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We explore basic mechanisms for the instability of finite-amplitude interfacial gravity
waves through a two-dimensional linear stability analysis of the periodic and irrotational
plane motion of the interface between two unbounded homogeneous fluids of different
density in the absence of background currents. The flow domains are conformally mapped
into two half-planes, where the time-varying interface is always mapped onto the real
axis. This unsteady conformal mapping technique with a suitable representation of the
interface reduces the linear stability problem to a generalized eigenvalue problem, and
allows us to accurately compute the growth rates of unstable disturbances superimposed on
steady waves for a wide range of parameters. Numerical results show that the wave-induced
Kelvin–Helmholtz (KH) instability due to the tangential velocity jump across the interface
produced by the steady waves is the major instability mechanism. Any disturbances
whose dominant wavenumbers are greater than a critical value grow exponentially. This
critical wavenumber that depends on the steady wave steepness and the density ratio
can be approximated by a local KH stability analysis, where the spatial variation of the
wave-induced currents is neglected. It is shown, however, that the growth rates need
to be found numerically with care and the successive collisions of eigenvalues result
in the wave-induced KH instability. In addition, the present study extends the previous
results for the small-wavenumber instability, such as modulational instability, of relatively
small-amplitude steady waves to finite-amplitude ones.
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1. Introduction

Progressive gravity waves at the interface between two homogenous fluids of different
density have been extensively studied as a simple model for internal waves which are
commonly observed on a pycnocline in the ocean. This work numerically considers
the two-dimensional linear stability of the periodic and irrotational plane motion of
steady interfacial gravity waves propagating in permanent form with constant speed at
the interface between two unbounded homogeneous fluids in the absence of background
currents, as shown in figure 1(a). The fluids are assumed to be incompressible and inviscid,
the surface tension at the interface is neglected and the density of the upper-layer fluid (ρ1)
is assumed to be less than that of the lower-layer fluid (ρ2) for static stability.

For finite-amplitude steady interfacial waves, the full Euler system has been numerically
studied by Holyer (1979), Vanden-Broeck (1980), Saffman & Yuen (1982), Meiron &
Saffman (1983), Turner & Vanden-Broeck (1986) and Părău & Dias (2001). In particular,
Saffman & Yuen (1982) developed a numerical method to find steady wave solutions
in the hodograph plane, which can be recovered, in the steady limit, from our unsteady
formulation to be presented. It should be remarked that, unlike surface gravity waves,
the wave profiles of large-amplitude steady interfacial waves of permanent form may
overhang, as shown in Meiron & Saffman (1983) and Turner & Vanden-Broeck (1986).
However, the limiting behaviour of steady interfacial waves is not yet known. On the
other hand, adopting the Stokes expansion in small wave steepness, Tsuji & Nagata (1973)
obtained the fifth-order approximate steady wave solutions, which we compare with our
fully nonlinear numerical solutions for steady waves.

The linear stability of steady interfacial periodic waves has been investigated by Yuen
(1984), Grimshaw & Pullin (1985), Pullin & Grimshaw (1985), Dixon (1990) and Zhou,
Lee & Cheung (1992). In their earlier attempts, Yuen (1984) and Pullin & Grimshaw
(1985) numerically solved the linear stability problem in the physical plane using the
method that McLean (1982) developed for the stability analysis of surface waves. With
k and h denoting the wavenumber and the crest-to-trough wave height of the steady
waves, respectively, Yuen (1984) obtained the numerical results for two different wave
steepnesses, kh = 0.2 and 0.5, for density ratios of ρ1/ρ2 = 0.1 and 0.9, but the numbers
of Fourier modes for the computation of steady waves and for the stability analysis
were 20 and 5, respectively, which are too small for accurate computations. On the
other hand, Pullin & Grimshaw (1985) presented results for greater wave steepnesses
kh � 0.3π (�0.942) under the Boussinesq approximation for the density ratio ρ1/ρ2 → 1,
where the density difference across the interface is ignored except for the buoyancy
term. Their results showed that the instabilities due to low-order resonances, including
the modulational instability of small- and moderate-steepness waves, are analogous to
those for surface waves (McLean 1982). Dixon (1990) and Zhou et al. (1992) obtained
similar results using the Zakharov formulation for interfacial waves. As they focused on
the modulational instability for small-steepness waves perturbed by small-wavenumber
disturbances, Grimshaw & Pullin (1985, (4.4) on p. 304) also derived a nonlinear
Schrödinger equation as a weakly nonlinear model, whose solutions are compared with
their numerical solutions.

In addition to the small-wavenumber or modulational instability, Pullin & Grimshaw
(1985, figure 10 on p. 331) numerically found a large-wavenumber instability for ρ1/ρ2 →
1 and kh = 0.2π (�0.628), which is similar to the Kelvin–Helmholtz (KH) instability that
usually occurs in the presence of a background current jump at the interface. This KH-type
instability is excited by the tangential velocity jump induced by the steady wave at the
interface. This instability has been referred to as the ‘wave-induced KH instability’ and
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Figure 1. Two-dimensional periodic motion of interfacial waves and conformal mapping of the flow domains:
(a) the z-plane (z = x + iy), (b) the ζ1-plane (ζ1 = ξ1 + iη1) and (c) the ζ2-plane (ζ2 = ξ2 + iη2). The upper-
and lower-layer flow domains in the physical plane (the z-plane) are conformally mapped onto the upper half
of the ζ1-plane and the lower half of the ζ2-plane, respectively. Here, h: the crest-to-trough wave height, λ: the
wavelength and ρj ( j = 1, 2): the fluid density of the jth layer.

does not occur for surface waves. Pullin & Grimshaw (1985, (4.1) on p. 330) proposed an
approximate expression for the growth rate of the wave-induced KH instability using linear
theory for the well-known KH instability for two horizontal uniform currents of different
speed (for example, see Lamb (1945, § 232) and Drazin & Reid (1981, § 1.4)), and pointed
out that this instability occurs if the wavenumber of a disturbance added to the steady wave
is greater than a critical value. However, this instability was studied only for one value of
the wave steepness, kh = 0.2π (�0.628), under the Boussinesq approximation, and was
not fully examined. Dixon (1990, § 6) also discussed this instability using the Zakharov
formulation, but computed the growth rate only for a single wave steepness of kh = 0.4.

Although its growth rate is much greater than that of the modulational instability, the
wave-induced KH instability has not been studied extensively and a more complete study is
required to better understand the instability of interfacial gravity waves for a wide range of
steady wave steepnesses. It is, however, difficult to numerically study this instability using
the previous numerical methods developed in the physical plane, particularly, when the
wave steepness is no longer small. Instead, the stability problem needs to be investigated
by adopting a new technique relevant for the unsteady motion of large-amplitude waves.

In this work, the two flow domains in a two-layer fluid are conformally mapped into two
half-planes, where the time-varying interface is always mapped onto the real axis in each
plane, as shown in figure 1. This unsteady conformal mapping technique (Ovshannikov
1974; Tanveer 1991; Dyachenko, Zakharov & Kuznetsov 1996; Choi & Camassa 1999)
has been successfully used for the two-dimensional linear instability analysis of surface
capillary waves by Tiron & Choi (2012) and surface gravity waves on a linear shear
current by Murashige & Choi (2020). The aim of this work is to numerically study various
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instabilities of interfacial gravity waves including the wave-induced KH instability and
the modulational instability through two-dimensional linear stability analysis using this
unsteady conformal mapping technique.

The paper is organized as follows. The basic formulation for the two-layer problem using
the unsteady conformal mapping is presented in § 2. Computed steady interfacial periodic
waves with symmetric profiles are shown in § 3. The details of our linear stability analysis
are described in § 4. In comparison with the theoretical approximations of the growth
rates of unstable disturbances presented in § 5, our numerical results of the linear stability
analysis are summarized and discussed in § 6. Section 7 concludes this work.

2. Formulation of the problem

2.1. Formulation in the physical plane
Consider the periodic and irrotational plane motion of steady gravity waves progressing
to the left in permanent form with constant speed c at the interface between two
unbounded homogeneous fluids with the different densities ρ1 and ρ2 (ρ1 < ρ2), as shown
in figure 1(a), where subscripts 1 and 2 refer to the upper and lower fluid domains,
respectively. It is convenient to formulate the problem in the flow domains for one period
with wavelength λ of the steady waves, namely the two domains surrounded by AjACBBj
( j = 1, 2) in figure 1(a), in the frame of reference moving to the left with the waves. The
steady wave profiles are assumed to be symmetric with respect to the vertical line passing
through the wave crest. It is also assumed that the fluids are incompressible and inviscid,
and that the fluid motion in each layer is two-dimensional and irrotational in the vertical
cross-section (x, y) along the propagation direction of the waves. Surface tension at the
interface is neglected. The origin is placed such that the wave profile y = Ỹ(x, t) satisfies
the zero mean level condition ∫ λ

0
Ỹ(x, t) dx = 0, (2.1)

where t denotes the time.
For irrotational plane flows, we can introduce the complex coordinate z = x + iy and

the complex velocity potential fj = φj + iψj ( j = 1, 2), where φj and ψj denote the
velocity potential and the streamfunction, respectively, for the jth layer. When the physical
variables are non-dimensionalized, with respect to c and k (=2π/λ), as

z∗ = kz, Ỹ∗ = kỸ, t∗ = ckt, fj∗ = fj
c/k

, pj∗ = pj

ρ1c2 ( j = 1, 2), (2.2)

the following dimensionless parameters appear in the problem:

h∗ = kh, c∗ = c√
g/k

, (2.3)

where pj denote the pressure, h the crest-to-trough wave height and g the gravitational
acceleration. Note that h∗ = kh = 2πh/λ is the wave steepness. The asterisks for
dimensionless variables will be omitted hereinafter for brevity.

The complex velocity potentials fj = fj(z, t) ( j = 1, 2) are both analytic in each layer.
The boundary conditions at the interface y = Ỹ(x, t) are given, from the kinematic
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conditions, by
Ỹt + φj,xỸx = φj,y ( j = 1, 2) at y = Ỹ(x, t), (2.4)

and, from the dynamic condition p1 = p2 at the interface y = Ỹ(x, t) with Bernoulli’s
equation for each layer, by

φ1,t + 1
2
(φ1,x

2 + φ1,y
2)+ 1

c2 Ỹ − B(t)

= ρ2

ρ1

{
φ2,t + 1

2
(φ2,x

2 + φ2,y
2)+ 1

c2 Ỹ
}

at y = Ỹ(x, t), (2.5)

where an arbitrary function B(t) can be absorbed into the velocity potentials and the
subscripts denote the partial derivatives with respect to x, y and t as

Ỹx := ∂Ỹ
∂x
, Ỹt := ∂Ỹ

∂t
, φj,x := ∂φj

∂x
, φj,y := ∂φj

∂y
and φj,t := ∂φj

∂t
( j = 1, 2).

(2.6)
To avoid any confusion, a comma is introduced to denote a derivative of an indexed
function with respect to the variable following the comma.

It should be remarked that, as a velocity jump across the interface is allowed under the
inviscid assumption, the velocity potential is discontinuous across the interface while the
streamfunction is continuous so that

ψ1(x, y, t) = ψ2(x, y, t) at y = Ỹ(x, t). (2.7)
In addition, the conditions that the flow is uniform far above and below the interface (y →
±∞) yield

w1 := ∂f1
∂z

→ 1 as y → ∞ and w2 := ∂f2
∂z

→ 1 as y → −∞, (2.8)

where wj = uj − ivj ( j = 1, 2) denote the complex velocity.

2.2. Unsteady conformal mapping of the flow domains
As described in § 1, in order to overcome numerical difficulties for the two-dimensional
linear stability analysis of finite-amplitude interfacial waves, we generalize the unsteady
conformal mapping technique used for the stability of surface capillary and gravity waves
(Tiron & Choi 2012; Murashige & Choi 2020) to the two-layer problem. Here, we map the
upper flow domain (y > Ỹ(x, t)) and the lower flow domain (y < Ỹ(x, t)) into the upper
half of the ζ1-plane (ζ1 = ξ1 + iη1 with η1 > 0) and the lower half of the ζ2-plane (ζ2 =
ξ2 + iη2 with η2 < 0), respectively, as shown in figures 1(b) and 1(c). The time-varying
interface y = Ỹ(x, t) is always mapped onto the real axes ηj = 0 in the ζj-plane ( j = 1, 2)
although the corresponding physical locations on the interface are different even when
ξ1 = ξ2.

The complex coordinates zj = z(ζj, t) = xj(ξj, ηj, t)+ iyj(ξj, ηj, t) and the complex
velocity potentials fj(ζj, t) = φj(ξj, ηj, t)+ iψj(ξj, ηj, t) are analytic in the ζj-plane ( j =
1, 2). We write xj, yj, φj and ψj at the interface ηj = 0 ( j = 1, 2) as

x̃j(ξj, t) = xj(ξj, ηj = 0, t), ỹj(ξj, t) = yj(ξj, ηj = 0, t)

φ̃j(ξj, t) = φj(ξj, ηj = 0, t), ψ̃j(ξj, t) = ψj(ξj, ηj = 0, t)

}
( j = 1, 2). (2.9)

Note that, at the interface, ξj ( j = 1, 2) range from −π to π for one wavelength, as shown
in figures 1(b) and 1(c). We also introduce the following shorthand notation for partial
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derivatives with respect to ξj and t, respectively, as

xj,j := ∂xj

∂ξj
and xj,t := ∂xj

∂t
( j = 1, 2). (2.10)

Then, using the chain rule, it can be shown that the derivatives in the z-plane can be
transformed to those in the ζj-plane ( j = 1, 2) as

φj,x = 1
Jj

∂(φj, yj)

∂(ξj, ηj)
, φj,y = 1

Jj

∂(xj, φj)

∂(ξj, ηj)
, φj,t = 1

Jj

∂(xj, yj, φj)

∂(ξj, ηj, t)
( j = 1, 2), (2.11)

Ỹx = ỹj,j

x̃j,j
and Ỹt = 1

x̃j,j

∂(x̃j, ỹj)

∂(ξj, t)
( j = 1, 2), (2.12)

where Jj ( j = 1, 2) are defined by

Jj := xj,j
2 + yj,j

2 ( j = 1, 2). (2.13)

In order to match at the interface ηj = 0 ( j = 1, 2) the upper- and lower-layer solutions,
we introduce a subsidiary real variable ξ̂ along the interface and write ξ1 and ξ2 at the
interface as

ξ1(ξ̂, t) = ξ̂ + γ (ξ̂, t) and ξ2(ξ̂, t) = ξ̂ − γ (ξ̂, t) for − π � ξ̂ � π, (2.14)

with

ξj(ξ̂ = ±π, t) = ±π ( j = 1, 2) and γ (ξ̂ = ±π, t) = 0 for t � 0, (2.15)

where γ (ξ̂, t) is an unknown real function. Note that similar parametric representations
of the interface have been previously adopted for the numerical computation of steady
interfacial waves (Saffman & Yuen 1982; Părău & Dias 2001) and unsteady interfacial
waves (Baker, Meiron & Orszag 1982; Grue et al. 1997).

Using ξ̂ and γ defined by (2.14), the conditions that the wave profiles in the ζ1- and
ζ2-planes coincide are given by

x̃1(ξ1 = ξ1(ξ̂, t), t) = x̃2(ξ2 = ξ2(ξ̂, t), t)
ỹ1(ξ1 = ξ1(ξ̂, t), t) = ỹ2(ξ2 = ξ2(ξ̂, t), t)

}
. (2.16)

The conditions in (2.16) are referred to as the contact conditions at the interface in this
work. Also the continuity condition (2.7) of the streamfunctions at the interface can be
expressed as

ψ̃1(ξ1 = ξ1(ξ̂, t), t) = ψ̃2(ξ2 = ξ2(ξ̂, t), t). (2.17)

Substituting (2.11) and (2.12) with the Cauchy–Riemann relations into (2.4) and (2.5),
we obtain the kinematic conditions and the dynamic condition at the interface ηj = 0 in
the ζj-plane ( j = 1, 2), respectively, as

x̃j,jỹj,t − ỹj,jx̃j,t = −ψ̃j,j ( j = 1, 2), (2.18)

and

φ̃2,t − 1
J2
(x̃2,2x̃2,t + ỹ2,2ỹ2,t)φ̃2,2 + 1

2
1
J2
(φ̃2,2

2 − ψ̃2,2
2)+ 1

c2 ỹ2 − B(t)

= ρ1

ρ2

{
φ̃1,t − 1

J1
(x̃1,1x̃1,t + ỹ1,1ỹ1,t)φ̃1,1 + 1

2
1
J1
(φ̃1,1

2 − ψ̃1,1
2)+ 1

c2 ỹ1

}
, (2.19)

where the notation for the derivatives in (2.10) has been used. Here, note that ξj = ξj(ξ̂, t)
at the interface ηj = 0 ( j = 1, 2) are given by (2.14). The conditions at infinities (2.8) are
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satisfied with

z1 → ζ1 and f1 → ζ1 as η1 → ∞
z2 → ζ2 and f2 → ζ2 as η2 → −∞

}
. (2.20)

The analyticity of zj = xj + iyj and fj = φj + iψj ( j = 1, 2) with (2.20) yields the
relations between the real and imaginary parts at the interface as

x̃1 − ξ1 = H1[ỹ1], ψ̃1 = −H1[φ̃1 − ξ1], x̃2 − ξ2 = −H2[ỹ2], ψ̃2 = H2[φ̃2 − ξ2],
(2.21a–d)

where Hj[F] is the Hilbert transform for a real-valued function F = F(ξj) in the ζj-plane
( j = 1, 2) defined by

Hj[F](ξj) := 1
π

P.V.
∫ ∞

−∞

F(ξ ′
j )

ξ ′
j − ξj

dξ ′
j ( j = 1, 2), (2.22)

with P.V. denoting Cauchy’s principal value. Thus the governing equations (2.16), (2.17),
(2.18) ( j = 1 or 2) and (2.19) determine the five unknown variables ỹj, φ̃j ( j = 1, 2) and γ .

3. Steady interfacial waves of symmetric profile

We write steady solutions for 2π-periodic interfacial waves as

zj = z(0)j (ζj) = x(0)j (ξj, ηj)+ iy(0)j (ξj, ηj)

fj = f (0)j (ζj) = φ
(0)
j (ξj, ηj)+ iψ(0)j (ξj, ηj)

⎫⎬
⎭ ( j = 1, 2), (3.1)

and ξ1 and ξ2 at the interface as

ξ1 = ξ
(0)
1 (ξ̂ ) = ξ̂ + γ (0)(ξ̂ ) and ξ2 = ξ

(0)
2 (ξ̂ ) = ξ̂ − γ (0)(ξ̂ ) for − π � ξ̂ � π,

(3.2)

with ξ (0)j (ξ̂ = ±π) = ±π ( j = 1, 2) and γ (0)(ξ̂ = ±π) = 0.
We assume that the steady wave profile is symmetric with respect to the vertical line

passing through the wave crest. Then, we numerically obtain the steady wave solutions
using the method of computation summarized in Appendix A. As the steady limit of our
unsteady formulation can be reduced to the steady formulation of Saffman & Yuen (1982),
the numerical method for steady solutions is similar to theirs. In this method, the steady
wave solutions are approximated by truncated Fourier series with N terms, as shown in
(A4) with (A5). We found that this method of computation with N = 128 produces reliable
steady solutions for the ranges of the density ratio ρ1/ρ2 and the wave steepness h that we
choose in this work, as discussed in Appendix A.

Figure 2(a) exhibits computed steady wave profiles with N = 128 for the density
ratios ρ1/ρ2 = 0.1 and 0.9 with varying wave steepness h. The corresponding fifth-order
approximate solutions of Tsuji & Nagata (1973) are shown in figure 2(b). From these, we
can see that the computed wave profile near the crest of large-amplitude interfacial waves
becomes rounded as ρ1/ρ2 increases, and that the accuracy of the approximate fifth-order
solutions in figure 2(b) deteriorates as h increases.
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Figure 2. Wave profiles of steady interfacial waves of symmetric profile for different values of the wave
steepness h. The density ratios used for the left and right panels are ρ1/ρ2 = 0.1 and 0.9, respectively.
(a) Fully nonlinear solutions computed using the present method with N = 128: (a1) h = 0.6, 0.8, 1.0, 1.2, 1.3;
(a2) h = 0.6, 1.0, 1.4, 1.8, 2.0, 2.2. (b) Fifth-order approximate solutions (Tsuji & Nagata 1973): (b1) h =
0.6, 0.8, 1.0, 1.2, 1.3; (b2) h = 0.6, 1.0, 1.4, 1.8, 2.0.
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Figure 3. The tangential velocity jump 
q at the interface defined by (3.3) for different values of the
density ratio ρ1/ρ2 and the wave steepness h: (a) ρ1/ρ2 = 0.1, h = 0.6, 0.8, 1.0, 1.2, 1.3; (b) ρ1/ρ2 = 0.9,
h = 0.6, 1.0, 1.4, 1.8, 2.0, 2.2. Each solution is computed using the present method with N = 128.

Figure 3 shows the tangential velocity jump
q across the interface of steady interfacial
waves, which is defined as


q = sgn(
u)
√

u2 +
v2, (3.3)

where 
u = u(0)1 − u(0)2 , 
v = v
(0)
1 − v

(0)
2 and sgn(
u) denotes the sign of 
u.

Here, u(0)j = φ
(0)
j,x = x̃(0)j,j /J

(0)
j and v(0)j = φ

(0)
j,y = ỹ(0)j,j /J

(0)
j are the horizontal and vertical

velocities at the interface in the ζj-plane ( j = 1, 2), respectively. The resulting
discontinuity of the tangential velocity causes the wave-induced KH instability.
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0.3
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h

(a) (b)

Figure 4. Variation with wave steepness h of the tangential velocity jump
qcrest at the wave crest and the wave
speed c of steady interfacial waves normalized by the linear wave speed c0 given by (3.4). The computed results
using the present method with N = 128 (solid lines) are compared with the fifth-order approximate solutions
(Tsuji & Nagata 1973) (dashed lines) and the computed results of Saffman & Yuen (1982) for ρ1/ρ2 = 0.1
(circles). The density ratios used for computations are ρ1/ρ2 = 0.1 (black), 0.3 (red), 0.5 (blue) and 0.9 (green).

Figures 4(a) and 4(b) show the variation of the tangential velocity jump 
qcrest at
the wave crest and the wave speed c of the steady waves with the wave steepness h,
respectively, for the density ratios ρ1/ρ2 = 0.1, 0.3, 0.5 and 0.9. In figure 4(b), c is
normalized by the (dimensionless) linear wave speed c0 given by

c0 =
√
ρ2 − ρ1

ρ2 + ρ1
=
√

1 − ρ1/ρ2

1 + ρ1/ρ2
. (3.4)

It is shown that the computed result of c/c0 for ρ1/ρ2 = 0.1 agrees well with that of
Saffman & Yuen (1982). To compute the results (solid lines), we choose N = 128 and
increase h until the error tolerance (A8) is no longer satisfied, or the convergence of each
Fourier coefficient in (A4) is too slow. Thus the right end of each solid line does not
represent the limiting wave, but we focus on the range of h � 1 in this work. In addition,
these figures show that the fifth-order approximate solutions (dashed lines) of Tsuji &
Nagata (1973) agree with our computed results only for small values of h. The results for

qcrest and c/c0 will be used in §§ 5 and 6 to estimate the critical condition for instability
and the growth rates.

4. Linear stability analysis

4.1. Linearization around steady wave solutions in the ζ1- and ζ2-planes
For linear stability analysis, we superimpose time-dependent small-amplitude disturbances
z(1)j (ζj, t), f (1)j (ζj, t) and γ (1)(ξ̂, t) on the steady wave solutions z(0)j (ζj), f (0)j (ζj) and

γ (0)(ξ̂ ), respectively, as

zj(ζj, t) = z(0)j (ζj)+ z(1)j (ζj, t)

fj(ζj, t) = f (0)j (ζj)+ f (1)j (ζj, t)

⎫⎬
⎭ ( j = 1, 2) and γ (ξ̂, t) = γ (0)(ξ̂ )+ γ (1)(ξ̂, t),

(4.1)

and linearize the governing equations around the steady wave solutions. Note that z(1)j (ζj, t)

and f (1)j (ζj, t) are both analytic in the ζj-plane ( j = 1, 2). Similarly to (2.9), we write the
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disturbances at the interface as

x̃(1)j (ξj, t) = x(1)j (ξj, ηj = 0, t), ỹ(1)j (ξj, t) = y(1)j (ξj, ηj = 0, t)

φ̃
(1)
j (ξj, t) = φ

(1)
j (ξj, ηj = 0, t), ψ̃

(1)
j (ξj, t) = ψ

(1)
j (ξj, ηj = 0, t)

⎫⎬
⎭ ( j = 1, 2).

(4.2)
We look for solutions of the linearized equations in the form of

x̃(1)j (ξj, t) = eσ tx̌(1)j (ξj), ỹ(1)j (ξj, t) = eσ ty̌(1)j (ξj)

φ̃
(1)
j (ξj, t) = eσ tφ̌

(1)
j (ξj), ψ̃

(1)
j (ξj, t) = eσ tψ̌

(1)
j (ξj)

⎫⎬
⎭ ( j = 1, 2), (4.3)

and
γ (1)(ξ̂, t) = eσ tγ̌ (1)(ξ̂ ), (4.4)

where σ = σr + iσi ∈ C. The steady interfacial waves are linearly unstable if and only
if there exists a positive real part σr > 0. Notice that this condition is equivalent to the
existence of any real part as both σ and −σ̄ are eigenvalues to be discussed later, where σ̄
denotes the complex conjugate of σ .

Substituting these into the governing equations (2.18) for j = 1, (2.19), (2.16) and (2.17),
and expanding them around the steady wave solutions and ξj = ξ

(0)
j (ξ̂ ) ( j = 1, 2), we can

obtain the linearized equations for x̌(1)j , y̌(1)j , φ̌(1)j , ψ̌(1)j ( j = 1, 2) and γ̌ (1) as follows:

σ(x̃(0)1,1y̌(1)1 − ỹ(0)1,1x̌(1)1 ) = −ψ̌(1)1,1, (4.5)

σ

{
φ̌
(1)
2 − 1

J(0)2

(x̃(0)2,2x̌(1)2 + ỹ(0)2,2y̌(1)2 )

}
+ 1

J(0)2

φ̌
(1)
2,2 − 1

(J(0)2 )2
(x̃(0)2,2x̌(1)2,2 + ỹ(0)2,2y̌(1)2,2)

+ 1
c2 y̌(1)2 +

{ 1
2 J(0)2,2

(J(0)2 )2
− 1

c2 ỹ(0)2,2

}
γ̌ (1)

= ρ1

ρ2

[
σ

{
φ̌
(1)
1 − 1

J(0)1

(x̃(0)1,1x̌(1)1 + ỹ(0)1,1y̌(1)1 )

}
+ 1

J(0)1

φ̌
(1)
1,1 − 1

(J(0)1 )2
(x̃(0)1,1x̌(1)1,1 + ỹ(0)1,1y̌(1)1,1)

+ 1
c2 y̌(1)1 −

{ 1
2 J(0)1,1

(J(0)1 )2
− 1

c2 ỹ(0)1,1

}
γ̌ (1)

]
, (4.6)

x̌(1)1 − x̌(1)2 = −(x̃(0)1,1 + x̃(0)2,2)γ̌
(1), (4.7)

y̌(1)1 − y̌(1)2 = −(ỹ(0)1,1 + ỹ(0)2,2)γ̌
(1), (4.8)

ψ̌
(1)
1 (ξ1 = ξ

(0)
1 (ξ̂ )) = ψ̌

(1)
2 (ξ2 = ξ

(0)
2 (ξ̂ )), (4.9)

where ξj = ξ
(0)
j (ξ̂ ) ( j = 1, 2) at the interface are given by (3.2). In addition, eliminating

γ (1) from the contact conditions (4.7) and (4.8), we obtain

(ỹ(0)1,1 + ỹ(0)2,2)x̌
(1)
1 − (x̃(0)1,1 + x̃(0)2,2)y̌

(1)
1 = (ỹ(0)1,1 + ỹ(0)2,2)x̌

(1)
2 − (x̃(0)1,1 + x̃(0)2,2)y̌

(1)
2 . (4.10)

For later convenience, we use (4.10) instead of (4.8). Five equations (4.5), (4.6), (4.7), (4.9)
and (4.10) determine the linear stability of steady interfacial waves.
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Stability analysis of finite-amplitude interfacial waves

Following Floquet theory, we can write the general solutions of (4.5), (4.6), (4.7), (4.9)
and (4.10) in the form of

x̌(1)j (ξj) = eipξj

∞∑
m=−∞

α
(1)
jm eimξj, y̌(1)j (ξj) = eipξj

∞∑
m=−∞

a(1)jm eimξj

φ̌
(1)
j (ξj) = eipξj

∞∑
m=−∞

b(1)jm eimξj, ψ̌
(1)
j (ξj) = eipξj

∞∑
m=−∞

β
(1)
jm eimξj

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

( j = 1, 2),

(4.11)
and

γ̌ (1)(ξ̂ ) = eipξ̂
∞∑

m=−∞
c(1)m eimξ̂ , (4.12)

where the exponent p is assumed to be real so that the solutions are bounded for −∞ <

ξj < ∞ ( j = 1, 2). Since the linearized equations (4.5), (4.6), (4.7), (4.9) and (4.10) are
invariant under the transformation ξj → −ξj, φ̌

(1)
j → −φ̌(1)j , ψ̌(1)j → −ψ̌(1)j ( j = 1, 2),

ξ̂ → −ξ̂ , t → −t and γ (1) → −γ (1), there is a degeneracy in the choice of p, similarly to
the case of surface waves (for e.g. see Tiron & Choi (2012, § 2.4) and Murashige & Choi
(2020, § 4.3)). In particular, if σ is an eigenvalue for p, then −σ̄ is another eigenvalue for
the same value of p, and σ̄ and −σ are the eigenvalues for 1 − p. Thus the range of p can
be restricted to 0 � p � 1/2. In addition, from the analyticity given by (2.21a–d) and the
following relations for the Hilbert transform

Hj[eiνξj] = i sgn(ν) eiνξj ( j = 1, 2) with sgn(ν) =
⎧⎨
⎩

+1 (ν > 0)
0 (ν = 0)

−1 (ν < 0)
, (4.13)

the coefficients α(1)jm and β(1)jm ( j = 1, 2) in (4.11) can be related to a(1)jm and b(1)jm , respectively,
by

α
(1)
1m = i sgn( p + m) a(1)1m, β

(1)
1m = −i sgn( p + m) b(1)1m

α
(1)
2m = −i sgn( p + m) a(1)2m, β

(1)
2m = i sgn( p + m) b(1)2m

}
. (4.14)

Substituting these into the linearized equations (4.5), (4.6), (4.7), (4.9) and (4.10), we
obtain

σ

∞∑
m=−∞

A11,m(ξ̂ )a
(1)
1m =

∞∑
m=−∞

B11,m(ξ̂ )b
(1)
1m, (4.15)

σ

∞∑
m=−∞

{A21,m(ξ̂ )a
(1)
1m + A22,m(ξ̂ )a

(1)
2m + B21,m(ξ̂ )b

(1)
1m + B22,m(ξ̂ )b

(1)
2m}

=
∞∑

m=−∞
{A31,m(ξ̂ )a

(1)
1m + A32,m(ξ̂ )a

(1)
2m + B31,m(ξ̂ )b

(1)
1m + B32,m(ξ̂ )b

(1)
2m + C3,m(ξ̂ )c(1)m },

(4.16)
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∞∑
m=−∞

A41,m(ξ̂ )a
(1)
1m +

∞∑
m=−∞

A42,m(ξ̂ )a
(1)
2m =

∞∑
m=−∞

C4,m(ξ̂ )c(1)m , (4.17)

∞∑
m=−∞

A51,m(ξ̂ )a
(1)
1m =

∞∑
m=−∞

A52,m(ξ̂ )a
(1)
2m and

∞∑
m=−∞

B51,m(ξ̂ )b
(1)
1m =

∞∑
m=−∞

B52,m(ξ̂ )b
(1)
2m,

(4.18a,b)

where A∗,m(ξ̂ ), B∗,m(ξ̂ ) and C∗,m(ξ̂ ) are 2π-periodic functions determined by the steady
wave solutions and summarized in Appendix B. Furthermore, from periodicity, the
coefficient functions A∗,m(ξ̂ ), B∗,m(ξ̂ ) and C∗,m(ξ̂ ) can be expanded in the form of Fourier
series as

A∗,m(ξ̂ ) =
∞∑

k=−∞
A∗,km eikξ̂ , B∗,m(ξ̂ ) =

∞∑
k=−∞

B∗,km eikξ̂ , C∗,m(ξ̂ ) =
∞∑

k=−∞
C∗,km eikξ̂ .

(4.19a–c)

Then, we can transform (4.15), (4.16), (4.17) and (4.18a,b) into

σ

∞∑
m=−∞

A11,kma(1)1m =
∞∑

m=−∞
B11,kmb(1)1m, (4.20)

σ

∞∑
m=−∞

{A21,kma(1)1m + A22,kma(1)2m + B21,kmb(1)1m + B22,kmb(1)2m}

=
∞∑

m=−∞
{A31,kma(1)1m + A32,kma(1)2m + B31,kmb(1)1m + B32,kmb(1)2m + C3,kmc(1)m }, (4.21)

∞∑
m=−∞

A41,kma(1)1m +
∞∑

m=−∞
A42,kma(1)2m =

∞∑
m=−∞

C4,kmc(1)m , (4.22)

∞∑
m=−∞

A51,kma(1)1m =
∞∑

m=−∞
A52,kma(1)2m and

∞∑
m=−∞

B51,kmb(1)1m =
∞∑

m=−∞
B52,kmb(1)2m,

(4.23a,b)

for all k ∈ Z. These equations (4.20), (4.21), (4.22) and (4.23a,b) determine σ , a(1)jm and

b(1)jm ( j = 1, 2). In particular, in the limit of wave steepness h → 0, we can analytically
obtain the expression of σ , in terms of the exponent p and the mode number m, as

σ → σ±
p,m := i{−( p + m)±

√
|p + m|} as h → 0. (4.24)

Here, note that this limit σ±
p,m is independent of the density ratio ρ1/ρ2.

4.2. The method of computation
First, we can numerically determine the Fourier coefficients A∗,km, B∗,km and C∗,km

(k,m = −N, . . . ,N − 1) in (4.19a–c) using the steady wave solutions at ξ̂ = ξ̂� = �π/N
(� = −N, . . . ,N) obtained in § 3 and the fast Fourier transform. Here, N is the total
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number of terms of the truncated Fourier series (A5) for the steady wave solutions.
Next, we substitute these Fourier coefficients into (4.19a–c), (4.20), (4.21), (4.22) and
(4.23a,b), and truncate the resulting infinite series as

∞∑
k=−∞

∼
M∑

k=−M

and
∞∑

m=−∞
∼

M∑
m=−M

with M < N. (4.25)

To reduce numerical errors, large-wavenumber components are filtered out by setting M <

N. Then (4.20), (4.21), (4.22) and (4.23a,b) can be rewritten, respectively, as

σA11a(1)1 = B11b(1)1 , (4.26)

σ(A21a(1)1 + A22a(1)2 + B21b(1)1 + B22b(1)2 )

= A31a(1)1 + A32a(1)2 + B31b(1)1 + B32b(1)2 + C3c(1), (4.27)

A41a(1)1 + A42a(1)2 = C4c(1), (4.28)

A51a(1)1 = A52a(1)2 and B51b(1)1 = B52b(1)2 , (4.29a,b)

where A∗ = (A∗,km)
M
k,m=−M , B∗ = (B∗,km)

M
k,m=−M and C∗ = (C∗,km)

M
k,m=−M are (2M +

1)× (2M + 1)matrices, and a(1)j =(a(1)jm )
M
m=−M , b(1)j =(b(1)jm )

M
m=−M and c(1) = (c(1)m )Mm=−M

( j = 1, 2) are vectors with 2M + 1 components. Furthermore, from (4.28) and (4.29a,b),
we can represent a(1)2 , b(1)2 and c(1) by a(1)1 and b(1)1 as

a(1)2 = A53a(1)1 , b(1)2 = B53b(1)1 , c(1) = C5 a(1)1 , (4.30a–c)

where

A53 = A52
−1A51, B53 = B52

−1B51, C5 = C4
−1 (A41 + A42A53). (4.31a–c)

Substituting these into (4.26) and (4.27), we obtain

σ

(
A11 0
A23 B23

)(
a(1)1

b(1)1

)
=
(

0 B11

A33 B33

)(
a(1)1

b(1)1

)
, (4.32)

where
A23 = A21 + A22A53, A33 = A31 + A32A53 + C3C5

B23 = B21 + B22B53, B33 = B31 + B32B53

}
. (4.33)

This is a generalized eigenvalue problem for the eigenvalue σ and the eigenvector
(a(1)1 , b(1)1 ). When the density ratio ρ1/ρ2, the steady wave steepness h and the exponent p
of disturbances are given, we can solve (4.32). In this work, we numerically solve (4.32)
using computational routines for eigenvalue problems in LAPACK (http://www.netlib.org/
lapack/).

4.3. The dominant wavenumber of disturbances and classification of eigenvalues
The generalized eigenvalue problem (4.32) produces 4M + 2 sets of the eigenvalue σ
and the corresponding eigenvector (a(1)1 , b(1)1 ). Here, as shown in (4.11) and (4.25),
a(1)1 = (a(1)1m)

M
m=−M and b(1)1 = (b(1)1m)

M
m=−M are the truncated Fourier coefficient vectors
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Figure 5. Examples of the variation of |a(1)1m| with the mode number m and the corresponding disturbance y̌(1)1
for ρ1/ρ2 = 0.9, h = 0.5 and p = 1/2: (a) stable case (σr � 0.0, σi � −0.257) for which μ = 1; (b) unstable
case (σr � 0.706, σi � −24.7) for which μ = 20. (a1) and (b1) show |a(1)1m| for μ = 1 and 20, respectively.
(a2) and (b2) show y̌(1) for μ = 1 and 20, respectively. The computed results are obtained using the present
method with N = 128 and M = 60. The dominant mode number μ and the disturbance y̌(1)1 are defined by
(4.34) and (4.11), respectively. The red and blue lines in (a2) and (b2) represent the real and imaginary parts of
y̌(1)1 , respectively.

for y̌(1)1 and φ̌(1)1 , respectively. For each eigenvalue σ , the disturbance has 2M + 1 Fourier
components, from which the dominant mode number μ is defined as the value of m at
which the absolute value |a(1)1m| is the maximum for −M � m � M, namely∣∣∣a(1)1μ

∣∣∣ = max
−M�m�M

∣∣∣a(1)1m

∣∣∣ . (4.34)

An alternative is to use |b(1)1m|, but no difference is expected for the choice of μ. Note that μ
is an integer and −M � μ � M. Using this definition, 4M + 2 eigenvalues are classified
into the 2M + 1 dominant mode groups. Then, as y̌(1)1 (ξ1) can be expressed as

y̌(1)1 (ξ1) =
M∑

m=−M

a(1)1m exp(i(m + p)ξ1), (4.35)

the dominant wavenumber of the disturbance y̌(1)1 is μ+ p and, if |a(1)1μ | is much

greater than |a(1)1m| for all m (m /=μ), we may approximate y̌(1)1 (ξ1) as y̌(1)1 (ξ1) ∼
a(1)1μ exp(i(μ+ p)ξ1).

Figure 5 shows the variation of |a(1)1m| with m and the corresponding disturbance y̌(1)1
for two eigenvalues. The physical and numerical parameters for these solutions are
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ρ1/ρ2 = 0.9, h = 0.5, p = 1/2, N = 128 and M = 60. One eigenvalue is for a stable
mode (σr � 0.0, σi � −0.257) and the other is for an unstable mode (σr � 0.706, σi �
−24.7). The results suggest that the dominant mode is well defined when its value is
small, as shown in figure 5(a), but the bandwidth of |a(1)1m| increases with |μ|. For large
|μ|, there is some ambiguity in the definition of μ, as can be observed in figure 5(b).
Furthermore, when |μ| is found large, the convergence of the Fourier series expansion for
the corresponding disturbances in (4.11) and (4.12) becomes slow due to its truncation.
Then M needs to be further increased, but, unfortunately, the computational cost increases
with M. Therefore, for a fixed value of M, this causes a limitation of the classification of
eigenvalues in terms ofμ. Due to our limited computational resources, we choose N = 128
and M = 60, for which we focus on the modes of |μ| � 40 for h � 1.

5. Approximations of the growth rate σr of the disturbances

We may analytically estimate the growth rate σr = Re{σ } of the disturbances z(1)j , f (1)j ( j =
1, 2) and γ (1) to steady interfacial waves for two kinds of instability: (i) the wave-induced
KH instability and (ii) the modulational instability.

5.1. Wave-induced KH instability
As described in § 1, after assuming that the velocity jump near the crest is locally constant,
Pullin & Grimshaw (1985, (4.1) on p. 330) proposed the approximate growth rate of the
wave-induced KH instability for interfacial waves using the well-known result of the
KH instability for two horizontal uniform currents of different speed. Based on their
approximation, the positive real part, or the growth rate σ (KH)

r of the wave-induced KH
instability, can be written as

σ (KH)
r ∼ σ̃ (KH)

r = Re

{√
(μ+ p)2

ρ1/ρ2

(1 + ρ1/ρ2)2
(
q̃crest)

2 − |μ+ p|
(c0

c̃

)2
}
, (5.1)

where μ+ p is the dominant wavenumber of disturbances defined by (4.34), 
q̃crest is
the tangential velocity jump at the crest of the steady interfacial wave, c̃ is the steady wave
speed and c0 is the linear wave speed given by (3.4). As
q̃crest and c̃ depend on the steady
wave steepness h, the approximate growth rate σ̃ (KH)

r changes with ρ1/ρ2, h, μ and p.
In addition, (5.1) yields the critical mode number μ̃(KH)

c , at which the inside of the square
root in (5.1) vanishes, as

μ̃(KH)
c := (1 + ρ1/ρ2)

2

ρ1/ρ2

1
(
q̃crest)2

(c0

c̃

)2 − p. (5.2)

For μ < μ̃
(KH)
c (> μ̃

(KH)
c ), the steady interfacial wave is stable (unstable). Figure 6 shows

the variation of μ̃(KH)
c with the steady wave steepness h for the exponent p = 1/2 and

different values of the density ratio ρ1/ρ2.
Note that σ (KH)

r and μ̃(KH)
c can be estimated using either the fifth-order approximate

solutions (Tsuji & Nagata 1973), or the fully nonlinear computed results for 
q̃crest and c̃.
As can be seen in figure 6, the two results show little difference, except for ρ1/ρ2 = 0.1.
Therefore, in § 6, the fifth-order approximate solutions are used for 
q̃crest and c̃ as σ (KH)

r

and μ̃(KH)
c can be analytically estimated.
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Figure 6. Variation of the approximate critical mode number μ̃(KH)
c given by (5.2) with the steady wave

steepness h for p = 1/2 and different values of the density ratio ρ1/ρ2. In computing μ̃(KH)
c , 
q̃crest and c̃

in (5.2) are estimated using both the fifth-order approximate solutions of Tsuji & Nagata (1973) (solid) and the
numerical solutions with N = 128 (dashed).

5.2. Modulational instability
Introducing the slow space scale X = ε(x′ + cgt) and the slow time scale τ = ε2t in the
inertial frame (x′, y′, t) with x′ = x − ct and y′ = y, Grimshaw & Pullin (1985, (4.4), (4.8)
and (4.9) on pp. 304–305) derived the nonlinear Schrödinger (NLS) equation for slowly
modulated small-amplitude interfacial waves as

− iAτ + αAXX + β|A|2A = 0, (5.3)

with

cg = 1
2

c0, α = −1
8
, β = − 1 + (ρ1/ρ2)

2

2(1 + ρ1/ρ2)2
, (5.4)

where cg denotes the group velocity, c0 is given by (3.4) and A = A(X, τ ) is the complex
wave amplitude of the leading-order wave train. Following Mei, Stiassnie & Yue (2005,
chap. 13), we can investigate the linear stability of the basic Stokes wave given by

A0 = a0e−iβa0
2τ (a0 ∈ R), (5.5)

which is the solution of −iA0τ + β|A0|2A0 = 0. In particular, the approximate growth rate
σ̃
(NLS)
r of disturbances for the modulational instability is given by

σ̃ (NLS)
r := Re

⎧⎨
⎩p

8

√
2

1 + (ρ1/ρ2)
2

(1 + ρ1/ρ2)2
h2 − p2

⎫⎬
⎭ . (5.6)

This is supposed to be valid for small values of h and p.

6. Numerical examples of linear stability analysis and discussion

This section summarizes the computed results for the eigenvalue σ = σr + iσi of the
generalized eigenvalue problem (4.32) using the present method described in § 4.2,
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Figure 7. Variation of the growth rate σr with the dominant mode number μ of the corresponding disturbance
for ρ1/ρ2 = 0.9, p = 1/2 and different values of the wave steepness h. The computed results (dots) using the
present method with N = 128 and M = 60 are compared with the approximate growth rate (red solid lines)
σ̃
(KH)
r given by (5.1). The red dashed line represents the approximate critical mode number μ̃(KH)

c given by
(5.2) for the wave-induced KH instability.

and discuss two kinds of instability: (i) the wave-induced KH instability and (ii)
small-wavenumber instability including the modulational instability. The computed results
in this section are obtained with N = 128 and M = 60, where N and M denote the total
number of terms of the truncated Fourier series (A5) for steady wave solutions and (4.25)
for disturbances, respectively.

6.1. Wave-induced KH instability
Figure 7 shows the variation of the growth rate σr with the dominant mode number μ
for the density ratio ρ1/ρ2 = 0.9, the exponent p = 1/2 and different values of the wave
steepness: (a) h = 0.4, (b) 0.5, (c) 0.6 and (d) 0.7. The computed results are compared
with the approximate growth rate σ̃ (KH)

r in (5.1) for the wave-induced KH instability.
The computed results show that there exist unstable modes (σr > 0) for |μ| > μc, where
μc is the critical mode number. This is analogous to the case of the well-known KH
instability for two horizontal uniform currents of different speed. Since there are no
background currents in this problem, the instability in figure 7 is the KH instability
excited locally by the wave-induced tangential velocity jump. While its variation with
μ is qualitatively similar to the computed results, the approximate growth rate σ̃ (KH)

r in
(5.1) is always overpredicted. Nevertheless, the critical mode number μc for the onset
of the wave-induced KH instability is well approximated by μ̃(KH)

c in (5.2). As the wave
steepness increases, the critical mode number decreases, as can be seen in figure 7. For any
wave steepness, as the growth rate increases with μ (>μc) and appears to be unbounded
as μ → ∞, the inviscid initial value problem would be ill posed.
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Figure 8. Variation of the growth rate σr with the steady wave steepness h and the dominant mode number μ
of disturbances for different values of the density ratio ρ1/ρ2 (p = 1/2). The computed results (blue dots) are
obtained using the present method with N = 128, M = 60. The red solid line represents on the (μ, h)-plane
the approximate critical mode number μ = μ̃

(KH)
c (h) defined by (5.2).

Figure 8 shows the variation of the growth rate σr (�0) with the wave steepness h and
the dominant mode number μ for the exponent p = 1/2 and different values of the density
ratio: (a) ρ1/ρ2 = 0.1, (b) 0.3, (c) 0.5, (d) 0.7, (e) 0.9 and (f) 0.99. These three-dimensional
plots allow us to observe the continuous change of σr with both h and μ simultaneously.
The critical dominant wavenumberμc depends on the density ratio and the wave steepness,
and the interfacial periodic steady waves are always unstable for μ > μc. We can observe
that the value of the growth rate σr > 0 for the unstable range μ > μc increases with the
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Figure 9. Variation of the real and imaginary parts of the eigenvalue σ = σr + iσi with the steady wave
steepness h for ρ1/ρ2 = 0.9 and p = 1/2: (a) 0.41 � h � 0.44; (b) 0.62 � h � 0.7. The results (dots) are
computed with N = 128 and M = 60. At the wave steepness h marked by the red dashed line, two eigenvalues
collide and the growth rate σr changes from σr = 0 to σr /= 0.

density ratio ρ1/ρ2. However, the computed results vary little for ρ1/ρ2 � 0.9. It is found
that the estimated critical curve μ = μ̃

(KH)
c (h) approximately agrees with the computed

results for ρ1/ρ2 � 0.3 but not for ρ1/ρ2 = 0.1. This disagreement for ρ1/ρ2 = 0.1 may
be due to the fact that the tangential velocity jump near the crest for ρ1/ρ2 = 0.1 changes
more rapidly than that for ρ1/ρ2 � 0.3, as shown in figure 3, and the tangential velocity
jump cannot be assumed to be constant near the crest of the steady waves. Therefore, the
approximate local analysis breaks down for small values of ρ1/ρ2.

Figure 9 shows the variation of the real and imaginary parts of the eigenvalue σ =
σr + iσi with the wave steepness h for the density ratio ρ1/ρ2 = 0.9, the exponent p = 1/2
and the dominant mode number |μ| � 40. The computed results of the imaginary part σi
demonstrate that some pairs of the eigenvalues collide successively at the wave steepness
h shown by the red dashed lines. When two eigenvalues collide, the corresponding growth
rate σr changes from σr = 0 to σr /= 0, and the dominant mode number μ is equal to
the critical mode number μc. These successive collisions of the eigenvalues result in the
wave-induced KH instability found in figures 7 and 8. This observation is consistent with
the previous theoretical results that the instability arises when two eigenvalues of opposite
Krein signature or opposite energy sign collide, for example, in MacKay & Saffman (1986)
for surface waves and Benjamin & Bridges (1997) for interfacial waves using Hamiltonian
approaches.

In figures 7, 8 and 9, the value of the exponent p is fixed to p = 0.5. Figure 10 shows the
variation of the growth rate σr with the wave steepness h and the dominant mode number
μ for different values of the exponent p (the density ratio ρ1/ρ2 = 0.9). For relatively
large values of |μ|, the computed eigenvalue σ almost remains unchanged with p, as
shown in figure 10, because the dominant wavenumber μ+ p with 0 � p � 1/2 is nearly
equal to μ. On the other hand, for small values of |μ|, namely for small-wavenumber
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Figure 10. Variation of the growth rate σr with the wave steepness h and the dominant mode number μ for the
density ratio ρ1/ρ2 = 0.9 and different values of the exponent p: (a) variation of σr with h and μ; (b) variation
of σr with μ. (a1) and (a2) show variation of σr with h and μ for p = 0 and 0.25, respectively. (b1) and (b2)
show variation of σr with μ for h = 0.5 and 0.7, respectively. The results (dots) are computed with N = 128
and M = 60. The red solid line in (a) represents on the (μ, h)-plane the approximate critical mode number
μ = μ̃

(KH)
c (h) defined by (5.2).

(long-wavelength) disturbances, the eigenvalue σ changes with p and a different type of
instability is observed, to be discussed in § 6.2.

6.2. Small-wavenumber instability
Until now, we have discussed the instability associated with large values of the dominant
mode number μ, but the instability for which μ is small is also observed. Figure 11 shows
the variation of the growth rate σr with the exponent p for μ = −1, 1 and 0. Here, we
fix the density ratio to ρ1/ρ2 = 0.9, but vary the wave steepness: (a) h = 0.3, (b) 0.5,
(c) 0.7 and (d) 0.9. The computed results using the present method are compared with
(i) the approximate growth rate σ̃ (NLS)

r in (5.6) for the modulational instability and (ii)
the computed results using the previous method (Yuen 1984) that was developed in the
physical plane. It is found that the approximate growth rate σ̃ (NLS)

r is valid only for small
values of h and p, as expected. It is also noticed that the computed results using the
previous method agree with those using the present method only for h � 0.7, but not for
h = 0.9. For h > 0.7, we could not obtain accurate numerical solutions using the previous
method, as shown in figure 11(d).

It should be remarked that the value of the growth rate σr > 0 of small-wavenumber
disturbances in figure 11 is much smaller than that of the wave-induced KH instability in
§ 6.1. Thus, it is difficult to identify the small-wavenumber instabilities with μ = −1, 0
and 1, including the modulational instability in figures 7, 8, 9 and 10. It is interesting to
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Figure 11. Variation of the growth rate σr with the exponent p for the density ratio ρ1/ρ2 = 0.9 and the
dominant mode numbers μ = −1, 0 and 1. The computed results using the present method with N = 128
and M = 60 (dots) are compared with those using the previous method by (Yuen 1984) (circles) and the
approximate growth rate σ̃ (NLS)

r in (5.6) for the modulational instability (red lines).

note that the present method captures another type of instability for h = 0.9 and 0.21 <
p < 0.25, as shown in figure 11(d). This instability seems to be similar to the ‘nonlinear
mode jumping’ phenomenon described by Yuen (1984, figure 4(g) on p. 80) for ρ1/ρ2 =
0.9 and h = 0.5 with the background current jump 
U = 0.5(c0/c). The source of this
instability remains unknown and is a topic for future research.

7. Conclusions

We have performed linear stability analysis of finite-amplitude gravity waves at the
interface between two unbounded homogeneous fluids of different density in the absence
of background currents. We have focused on the wave-induced KH instability, which is
excited by the tangential velocity jump at the interface induced by the deformation of the
interface. To numerically study the linear stability for a wide range of wave steepnesses,
the unsteady conformal mapping technique often adopted for surface waves is extended
to the two-layer fluid problem, and the upper and lower flow domains are conformally
mapped into the upper and lower half-planes, respectively. Then, the time-varying
interface is always mapped onto the real axis and is conveniently parameterized. After
reformulating the linear stability problem as the generalized eigenvalue problem in matrix
form (4.32) in § 4.2, we numerically solved the eigenvalue problem (4.32), and have
identified the dominant mode μ defined by (4.34) monitoring the eigenvectors of unstable
disturbances.

The stability analysis in § 6.1 has confirmed that the wave-induced KH instability is
the dominant mechanism for the instability of the interfacial periodic waves. This has
been widely accepted, but has not been fully or accurately investigated in previous studies.
Once the wave-induced KH instability is excited, large-wavenumber disturbances grow
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exponentially if their wavenumbers are greater than a critical value that depends on the
wave steepness and the density ratio. The critical mode number μc can be relatively
well approximated by μ̃(KH)

c in (5.2) for ρ1/ρ2 � 0.3, where μ̃(KH)
c represents the critical

value predicted by the local KH stability analysis by assuming that the local currents
are constant around the wave crest, or, more specifically, over a length scale greater
than the wavelengths of unstable waves. Nevertheless, the local stability analysis fails to
accurately provide the growth rates, in particular, of large-wavenumber disturbances. In
addition, it has been found that the successive collisions of the eigenvalues give rise to the
wave-induced KH instability.

It has been shown in § 6.2 that small-wavenumber disturbances are also unstable and the
present method allows us to numerically study such instability for large-amplitude waves,
for which weakly nonlinear theory using the NLS equation is no longer applicable.

We have shown that the present method can be used to obtain accurate numerical
solutions of the eigenvalue problem (4.32) for ρ1/ρ2 � 0.99, h � 1 and |μ| � 40 with
N = 128 and M = 60, where N and M denote the total number of terms of the
truncated Fourier series (A5) for steady wave solutions and (4.25) for the presentation
of disturbances, respectively. Beyond this parameter range, the values of N and M need
to be further increased with a more efficient numerical algorithm to solve the generalized
eigenvalue problem.
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Appendix A. Numerical computation of steady interfacial waves

A.1. Numerical method
For steady wave solutions z(0)j (ζj) and f (0)j (ζj) in (3.1), the kinematic conditions (2.18) with
(2.21a–d) yield

φ̃
(0)
j,j = 1 and ψ̃

(0)
j,j = 0 ( j = 1, 2), (A1)

and the dynamic condition (2.19) with (A1) becomes

G1(ξ̂ ) := 1
2

1

J(0)2 (ξ2)
+ 1

c2 ỹ(0)2 (ξ2)− ρ1

ρ2

{
1
2

1

J(0)1 (ξ1)
+ 1

c2 ỹ(0)1 (ξ1)

}
− B(0)

2
= 0, (A2)

where ξj = ξ̂
(0)
j (ξ̂ ) ( j = 1, 2) at the interface are given by (3.2), J(0)j (ξj) = (x̃(0)j,j )

2 + (ỹ(0)j,j )
2

( j = 1, 2) and B(0) is an unknown real constant. The contact conditions (2.16) become

G2(ξ̂ ) := x̃(0)1 (ξ1 = ξ̂ + γ (0)(ξ̂ ))− x̃(0)2 (ξ2 = ξ̂ − γ (0)(ξ̂ )) = 0

G3(ξ̂ ) := ỹ(0)1 (ξ1 = ξ̂ + γ (0)(ξ̂ ))− ỹ(0)2 (ξ2 = ξ̂ − γ (0)(ξ̂ )) = 0

}
. (A3)
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Figure 12. Fourier coefficients of steady wave solutions in (A4) for the density ratio ρ1/ρ2 = 0.9 and the
wave steepness h = 1.0: (a) a(0)1n , a(0)2n and c(0)n (n = 0, 1, . . . ,N) with N = 128; (b) convergence of a(0)1n with
increasing N (N=64, 128, 256, 512).

From the symmetry of the periodic wave profile, the analyticity of z(0)j = x(0)j + iy(0)j

( j = 1, 2), the conditions at infinities (2.20) and the boundary conditions ξ (0)j (ξ̂ = 0) = 0,

ξ
(0)
j (ξ̂ = ±π) = ±π ( j = 1, 2) and γ (0)(ξ̂ = 0) = 0, γ (0)(ξ̂ = ±π) = 0, we can expand

the steady wave solutions z(0)j ( j = 1, 2) and γ (0) as

z(0)1 (ζ1) = ζ1 + i
∞∑

n=0

a(0)1n einζ1

z(0)2 (ζ2) = ζ2 + i
∞∑

n=0

a(0)2n e−inζ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and γ (0)(ξ̂ ) =
∞∑

n=1

c(0)n sin nξ̂ , (A4)

where a(0)1n , a(0)2n , c(0)n ∈ R. For numerical calculations, each infinite series in (A4) is
truncated as

∞∑
n=0

∼
N∑

n=0

. (A5)

When the density ratio ρ1/ρ2 and the wave steepness h are given, we may numerically
determine the 3N + 3 unknowns {a(0)1n }N

n=0, {a(0)2n }N
n=0, {c(0)n }N−1

n=1 , B0 and c using Newton’s
method such that the dynamic condition G1(ξ̂ ) = 0 in (A2) and the contact condition
G3(ξ̂ ) = 0 in (A3) at ξ̂ = ξ̂� = �π/N (� = 0, 1, . . . ,N), G2(ξ̂ ) = 0 in (A3) at ξ̂ = ξ̂� (� =
1, 2, . . . ,N − 1) with the wave height condition

G4 := ỹ(0)1 (ξ1 = 0)− ỹ(0)1 (ξ1 = π)− h = 0, (A6)

and the zero mean level condition

G5 :=
∫ π

0
ỹ(0)1 x̃(0)1,1 dξ1 = 0, (A7)

are simultaneously satisfied. In the numerical results in this paper, the stopping condition
of Newton’s method was set to

max{‖G1‖max, ‖G2‖max, ‖G3‖max, |G4|, |G5|} < 10−9, (A8)
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Figure 13. Variation of the total wave energy ET = EK + EP of steady interfacial waves with the wave
steepness h for different values of the density ratio ρ1/ρ2. The kinetic energy EK and the potential energy EP
are computed by using (A9) and (A10), respectively, with the computed steady wave solutions with N = 128.

where

‖Gj‖max = max
�=0,...,N

|Gj(ξ̂�)| ( j = 1, 3) and ‖G2‖max = max
�=1,...,N−1

|G2(ξ̂�)|.

Figure 12(a) shows the Fourier coefficients a(0)1n , a(0)2n and c(0)n in (A4) for ρ1/ρ2 = 0.9
and h = 1.0. As they decay fast enough, any value of N greater than 60 seems to be
large enough for double precision computations. In addition, as shown in figure 12(b),
the Fourier coefficient a(0)1n converges well as N increases. In this work, we use N = 128.

In the linear stability analysis presented in § 4, to reduce numerical errors in solving
eigenvalue problems, each Fourier coefficient in (A4) is set to zero if its absolute value is
less than 10−13.

A.2. Wave energy
The expressions for the kinetic energy EK and the potential energy EP of steady interfacial
waves of symmetric profile are given by

EK = 1
2

c2
[

ρ1

ρ1+ρ2

∫∫
D1

{(u1 − 1)2+v1
2} dx̃ dỹ+ ρ2

ρ1 + ρ2

∫∫
D2

{(u2 − 1)2 + v2
2} dx̃ dỹ

]

= c2
[∫ π

0
y(0)1 γ

(0)
ξ̂

dξ̂ −
(

1 − ρ1/ρ2

1 + ρ1/ρ2

)∫ π

0
y(0)1 {1 − x(0)1,1(1 + γ

(0)
ξ̂
)} dξ̂

]
, (A9)

and

EP = − ρ1

ρ1 + ρ2

∫ xB

xA

∫ ỹ

0
y dy dx + ρ2

ρ1 + ρ2

∫ xB

xA

∫ ỹ

0
y dy dx

=
(

1 − ρ1/ρ2

1 + ρ1/ρ2

)∫ π

0
{y(0)1 }2x(0)1,1(1 + γ

(0)
ξ̂
) dξ̂ , (A10)

where each energy is non-dimensionalized by (ρ1 + ρ2)g/k3, and Dj ( j = 1, 2) denote
the fluid domains surrounded by AjACBBj in figure 1(a). Figure 13 shows the variation
of the total wave energy ET = EK + EP of steady interfacial waves with the wave
steepness h.
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It was shown by Tanaka (1983) and Longuet-Higgins & Tanaka (1997) that the steady
surface gravity waves lose stability due to superharmonic disturbances at the wave
amplitude where the wave energy attains an extremum. Murashige & Choi (2020) also
found that this type of superharmonic instability of surface waves occurs even in the
presence of a linear shear current. In this work, we compute steady solutions only for
h � 1, where the wave energy ET increases monotonically with h. Thus the superharmonic
instability found for surface waves does not occur for the interfacial waves with
h � 1.

Appendix B. The coefficient functions A∗,m(ξ̂ ), B∗,m(ξ̂ ) and C∗,m(ξ̂ )

The coefficient functions A∗,m(ξ̂ ), B∗,m(ξ̂ ) and C∗,m(ξ̂ ) in (4.15), (4.16), (4.17) and
(4.18a,b) are given by

A11,m(ξ̂ ) =
{

x̃(0)1,1 − i sgn( p + m) ỹ(0)1,1

}
exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

B11,m(ξ̂ ) = −|p + m| exp (i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

⎫⎬
⎭ , (B1)

A21,m(ξ̂ ) = ρ1

ρ2

1

J(0)1

{
i sgn( p + m) x̃(0)1,1 + ỹ(0)1,1

}
exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

A22,m(ξ̂ ) = − 1

J(0)2

{
−i sgn( p + m) x̃(0)2,2 + ỹ(0)2,2

}
exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

B21,m(ξ̂ ) = −ρ1

ρ2
exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ ),

B22,m(ξ̂ ) = exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(B2)

A31,m(ξ̂ ) = ρ1

ρ2

[
− 1

(J(0)1 )2

{
i sgn( p + m) x̃(0)1,1 + ỹ(0)1,1

}
i( p + m)+ 1

c2

]

× exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

A32,m(ξ̂ ) =
[

1

(J(0)2 )2

{
−i sgn( p + m) x̃(0)2,2 + ỹ(0)2,2

}
i( p + m)− 1

c2

]

× exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

B31,m(ξ̂ ) = ρ1

ρ2

1

J(0)1

i( p + m) exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

B32,m(ξ̂ ) = − 1

J(0)2

i( p + m) exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

C3,m(ξ̂ ) =

⎡
⎢⎣−

1
2

J(0)2,2

(J(0)2 )2
+ 1

c2 ỹ(0)2,2 + ρ1

ρ2

⎧⎪⎨
⎪⎩−

1
2

J(0)1,1

(J(0)1 )2
+ 1

c2 ỹ(0)1,1

⎫⎪⎬
⎪⎭
⎤
⎥⎦ exp(imξ̂ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B3)

A41,m(ξ̂ ) = sgn( p + m) exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

A42,m(ξ̂ ) = sgn( p + m) exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

C4,m(ξ̂ ) = i (x̃(0)1,1 + x̃(0)2,2) exp(imξ̂ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (B4)
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A51,m(ξ̂ ) =
{

x̃(0)1,1 + x̃(0)2,2 − i sgn( p + m)(ỹ(0)1,1 + ỹ(0)2,2)
}

× exp(i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

A52,m(ξ̂ ) =
{

x̃(0)1,1 + x̃(0)2,2 + i sgn( p + m)(ỹ(0)1,1 + ỹ(0)2,2)
}

× exp(−i( p + m)γ (0)(ξ̂ )) exp(imξ̂ )

B51,m(ξ̂ ) = A41,m(ξ̂ ) and B52,m(ξ̂ ) = −A42,m(ξ̂ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (B5)
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