that, additional to the effect of sub-

Table 5. Regression models on RTs for the full dataset in the LDT

Sub-lexical Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept 1.08 <.001 .87 <.001 1.17 <.001
Log frequency �.07 <.001 �.07 <.001
Familiarity �.02 .012 �.03 .01
a1 �.07 .01 �.07 .01
e1 �.007 .02 �.004 .11
e2 �.02 .02 �.04 .05
R2 .30 .09 .36
Corrected AIC �347 �313.7 �351.8

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.

Table 6. Regression models on RTs for concrete concepts in the LDT

Sub-lexical + semantic Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept .99 <.001 .99 <.001 1.17 <.001
Log frequency �.07 <.001 �.06 <.001
Familiarity �.01 .50 �.01 .003
Imageability �.001 .96 .003 .80
Concreteness .001 .96 �.004 .82
a1 �.10 .01 �.08 .02
e1 �.008 .06 �.005 .18
e2 �.03 .54 �.02 .70
R2 .26 .17 .36
Corrected AIC �163 �158.5 �163.7

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.
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lexical variables, we would observe important effects of semantic variables, including
the PLT mathematical model’s coefficients. Importantly, we predicted that the
coefficients should align with the semantic variables and account for an independent
part of the variance, showing that they measure semantic processing, and that a full
regression model including the coefficients would be the best regression model in
accounting for RT variance.

6.2.1. Participants
Here, 130 undergraduate Spanish speaker students of Universidad Adolfo Ibáñez
voluntarily agreed to participate in the study (Mage = 21.48, SDage = 1.52; 31 females).
Participants received a small academic incentive. All participants gave informed
consent to participate. The study was approved by the Ethics Committee of Uni-
versidad Adolfo Ibáñez.

6.2.2. Materials and procedure
Materials consisted of the 120 concepts (60 concrete and 60 abstract) used in the
previous LDT study. The SDT was programmed using PsychoPy (Peirce et al., 2019).
Concepts were presented in random order on a computer screen (but making sure
that no more than three concepts of each type were consecutively displayed), and
each concept was displayed during 500 ms. Each response and its corresponding RT
was recorded. Preceding each displayed word, a fixation cross appeared on screen for
250 ms. Participants were instructed to indicate whether the presented concept was
concrete or abstract, by pressing two different keys on a keyboard. At the middle of
the experiment, response keys were inverted (i.e., the key to indicate that a presented
concept was concrete and the key to denote that the presented concept was abstract
were switched). Before starting the actual experiment, a training session was con-
ducted using the same procedure (including the switching of the response keys) but
employing different words from those used in the actual experiment. The experiment
for each participant lasted for about 20 minutes.

Table 7. Regression models on RTs for abstract concepts in the LDT

Sub-lexical + semantic Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept 1.09 <.001 .79 <.001 1.17 <.001
Log frequency �.06 .002 �.07 <.001
Familiarity �.03 .06 �.03 .05
Imageability �.02 .17 �.01 .45
Concreteness .002 .94 �.01 .77
a1 �.05 .26 �.07 .05
e1 �.004 .41 .001 .83
e2 �.07 .07 �.03 .36
R2 .36

�168.5
.10

�150.6
.45

�169.4
Corrected AIC

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.
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6.2.3. Results
To assess the performance on the SDT task, we measured accuracy (i.e., hit rate) and
response times (RTs) for each participant. It is well documented that concrete
concepts have a processing advantage over abstract concepts (i.e., higher accuracy
and shorter RTs; Paivio, 1991). Thus, finding this same pattern would function as a
sanity check for our data. Note, however, that ourmain regression analyses were done
with RTs as criterion, due to our interest on access and processing speed.

As in the LDT study, we excluded incorrect trials and trials with RTs faster than
200 ms and longer than 2.5 standard deviations from the participant mean (21.4% of
data was removed for RT analyses). This percentage may seem high but consider that
the SDT is generally a more difficult task than the LDT, and people may genuinely
differ in their judgments about whether a given concept is concrete or abstract, all of
which means an increase in errors and RT relative to the LDT.

For the SDT, we followed a similar analysis approach to the LDT study.We carried
out a one factor repeated measures ANOVA, using semantic content (i.e., concrete
vs. abstract) as the repeated factor. Using accuracy as the dependent variable, we
found a main effect of semantic content, F(1, 129) = 75.7, MSe = .025, p < .001,
η2p = .37. As Figure 3(A) and Table 8 show, participants mademore errors for abstract
concepts than for concrete concepts. By examining the RTs in the SDT, we found
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Figure 3. Mean accuracy and RTs in the semantic decision task (SDT). Note. Mean responses in accuracy
(panel A) and RTs (panel B) for the one factor repeated design in the SDT. Intervals show the standard error
of the mean.

Table 8. Descriptive statistics on SDT performance

Type of concept Accuracy Response times

Concrete .87 (.14) 1.004 s (.20)
Abstract .70 (.19) 1.108 s (.22)

Note: Mean and SD (in parenthesis) for accuracy and RT in the SDT.
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again a significant main effect of semantic content, F(1, 129) = 102.2, MSe = .007,
p < .001, η2p = .44. This shows that participants made faster responses for concrete
concepts than for abstract concepts (see Figure 3(B)).

6.2.4. Regression analysis
For the full data set (i.e., concrete and abstractwords), we fitted threemodels: sub-lexical
only, model coefficients only, and a full model (combining sub-lexical with model
coefficients). Table 9 shows the regression estimates and their corresponding p values for
each predictor for the full dataset in the SDT. As explained above, when performing
analyses for the full dataset, it was not possible to use concreteness or imageability
ratings as predictors. Noteworthy, including the coefficients in the full model accounts
for more RT variance (26%) in the SDT than the other nested models. To test whether
the models’ R2 values were significantly different, we used the F test for nested models.
Results showed that the full model was significantly better than the sub-lexicalmodel (F
(3, 114) = 8.9, p < .001) and the coefficients only model (F(2, 114) = 4.52, p = .013).
Furthermore, the full model showed a better AIC coefficient. Examining the full model
shows that log frequency, familiarity and coefficients a1 and e2 are significant.

As done for the LDT, regressions within each level of the concrete/abstract factor
allowed us to use concreteness and imageability ratings along sub-lexical variables

Table 9. Regression models on RTs for the complete dataset in the SDT

Sub-lexical Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept 1.29 <.001 1.11 <.001 1.37 <.001
Log frequency .01 .53 �.01 .60
Familiarity �.06 .002 �.05 .008
a1 �.14 .001 �.14 <.001
e1 .01 .005 .01 .01
e2 .09 .03 .08 .07
R2 .09 .20 .26
Corrected AIC �191.4 �205.3 �210

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.

Table 10. Regression models on RTs for concrete concepts in the SDT

Sub-lexical + semantic Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept 1.66 <.001 1.2 <.001 1.73 <.001
Log frequency �.07 .009 �.07 .007
Familiarity .003 .92 .01 .67
Imageability �.04 .05 �.03 .15
Concreteness �0.4 .17 �.05 .09
a1 �.16 .002 �.14 .006
e1 .01 .31 .01 .19
e2 .08 .14 .09 .11
R2 .22 .21 .38
Corrected AIC �116.8 �118.2 �122.6

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.
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(i.e., the Sub-lexical+semanticmodel in Tables 10 and 11). For concrete concepts, the full
model achieved a better fit to the data, with log frequency, familiarity and a1 coefficient
being significant (F(3, 52) = 4.48, p = .007). Furthermore, the full model also outper-
formed the Sub-lexical+semantic model according to the AIC. However, for abstract
concepts, the difference inR2 did not achieve significance (F(3, 52) = .28, p= .84), and the
AIC favored the partial model including only Sub-lexical+semantic variables.

7. Discussion
The mathematical model described in the current paper aims at understanding how
SM is accessed during language processing tasks. The model includes coefficients that
represent different aspects of semantic accessibility. These coefficients are derived from
regression analyses and are used to predict RTs in LDTs and SDTs. Themodel provides
quantitative measures for the fact that concepts with denser semantic neighborhoods
and more features are easier to process (e.g., Pexman et al., 2002; 2003). The coeffi-
cients in the model provide insights into the relationship between different variables
and the speed of access to semantic information.

In the current work, we tested the model’s ability to predict RTs in the LDT and
SDT tasks, extending its applicability. In the LDT, participants are presented with a
string of letters and are asked to determine whether the string forms a real word or a
pseudoword. The SDT requires participants to decide whether a given word shown
on a screen is concrete or abstract. Concrete words refer to objects or things that can
be perceived through the senses, while abstract words represent ideas, concepts or
emotions. The task examines how semantic variables, such as concreteness, influence
participants’ RTs and accuracy in categorizing words.

Our results are consistent with the main trends that characterize the performance
in LDT and SDT tasks according to prior literature. On the LDT, the main variables
that predict RTs are sub-lexical variables. In previous research, participants tend to
have slower RTs and lower accuracies when dealing with pseudowords compared to
real words, a pattern we replicate in our results. On the SDT, though both sub-lexical
and semantic variables play a role, semantic variables have a more significant impact
on performance. Also, concrete concepts tend to be associated with higher accuracy

Table 11. Regression models on RTs for abstract concepts in the SDT

Sub-lexical + semantic Coefficients only Complete model

Estimate p-Value Estimate p-Value Estimate p-Value

Intercept 1.33 <.001 1.04 <.001 1.22 <.001
Log frequency .08 .005 .09 .008
Familiarity �.06 .004 �.06 .005
Imageability �.05 .01 �.05 .01
Concreteness .01 .65 �.01 .82
a1 �.01 .85 .05 .42
e1 .01 .19 .001 .91
e2 .04 .44 �.003 .95
R2 .34 .04 .35
Corrected AIC �115.9 �95.7 �108.9

Note: Significant results at the. 05 level are shown in bold.
Abbreviation: AIC, Akaike information criterion.
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and shorter RTs compared with abstract concepts, which is the pattern we replicate in
our results (Schwanenflugel et al., 1988; Plaut & Shallice, 1993; though see Kousta
et al., 2011; Barber et al., 2013).

In this context, the current work aimed at comparing the PLT mathematical
model against more traditional psycholinguistic variables. If themodel in fact offers
a measure of semantic access for a concept, then it should predict RTs in the SDT.
As a more stringent test, we also tested it in the LDT, given that there is evidence
that semantic variables do allow predicting performance in the LDT (Pexman et al.,
2017).

Consistent with our overarching hypothesis, the coefficients clustered with the
semantic and not with the sub-lexical variables (see Table 2). Noteworthy, we found
positive correlations for the a1 coefficient (higher coefficients indicate higher con-
creteness ratings), and negative correlations for the e1 coefficient (i.e., a larger e1
coefficient indicates lower concreteness ratings), a pattern that is consistent with our
theoretical analysis of Eq. (2).

In the LDT, semantic variables (i.e., concreteness and imageability) were not
found to be predictive of RTs. When the same nested regression models were
tested within concrete and within abstract concepts, though the full model
including the mathematical model coefficients outperformed the simpler models
according to the AIC, the F test comparisons did not achieve significance. Adding
the PLT mathematical model’s coefficients did not significantly improve the
prediction of the RTs. However, when coefficients were included in the full model,
the a1 coefficient achieved significance in both concrete and abstract concepts,
even in the presence of the sub-lexical variables. This suggests that the semantic
accessibility of a concept, as measured by the coefficients, influences performance
in the LDT. Interestingly, concreteness and imageability were not predictive
of RTs.

In the SDT, when the full data set and concrete concepts were considered, the
coefficients from the PLT mathematical model increased the prediction of the RTs.
For the full data set, including a1 and e1 significantly improved the regression model.
When only concrete concepts were considered and a1was included in the full model,
the effect of imageability was lost, which is consistent with their shared variance (see
Table 2), and adding the PLT model’s coefficients significantly improved explained
variance. This suggests that coefficients, in particular a1, reflect semantic information
that affects processing speed. We will discuss the contradictory results we obtained
for abstract concepts in the SDT in the next subsection.

In conclusion, the current work offers evidence that the PLT model’s coefficients
(a1, e1 and e2) reflect different aspects of semantic accessibility. The a1 coefficient
represents the ease of access to a concept’s semantic information. A higher a1
coefficient indicates easier access to semantic content. This suggests that the concept
ismore readily available inmemory and that its semantic information can be accessed
more easily. The e1 and e2 coefficients reflect semantic richness. A relatively smaller e1
coefficient and/or a relatively larger e2 coefficient indicate a richer concept. These
measures provide insights into how easily semantic information can be accessed and
processed. Furthermore, though the PLTmathematical model’s coefficients correlate
with concreteness and imageability ratings, they make an independent contribution
to the prediction of RTs in LDT and SDT tasks, suggesting that they tap onto a
different dimension of the concrete/abstract dimension from that which is captured
by the psycholinguistic ratings.
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7.1. Consequences for the concrete/abstract distinction

There is extensive literature discussing the disparities between abstract and concrete
concepts. Consistently with our results, concrete concepts are generally considered
easier to learn and process compared with abstract concepts (the concreteness effect,
e.g., Jones, 1985; Paivio, 1991; Vigliocco et al., 2018; Walker & Hulme, 1999). Some
researchers propose that the distinction between the two can be qualitatively char-
acterized by the type of features associated with each type of concept (Barsalou et al.,
2008; Paivio, 1986; Wiemer-Hastings & Xu, 2005). Concrete concepts are best
described by perceptible physical properties, whereas abstract concepts are linked
to other types of features. The specific characterization of these other features varies
among authors (Barsalou et al., 2008; Borghi & Cimatti, 2009; Borghi et al., 2017;
Breedin et al., 1994; Paivio, 1986;Wiemer-Hastings &Xu, 2005). The qualitative view
has wide appeal, as evidenced from the de facto definition of concreteness implicit in
instructions given to subjects that provide concreteness ratings (Löhr, 2022).

While qualitative distinctions are likely to be critical to our understanding of the
concrete/abstract distinction, our current work takes a processing perspective that
emphasizes quantitative differences between abstract and concrete concepts. From a
quantitative point of view, concrete concepts are characterized by a larger number of
conceptual features and exhibit stronger contextual associations (Plaut & Shallice,
1991; 1993; Schwanenflugel et al., 1988; Schwanenflugel & Shoben, 1983). Consist-
ently with these differences, research suggests that SM is more densely structured for
concrete concepts, facilitating easier access (Jones, 1985; Plaut & Shallice, 1993;
Recchia & Jones, 2012; Reilly & Desai, 2017; Yap & Pexman, 2016). This richer
semantic structure of concrete concepts relative to abstract ones aligns with abstract
concepts having multiple senses compared to concrete concepts (Hoffman et al.,
2013).

Because the PLT model’s coefficients correlate with concreteness and image-
ability ratings and are able to predict processing speed in ways consistent with the
concreteness effect, we believe that the PLTmathematical model offers measures of
the concrete/abstract dimension. As such, we believe that this model can be
considered a summary of previous literature that adopts a quantitative perspective
on the topic. However, we acknowledge that when only abstract concepts were
considered, the PLT mathematical model’s coefficients did not follow the expected
pattern in the SDT. Only log frequency, familiarity and imageability contributed to
the prediction of RTs. Because all our independent variables were the same across
all our analyses for the LDT and SDT, the only possible culprit of this null result is
the distribution of RTs in the SDT for abstract concepts. Visual inspection of this
distribution showed that not only were RTs higher on average than in the other
conditions (see Tables 4 and 8), but that a large proportion of data points were well
above the 1 smark (see Supplementary Material, Figure 1, at https://osf.io/zsn4c/).
Thus, it is possible that subjects experienced more difficulty when having to classify
abstract concepts, perhaps engaging more reflective and relatively slower processes
when responding.

Interestingly, a similar pattern was previously reported. In a study using the PLT
mathematical model to classify concrete and abstract concepts (Canessa et al., 2021),
better classifications were achieved for concrete than for abstract concepts. The
explanation provided for those results was that concrete concepts in that study were
more homogeneously concrete and that abstract concepts were more graded in that
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same factor. This is consistent with the observation that concreteness ratings for
abstract concepts are often bimodal, with some subjects judging them relatively low
in concreteness and others judging them relatively higher in concreteness (Gary
Lupyan, personal communication, 08-29-2023), which again suggests that judging
abstract concepts is harder because they require subjects to reflect in order to decide
on a specific sense that is relevant to their current task. In the future, it will be
interesting to control for number of different senses. There is evidence that words
with multiple meanings (e.g., bark, which has different and unrelated senses) are
slower to process in lexical decision tasks, but words with multiple but related senses
are relatively faster (e.g., twist which has different but related senses) (Rodd et al.,
2002, 2004). This has been explained as an effect of competition (different meanings
compete and make access difficult). In our model, abstract concepts are precisely
those withmultiple senses, not those withmultiplemeanings. Thus, we would predict
that, for example, Equation 1’s coefficient would vary with the number of senses (but
not with the number of meanings).

Also, as previously discussed, it may be that abstract concepts are a heterogeneous
bunch (e.g., actions, emotions and values, cognitive processes, social institutions
moral terms; see Dove, 2022), and cannot be easily placed on a single univariate
concreteness dimension. An anonymous reviewer was concerned about whether
emotional processing (such as valence and arousal) could explain differences in
response times between concrete and abstract concepts. We performed a brief
correlational analysis of our empirical distributions of RTs in the SDT with valence
and arousal values obtained for the 14031 Spanish word database from Stadthagen-
Gonzalez et al. (2017). Our results (shown in SupplementaryMaterial, Figure 2) show
that these variables do not account for differences in RT in SDT, suggesting that
emotional variables do not account for our findings. However, we believe that
designing studies using different types of abstract concepts (such as emotional
abstractions) is something we would like to explore in the future.

With relative independence of the actual cognitive or neural mechanisms that
account for the concreteness effect, our contribution to this literature is that we offer a
model that is able tomeasure the ease of semantic access and processing that depends
on very general assumptions about semantic access, that generalizes across at least
two different tasks, is correlated with traditional measures of concreteness, but that
taps on a source of variance in the LDT and SDT tasks that is independent from
variance accounted for by traditional psycholinguistic variables.

Supplementary material. The supplementary material for this article can be found at http://doi.org/
10.1017/langcog.2024.17.

Acknowledgment. This work received financial support from ANID Fondecyt (Fondo Nacional de
Desarrollo Científico y Tecnológico) grant 1200139.

Competing interest. The author(s) declare none.

References
Abwender, D. A., Swan, J. G., Bowerman, J. T., &Connolly, S.W. (2001). Qualitative analysis of verbal fluency

output: Review and comparison of several scoring methods. Assessment, 8(3), 323–338.

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In Petrov, B.N.,
Csaki, F. (Eds.), Second international symposium on information theory (pp. 267–281). Akademiai Kiado.

Language and Cognition 1559

https://doi.org/10.1017/langcog.2024.17 Published online by Cambridge University Press

http://doi.org/10.1017/langcog.2024.17
http://doi.org/10.1017/langcog.2024.17
http://doi.org/10.1017/langcog.2024.17
https://doi.org/10.1017/langcog.2024.17


Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition
tasks: Beyond measures of central tendency. Journal of Experimental Psychology. General, 128(1), 32–55.

Barber, H. A., Otten, L. J., Kousta, S., & Vigliocco, G. (2013). Concreteness in word processing: ERP and
behavioral effects in a lexical decision task. Brain and Language, 125, 47–53.

Baroni, M., & Lenci, A. (2008). Concepts and properties in word spaces. Italian Journal of Linguistics, 20(1),
55–88.

Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal
Society of London. B: Biological Sciences, 358(1435), 1177–1187. https://doi.org/10.1098/rstb.2003.1319.

Barsalou, L. W., Santos, A., Simmons,W. K., &Wilson, C. D. (2008). Language and simulation in conceptual
processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning.
Oxford University Press.

Borghi, A. M, Barca, L., Binkofski, F., & Tummolini, L. (2018). Varieties of abstract concepts: Development,
use and representation in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences,
373(1752), 20170121. https://doi.org/10.1098/rstb.2017.0121

Borghi, A.M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge
of abstract concepts. Psychological Bulletin, 143(3), 263–292.

Borghi, A. M., & Cimatti, F. (2009). Words as tools and the problem of abstract word meanings. In Taatgen,
N., & van Rijn, H. (Eds). Proceedings of the 31st annual conference of the cognitive science society, 2304-
2309. Amsterdam: Cognitive Science Society. Retrieved from https://escholarship.org/uc/item/58m9n8rp.

Borghi, A. M., Shaki, S., & Fischer, M. H. (2022). Abstract concepts: External influences, internal constraints,
and methodological issues. Psychological Research, 86(8), 2370–2388. https://doi.org/10.1007/s00426-
022-01698-4

Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with
semantic dementia. Cognitive Neuropsychology, 11(6), 617–660.

Bridger, E.K., Bader, R., & Mecklinger, A. (2014). More ways than one: ERPs reveal multiple familiarity
signals in the word frequency mirror effect. Neuropsychologia, 57, 179–190.

Canessa, E., & Chaigneau, S. E. (2020). Mathematical regularities of data from the property listing task.
Journal of Mathematical Psychology, 97, 102376. https://doi.org/10.1016/j.jmp.2020.102376

Canessa, E., Chaigneau, S. E., & Moreno, S. (2021). Language processing differences between blind and
sighted individuals and the abstract versus concrete concept difference. Cognitive Science, 45(10), e13044.
https://doi.org/10.1111/cogs.13044

Canessa, E., Chaigneau, S. E., & Moreno, S. (2023). Describing and understanding the time course of the
property listing task. Cognitive Processing, 25, 61–74. https://doi.org/10.1007/s10339-023-01160-2

Canessa, E., Chaigneau, S.E., Moreno, S., & Lagos, R. (2020). Informational content of cosine and other
similarities calculated from high-dimensional conceptual property norm data. Cognitive Processing, 21,
601–614. https://doi.org/10.1007/s10339-020-00985-5

Chaigneau, S. E., Canessa, E., Barra, C., & Lagos, R. (2018). The role of variability in the property listing task.
Behavior Research Methods, 50(3), 972–988.

Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition
model. Journal of Experimental Psychology. General, 123(4), 354–373.

Cortese, M. J., & Fugett, A. (2004). Imageability ratings for 3,000 monosyllabic words. Behavior Research
Methods, 36(3), 384–387.

Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the
meaning of Chipmunk, Cherry, Chisel, Cheese, and Cello (and many other such concrete nouns). Journal
of Experimental Psychology. General, 132(2), 163–201.

Devereux, B., Pilkington, N., Poibeau, T., & Korhonen, A. (2009). Towards unrestricted, large-scale
acquisition of feature-based conceptual representations from corpus data. Research on Language and
Computation, 7(2), 137–170.

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The centre for speech, language and the brain
(CSLB) concept property norms. Behavior Research Methods, 46(4), 1119–1127.

Dove, G. (2022).Abstract concepts and the embodiedmind: Rethinking grounded cognition. OxfordAcademic.
Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for

Spanish word properties. Behavior Research Methods, 45(4), 1246–1258.

1560 Chaigneau et al.

https://doi.org/10.1017/langcog.2024.17 Published online by Cambridge University Press

https://doi.org/10.1098/rstb.2003.1319
https://doi.org/10.1098/rstb.2017.0121
https://escholarship.org/uc/item/58m9n8rp
https://doi.org/10.1007/s00426-022-01698-4
https://doi.org/10.1007/s00426-022-01698-4
https://doi.org/10.1016/j.jmp.2020.102376
https://doi.org/10.1111/cogs.13044
https://doi.org/10.1007/s10339-023-01160-2
https://doi.org/10.1007/s10339-020-00985-5
https://doi.org/10.1017/langcog.2024.17


Fagarasan, L., Vecchi, E., & Clark, S. (2015). From distributional semantics to feature norms: Grounding
semantic models in human perceptual data. In Proceedings of the 11th international conference on
computational semantics (pp. 52–57). Association for Computational Linguistics.

Fox, J., Dennis, S., & Osth, A. F. (2020). Accounting for the build-up of proactive interference across lists in a
list length paradigm reveals a dominance of item-noise in recognition memory. Journal of Memory and
Language, 110, 104065.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. In: Chambers, J. M. and Hastie, T. J. (Eds.),
Statistical models in S. Wadsworth & Brooks/Cole, Chapter 6.

Hills, T. T., Todd, P. M., & Jones, M. N. (2015). Foraging in semantic fields: Howwe search throughmemory.
Topics in Cognitive Science, 7(3), 513–534.

Hoffman, P., Lambon Ralph, M. A., & Rogers, T. T. (2013). Semantic diversity: a measure of semantic
ambiguity based on variability in the contextual usage of words. Behavior Research Methods, 45(3),
718–730.

Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. (1999). Dual-coding, context-availability, and
concreteness effects in sentence comprehension: An electrophysiological investigation. Journal of Experi-
mental Psychology. Learning, Memory, and Cognition, 25(3), 721–742.

Hough, G., & Ferraris, D. (2010). Free listing: Amethod to gain initial insight of a food category. FoodQuality
and Preference, 21(3), 295–301.

Hurvich, C. M., & Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression and time
series models. Biometrika, 78, 499–509.

Jones, G. V. (1985). Deep dyslexia, imageability, and ease of predication. Brain and Language, 24(1), 1–19.
https://doi.org/10.1016/0093-934X(85)90094-X

Kane, M. J., & Engle, R.W. (2000). Working-memory capacity, proactive interference, and divided attention:
Limits on long-term memory retrieval. Journal of Experimental Psychology. Learning, Memory, and
Cognition, 26(2), 336–358.

Keppel, G., &Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of
Verbal Learning and Verbal Behavior, 1(3), 153–161.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research
Methods, 42(3), 627–633.

Khanna, M.M., & Cortese, M. J. (2021). Howwell imageability, concreteness, perceptual strength, and action
strength predict recognition memory, lexical decision, and reading aloud performance. Memory, 29(5),
622–636. https://doi.org/10.1080/09658211.2021.1924789

Kliegl, O., & Bäuml, K. H. T. (2021). Buildup and release from proactive interference–Cognitive and neural
mechanisms. Neuroscience & Biobehavioral Reviews, 120, 264–278.

Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of
abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34.

Kremer, G., & Baroni, M. (2011). A set of semantic norms for German and Italian. Behavior Research
Methods, 43(1), 97–109.

Langland-Hassan, P., &Davis, C. P. (2023). A context-sensitive and non-linguistic approach to abstract
concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378,
20210355. https://doi.org/10.1098/rstb.2021.0355.

Lenci, A., Baroni, M., Cazzolli, G., & Marotta, G. (2013). BLIND: A set of semantic feature norms from the
congenitally blind. Behavior Research Methods, 45(4), 1218–1233.

Löhr, G. (2022). What are abstract concepts? On lexical ambiguity and concreteness ratings. Review of
Philosophy and Psychology, 13(3), 549–566.

Maki, W. S. (2007). Judgments of associative memory. Cognitive Psychology, 54(4), 319–353.
McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a

large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559.
Mirman, D., &Magnuson, J. S. (2008). Attractor dynamics and semantic neighbourhood density: Processing

is slowed by near neighbours and speeded by distant neighbours. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 34, 65–79.

Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2013). Semantic memory: A feature-based
analysis and new norms for Italian. Behavior Research Methods, 45(2), 440–461.

Muraki, E. J., Sidhu, D. M., & Pexman, P. M. (2020). Mapping semantic space: Property norms and semantic
richness. Cognitive Processing, 21(4), 637–649.

Language and Cognition 1561

https://doi.org/10.1017/langcog.2024.17 Published online by Cambridge University Press

https://doi.org/10.1016/0093-934X(85)90094-X
https://doi.org/10.1080/09658211.2021.1924789
https://doi.org/10.1098/rstb.2021.0355
https://doi.org/10.1017/langcog.2024.17


Neville, D. A., Raaijmakers, J. G., & van Maanen, L. (2019). Modulation of the word frequency effect in
recognition memory after an unrelated lexical decision task. Journal of Memory and Language, 108,
104026.

Paivio, A. (1986). Mental representations: A dual-coding approach. Oxford University Press.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue

canadienne de psychologie, 45(3), 255–287. https://doi.org/10.1037/h0084295
Peirce, J.W., Gray, J. R., Simpson, S.,MacAskill,M. R., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J.

(2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51, 195–203. https://
doi.org/10.3758/s13428-018-01193-y

Perea, M., Marcet, A., Vergara-Martínez, M., & Gomez, P. (2016). On the dissociation of word/nonword
repetition effects in Lexical decision: An evidence accumulation account. Frontiers in Psychology, 7, 215.

Perri, R., Zannino, G., Caltagirone, C., &Carlesimo, G. A. (2012). Alzheimer’s disease and semantic deficits: A
feature-listing study. Neuropsychology, 26(5), 652–663.

Pexman, P. M. (2012). Meaning-based influences on visual word recognition. In J. S. Adelman (Ed.), Visual
word recognition: Meaning and context, individuals and development (pp. 24–43). Psychology Press.

Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The calgary semantic decision project: Concrete/
abstract decision data for 10,000 English words. Behavior Research Methods, 49, 407–417. https://doi.
org/10.3758/s13428-016-0720-6

Pexman, P. M., Holyk, G. G., & Monfils, M. H. (2003). Number-of-features effects and semantic processing.
Memory & Cognition, 31(6), 842–855.

Pexman, P.M., Lupker, S. J., & Hino, Y. (2002). The impact of feedback semantics in visual word recognition:
number-of-features effects in lexical decision and naming tasks. Psychonomic Bulletin & Review, 9(3),
542–549. https://doi.org/10.3758/bf03196311

Plaut, D. C. (1997). Structure and function in the lexical system: Insights from distributed models of word
reading and lexical decision. Language & Cognitive Processes, 12, 765–805.

Plaut, D. C., & Shallice, T. (1991). Effects of word abstractness in a connectionist model of deep dyslexia. In
Proceedings of the 13th annual meeting of the cognitive science society (pp. 73–78). Erlbaum.

Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive
Neuropsychology, 10(5), 377–500.

Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Frontiers in Human
Neuroscience, 6(15). https://doi.org/10.3389/fnhum.2012.00315

Reilly, M., & Desai, R. (2017). Effects of semantic neighborhood density in abstract and concrete words.
Cognition, 169, 46–53. https://doi.org/10.1016/j.cognition.2017.08.004.

Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of semantic ambiguity: Semantic
competition in lexical access. Journal of Memory and Language, 46(2), 245–266. https://doi.
org/10.1006/jmla.2001.2810

Rodd, J. M., Gaskell, M. G., & Marslen-Wilson, W. D. (2004). Modelling the effects of semantic ambiguity in
word recognition. Cognitive Science, 28(1), 89–104. https://doi.org/10.1016/j.cogsci.2003.08.002

Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of
Experimental Psychology. General, 126, 211–227. https://doi.org/10.1037/0096-3445.126.3.211

Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R.W. (1988). Context availability and lexical decisions for
abstract and concrete words. Journal of Memory and Language, 27(5), 499–520.

Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and
concrete verbal materials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 9(1), 82.

Segalowitz, S., & Lane, K. (2000). Lexical access of function versus content words. Brain and Language, 75,
376–389. https://doi.org/10.1006/brln.2000.2361.

Simon, H. A. (1964). The construction of social science models. In G. A. Miller (Ed.), Mathematics and
psychology (pp. 137–146). John Wiley & Sons, Inc.

Spreen, O., & Schulz, R. W. (1966). Parameters of abstraction, meaningfulness, and pronunciability for
329 nouns. Journal of Verbal Learning and Verbal Behavior, 5(5), 459–468.

Stadthagen-Gonzalez, H., Imbault, C., Pérez Sánchez, M. A., & Brysbaert, M. (2017). Norms of valence and
arousal for 14,031 Spanish words. Behavior Research Methods, 49(1), 111–123.

Taylor, K. I., Devereux, B. J., & Tyler, L. K. (2011). Conceptual structure: Towards an integrated neurocog-
nitive account. Language and Cognitive Processes, 26(9), 1368–1401.

1562 Chaigneau et al.

https://doi.org/10.1017/langcog.2024.17 Published online by Cambridge University Press

https://doi.org/10.1037/h0084295
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-016-0720-6
https://doi.org/10.3758/s13428-016-0720-6
https://doi.org/10.3758/bf03196311
https://doi.org/10.3389/fnhum.2012.00315
https://doi.org/10.1016/j.cognition.2017.08.004
https://doi.org/10.1006/jmla.2001.2810
https://doi.org/10.1006/jmla.2001.2810
https://doi.org/10.1016/j.cogsci.2003.08.002
https://doi.org/10.1037/0096-3445.126.3.211
https://doi.org/10.1006/brln.2000.2361
https://doi.org/10.1017/langcog.2024.17


Troyer A. K. (2000). Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical
and Experimental Neuropsychology, 22(3), 370–378. https://doi.org/10.1076/1380-3395(200006)22:3;1-V;
FT370

Vigliocco, G., Ponari, M., & Norbury, C. (2018). Learning and processing abstract words and concepts:
Insights from typical and atypical development. Topics in Cognitive Science, 10(3), 533–549.

Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and
action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48(4), 422–488.

Villani, C., Lugli, L., Liuzza, M., & Borghi, A. (2019). Varieties of abstract concepts and their multiple
dimensions. Language and Cognition, 11(3), 403–430. https://doi.org/10.1017/langcog.2019.23

Vivas, J., Vivas, L., Comesaña, A., Coni, A. G., & Vorano, A. (2017). Spanish semantic feature production
norms for 400 concrete concepts. Behavior Research Methods, 49(3), 1095–1106.

Walker, I., & Hulme, C. (1999). Concrete words are easier to recall than abstract words: Evidence for a
semantic contribution to short-term serial recall. Journal of Experimental Psychology. Learning, Memory,
and Cognition, 25(5), 1256–1271.

Walker, L. J., & Hennig, K. H. (2004). Differing conceptions of moral exemplarity: Just, brave, and caring.
Journal of Personality and Social Psychology, 86(4), 629–647.

Wickens, D. D., Born, D. G., & Allen, C. K. (1963). Proactive inhibition and item similarity in short-term
memory. Journal of Verbal Learning and Verbal Behavior, 2(5), 440–445.

Wickens, D. D., Dalezman, R. E., & Eggemeier, F. T. (1976). Multiple encoding of word attributes inmemory.
Memory & Cognition, 4(3), 307–310.

Wickens, D. D., Moody, M. J., & Dow, R. (1981). The nature and timing of the retrieval process and of
interference effects. Journal of Experimental Psychology. General, 110(1), 1–20.

Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract and concrete concepts. Cognitive
Science, 29(5), 719–736.

Wu, L. L., & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: Evidence from
property generation. Acta Psychologica, 132(2), 173–189.

Wühr, P., & Heuer, H. (2022). Mapping effects in choice-response and go/no-go variants of the lexical
decision task: A case for polarity correspondence. Quarterly Journal of Experimental Psychology, 75(3),
491–507. https://doi.org/10.1177/17470218211043860

Yap, M. J., & Pexman, P. M. (2016). Semantic richness effects in syntactic classification: The role of feedback.
Frontiers in Psychology, 7, 1394.

Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., & Rueckl, J. (2015). Responding to nonwords in the lexical
decision task: Insights from the English Lexicon project. Journal of Experimental Psychology. Learning,
Memory, and Cognition, 41(3), 597–613.

Yap, M. J., Tan, S. E., Pexman, P. M., & Hargreaves, I. S. (2011). Is more always better? Effects of semantic
richness on lexical decision, speeded pronunciation, and semantic classification. Psychonomic Bulletin &
Review, 18(4), 742–750. https://doi.org/10.3758/s13423-011-0092-y

Cite this article: Chaigneau, S. E., Marchant, N., Canessa, E., & Aldunate, N. (2024). A mathematical model
of semantic access in lexical and semantic decisions, Language and Cognition 16: 1541–1563. https://doi.org/
10.1017/langcog.2024.17

Language and Cognition 1563

https://doi.org/10.1017/langcog.2024.17 Published online by Cambridge University Press

https://doi.org/10.1076/1380-3395(200006)22:3;1-V;FT370
https://doi.org/10.1076/1380-3395(200006)22:3;1-V;FT370
https://doi.org/10.1017/langcog.2019.23
https://doi.org/10.1177/17470218211043860
https://doi.org/10.3758/s13423-011-0092-y
https://doi.org/10.1017/langcog.2024.17
https://doi.org/10.1017/langcog.2024.17
https://doi.org/10.1017/langcog.2024.17

	A mathematical model of semantic access in lexical and semantic decisions
	Introduction
	The mathematical model of the PLT
	The PLT
	PLT mathematical model
	Computing the coefficients

	SDT and LDT tasks
	Predictions for the current work
	Preliminary correlation analysis
	Methods
	LDT study
	Participants
	Materials and procedure
	Results
	Regression analyses

	SDT study
	Participants
	Materials and procedure
	Results
	Regression analysis


	Discussion
	Consequences for the concrete/abstract distinction

	Supplementary material
	Acknowledgment
	Competing interest
	References


