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ABSTRACT

We revisit the “full picture” of the claims development uncertainty in Mack’s
(1993) distribution-free stochastic chain ladder model. We derive the uncer-
tainty estimators in a new and easily understandable way, which is much
simpler than the derivation found so far in the literature, and compare them
with the well known estimators of Mack and of Merz–Wüthrich.

Our uncertainty estimators of the one-year run-off risks are new and dif-
ferent to the Merz–Wüthrich formulas. But if we approximate our estimators
by a first order Taylor expansion, we obtain equivalent but simpler formulas.
As regards the ultimate run-off risk, we obtain the same formulas as Mack for
single accident years and an equivalent but better interpretable formula for the
total over all accident years.
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1. INTRODUCTION

In the last decades many papers on stochastic claims reserving have been and
still are published (see for instance Merz and Wüthrich (2008a) and the contin-
uing flow of publications in the recent actuarial literature and in neighbouring
fields like Harnau and Nielsen (2017)). Moreover machine learning algorithms
seem to become popular in actuarial science (see the many presentations at the
ICA 2018 in Berlin).

Despite this development, chain ladder (CL) and Bornhuetter Ferguson
(BF) methods are still the most used and the most popular methods in the
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insurance practice. One of the reason is that in practice one has to be suffi-
ciently accurate, but it is not necessary to always use the “theoretically optimal”
model. A methodology whose mechanism is understood and which is suf-
ficiently accurate is mostly preferred to a highly sophisticated methodology
whose mechanism is difficult to understand and to see through. In our opin-
ion, which is based on many years of practical experience, the BF and the CL
methods are in many situations sufficiently accurate and, therefore, still useful
methods. In the following we concentrate on the CL method.

Assume we are currently at the end of calendar year I . Under run-off riskwe
understand the risk of an adverse claims development. Thereby we distinguish
between the ultimate run-off risk Zult, which is the deviation of the ultimate
claim from its forecast at the end of calendar year I , and the one-year run-off
risk Z (I+k) in accounting year I + k, which is the deviation of the forecast of
the ultimate claim at the end of the accounting year I + k from its forecast at
the beginning of the accounting year I + k. The latter is reflected in the P&L
account of the accounting year I + k by the so called claims development result
(CDR).

As common in the actuarial literature, we will take the conditional mean
square error of prediction (msep) as a measure for the reserve uncertainty. For
best estimate reserves it is by definition the conditional expected value of the
square of the run-off risk.

In 1993 Mack (1993) presented a stochastic CL-model and derived a for-
mula to estimate the msep of the ultimate run-off risk. This formula is well
known and widely used in the insurance practice. With the emergence of the
new solvency regulation (Swiss Solvency Test and Solvency II) there arose the
need to assess another kind of reserve risk. The risk considered is the change
of the risk bearing capital within the next accounting year (one-year time hori-
zon). Hence the relevant reserve risk for solvency purposes is the one-year run-off
risk in the next accounting year. A formula for estimating the corresponding
msep was first published by Merz and Wüthrich in 2008.

As market consistent valuation is a basic element of the new solvency regu-
lation and of IFRS 17, the best estimate reserves have to be complemented by
a market value margin corresponding to the discounted costs of the risk capital
needed for the run-off until the final settlement of all claims. For this pur-
pose, one also needs estimators of the msep of the one-year run-off risk in later
accounting years until the end of the claims development. Merz and Wüthrich
(2014) considered the estimation of the msep of the ultimate run-off risk as well
the estimation of the msep of the one-year run-off risks of all future account-
ing years (“full picture”) within a specific Bayesian CL-model, the so called
Gamma–Gamma BCL model, which is similar to a model considered in Gisler
(2006).

However, the Bayesian CL-model is different to the distribution free CL-
model of Mack. For instance, in the model considered in Merz and Wüthrich
(2014) the msep does only exist if the observed triangle fulfils specific conditions
(see Merz and Wüthrich (2014), assumptions in Theorem 3.8). Thus we do not
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know, whether the results derived in Merz and Wüthrich (2014) also apply to
the classical Mack model.

Formulas for the full picture of the CL reserve uncertainties derived strictly
within the classical CL-model of Mack (Mack (1993)) were first published in
2016 in three different papers (Diers et al. (2016), Gisler (2016), Röhr (2016)).
Gisler (2016) is an earlier version of the present paper. In Diers et al. (2016)
the authors estimate the msep by the use of bootstrap-techniques similar to
the bootstrap approach in Buchwalder et al. (2006), which gave rise to several
controversial discussions (see Buchwalder et al. (2006), Gisler (2006), Mack
et al. (2006)). In Röhr (2016) the author rewrites the msep of the one-year
and the ultimate run-off risks as a function of the individual future CL devel-
opment factors, takes its first order Taylor approximation at their predicted
values and derives estimators of this “linearized msep”. The formulas derived
in Röhr (2016) and in Diers et al. (2016) are equivalent to the Mack and the
Merz–Wüthrich formulas.

In the present paper we derive the msep estimators in a new way. Different
from Röhr we consider the msep of the run-off risks and not a linearized
approximation and different from Diers et al. we do not use any bootstrap
technique. For the one-year run-off risk, the formulas obtained are new and
different to the Merz–Wüthrich formulas and to the ones in Röhr (2016) and
Diers et al. (2016). But if we approximate our formulas by a first order Taylor
expansion, we find equivalent but simpler formulas than the ones in Merz and
Wüthrich (2008b) and in Merz and Wüthrich (2014). For the ultimate run-off
risk, and comparing with Mack (1993), we obtain the same formulas for single
accident years and an equivalent but easier interpretable formula for the total
over all accident years.

In our opinion, the derivation of the results in the above mentioned recent
papers (Merz and Wüthrich (2014), Diers et al. (2016), Röhr (2016)) as well as
inMerz andWüthrich (2008b) are rather difficult to follow, whereas the present
paper is very simple and easy to understand. We only need straightforward
mathematics and can see behind the formulas, as they can be interpreted in an
intuitively comprehensible way. This simplicity is perhaps the biggest merit of
the present paper.

Organisation of the paper. In Section 2 we introduce some notation and the data
structure. In Section 3 we review the CL-reserving method and the stochastic
CL-model of Mack. At the end of this section a natural estimation principle
and the so called telescope formula are presented. In Section 4 we consider the
one-year run-off uncertainties for all future accounting years until the end of
the claims development and compare the results with the Merz–Wüthrich for-
mulas . In Section 5 we derive the formulas for the ultimate run-off uncertainty
and compare them with the Mack-formula. In Section 6 we briefly consider
the relationship between the one-year and the ultimate run-off risks. Finally, a
numerical example is presented in Section 7.
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2. NOTATION AND DATA STRUCTURE

The starting point of claims reserving are cumulative claim figures (usually
claim payments or incurred losses) Ci,j > 0 from accident periods i= i0, . . . , I
at the end of development periods j= j0, . . . , J arranged in a table with i on the
vertical axes and j on the horizontal axes. We assume that all claims are settled
at the end of development year J and that therefore Ci,J denotes the ultimate
claim of accident year i. We further assume that the number of accident years is
greater or equal than the number of development years, that is J − j0 ≥ I − i0.
The index j0 is introduced because in the actuarial literature the first develop-
ment year is sometimes denoted by zero and sometimes by 1. Hence j0 is either
zero or one.

At the end of accident year I the data

DI = {Ci,j : i+ j ≤ j0 + I
}

are known. We will callDI a claims development triangle also in the case where
the shape is a trapezoid. Our aim is to forecast

Dc
I = {Ci,j : i+ j> j0 + I , j ≤ J

}
.

Some notations:

- diagonal functions

Definition 2.1. diagonal functions

ji := max{j such thatCi,j ∈DI}, (2.1)
ij := max{i such thatCi,j ∈DI}. (2.2)

They were already introduced in Röhr (2016) and are convenient to simplify
notation. Note that Ci,ji is the diagonal element in row i and that Cij ,j is the
diagonal element in column j. Note also that the accident years i= i0, . . . , iJ
are already fully developed.
Regardless of the above definition, i0 and j0 also denote the first accident

and the first development year, what might formally conflict with Definition
2.1. This conflicting notation is consciously taken into account, as the inter-
pretation throughout the paper is always clear: ji and ij always refer to
Definition 2.1, whereas j0 and i0 always denote the first development year
and the first accident year respectively.

- We denote the set of observations known at the end of development year j
by

Bj := {Ci,k :Ci,k ∈DI , k≤ j}. (2.3)

- coefficient of variation
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We denote the coefficient of variation of a random variable (r.v.) X by

CoV (X) :=
√
Var (X)

E [X ]
,

provided the moments exist and E [X ]> 0.
- In this paper empty sums and empty products are defined by∑u

k=l xk
:= 0 if u< l,∏u

k=l xk
:= 1 if u< l.

- The following weights will be used later in the paper.

Definition 2.2. The weights wi,j are defined by

wi,j :=
⎧⎨⎩
Ci,j, if Ci,j ∈DI ,

ĈCL
i,j , otherwise,

(2.4)

where ĈCL
i,j is the CL-forecast of Ci,j given by Equation (3.3).

- The index “tot” denotes summation over all accident years. For example

wtot,j :=
∑I

i=i0
wi,j.

3. THE CHAIN LADDER METHOD

3.1. The chain ladder method

The CL method is a pragmatic method, which has been used for decades for
estimating reserves. The basic assumption behind CL is that the columns in the
development triangle are proportional to each other up to random fluctuations,
i.e. there exist constants fj, j= j0, . . . , J − 1, such that

Ci,j+1 ≈ fjCi,j. (3.1)

The constants fj are called claims-development factors, CL factors or age to
age factors. Given the information DI it is natural to estimate these unknown
constants by

f̂ CLj =
∑ij−1

i=i0 Ci,j+1∑ij−1
i=i0 Ci,j

. (3.2)
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Due to Equation (3.1) the Ci,j ∈Dc
I are forecasted by

ĈCL
i,j =Ci,ji

j−1∏
k=ji

f̂ CLk . (3.3)

The CL reserve R̂CL
i of accident year i is an estimate of the outstanding

liabilities, i.e.

R̂CL
i = ĈCL

i,J −Ci,ji . (3.4)

3.2. The stochastic CL-model of Mack

The following distribution-free stochastic model underlying the CL method
was presented in Mack (1993).

Model Assumptions 3.1 (Mack-model)

M1 Ci,j belonging to different accident years are independent.
M2 There exist positive parameters fj0 , . . . , fJ−1 and σ 2

j0
, . . . , σ 2

J−1 such that for
i= i0, . . . , I , and j= j0, . . . , J − 1

E[Ci,j+1|Ci,j0 , . . . ,Ci,j] = fjCi,j, (3.5)

Var(Ci,j+1|Ci,j0 , . . . ,Ci,j) = σ 2
j Ci,j. (3.6)

An interpretation of σ 2
j can be found in the remarks after Properties 3.2.

As an example let us consider a claims development triangle of private lia-
bility insurance. For confidentiality reasons the original data were multiplied
by a constant factor. Table 1 shows the observed cumulative claim-payments
Ci,j in the upper left part and the corresponding CL forecasts in the lower right
part together with the resulting CL-reserves.

How accurate are these reserves? The future outcomes of Ci,j in the lower
right part will deviate from these forecasts. However, when looking at this table
we cannot gain a feeling about the expected range of deviation and about the
reserve uncertainties.

Table 2 shows in the upper left part the triangle of the observed individual
CL ratios defined by

Fi,j := Ci,j+1

Ci,j
. (3.7)

In each column j the not yet observed
{
Fi,j : i= ij, . . . , I

}
in the lower right part

are forecasted by f̂ CLj . Again the future realisations Fi,j will deviate from these
forecasts. But contrary to Table 1 we can get a feeling about the expected range
of deviation when looking at Table 2.When applying CL, therefore, one should
always consider the individual CL-factors.
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TABLE 1

TRIANGLE OF CUMULATIVE PAYMENTS Ci,j AND CL-FORECASTS

TABLE 2

TRIANGLE OF OBSERVED CL-RATIOS Fi,j AND CL-FORECASTS f CLJ

It is well known (see for instance Mack (1993)) that Model Assumptions
3.1 imply the following properties.

Properties 3.2.

i) The estimator (3.2) can be written as a weighted mean

f̂ CLj =
ij−1∑
i=i0

wi,j

w•,j
Fi,j, (3.8)

where w•,j =∑ij−1
i=i0 wi,j and where the wi,j are defined in Equation (2.4).
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ii)

E[Fi,j|Ci,j0 , . . . ,Ci,j] = E[Fi,j|Ci,j] = fj, (3.9)

Var(Fi,j|Ci,j0 , . . . ,Ci,j) = Var(Fi,j|Ci,j) = σ 2
j

Ci,j
, (3.10)

CoV
(
Fi,j
∣∣Ci,j0 , . . . ,Ci,j

) = CoV
(
Fi,j
∣∣Ci,j

) =
√

σ 2
j

f 2j

1
Ci,j

. (3.11)

iii) Conditional on Bj it holds that

E
[
f̂ CLj

∣∣Bj

] = fj, (3.12)

Var
(
f̂ CLj

∣∣Bj

) = σ 2
j∑ij−1

i=i0 wi,j

, (3.13)

CoV
(
f̂ CLj

∣∣Bj

) =
√√√√σ 2

j

f 2j

1∑ij−1
i=i0 wi,j

. (3.14)

iv) σ 2
j can be estimated by the unbiased estimator

σ̂ 2
j = 1

ij − i0 − 1

ij−1∑
i=i0

wi,j

(
Fi,j − f̂ CLj

)2
, if ij − i0 � 2. (3.15)

If iJ−1 − i0 < 2 we can estimate σ̂ 2
J−1 as suggested in Mack (1993) by

σ̂ 2
J−1 =min

(
σ̂ 4
J−2/σ̂

2
J−3, min

(
σ̂ 2
J−2, σ̂

2
J−3

))
.

v)

E
[
Fi,k
∣∣Bj

]= fk for j≤ k≤ J − 1. (3.16)

vi) {
Fi,k
∣∣Bj : k= j, . . . , J − 1

}
are uncorrelated. (3.17)

Remarks

- Note that Ci,j in the denominator of the right hand side of Equation (3.10) is
a known constant and plays the role of a weight. Thus (3.10) is analogous to
the variance condition in a weighted regression or in credibility. Analogously
as in weighted regression and in credibility σ 2

j can be interpreted as the con-
ditional variance of Fi,j normalized for weight one. The quantities Ci,j are in
most cases monetary amounts, and as such have a dimension, as for instance
CHF. The Fi,j have no dimension, and hence the left hand side of Equation
(3.10) has no dimension either. Therefore the σ 2

j on the right hand side must
have the same dimension as Ci,j.
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- As already mentioned in Röhr (2016), the coefficients of variation (3.11) and
(3.14) can be estimated by

ĈoV
(
Fi,j
∣∣Ci,j

) =
√√√√ σ̂ 2

j(
f̂ CLj

)2 1
wi,j

, (3.18)

ĈoV
(
f̂ CLj

∣∣Bj

) =
√√√√√√ σ̂ 2

j(
f̂ CLj

)2 1
ij−1∑
i=i0

wi,j,

. (3.19)

- They are intuitively comprehensible “uncertainty measures” for the relative
deviation of Fi,j and of f̂ CLj from the “true” CL-factors fj.

3.3. Estimation principle

Themsep contain by definition the unknownCL factors fj. To find an estimator
of the msep, we have to replace them by suitable estimators. The following
estimation principle is commonly used in the relevant actuarial literature as for
instance in Mack (1993), Röhr (2016), Diers et al. (2016), Buchwalder et al.
(2006) and in many other papers.

Estimation Principle 3.3

a) quadratic difference terms

estimator of
(
f̂ CLj − fj

)2 = V̂ar
(
f̂ CLj

∣∣Bj

)= σ̂ 2
j∑ij−1

i=i0 wi,j

. (3.20)

b) other functions of fj such as
J−1∏
j=ji

f 2j are estimated by replacing the unknown

parameters fj by f̂ CLj .

Remarks

- Even though the estimation principle 3.3 is commonly used, we should be
aware that it is not simply the plug-in technique found in statistics and that
it is not well defined because of (3.20). For instance

f 2j = ( fj + f̂ CLj − fj
)2 = f 2j + 2fj

(
f̂ CLj − fj

)+ ( f̂ CLj − fj
)2
.

If we apply the estimation principle 3.3 to the left hand side, we estimate
f 2j by

(
f̂ CLj

)2
, and if we apply it to the right hand side, we estimate f 2j by(

f̂ CLj

)2 + σ̂ 2
j /
∑ij−1

i=i0 wi,j. Thus we have to use the estimation principle in an
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appropriate way. In the above example we estimate f 2j by
(
f̂ CLj

)2
, because

E
[(
f̂ CLj

)2∣∣∣Bj

]
= f 2j + σ 2

j /
∑ij−1

i=i0
wi,j

is upward biased and because this upward bias would even be increased if
the estimator

(
f̂ CLj

)2 + σ̂ 2
j /
∑ij−1

i=i0 wi,j was used.

3.4. The telescope formula

The following formula will be used in the later sections.

Lemma 3.4 (telescope formula). For any real numbers xj and yj, j= 1, 2, . . . , J,
it holds that∏J

j=1
xj −

∏J

j=1
yi =

J∑
j=1

(∏j−1

k=1
xk

) (
xj − yj

) (∏J

m=j+1
ym
)
. (3.21)

Proof. This result is well known. We show it for a product with J = 3. The
extension to any number J is self evident.

x1x2x3 − y1y2y3 = x1x2x3 − x1x2y3 + x1x2y3 − x1y2y3 + x1y2y3 − y1y2y3
= (x1 − y1) y2y3 + x1 (x2 − y2) y3 + x1x2 (x3 − y3) .

�
4. THE ONE-YEAR RUN-OFF PREDICTION UNCERTAINTY

In the new solvency regulation (SST, Solvency II) a time horizon of one year
is considered. Therefore the reserve risk relevant for solvency purposes is the
one-year run-off risk in the next accounting year. Moreover, the best estimate
reserves have to be augmented by a market value margin corresponding to the
discounted costs of capital needed for the run-off until final settlement. For
these two purposes we need estimates of the msep of the one year run-off risks
of all future accounting years I + k, k= 1, . . . , J − j0.

At the end of accounting year I + k there will be available the data DI+k.
The CL-factors and the prediction of the ultimate claim will then be made on
the basis of DI+k.

As in the previous section we denote by f̂ CLj the estimated CL factors and by
wi,j = ĈCL

i,j the CL forecasts of Ci,j at time I . For future accounting years I + k,
k= 1, . . . , J − j0, we will use the following notation:

DI+k := the claims development triangle available at the end of accounting
year I + k,

f̂ CL(I+k)
j , ĈCL(I+k)

i,J := estimated CL factors and CL forecasts at time I + k

based on DI+k.
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From the perspective at time I , f̂ CL(I+k)
j and ĈCL(I+k)

i,J are r.v., whereas f̂ CLj and
ĈCL
i,j are known constants.
The one-year run-off risk in accounting year I + k+ 1, which will be

reflected by the claims development result in the profit and loss account of
accounting year I + k+ 1, is defined by

Z (I+k+1)
tot := ĈCL(I+k+1)

tot,J − ĈCL(I+k)
tot,J for the total over all accident years, (4.1)

Z (I+k+1)
i := ĈCL(I+k+1)

i,J − ĈCL(I+k)
i,J for accident years i= iJ + k+ 1, . . . , I .

(4.2)

4.1. The one-year run-off prediction uncertainty in the next accounting year

In this subsection we consider the msep of the one-year run-off risk in the next
accounting year I + 1.

Result 4.1. The msep of the one year run-off risk in the next accounting year I +
1 can be estimated by

i) total over all accident years

m̂septot,I+1 =w2
tot,J

{
J−1∏
j=j0

(
1+ bj

σ̂ 2
j(

f̂ CLj

)2
)

− 1

}
, (4.3)

where

bj = wij ,j(∑ij−1
i=i0 wi,j

) (∑ij
i=i0 wi,j

) , (4.4)

wi,j as defined in Equation (2.4).

ii) single accident year i

m̂sepi,I+1 = w2
i,J

σ̂ 2
ji(

f̂ CLji

)2
⎧⎪⎨⎪⎩ 1
wi,ji

+ 1∑i−1

k=i0
wk,ji

⎫⎪⎬⎪⎭
+w2

i,J

(
1+ 1

wi,ji

σ̂ 2
ji(

f̂ CLji

)2
)⎛⎝ J−1∏

j=ji+1

(
1+ bj

σ̂ 2
j(

f̂ CLj

)2
)

− 1

⎞⎠ . (4.5)

Remarks

- (4.3) and (4.5) are new and different to the Merz–Wüthrich formulas and
to the estimators in the existing literature (e.g. the estimators in Merz and
Wüthrich (2008b), Results 3.1 and 3.2.).

- Formula (4.3) for the total over all accident years is surprisingly simple and
even simpler than formula (4.5) for a single accident year.
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- The first summand in Equation (4.5) reflects the risk that the observation on
the next diagonal will deviate from the forecast at time I , whereas the second
summand in Equation (4.5) reflects the risk of updating the forecasts of later
development years due to an update of the estimated CL-factors from time
I to time I + 1.

- Intuitively comprehensible interpretation.
From (4.12) and (4.18) we see that

bj
σ̂ 2
j(

f̂ CLj

)2 =
m̂sep

(
�̂f CL)j

)
(
f̂ CLj

)2 , (4.6)

where

�̂f CLj := f̂ CL(I+1)
j − f̂ CLj , (4.7)

m̂sep
(
�̂f CL)j

)
:= Ê

((
�̂f CL)j

)2∣∣∣∣DI

)
. (4.8)

Note that Equation (4.7) is the change of the CL-estimate of fj from time I
to time I + 1, which can be interpreted as the one year development result of
the chain-ladder factor estimate. Analogously we define

�wtot,J := w (I+1)
tot,J −wtot,J , (4.9)

m̂sep
(
�wtot,J

)
:= Ê

((
�wtot,J

)2∣∣∣DI

)
. (4.10)

Equation (4.3) can now be written as

m̂sep
(
�wtot,J

)
w2

tot,J

=
J−1∏
j=j0

⎛⎜⎝1+
m̂sep

(
�̂f CL)j

)
(
f̂ CL)j

)2
⎞⎟⎠− 1, (4.11)

which is a comprehensible interpretation, as it links the square of the relative
one-year development result uncertainty with the squared relative one year
development uncertainties of the chain ladder factor estimates.

Derivation of Result 4.1

a) total over all accident years (formula (4.3)).
We complement the observed triangle by filling up the not yet observed
lower right part Dc

I with the CL-forecasts wi,j = ĈCL
i,J and take the total over

each column, that is we define

ĈCL
tot,j :=wtot,j =

∑I

i=i0
wi,j.

Analogously we define
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ĈCL(I+1)
tot,j :=w (I+1)

tot,j =
∑I

i=i0
w(I+1)
i,j ,

where

w(I+1)
i,j =

⎧⎨⎩
Ci,j if Ci,j ∈DI+1,

ĈCL(I+1)
i,j otherwise.

By definition of f̂ CLj and f̂ CL(I+1)
j it holds that

wtot,j = wtot,j0

∏j−1

j=j0
f̂ CLj ,

w (I+1)
tot,j = wtot,j0

∏j−1

j=j0
f̂ CL(I+1)
j .

Next we note that

f̂ CL(I+1)
j − f̂ CLj =

∑ij
i=i0 wi,jFi,j∑ij
i=i0 wi,j

−
∑ij−1

i=i0 wi,jFi,j∑ij−1
i=i0 wi,j

= aj
(
Fij ,j − f̂ CLj

)
, (4.12)

where

aj = wij ,j∑ij
i=i0 wi,j

. (4.13)

Since the observations of different accident years are independent, it follows
that {

Fi,ji , f̂
CL(I+1)
ji+1 , . . . , f̂ CL(I+1)

J−1

}
are independent given DI , (4.14){̂

f CL(I+1)
j0 , f̂ CL(I+1)

j0+1 , . . . , f̂ CL(I+1)
J−1

}
are independent given DI . (4.15)

With (4.15) we obtain by applying the estimation principle 3.3

Ê
[(
Z (I+1)

tot

)2∣∣∣∣DI

]
= w2

tot,j0
Ê

[(∏j−1

j=j0
f̂ CL(I+1)
j −

∏j−1

j=j0
f̂ CLj

)2
∣∣∣∣∣DI

]

= w2
tot,j0

{
Ê

[(∏j−1

j=j0
f̂ CL(I+1)
j

)2
∣∣∣∣∣DI

]
−
(∏j−1

j=j0
f̂ CLj

)2
}
.

(4.16)
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From the model assumptions 3.1 and from (4.12) and (4.14) follows

E
[
f̂ CL(I+1)
j

∣∣∣DI

]
= f̂ CLj + aj

(
fj − f̂ CLj

)
,

Var
(
f̂ CL(I+1)
j

∣∣∣DI

)
= a2j

σ 2
j

wij ,j
,

E
[(

f̂ CL(I+1)
j

)2∣∣∣∣DI

]
= ( f̂ CLj + aj

(
fj − f̂ CLj

))2 + a2j
σ 2
j

wij ,j
,

and, by applying the estimation principle 3.3,

Ê
[
f̂ CL(I+1)
j

∣∣∣DI

]
= f̂ CLj , (4.17)

Ê
[(

f̂ CL(I+1)
j

)2∣∣∣∣DI

]
= ( f̂ CLj

)2 + a2j σ̂
2
j

(
1∑ij−1

i=i0 wi,j

+ 1
wij ,j

)
= ( f̂ CLj

)2 + bjσ̂ 2
j , (4.18)

where

bj = wij ,j(∑ij−1
i=i0 wi,j

) (∑ij
i=i0 wi,j

) . (4.19)

From Equations (4.16) and (4.18) we obtain Equation (4.3).

b) Single accounting year i.

Z (I+1)
i = ĈCL(I+1)

i,J − ĈCL
i,J =wi,ji

⎧⎨⎩Fi,ji
J−1∏
j=ji+1

f̂ CL(I+1)
j − f̂ CLji

J−1∏
j=ji+1

f̂ CLj

⎫⎬⎭ . (4.20)

With the telescope formula (3.21) we can write Equation (4.20) as

Z (I+1)
i =wi,ji

(
Fi,ji − f̂ CLji

) (∏J−1

j=ji+1
f̂ CLj

)
︸ ︷︷ ︸

Ai

+wi,ji Fi,ji

(∏J−1

j=ji+1
f̂ CL(I+1)
j −

∏J−1

j=ji+1
f̂ CL)j

)
︸ ︷︷ ︸ .

Bi

Hence

E
[(
Z (I+1)
i

)2∣∣∣∣DI

]
=E

[
A2
i

∣∣DI

]+ 2E [AiBi|DI ]+E
[
B2
i

∣∣DI

]
. (4.21)

For the first summand in Equation (4.21) we get

E
[
A2
i

∣∣DI

] = w2
i,ji

{
E
[(
Fi,ji − fji

)2∣∣∣DI

]
+ ( fji − f̂ CLji

)2} (∏J−1

j=ji+1
f̂ CLj

)2

= wi,jiσ
2
ji

(∏J−1

j=ji+1
f̂ CLj

)2

+w2
i,ji

(
fji − f̂ CLji

)2 (∏J−1

j=ji+1
f̂ CLj

)2

,
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which by use of the estimation principle 3.3 is estimated by

Ê
[
A2
i

∣∣DI

]=w2
i,J

σ̂ 2
ji(

f̂ CLji

)2
⎧⎪⎨⎪⎩ 1
wi,ji

+ 1∑i−1

k=i0
wk,ji

⎫⎪⎬⎪⎭ . (4.22)

From the independence property (4.14) and by applying the estimation
principle 3.3 we also obtain

Ê [AiBi|DI ]= 0 (4.23)

for the second summand in Equation (4.21), since

Ê
[(∏J−1

j=ji+1
f̂ CL(I+1)
j −

∏J−1

j=ji+1
f CL)j

)∣∣∣∣DI

]
= 0.

From the independence property (4.14), (4.17) and by applying the estima-
tion principle 3.3 follows that the third summand in Equation (4.21) can be
estimated by

Ê
[
B2
i

∣∣DI

]=w2
i,ji

((
f̂ CLji

)2 + σ̂ 2
ji

wi,ji

)⎛⎝ J−1∏
j=ji+1

((
f̂ CLj

)2 + bjσ̂ 2
j

)
−

J−1∏
j=ji+1

(
f̂ CLj

)2⎞⎠
=w2

i,ji

J−1∏
j=ji

(
f̂ CLj

)2 (
1+ 1

wi,ji

σ̂ 2
ji(

f̂ CLji

)2
)⎛⎝ J−1∏

j=ji+1

(
1+ bj

σ̂ 2
j(

f̂ CLj

)2
)

− 1

⎞⎠ . (4.24)

By plugging Equations (4.22)–(4.24) into Equation (4.21) we get Equation
(4.5). �

To compare with the Merz–Wüthrich formulas we approximate the estima-
tors in Result 4.1 by a first order Taylor expansion.

Result 4.2 (Taylor Approximation). The msep of the one year run-off risk in the
next accounting year I+1 can be estimated by

i) total over all accident years

m̂sep
TA
tot,I+1 =w2

tot,J

{
J−1∑
j=j0

bj
σ̂ 2
j(

f̂ CLj

)2
}
, (4.25)

where bj is defined in Equation (4.4).
ii) single accident year

m̂sep
TA
i,I+1 =w2

i,J

σ̂ 2
ji(

f̂ CLji

)2
⎧⎪⎨⎪⎩ 1
wi,ji

+ 1∑i−1

k=i0
wk,ji

⎫⎪⎬⎪⎭+w2
i,J

⎧⎨⎩
J−1∑
j=ji+1

bj
σ̂ 2
j(

f̂ CLj

)2
⎫⎬⎭ .

(4.26)
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iii) Equations (4.25) and (4.26) are equivalent to the Merz–Wüthrich formulas
(formulas (1.2) and (2.3) in Merz and Wüthrich (2014)).

Remarks

- Merz–Wüthrich formulas (formulas (1.2) and (2.3) in Merz and Wüthrich
(2014)) written in our notation:
i) total over all accident years

m̂sep
MW
tot,I+1 =

I∑
i=iJ+1

w2
i,J

⎧⎨⎩ σ̂ 2
ji(

f̂ CLji

)2
(

1
wi,ji

+ 1∑ij−1
k=i0 wk,ji

)
+

J−1∑
j=ji+1

bj
σ̂ 2
j(

f̂ CLj

)2
⎫⎬⎭

+ 2
I∑

i=iJ+1

I∑
m=i+1

wi,Jwm,J

⎧⎨⎩ σ̂ 2
ji(

f̂ CLji

)2 1∑i−1
l=i0 wl,ji

+
J−1∑
j=ji+1

bj
σ̂ 2
j(

f̂ CLj

)2
⎫⎬⎭ , (4.27)

ii) single accident year

m̂sep
MW
i,I+1 = m̂sep

TA
i,I+1 given by Equation (4.26). (4.28)

We see that Equation (4.25) for the total over all accident years is a more
concise and easier representation of Equation (4.27), which has in addition
an intuitively accessible interpretation (see next bullet point).
Side remark: The formulas in Merz and Wüthrich (2014) are different but

equivalent to the formulas first published inMerz andWüthrich (2008b) and
the ones in Bühlmann et al. (2009).

- Intuitively comprehensible interpretation.
Analogously as in Result 4.1 we can look behind the formulas and we can
write (4.25) as

m̂sep
(
�wtot,J

)
w2

tot,J

=
J−1∑
j=j0

m̂sep
(
�̂f CL)j

)
(
f̂ CL)j

)2 , (4.29)

where m̂sep
(
�wtot,J

)
and m̂sep

(
�̂f CL)j

)
are defined in Equations (4.10) and

(4.8). Hence, the square of the “relative” one year development result uncer-
tainty (with the ultimate loss as scaling basis) equals the sum of the squared
“relative” one year development uncertainties of the chain-ladder factor
estimates (with the chain ladder factor estimates at time I as scaling basis).

- The numerical results obtained by the Taylor approximations are very close

to the ones obtained by the estimators of Result 4.1 if bj
σ̂ 2
j

( f̂ CLj )
2 << 1, what is

the case in most practical situations.
- The proof of iii) (equivalence of (4.25) with (4.27)) is given in Appendix A.
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- Other equivalent expressions of theMerzWüthrich formulas were published
in Diers et al. (2016) (special case of Corollary 3.9) and in Röhr (2016)
(special case of main result 5.3).

4.2. The one-year run-off prediction uncertainty in future accounting years

The msep of the one year run-off risk in future accounting years are defined by

mseptot,I+k+1 := E
[(
Z(I+1+k)

tot

)2∣∣∣∣DI

]
, (4.30)

msepi,I+k+1 := E
[(
Z(I+1+k)
i

)2∣∣∣∣DI

]
, (4.31)

where Ztot,I+k and Zi,I+k are defined in Equations (4.1) and (4.2).

Result 4.3. The msep of the one-year run-off risk in future accounting years can
be estimated by

i) total over all accident years, accounting years I + k+ 1, k= 0, . . . ,
J − j0 − 1

m̂septot,I+k+1 =w2
tot,J

⎧⎨⎩
J−1∏
j=ji+k

(
1+ b̂ (I+k)

j

σ̂ 2
j(

f̂ CLj

)2
)

− 1

⎫⎬⎭ , (4.32)

where

b̂ (I+k)
j = wij+k,j(∑ij+k−1

i=i0
wi,j

)(∑ij+k
l=i0

wl,j

) , (4.33)

weights wi,j as defined in Equation (2.4) .

ii) single accident year i, accounting years I + k+ 1, k= 0, . . . , J − ji − 1

m̂sepi,I+k+1 =w2
i,J

σ̂ 2
ji+k(
f̂ CLji+k

)2
⎧⎪⎨⎪⎩ 1
wi,ji+k

+ 1∑i−1

l=i0
wl,ji+k

⎫⎪⎬⎪⎭ (4.34)

+w2
i,J

⎛⎝1+ 1
wi,ji+k

σ̂ 2
ji+k(
f̂ CLji+k

)2
⎞⎠⎛⎝ J−1∏

j=ji+k+1

(
1+ b̂ (I+k)

j

σ̂ 2
j(

f̂ CLj

)2
)

− 1

⎞⎠ .

Remarks

- Result 4.3 has the same structure as Result 4.1. The estimators in Result
4.3 are obtained from the estimators in Result 4.1 by simply replacing bj by
b̂ (I+k)
j and the not yet known weights in b̂ (I+k)

j by the forecasts at time I .
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- For k= 0 Result 4.3 coincides with Result 4.1.
- Intuitively comprehensible interpretation.
Analogously as in Result 4.1 we can see from the derivation of Result 4.3
that

b̂ (I+k)
j

σ̂ 2
j(

f̂ CLj

)2 =
m̂sep

(
�̂f CL(I+k)j

)
(
f̂ CLj

)2 , (4.35)

where

�̂f CL(I+k)j := f̂ CL(I+k+1)
j − f̂ CL(I+k)j (4.36)

is the change of the CL-estimate of fj from time I + k to time I + k+ 1, and
where

m̂sep
(
�̂f CL(I+k)j

)
:= Ê

((
�̂f CLj

)2∣∣∣DI

)
. (4.37)

Analogously we define

�w (I+k)
tot,J := w (I+k+1)

tot,J −w (I+k)
tot,J , (4.38)

m̂sep
(
�w (I+k)

tot,J

)
:= Ê

((
�w (I+k)

tot,J

)2∣∣∣∣DI

)
(4.39)

Result (4.32) can now be written as

m̂sep
(
�w (I+k)

tot,J

)
w2

tot,J

=
J−1∏
j=j0

⎛⎝1+
m̂sep

(
�w (I+k)

tot,J

)
(
f̂ CLj

)2
⎞⎠− 1, (4.40)

which is a comprehensible interpretation, as it links the square of the relative
one-year development result uncertainty with the squared relative one year
development uncertainties of the chain ladder factor estimates.

Derivation of Result 4.3

Equations (4.30) and (4.31) can be written as

mseptot,I+k+1 = E
[
E
[(
Z(I+1+k)

tot

)2∣∣∣∣DI+k

]∣∣∣∣DI

]
, (4.41)

msepi,I+k+1 = E
[
E
[(
Z(I+1+k)
i

)2∣∣∣∣DI+k

]∣∣∣∣DI

]
. (4.42)

By applying the estimation principle 3.3 on the inner expected values of
Equations (4.41) and of Equation (4.42) we obtain (see Result 4.1, but with σ 2

j

instead of σ̂ 2
j )
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Ẽ
[(
Z(I+1+k)

tot

)2∣∣∣∣DI+k

]
:=
(
w(I+k)

tot,J

)2 ⎧⎪⎨⎪⎩
J−1∏

j=j0+k

⎛⎜⎝1+ b (I+k)
j

σ 2
j(

f̂ CL(I+k)
j

)2
⎞⎟⎠− 1

⎫⎪⎬⎪⎭ ,

(4.43)

Ẽ
[(
Z(I+1+k)
i

)2∣∣∣∣DI+k

]
:=
(
w(I+k)
i,J

)2 σ 2
ji+k(

f̂ CL(I+k)ji+k
)2
⎧⎪⎨⎪⎩ 1

w (I+k)
i,ji+k

+ 1∑i−1

l=i0
w (I+k)
l,ji+k

⎫⎪⎬⎪⎭
(4.44)

+
(
w(I+k)
i,J

)2 ⎛⎜⎝1+ 1

w (I+k)
i,ji+k

σ 2
j(

f̂ CL(I+k)ji+k
)2
⎞⎟⎠
⎛⎜⎝ J−1∏
j=ji+1+k

⎛⎜⎝1+ b (I+k)
j

σ 2
j(

f̂ CL(I+k)j

)2
⎞⎟⎠− 1

⎞⎟⎠,
where

b (I+k)
j = w(I+k)

ij+k,j(∑ij+k−1
i=i0 w(I+k)

i,j

) (∑ij+k
i=i0 w

(I+k)
i,j

) ,

f̂ CL(I+k)
j =

ij+k−1∑
i=i0

w(I+k)
i,j

w(I+k)
•,j

Fi,j, where w(I+k)
•,j =

ij+k−1∑
i=i0

w(I+k)
i,j ,

w(I+k)
i,j =

⎧⎨⎩
Ci,j if Ci,j ∈DI+k

ĈCL(I+k)
i,j otherwise

.

Ẽ
[(
Z(I+1+k)

tot

)2∣∣∣∣DI+k

]
and Ẽ

[(
Z(I+1+k)
i

)2∣∣∣∣DI+k

]
are r.v., since some of the

weights are not yet known at time I . To simplify notation and to indicate that
these are functions of the entries in DI+k we define

gtot (DI+k) := Ẽ
[(
Z(I+1+k)

tot

)2∣∣∣∣DI+k

]
,

gi (DI+k) := Ẽ
[(
Z(I+1+k)
i

)2∣∣∣∣DI+k

]
.

To estimate the msep we consider

m̃septot,I+k+1 := E [gtot (DI+k)|DI ] , (4.45)

m̃sepi,I+k+1 := E [gi (DI+k)|DI ] . (4.46)

The conditional expected values on the right hand side depend on distribu-
tional assumptions and can usually not be calculated in a closed form. To find
estimators in the distribution-free case, we therefore approximate gtot (DI+k)
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and gi (DI+k) by the following first order Taylor approximation around the
forecasts wi,j.

gTAtot (DI+k) := gtot
(D̃I+k

)+ I∑
i=iJ+1

min(ji+k, J)∑
j=jj+1

∂gtot
∂Ci,j

∣∣∣∣
D̃I+k

(
Ci,j −wi,j

)
,

gTAi (DI+k) := gi
(D̃I+k

)+ I∑
i=iJ+1

min(ji+k, J)∑
j=ji+1

∂gi
∂Ci,j

∣∣∣∣
D̃I+k

(
Ci,j −wi,j

)
,

where D̃I+k denotes the triangle obtained by replacing the k newest diagonals
in DI+k, which are not yet observed at time I , by the CL-forecasts at time I .
Since

wi,j = Ê
[
Ci,j

∣∣DI

]
,

we get

E
[
gTAtot (DI+k)

∣∣DI

] = gtot
(D̃I+k

)
, (4.47)

E
[
gTAi (DI+k)

∣∣DI

] = gi
(D̃I+k

)
. (4.48)

Result 4.3 then follows by replacing σ 2
j in Equations (4.47) and (4.48) by σ̂ 2

j . �
To compare with the Merz–Wüthrich formulas we again approximate the

estimators in Result 4.3 by a first order Taylor expansion.

Result 4.4 (Taylor approximation). The msep of the one-year run-off risk in
future accounting years can be estimated by

i) total over all accident years, accounting years I + k+ 1, k= 0, . . . , J −
j0 − 1

m̂sep
TA
tot,I+k+1 =w2

tot,J

⎧⎨⎩
J−1∑

j=j0+k
b̂(I+k)
j

σ̂ 2
j(

f̂ CLj

)2
⎫⎬⎭ . (4.49)

ii) single accident year i, accounting years I + k+ 1, k= 0, . . . , J − ji − 1

m̂sep
TA
i,I+k+1 =w2

i,J

σ̂ 2
ji+k(
f̂ CLji+k

)2
⎧⎪⎨⎪⎩ 1
wi,ji+k

+ 1∑i−1

l=i0
wl,ji+k

⎫⎪⎬⎪⎭
+w2

i,J

⎧⎨⎩
J−1∑

j=ji+k+1

b̂ (I+k)
j

σ̂ 2
j(

f̂ CLj

)2
⎫⎬⎭ . (4.50)

iii) Equations (4.49) and (4.50) are equivalent to the Merz–Wüthrich formulas
(formulas (1.4) and (2.4) in Merz and Wüthrich (2014)).
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Remarks

- Equations (4.49) and (4.50) coincide with (4.25) and (4.26) for k= 0.
- Merz–Wüthrich formulas (formulas (1.4) and (2.4) in Merz and Wüthrich
(2014)) written in our notation
a) total over all accident years, accounting years I + k+ 1, k= 0, . . . , J −
j0 − 1

m̂sep
MW
tot,I+k+1 := Ê

[(
Z(I+k+1)

tot

)2∣∣∣∣DI

]MW

=

=
I∑

i=iJ+k+1

⎧⎨⎩w2
i,J

σ̂ 2
ji+k(
f̂ CLji+k

)2
(

1
wi,ji+k

+ 1∑i−k−1
l=i0 wl,ji+k

k∏
m=1

(
1− aji+m

))⎫⎬⎭
+

I∑
i=iJ+k+1

⎧⎨⎩w2
i,J

J−1∑
j=ji+k+1

σ̂ 2
j(

f̂ CLj

)2
(
aj−k

1∑ij−1
l=i0 wl,j

k−1∏
m=0

(
1− aj−m

))⎫⎬⎭
+2

I∑
i=iJ+k+1

I∑
n=i+1

wi,J wn,J

σ̂ 2
ji+k(
f̂ CLji+k

)2 1∑i−k−1
l=i0 wl,ji+k

k∏
m=1

(
1− aji+m

)
(4.51)

+2
I∑

i=iJ+k+1

I∑
n=i+1

wi,J wn,J

J−1∑
j=ji+k+1

σ̂ 2
j(

f̂ CLj

)2
(
aj−k

1∑ij−1
l=i0 wl,j

k−1∏
m=0

(
1− aj−m

))

where aj = wij ,j∑ij
l=i0 wl,j

.

b) single accident year i, accounting years I + k+ 1, k= 0, . . . , J − ji − 1

m̂sep
MW
i,I+k+1 := Ê

[(
Z(I+k+1)
i

)2∣∣∣∣DI

]MW

=w2
i,J

σ̂ 2
ji+k(
f̂ CLji+k

)2
(

1
wi,ji+k

+
k∏

m=1

(
1− aji+m

) 1∑i−1−k
l=i0 wl,ji+k

)
(4.52)

+w2
i,J

J−1∑
j=ji+k+1

σ̂ 2
j(

f̂ CLj

)2
(
aj−k

k−1∏
m=0

(
1− aj−m

) 1∑ij−1
l=i0 wl,j

)
.

It is astonishing that the Merz–Wüthrich formula (4.51) for the total over all
accident years can be written in such a concise way as (4.49). Formula (4.50)
too is simpler than Equation (4.52).

- Intuitively comprehensible interpretation.
Analogously as in Result 4.3 Equation (4.49) can be written as

m̂sep
(
�w (I+k)

tot,J

)
w2

tot,J

=
J−1∑
j=j0

m̂sep
(

�̂f CL(I+k)j

)
(
f̂ CLj

)2 ,
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where m̂sep
(

�̂f CL(I+k)j

)
and m̂sep

(
�w (I+k)

tot,J

)
are defined in Equations (4.37)

and (4.39). Hence, the square of the relative one-year claims development
result uncertainty is equal to the sum of the squared relative one-year
development uncertainties of the chain ladder estimates.

- Other estimators of the msep of the one-year run-off risk in future account-
ing years were first published in Röhr (2016) (special case of main result 5.3
in Röhr (2016)). A formal proof that these estimators are equivalent to the
Merz–Wüthrich estimators (4.51) and (4.52) is not given in Röhr (2016), but
it is mentioned that numerical examples would indicate this equivalence.

Proof of Result 4.4. Equations (4.49) and (4.50) are obtained by a straightfor-
ward first order Taylor approximation of Equations (4.32) and (4.34). A proof
of (iii) is given in Appendix B �

5. THE ULTIMATE RUN-OFF PREDICTION UNCERTAINTY

The ultimate run-off risk is the deviation of the ultimate claim from its forecast,
that is the r.v.

Zult
i := Ci,J − ĈCL

i,J for single accident years i= i0, . . . , I ,

Zult
tot := Ctot,J − ĈCL

tot,J for the total over all accident years.

The msep of the ultimate run-off risk is defined by

mseptot,ult := E
[(
Zult

tot

)2∣∣∣DI

]
for the total over all accident years,

msepi,ult := E
[(
Zult
i

)2∣∣∣DI

]
for single accident years i ∈ {i0, . . . , I} .

Result 5.1. The msep of the ultimate run-off risk can be estimated by

a) total over all accident years

m̂septot,ult =
J−1∑
j=j0

σ̂ 2
j(

f̂ CLj

)2
⎛⎜⎝ I∑

i=ij

w2
i,J

wi,j
+
(∑I

i=ij wi,J

)2
∑ij−1

i=i0 wi,j

⎞⎟⎠ , (5.1)

where the weights wi,j are defined in Equation (2.4).
b) single accident year i

m̂sepi,ult =w2
i,J

{
J−1∑
j=ji

σ̂ 2
j(

f̂ CLj

)2
(

1
wi,j

+ 1∑ij−1
i=i0 wi,j

)}
. (5.2)

c) Equation (5.2) is the same formula as the one found by Mack and Equation
(5.1) is equivalent to the Mack-formula.
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Remarks

- The first summand in Equations (5.1) and (5.2) represent the process
variance and the second summand the estimation error.

- Intuitively accessible interpretation.
Result 5.1 can be written as

m̂septot,ult =
J−1∑
j=j0

⎧⎪⎨⎪⎩
I∑
i=ij

w2
i,J ĈoV

(
Fi,j
∣∣Ci,j

)2 +
⎛⎝ I∑

i=ij
wi,J

⎞⎠2

ĈoV
(
f̂ CLj

∣∣Bj

)2⎫⎪⎬⎪⎭ ,

(5.3)

m̂sepi,ult =
J−1∑
j=ji

{
w2
i,J ĈoV

(
Fi,j
∣∣Ci,j

)2 +w2
i,J ĈoV

(
f̂ CLj

∣∣Bj

)2}
, (5.4)

which are very nice and easily interpretable formulas. We can clearly see the
impact of the uncertainties originating from the Fi,j and from the f̂ CLj on the
msep given by the square of a weight times the square of the coefficients of
variation.

- Equation (5.2) is the same as Theorem 3 in Mack (1993), but Equation (5.1)
is different albeit equivalent to the one in Mack (Corollary on page 220 in
Mack (1993)).

Mack-formula for the total over all accident years written in our notation.

m̂sep
Mack
tot,ult =

I∑
i=iJ+1

w2
i,J

{
J−1∑
j=ji

σ̂ 2
j(

f̂ CLj

)2
(

1
wi,j

+ 1∑ij−1
i=i0 wi,j

)}
(5.5)

+ 2
I∑

i=iJ+1

wi,J

(
I∑

k=i+1

wk,J

)
J−1∑
j=ji

(
σ̂ 2
j(

f̂ CLj

)2 1∑ij−1
m=i0 wm,j

)
.

Comparing with Equation (5.1) we see that Equation (5.1) is more con-
cise and has an intuitively accessible interpretation, whereas the second
summand (covariance term) in Equation (5.5) is difficult to interpret.

- The process variance for the total over all accident years is just the sum of the
process variance of the single accident years (see Equation(5.16)), because
the observations in different accident years are independent. But as for the
estimation error it holds that

ÊEtot =
J−1∑
j=j0

⎧⎪⎨⎪⎩ σ̂ 2
j(

f̂ CLj

)2
(∑I

i=ij wi,J

)2
∑ij−1

i=i0 wi,j

⎫⎪⎬⎪⎭>

J−1∑
j=j0

ÊEi =
J−1∑
j=j0

{
σ̂ 2
j(

f̂ CLj

)2
∑I

i=ij w
2
i,J∑ij−1

i=i0 wi,j

}
,
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since the uncertainty due to f̂ CLj affects the accident years
{
i= ij, . . . , I

}
simultaneously. In the Mack-formula (5.5) the difference ÊEtot −

∑J−1

j=j0
ÊEi

is taken into account by the covariance term (second summand of Equation
(5.5)).

Derivation of Result 5.1
In the following we derive the estimators of these msep in a slightly different

way than in Mack (1993) by making use of the telescope formula (3.21).
It is convenient to introduce

μi,j := E
[
Ci,j

∣∣DI

]=wi,ji

∏j−1

k=ji
fk for j= ji + 1, . . . , J, (5.6)

μtot,j := E
[
Ctot,j

∣∣DI

]
. (5.7)

The following splitting is well known.

mseptot,ult = E
[(
Ctot,J − μtot,J

)2∣∣∣DI

]
︸ ︷︷ ︸

PVtot

+ (
μtot,J − ĈCL

tot,J

)2︸ ︷︷ ︸
EEtot

, (5.8)

msepi,ult = E
[(
Ci,J − μi,J

)2∣∣∣DI

]
︸ ︷︷ ︸

PVi

+ (
μi,J − ĈCL

i,J

)2︸ ︷︷ ︸
EEi

, (5.9)

where PVtot and PVi are called process variance (deviation of the ultimate claim
from its expected value) and EEi and EEtot estimation error (misestimating the
expected value).

By applying the telescope formula (3.21) we get(
Ci,J − μi,J

)2 = w2
i,ji

(∏J−1

j=ji
Fi,j −

∏J−1

j=ji
fj

)2

=
(

J−1∑
j=ji

Ci,j

(
Fi,j − fj

)∏J−1

k=j+1
fk

)2

, (5.10)

(
Ctot,J − μtot,J

)2 =
(

I∑
i=i0

(
J−1∑
j=ji

Ci,j

(
Fi,j − fj

) (∏J−1

k=j+1
fk

)))2

=
⎛⎝ J−1∑

j=j0

⎛⎝ I∑
i=ij+1

Ci,j

(
Fi,j − fj

) (∏J−1

k=j+1
fk

)⎞⎠⎞⎠2

. (5.11)

EEi = w2
i,ji

(
J−1∏
j=ji

fj −
J−1∏
j=ji

f̂ CLj

)2

=
(

J−1∑
j=ji

μi,j

(
fj − f̂ CLj

) (∏J−1

k=j+1
f̂ CLk

))2

, (5.12)
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EEtot =
⎛⎝ J−1∑

j=j0

⎛⎝ I∑
i=ij+1

μi,j

⎞⎠ ( fj − f̂ CLj

) (∏J−1

k=j+1
f̂ CLk

)⎞⎠2

. (5.13)

By conditioning on Bk, k> j, we see that

E
[
Ci,j

(
Fi,j − fj

)
Ci,k

(
Fi,k − fk

)]= 0. (5.14)

From the definition of the process variance, Equations (5.10), (5.11) and the
independence of accident years follows:

PVi =
J−1∑
j=ji

μi,j

(∏J−1

k=j+1
fk

)2

σ 2
j =

J−1∑
j=ji

μ2
i,J

σ 2
j

f 2j

1
μi,j

, (5.15)

PVtot =
I∑

i=iJ+1

PVi =
J−1∑
j=j0

I∑
i=ij+1

μi,j

(∏J−1

k=j+1
fk

)2

σ 2
j

=
J−1∑
j=j0

I∑
i=ij+1

μ2
i,J

σ 2
j

f 2j

1
μi,j

. (5.16)

By applying the estimation principle 3.3 Result 5.1 is immediately obtained
from Equations (5.12), (5.13), (5.15), (5.16).

The following Corollary shows an equivalent way of writing formula (5.1).

Corollary 5.2. Formula (5.1) for estimating the msep of the ultimate run-off risk
for the total over all accident years can also be written as

Ê
[(
Zult

tot

)2∣∣∣DI

]
= w2

tot,J

{
J−1∑
j=j0

qj
σ̂ 2
j(

f̂ CLj

)2 1∑ij−1
i=i0 wi,j

}
(5.17)

= w2
tot,J

{
J−1∑
j=j0

qj
(
ĈoV

(
f̂ CLj

∣∣Bj

))2}
, (5.18)

where

qj =
∑I

i=ij
wi,J∑I

i=i0
wi,J

= fraction of ĈCL
tot,J affected by the uncertainty of f̂

CL
j .

Remarks

- Formula (5.17) was already found by Ancus Röhr in Röhr (2016). However,
he derived a formula for estimating the msep of Z̃ult

tot, where Z̃
ult
tot is a first order

Taylor expansion of Zult
tot. Interestingly the resulting estimator is equivalent

to the Mack estimator and hence also equivalent to (5.1).
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- Equation (5.17) is an astonishing and surprisingly simple result. Nevertheless
we prefer Result 5.1, as we can see there explicitly the impact of the
uncertainties originating from the Fi,j and from the f̂ CLj on the msep.

- The proof of the equivalence between (5.17) and (5.1) is given in Appendix C.

6. RELATIONSHIP BETWEEN ONE-YEAR AND ULTIMATE
RUN-OFF RISKS

The sum of the one year run-off risks over all future development years is equal
to the ultimate run-off risk, i.e.∑J

k=1
Z(I+k)

tot = Zult
tot, (6.19)∑J−ji

k=1
Z(I+k)
i = Zult

i , (6.20)

and hence

E
[(∑J

k=1
Z(I+k)

tot

)2∣∣∣∣DI

]
= E

[(
Zult

tot

)2∣∣∣DI

]
, (6.21)

E
[(∑J

k=1
Z(I+k)
i

)2∣∣∣∣DI

]
= E

[(
Zult
i

)2∣∣∣DI

]
. (6.22)

By definition of best estimate reserves the forecast of the claims develop-
ment result in any future period is zero. For this reason it is often argued that

the process of best estimate forecasts
{
ĈBE(I+k)
i,J : k= 0, . . . , J

}
is a martingale

and that therefore the one-year run-off risks, which are the increments of this
process, are uncorrelated. Based on this martingale argument it is then required
that the estimators of the one-year run-off risk should satisfy the “splitting”
property, which means that the sum of the estimated msep of the one-year run
off risks summed up over all future accounting years until final development
should be equal to the estimated msep of the ultimate run-off risk.

However, best estimate forecasts are usually not a martingale, what is also
the case for the CL-forecasts in the Mack-model. The CL forecasts fulfil

Ê
[
ĈCL(I+k+1)
i,J

∣∣∣ ĈCL(I+k)
i,J

]
= ĈCL(I+k)

i,J ,

but they do not satisfy the martingale condition

E
[
ĈCL(I+k+1)
i,J

∣∣∣ ĈCL(I+k)
i,J

]
= ĈCL(I+k)

i,J ,

because the unknown CL factors fj are replaced in the CL-forecasts by their
estimates f̂ CLj and f̂ CL(I+1+k)

j respectively. Hence there is nomathematical reason
that the estimators should fulfil the splitting property.
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Theorem 6.1.

i) ∑J−j0
k=1

m̂septot,I+k > m̂septot,ult,∑J−ji
k=1

m̂sepi,I+k > m̂sepi,ult,

where m̂septot,I+k and m̂sepi,I+k are the estimators in Result 4.3 and
m̂septot,ult and m̂sepi,ult the Mack estimators (estimators in Result 5.1).

ii) ∑J−j0
k=1

m̂sep
TA
tot,I+k = m̂septot,ult,∑J−ji

k=1
m̂sep

TA
i,I+k = m̂sepi,ult,

where m̂sep
TA
tot,I+k and m̂sep

TA
i,I+k are the estimators in Result 4.4.

Remarks

- The sum of the one-year msep estimators in Result 4.3 is bigger than the
Mack estimators of the ultimate run-off risk.

- The estimators m̂sep
TA
tot,I+k and m̂sep

TA
i,I+k in Result 4.4 fulfil the splitting prop-

erty. The splitting property entails a splitting of the ultimate run off risk
over the future accounting years until final development, which is a con-
venient property. This might be an argument and a good reason to use
the estimators m̂sep

TA
tot,I+k and m̂sep

TA
i,I+k (Taylor approximations) instead of

the estimators m̂septot,I+k and m̂sepi,I+k, in particular, since the differences
in numerical results between the two estimators are negligible for most
situations in practice.

Proof. i) follows from the fact that m̂septot,I+k and m̂sepi,I+k respectively
are bigger than m̂sep

TA
tot,I+k and m̂sep

TA
i,I+k for all k. The splitting property ii) has

already been proved by MW (proposition 6.1 in Merz and Wüthrich (2014))
and by Röhr (see Remark 5.6 in Röhr (2016)) . �

7. NUMERICAL EXAMPLE

As a numerical example we consider the data in Table 1 with estimated total
reserves of 2’926 at the end of 2017.

Table 3 shows the square root of the estimated msep for the ultimate run-
off and for the one year run-off in the next accounting year, where the latter
is calculated with Result 4.1 (column A in Table 3) as well as with Result 4.2
(Taylor approximation; column TA in Table 3). We see that in this example the
numerical results of the two estimators are practically the same. We can also
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TABLE 3

TABLE 4

see that the numerical results in column A are greater than the ones in column
TA, but only very minor in the third digit after the decimal point in accident
years 2014 and 2017.

Table 4 shows the estimates of the msep of the one-year run-off for the total
over all accident years for all future accounting years until final development
together with the forecasted ingoing reserves. The numerical results in column
A were calculated with Result 4.3 and the ones in column TA with Result 4.4
(Taylor approximation). Again the numerical results obtained by the two esti-
mators are practically the same. We can also check the splitting property. If we
sum up the square of the entries in column A, we obtain the same as the square
of the estimated msep of the ultimate run-off for the total over all accident
years from Table 3.

In the current formula for calculating the risk margin in solvency II it is
assumed that the required capital for the remaining one-year run-off risk in
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future accounting years decreases proportionally to the remaining reserves.
This was due to the lack of formulas to calculate the prediction uncertainty
for future accounting years. But now the formulas have been developed and
are here. Comparing the development pattern of the reserves with the develop-
ment pattern of the square root of the msep (see graph beside Table 4) we see
that the latter decreases much slower. This is not a surprise. Complex and com-
plicated claims such as severe bodily injury claims stay open for a long time,
whereas “normal” claims can be settled much quicker. Hence the proportion
of the reserves stemming from complex claims is bigger in later development
years. But the prediction uncertainty of this kind of claims is bigger than for the
“normal” claims. This also means that one will need more capital in solvency
II with these new formulas, since the risk margin will become bigger.
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APPENDIX A. PROOF OF RESULT 4.2, ITEM (III)

We have to show that

m̂sepTAtot,I+1 =w2
tot,J

⎧⎪⎨⎪⎩
J−1∑

j=j0+k
bj

σ̂ 2
j(

f̂ CLj

)2
⎫⎪⎬⎪⎭ (A.23)

is equivalent to

m̂sepMW
tot,I+1 =

I∑
i=iJ+1

w2
i,J

⎧⎪⎨⎪⎩ σ̂ 2
ji(

f̂ CLji

)2
⎛⎝ 1
wi,ji

+ 1∑ij−1
i=i0 wi,ji

⎞⎠+ w2
i,J

J−1∑
j=ji+1

σ̂ 2
j(̂

f CLj

)2 bj
⎫⎪⎬⎪⎭

+ 2
I∑

i=iJ+1

I∑
m=i+1

wi,Jwm,J

⎧⎪⎨⎪⎩ σ̂ 2
ji(

f̂ CLji

)2 1∑i−1
l=i0 wl,ji

+
J−1∑
j=ji+1

σ̂ 2
j(

f̂ CLj

)2 bj
⎫⎪⎬⎪⎭ . (A.24)

We rewrite Equation (A.24) by summing first over the development years and after-
wards over the corresponding accident years and obtain

m̂septot,I+1 =
J−1∑
j=j0

w2
ij ,j

σ̂ 2
j(̂

f CLj

)2
⎛⎝ 1
wij ,j

+ 1∑ij−1
i=i0 wi,j

⎞⎠ J−1∏
k=j

(
f̂ CLk

)2

+
J−1∑

j=j0+1

⎧⎨⎩
I∑

i=ij+1

w2
i,jbj + 2

⎛⎝ I∑
m=ij+1

wm,j

⎞⎠ wij ,j∑ij−1
l=i0 wl,j

(A.25)

+2

⎛⎝ I∑
i=ij+1

I∑
m=i+1

wi,jwm,jbj

⎞⎠⎫⎬⎭ J−1∏
k=j

(
f̂ CLk

)2 σ̂ 2
j(

f̂ CLj

)2 .
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Furthermore

w2
ij ,j

⎛⎝ 1
wij ,j

+ 1∑ij−1
i=i0 wi,j

⎞⎠ = w2
ij ,j

⎛⎝ ∑ij
i=i0 wi,j

wij ,j
∑ij−1

i=i0 wi,j

⎞⎠
=
(∑ij

i=i0
wi,j

)2
bj . (A.26)

(A.27)
wij ,jwm,j

1∑ij−1
l=i0 wl,ji

=
(∑ij

i=i0
wi,j

) wij ,j(∑ij
i=i0 wi,j

)∑ij−1
l=i0 wl,j

wm,j

=
(∑ij

i=i0
wi,j

)
wm,jbj . (A.28)

Inserting Equations (A.26) and (A.28) into Equation (A.25) yields

m̂septot,I+1 =
J−1∑
j=j0

⎧⎪⎨⎪⎩
⎛⎝ ij∑
i=i0

wi,j

⎞⎠2

+
I∑

i=ij+1

w2
i,j + 2

⎛⎝ ij∑
i=i0

wi,j

⎞⎠⎛⎝ I∑
m=ij+1

wm,j

⎞⎠
+2

I∑
i=ij+1

I∑
m=i+1

wi,jwm,j

⎫⎬⎭ J−1∏
k=j

(
f̂ CLk

)2 σ̂ 2
j(

f̂ CLj

)2 bj
=

J−1∑
j=j0

⎧⎪⎨⎪⎩
⎛⎝ I∑
i=i0

wi,j

⎞⎠2
J−1∏
k=j

(̂
f CLk

)2 σ̂ 2
j(̂

f CLj

)2 bj
⎫⎪⎬⎪⎭

= w2
tot,J

⎛⎜⎝J−1∑
j=j0

bj
σ̂ 2
j(

f̂ CLj

)2
⎞⎟⎠ . (A.29)

Thus we have proved that Equation (A.29) is equivalent to the MW-formula (A.24) �

APPENDIX B. PROOF OF RESULT 4.4, ITEM (III)

(i) Single accident year: equivalence of formula (4.50) with formula (4.52).
It is convenient to introduce the following notation:

s (I+k)j :=
ij+k∑
i=i0

w (I+k)
i,j = sum of observations in column j known at time I + k (for k≤ I − ij),

ŝ (I+k)j :=
ij+k∑
i=i0

wi,j = "CL-forecast" of s (I+k)j at time I ,

â (I+k)
j := wij+k,j

ŝ (I+k)j

;

b̂ (I+k)
j := wij+k,j

ŝ (I+k)j ŝ (I+k−1)
j
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Note that

1− â (I+k)
j = ŝ (I+k−1)

j

ŝ (I+k)j

, (A.30)

b̂ (I+k)
j = â (I+k)

j
1

ŝ (I+k−1)
j

. (A.31)

Note also that for I + k≤ I all quantities are known at time I and that â (I)
j = aj and b̂

(I)
j = bj ,

where aj and bj are as defined in Equations (4.13) and (4.19).

Lemma B.1. It holds that

aj−k = â (I+k)
j (A.32)

k−1∏
m=0

(
1− aj−m

) 1∑ij−1
i=i0 wi,j

= 1∑ij+k−1
i=i0 wi,j

. (A.33)

Proof of Lemma B.1.

wij+k,j = wij−k ,j−k
j−1∏
l=j−k

f̂ CLl ,

ŝ (I+k)j =
⎛⎝ij−k∑
i=i0

wi,j−k

⎞⎠ j−1∏
l=j−k

f̂ CLl ,

â (I+k)
j = wij+k,j

ŝ (I+k)j

= wij−k,j−k∑ij−k
i=i0 wi,j−k

= aj−k.

∏k−1

m=0

(
1− aj−m

) 1∑ij−1
i=i0 wi,j

=
∏0

m=k−1

(
1− â (I+m)

j

) 1

ŝ (I−1)
j

= ŝ (I+k−2)
j

ŝ (I+k−1)
j

· ŝ
(I+k−3)
j

ŝ (I+k−2)
j

· . . . · ŝ (I)j

ŝ (I+1)
j

· ŝ
(I−1)
j

ŝ (I)j

· 1

ŝ (I−1)
j

= 1

ŝ (I+k−1)
j

= 1∑ij+k−1
i=i0 wi.j

.

�
To prove the equivalence of formula (4.50) with formula (4.52) we have to show that

1∑i−k−1
l=i0 wl,ji+k

k∏
m=1

(
1− aji+m

) = 1∑i−1

l=i0
wl,ji+k

and (A.34)

aj−k
k−1∏
m=0

(
1− aj−m

) 1∑ij−1
l=i0 wl,j

= b̂ (I+k)
j . (A.35)
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1∑i−k−1
l=i0 wl,ji+k

k∏
m=1

(
1− aji+m

) = 1∑iji+k−1
l=i0 wl,ji+k

k−1∏
m=0

(
1− aji+k−m

)
= 1∑iji+k+k−1

i=i0 wi,ji+k

= 1∑i−1

l=i0
wl,ji+k

,

where the second equation follows from Equation (A.33) for j= ji + k.
With Equations (A.32), (A.33) and (A.31) we also obtain

aj−k
k−1∏
m=0

(
1− aj−m

) 1∑ij−1
l=i0 wl,j

= â (I+k)
j

1

ŝ (I+k−1)
j

= b̂ (I+k)
j .

�
ii) Total over all accident years: equivalence of formula (4.49) with formula (4.51).

Replacing Equation (4.52) by Equation (4.50) andmaking use of Lemma B.1 we can write
Equation (4.51) in the following equivalent way:

m̂septot,I+k+1 =
I∑

i=iJ+k+1

w2
i,J

σ̂ 2
ji+k(

f̂ CLji+k
)2
⎧⎪⎨⎪⎩
⎛⎜⎝ 1
wi,ji+k

+ 1∑i−1

l=i0
wl,ji+k

⎞⎟⎠
⎫⎪⎬⎪⎭

+
I∑

i=iJ+k+1

w2
i,J

⎧⎪⎨⎪⎩
J−1∑

j=ji+k+1

b̂ (I+k)
j

σ̂ 2
j(

f̂ CLj

)2
⎫⎪⎬⎪⎭ (A.36)

+2
I∑

i=iJ+k+1

I∑
n=i+1

wi,J wn,J
σ̂ 2
ji+k(

f̂ CLji+k
)2 1∑i−1

l=i0
wl,ji+k

+2
I∑

i=iJ+k+1

I∑
n=i+1

wi,J wn,J
J−1∑

j=ji+k+1

σ̂ 2
j(

f̂ CLj

)2 b̂ (I+k)
j .

As in subsection 4.4 we rewrite Equation (A.36) by first summing over the development
years and afterwards over the corresponding accident years to obtain

m̂septot,I+k+1 =
J−1∑

j=j0+k
w2
ij+k,j

σ̂ 2
j(

f̂ CLj

)2
⎛⎝ 1
wij+k,j

+ 1∑ij+k−1
i=i0 wi,j

⎞⎠ J−1∏
l=j

(
f̂ CLl

)2

+
J−1∑

j=j0+k+1

⎧⎨⎩
I∑

i=ij+k+1

w2
i,j + 2

⎛⎝ I∑
m=ij+k+1

wm,j

⎞⎠ wij+k,j∑ij+k−1
l=i0 wl,j

(A.37)

+
⎛⎝ I∑
i=ij+k+1

I∑
m=i+1

wi,jwm,j

⎞⎠⎫⎬⎭ J−1∏
l=j

(
f̂ CLl

)2 σ̂ 2
j(

f̂ CLj

)2 b̂ (I+k)
j .
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The following calculations are analogous to the ones in subsection A

w2
ij+k,j

⎛⎝ 1
wij+k,j

+ 1∑ij+k−1
i=i0 wi,j

⎞⎠ = w2
ij+k,j

⎛⎝ ∑ij+k
i=i0 wi,j

wij+k,j
∑ij+k−1

i=i0 wi,j

⎞⎠
=
(∑ij+k

i=i0
wi,j

)2
b̂ (I+k)
j . (A.38)

wij+k,jwm,j
1∑ij+k−1

l=i0 wl,ji
=
(∑ij+k

i=i0
wi,j

) wij+k,j(∑ij+k
i=i0 wi,j

)∑ij+k−1
l=i0 wl,j

wm,j

=
(∑ij+k

i=i0
wi,j

)
wm,ĵb

(I+k)
j . (A.39)

By inserting Equations (A.38) and (A.39) into Equation (A.37) we obtain

m̂septot,I+k+1 =
J−1∑

j=j0+k

⎧⎪⎨⎪⎩
⎛⎝ij+k∑
i=i0

wi,j

⎞⎠2

+
I∑

i=ij+k+1

w2
i,j + 2

⎛⎝ij+k∑
i=i0

wi,j

⎞⎠⎛⎝ I∑
m=ij+k+1

wm,j

⎞⎠
+2

I∑
i=ij+k+1

I∑
m=i+1

wi,jwm,j

⎫⎬⎭ J−1∏
k=j

(
f̂ CLk

)2 σ̂ 2
j(

f̂ CLj

)2 b̂ (I+k)
j

=
J−1∑

j=j0+k

⎧⎪⎨⎪⎩
⎛⎝ I∑
i=i0

wi,j

⎞⎠2
J−1∏
k=j

(̂
f CLk

)2 σ̂ 2
j(̂

f CLj

)2 b̂ (I+k)
j

⎫⎪⎬⎪⎭
= w2

tot,J

⎧⎪⎨⎪⎩
J−1∑

j=j0+k

σ̂ 2
j(

f̂ CLj

)2 b̂ (I+k)
j

⎫⎪⎬⎪⎭ .

�

APPENDIX C. PROOF OF COROLLARY 5.2

We have to prove that the right hand side of Equation (5.1) can be expressed by the right
hand side of Equation (5.17).

J−1∑
j=j0

⎧⎪⎨⎪⎩ σ̂ 2
j(

f̂ CLj

)2
⎛⎜⎝ I∑
i=ij

w2
i,J

wi,j
+
(∑I

i=ij wi,J
)2

∑ij−1
i=i0 wi,j

⎞⎟⎠
⎫⎪⎬⎪⎭

=
J−1∑
j=j0

⎧⎪⎨⎪⎩ σ̂ 2
j(

f̂ CLj

)2
⎛⎝J−1∏
k=j

f̂ CLk

⎞⎠⎛⎝⎛⎝ I∑
i=ij

wi,J

⎞⎠⎛⎝1+
∑I

i=ij wi,J∑ij−1
i=i0 wi,J

⎞⎠⎞⎠
⎫⎪⎬⎪⎭
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=
J−1∑
j=j0

⎧⎪⎨⎪⎩ σ̂ 2
j(

f̂ CLj

)2
⎛⎝J−1∏
k=j

f̂ CLk

⎞⎠⎛⎝ I∑
i=ij

wi,J

⎞⎠⎛⎝ wtot,J∑ij−1
i=i0 wi,J

⎞⎠
⎫⎪⎬⎪⎭

=w2
tot,J

⎛⎜⎝J−1∑
j=j0

σ̂ 2
j(

f̂ CLj

)2 1∑ij−1
i=i0 wi,j

∑I
i=ij wi,J
wtot,J

⎞⎟⎠ .

�
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