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SUMMARY
In this paper, we focus on the development of a quantitative
performance analysis framework for a cooperative system
of multiple wheeled mobile manipulators physically
transporting a common payload. Each mobile manipulator
module consists of a differentially driven wheeled mobile
robot (WMR) with a mounted planar three-degree-of-
freedom (DOF) revolute-jointed manipulator. A composite
cooperative system is formed when a payload is placed
at the end-effectors of many such modules. The system
possesses the ability to change its relative configuration as
well as to accommodate relative positioning errors of the
wheeled agents. However, the combination of nonholonomic
constraints due to the mobile bases, holonomic constraints
due to the closed kinematic loops, and the different
joint-actuation schema (active/passive/locked) within the
system requires careful quantitative evaluation to efficiently
realize the payload manipulation task. Hence, in this
paper, we extend the differential kinematic model for
treatment of constrained articulated mechanical systems to
formulate a framework to include both the mixture effect
of holonomic/nonholonomic constraints and the different
possible joint-actuation schema in our system. The system-
level performance is then examined quantitatively by the
manipulability measure in terms of isotropy index with
representative case studies.

KEYWORDS: Cooperative robots; Mobile manipulator; Nonholo-
nomic constraints; Closed-loop chains; Manipulability.

1. Introduction
Our overall goal is the design, analysis, and implementation
of a modular, flexible, and scalable system of multiple
wheeled mobile agents that are individually autonomous but
can team up to cooperatively transport large payloads. Such
frameworks for remotely controlled or remotely supervised
cooperation of multiple autonomous mobile robots have
applications for material-handling tasks in many fields.1,2

In our design, the individual autonomous agents take the
form of differentially driven wheeled mobile manipulators,
consisting of an articulated arm attached to a mobile base.
Each mobile base possesses a single rigid axle between two
fixed disk wheels and the usual complement of nonholonomic
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kinematic constraints. The attached articulated arm permits
relative planar motion of the end-effector with respect to
the mobile base in the horizontal plane. Various types of
articulated arms3 have been examined for suitability for
the proposed cooperative payload transport task. However,
for this paper, we assume that the articulated arm has
three revolute joints—forming the so-called Type III mobile
manipulator shown in Fig. 1(a).

A composite multi-degree-of-freedom (MDOF) vehicle
system is formed when a common payload is placed at
the end-effectors of the two or more adjacent modules, as
shown in Fig. 1(b). The attached arms act like a compliant
suspension system, which with suitable instrumentation and
actuation endows the composite system with (a) ability
to accommodate changes in the relative configuration; (b)
redundant sensing for localizing the modules; and (c)
redundant actuation for moving the common payload while
compensating for environmental disturbances and errors.

In particular, these articulations (with at least three DOF)
permit the relaxation of the requirement for a common
center of rotation between the multiple axles created by
the nonholonomic constraints at the wheels. However, while
the velocity-level kinematic constraints for the system are
eliminated, other holonomic constraints (due to the closed
kinematic loops) are introduced between the relative motions
of the bases. Such closed kinematic loops present a number
of subtleties that are not often seen in open kinematic
chain manipulators. Notably, the kinematic configuration
space of a closed-loop manipulator is no longer a flat
space but becomes a curved manifold embedded in a higher
dimensional vector space. Further, as has been mainly
discussed in this paper, the existence of such holonomic
constraints limit the DOF of the systems, and hence not all
articulations need to be actuated. Thus, the selection of the
location of the active/passive/locked joints also plays a vital
role in determining the overall performance of the system.

In this paper, we analyze the cooperative composite
system within a constrained articulated mechanical system
framework. Specifically, we focus on the kinematic modeling
while taking into account (a) the nonholonomic constraints
due to the wheel assemblies together with the holonomic
constraints due to the kinematic closed loops and (b) the
varying location and actuation of the joints within the system.
Performance of several cooperative system scenarios with
varying actuation arrangements are then quantified in terms
of the system-level manipulability measure.
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Fig. 1. (a) Representative mobile manipulator module. (b) Representative composite formation of cooperative system.

The rest of the paper is organized as follows: Section 2
presents a brief overview of the pertinent literature followed
by the twist-based kinematic model of the wheeled mobile
manipulator module presented in Section 3. This is then
used in Section 4 to model the composite system with
kinematic closed-loop constraints and formulate system-
level manipulability-based measures-of-performance. Dif-
ferent case studies of cooperative payload transport with
varying actuation schema are examined in Section 5 in terms
of the manipulability measure. Finally, a brief discussion and
concluding remarks are presented in Section 6.

2. Literature Survey
Cooperative multirobot systems, ranging from multiple
mobile robots,4,5 multiple manipulators,6 multifingered
hands,7,8 and multilegged vehicles9,10 have been extensively
studied in a variety of contexts. In what follows, we
restrict our attention to cooperative physical manipulation
by articulated mechanical systems focusing solely on the
motion distribution issues.

2.1. Cooperating articulated mechanical systems
The characteristic feature of such systems is the formation
of closed kinematic chains, typically with one reference
member interacting with a number of supporting serial
chains. The nature of the attachment of the supporting chains
to the reference member permits a structural classification11

into Type 0 systems (such as multiarm systems and dextrous
hands), and Type 1 systems (such as legged machines). At
the same time, the presence of these closed kinematic chains
reduces the effective DOF of the system, creating kinematic
redundancy and most often redundancy in actuation.9

This permits an alternate functional classification into
underactuated, exactly–actuated, and redundantly actuated
systems.

2.2. Cooperating system of mobile manipulators
There is relatively less literature, but considerably greater
variability, in the approaches employed for cooperation of

multiple mobile manipulators.12–16 Khatib et al.12 developed
a decentralized control structure for cooperative tasks with
mobile manipulation systems with holonomic bases and
fully actuated manipulators. Motion planning has also been
considered for collaborating teams of nonholonomic mobile
manipulators from various centralized perspectives.14,17

Kosuge et al.15 proposed a simple method for carrying a
large object by cooperation of multiple mobile manipulators
with impedance-based controllers by selectively locking
and unlocking some joints of the mounted manipulators on
mobile platforms. Yamakita et al.16 implemented the passive
velocity field control approach for the cooperative control of
multiple mobile robots holding an object. However, in most
cases, the focus is on a fully actuated manipulator, without
the possibility of including any passive or semipassive joints,
which is a significant feature in our system.

The composite system formed by connecting the multiple
mobile manipulators to the common payload also forms a
subclass of the larger class of MDOF wheeled vehicles.18–24

While some of these like the RollerRacer18 and the
Snakeboard19 are case studies in underactuated locomotion,
several others like OMNIMATE/CLAPPER20 and systems
with multiple actively steered wheels21–23 and WAAVs24

feature redundancy in actuation. Several of these authors also
noted that despite gains in maneuverability over conventional
mobile robots, the overconstrained nature with hybrid series–
parallel kinematic chains creates challenges in planning and
control of such wheeled systems.

Finally, immense variability in the overall composite
system can arise due to the selection of the type of
mobile base, the manipulator arm, and the number of such
branches/legs attaching to the platform. For instance, Ben-
Horin et al.25 examined a system with three branches, each of
which consisted of a spatial six-DOF manipulator mounted
on omnidirectional bases (or as extended by Shoval and
Shoham26,27 to wheeled bases translating along parallel
straight lines). Our framework is intended to allow a far more
general and systematic kinematic performance evaluation of
a multimodule composite system—regardless of the number
of modules, the type of mobile base, or the articulated
structure of the mounted manipulator.
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2.3. Performance measures
Performance measures play a critical role in the design,
evaluation, optimization, and control of robotic systems.
Performance measures for an individual robotic system
are very well developed, including several Jacobian-based
performance measures (JBPM), such as manipulability,
singularity, and dexterity.28 However, literature on the
extension of such performance measures to groups of
robots is relatively limited. Traditionally, variances in robots
within a team were classified only as heterogeneous or
homogeneous. Balch29 developed a quantity called the social
entropy to provide a quantitative evaluation of diversity and
information-level cooperation in robot teams. Alternatively,
energy-based measures,30,31 developed from left-invariant
Riemannian metrics,32 have been used to characterize the
total kinetic energy of a collective at any instant of time, or
over the entire maneuver.

While these measures show considerable promise, in
this paper, we focus our attention solely on Jacobian-
based manipulability measures to serve as measure of
motion and force transmission capability. Building from
Yoshikawa’s measure of manipulability33 for the serial-chain
case, a large variety of manipulability-based formulations
have been used in different applications.8,34,35 The use
of singular value decomposition (SVD) of the Jacobian
matrix offers further mathematical and geometrical insight
of the manipulability characteristics of a robotic system.28

Efforts for characterizing the manipulability of parallel-chain
mechanisms36–38 have noted the engendered difficulties.
Such systems possesse multiple closed kinematic loops
whose loop closure constraints are responsible for consider-
able kinematic (and often actuation) redundancy within the
system. Further, even in nonredundant settings, selection of
the location of active/passive joints can significantly affect
the manipulability, which is further explored in this paper.
We adapt some aspects of the existing work,36–38 extending
it to include nonholonomic constraints within the formulation
to facilitate performance evaluation of our composite
system.

3. Modeling of the Individual Modules

3.1. Mathematical preliminaries
We briefly summarize the necessary mathematical pre-
liminaries and fix the notation used in our formulation. The
reader is referred to refs. 3, 39 for further details.

In a two-dimensional Euclidean task space, the configura-
tion of a rigid body can be represented as an element of
A ∈ SE(2). In our notation, the relative configuration of a
body-fixed frame {E} relative to an inertial-fixed frame {F}
can be defined by a 3 × 3 homogeneous transformation
matrix of

F AE =
[

F RE
F

˜
d

˜
0T 1

]
(1)

where F RE ∈ SO(2) is a rotation matrix, and F

˜
d ∈ R

2 is a
displacement vector. In planar case, a twist matrix T ∈ se (2)

can be represented by a 3 × 3 matrix in the form of

T =
[

�
˜
v

˜
0T 0

]
(2)

where � = [0 −ω
ω 0

] ∈ so (2) is a skew-symmetric matrix,
ω ∈ R, and

˜
v ∈ R

2. A twist vector can then take the form of

˜
t = [

ω

˜
v
] ∈ R

3. Note that ω is an angular velocity scalar and

˜
ν is a linear velocity vector in the plane. In our context, a
body-fixed twist matrix corresponding to the motion of body-
fixed frame {E} with respect to its immediately preceding
frame {F} (but as expressed in frame {E}) can be determined
as

E
[
F TE

] = [
F A−1

E

][
F ȦE

]
. (3)

Such a motion description is particularly useful in the study
of locomotion systems, since it is invariant to the changes
of the inertial-fixed frame. The resulting twist matrix can
be transformed to any arbitrary frame {N} by a similarity
transformation as

N
[
F TE

] = [
NAE

]
E
[
F TE

][
NA−1

E

]
. (4)

Finally, for an n-DOF serial chain, the end-effector twist can
be expressed as a sum of twist contributions of the individual
joints as

n
[

0

˜
tn

] = n
[

0

˜
t1

]
θ̇1 + n

[
1

˜
t2

]
θ̇2 + · · ·

+ n
[
n−2

˜
tn−1

]
θ̇n−1 + n

[
n−1

˜
tn

]
θ̇n (5)

where each vector n[n−1

˜
tn] represents the instantaneous

screw axis of the motion, and each θ̇n is the magnitude of
the angular velocity about the axis. By rewriting Eq. (5) into
a matrix form, we can assemble the Jacobian matrix nJ in
frame {n} as

n
[

0

˜
tn

] = nJ (
˜
η)

˜
η̇

=
[

n
[

0

˜
t1

]
n
[

1

˜
t2

]· · ·n[n−2

˜
tn−1

]
n
[
n−1

˜
tn

]]
⎡
⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2
...

θ̇n−1

θ̇n

⎤
⎥⎥⎥⎥⎥⎦ . (6)

3.2. Types of mobile manipulator modules
We consider a mobile manipulator as being composed of two
subsystems—(a) a differentially driven wheeled mobile robot
(WMR) platform, and (b) a three-DOF serial manipulator
mounted at the midpoint of the axle between the two driving
wheels as shown in Fig. 2. We note that the revolute (R)
and the prismatic (P) joints are the only two possibilities
for lower-pair joints that can enforce planar motion in
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Fig. 2. Kinematic model of individual wheeled mobile manipulator
module.

Table I. Eight possible combinations
of simple three-degree of freedom
planar manipulator with revolute (R)
and prismatic joints (P). The PPP
configuration does not allow arbitrary
orientation of the end-effector.

RRR PRR
RRP PRP
RPR PPR
RPP PPP

the mounted manipulator. Thus, only eight potential
configurations of a three-DOF serial manipulator can be
created by combinations of the three revolute/prismatic
joints, as shown in Table I. Further, some of these configu-
rations (such as PPP configuration) do not even yield the
desired full three DOF in the plane between the base and
end-effector.

In this paper, we restrict our attention to the RRR configu-
ration for the mounted manipulator atop a nonholonomic
wheeled base to form the so-called NH–RRR-type mobile
manipulator module. While heterogeneity of modules used
to form the composite system can potentially yield greater
variability, we focus on creating the composite cooperating
system using three identical/homogeneous NH–RRR-type
mobile manipulator modules. This intentional narrowing

of focus now facilitates the comparative study of the
configuration dependence of the three-module system with
other three-RRR planar parallel manipulator (albeit with
fixed bases). In particular, it allows a systematic study of the
role of the mobile bases on the overall system performance,
especially in situations where these mobile bases feature
nonholonomic constraints. Finally, this narrowing of focus
does not prove too restrictive, since the selection of actuation
can still create significant variability in performance (as we
will systematically study later).

3.3. Twist modeling of the NH–RRR-type module
Referring to Fig. 2, frame {M} is rigidly attached to the WMR
with the XM-axis oriented in the direction of the forward
travel, and YM-axis oriented at the direction perpendicular to
XM -axis (i.e., the direction of the nonholonomic constraint).
Frames {Ak}, {Bk}, and {Ek} are rigidly attached to the distal
ends of first, second, and third links, respectively. Without
the lost of generality, we also consider that the body-fixed
frame {E} attached to the payload is offset with respect to the
end-effector frame {Ek}, by a constant offset angle δk . The
configuration of the manipulator with the three revolute joints
can be parameterized by the three relative angles θ1, θ2, and
θ3, with the link lengths L1, L2, and L3. Note that the third
link is a virtual link that connects the point of attachment of
the payload (origin of frame {B}) to the origin of the payload
reference frame {E}. The configuration of the WMR can be
described as

F AM =

⎡
⎢⎣cos φ −sin φ x

sin φ cos φ y

0 0 1

⎤
⎥⎦. (7)

The body-fixed twist matrix of the mobile robot M [F TM ] is
obtained as

M
[
F TM

] =

⎡
⎢⎣0 −φ̇ ẋ cos φ + ẏ sin φ

φ̇ 0 −ẋ sin φ + ẏ cos φ

0 0 0

⎤
⎥⎦ (8)

where φ̇ = ωM is the angular velocity of the mobile robot. By
noting that −ẋ sin φ + ẏ cos φ = 0 and that ẋ cos φ + ẏ sin φ

can be expressed as the forward velocity vM , we can obtain
a parameterization of the total twist in terms of φ̇ and vM

as

M
[
F TM

] =
M

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
M [Tφ̇ ]

φ̇ +
M

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
M

[
TvM

]
vM. (9)

The corresponding twist vectors as expressed in the common
payload frame {E} can be written as

E
[
F

˜
tM

] = E
[
˜
tωM

]
ωM + E

[
˜
tvM

]
vM (10)
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where

E
[
˜
tωM

]

=

⎡
⎢⎣

1

−L1 sin(δk − θ2 − θ3) −L2 sin(δk − θ3) −L3 sin δk

L1 cos(δk − θ2 − θ3) + L2 cos(δk − θ3) + L3 cos δk

⎤
⎥⎦

(11)

E
[
˜
tvM

] =

⎡
⎢⎣ 0

cos(δk − θ1 − θ2 − θ3)
sin(δk − θ1 − θ2 − θ3)

⎤
⎥⎦ . (12)

Similarly, the twist at the end-effector of the serial
manipulator can be expressed as a linear combination of
the twist contributions of each revolute joint as

E
[
M

˜
tE

] = E
[
˜
t θ̇1

]
θ̇1 + E

[
˜
t θ̇2

]
θ̇2 + E

[
˜
t θ̇3

]
θ̇3 (13)

where

E
[
˜
t θ̇1

]

=

⎡
⎢⎣ 1

−L1 sin(δk − θ2 − θ3) −L2 sin(δk − θ3) −L3 sin δk

L1 cos(δk − θ2 − θ3) +L2 cos(δk − θ3) +L3 cos δk

⎤
⎥⎦

(14)

E
[
˜
t θ̇2

] =

⎡
⎢⎣ 1

−L2 sin(δk − θ3) − L3 sin δk

L2 cos(δk − θ3) + L3 cos δk

⎤
⎥⎦ (15)

E
[
˜
t θ̇3

] =

⎡
⎢⎣ 1

−L3 sin δk

L3 cos δk

⎤
⎥⎦. (16)

The end-effector twist can now be related to the various joint
rates by way of a geometrically assembled Jacobian matrix
as

E
[
F

˜
tE

] = EJ (
˜
η)

˜
η̇

= [
E

˜
tωM

E

˜
tvM

E

˜
t θ̇1

E

˜
t θ̇2

E

˜
t θ̇3

]
⎡
⎢⎢⎢⎢⎢⎣

ωM

vM

θ̇1

θ̇2

θ̇3

⎤
⎥⎥⎥⎥⎥⎦. (17)

Such a modular assembly of the Jacobian matrix is useful as
has been explored further in the subsequent sections. For the
remainder of the paper, we denote the end-effector twist E

˜
t

instead of E[F
˜
tE].

4. Modeling of Composite Cooperating System
Multiple kinematic closed-loop constraints are formed when
the common payload is placed on the end-effectors of
adjacent cooperating mobile manipulator modules. We treat
the payload as a common reference member of Type 0 simple-
closed-chain system and the various mobile manipulator
modules as the serial-chain legs. For this paper, we also
assume that a rigid connection is formed between the payload
and the end-effector, i.e., all mobility at the contact is
localized within the attaching serial-chain. However, we
note that it is possible to model a variety of other grasping
conditions38,39 (from frictionless hard point contacts to
soft finger contacts with friction) within this formulation
relatively easily.

Let the complete set of joint velocities of the constrained
mechanical system be described by a vector of the
generalized velocities

˜
η̇. The differential-kinematic model of

the closed-loop constrained system can generally be written
as

JT (
˜
η)

˜
η̇ = E

˜
t (18)

subject to the general velocity-level constraint equations

JC(
˜
η)

˜
η̇ =

˜
0. (19)

The number of independent loops that forms the Jacobian
matrix JC(

˜
η) can be determined by the Euler equation by

viewing the system as a network (with the links as nodes
and the joints as edges).40 We note that within a parallel-
chain mechanism, not all the joints in the system need to be
actuated. The mixture of active and passive joint components
can help partition the rate vector as

˜
ηT = [

˜
ηT

a
˜
ηT

p ].
˜
η̇a and

˜
η̇p

are the subvectors of the active and passive manipulation rates
variables within the entire constrained mechanical system. JT

and JC can then be partitioned accordingly, permitting Eqs.
(18) and (19) to be rewritten as

JTa

˜
η̇a + JTp

˜
η̇p = E

˜
t (20)

JCa

˜
η̇a + JCp

˜
η̇p =

˜
0. (21)

A general solution of Eq. (21) for
˜
η̇p can be determined as

˜
η̇p = −J+

Cp
JCa

˜
η̇a + J̃Cp

˜
ξ (22)

where the superscript “+” denotes the Moore–Penrose
inverse of the matrix, J̃Cp

is the right annihilator of JCp
, i.e.,

JCp
J̃Cp

=
˜
0, and

˜
ξ is any arbitrary vector parameterizing the

nullspace of JCp
. Using Eq. (22) with (20), we get

E

˜
t = [

JTa
− JTp

J+
Cp

JCa

]
˜
η̇a + JTp

J̃+
Cp ˜

ξ

= J̄T
˜
η̇a + JTp

J̃+
Cp ˜

ξ. (23)

J̄T is the system Jacobian matrix that now relates the actuated
joint rates of the system to the task space twists.
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4.1. Actuation
Three different cases arise depending on the nature of the
actuation within the system, which is reflected in the sizes of
the matrices JCa

and JCp
.

4.1.1. Exact actuation. If the system is exactly actuated, as
typically seen in parallel manipulators, then JCp

has full rank
and no longer possesses a nullspace. Thus, we can rewrite
Eqs. (22) and (23) as

˜
η̇p = −J−1

Cp
JCa

˜
η̇a (24)

E

˜
t = [

JTa
− JTp

JCp
JCa

]
˜
η̇a = J̄T

˜
η̇a. (25)

4.1.2. Redundant actuation. In a redundantly actuated
system, JCp

is a rectangular m × n matrix with m > n for
which J̃Cp

does not exist and the Moore–Penrose pseudo-
inverse that solves the problem in the least-squares sense,
can be determined as

J+
Cp

= (
J T

Cp
JCp

)−1
J T

Cp
. (26)

4.1.3. Underactuation. In underactuated systems, JCp
is

generally a rectangular m × n matrix with m < n and a
nontrivial J̃Cp

. The existence of the JTp
J̃+

Cp ˜
ξ term in Eq. (23)

is unique to underactuated closed-chain systems. It
corresponds to system self-motion, wherein the end-effector
can still move even when all the active joints are locked.
In order to prevent the self-motion, we choose to lock a
selected number of the passive joints, as determined by
the size of JCp

. In this case, the size of J̃Cp
is n(n− m)

with an (n−m)-dimensional self-motion manifold, which
necessitates locking of as many passive joints in order to
eliminate all system self-motion. In terms of modeling,
locking the passive joints entails eliminating the column
vectors corresponding to the locked joints from JCP

-such
an elimination brings us back to an exactly actuated case.

4.2. Construction of system Jacobian matrix
For an N modules cooperative system, we denote each
module k = I, II, . . . , N , and there are α-active and β-
passive DOF in each module, the configuration of the co-
operative system can be completely described by N · (α + β)
generalized coordinates. The generalized velocity can then
be partitioned into

˜
η̇T

a = [{
˜
η̇I

a

}T · · · {
˜
η̇N

a

}T
]

(27)

˜
η̇T

p = [{
˜
η̇I

p

}T · · · {
˜
η̇N

p

}T ]
(28)

where the subscripts a and p indicate active and passive joints,
respectively.

The end-effector task equation can be obtained by
designating Module I as the “leader” of the system and

setting contributions of other modules to zero. We can then
determine JTa

and JTp
as

JTa
= [

J I
a 03×m · · · 03×m

]
(29)

JTp
= [

J I
p 03×n · · · 03×n

]
. (30)

We note that there are many ways to formulate the constraint
Jacobian matrix JCa

and JCp
.41 We, however, use the velocity-

level loop closure equations with respect to the “leader” to
obtain

JCa
=

⎡
⎢⎢⎢⎣

J I
a −J II

a 03×m · · · 03×m 03×m

J I
a 03×m −J III

a · · · 03×m 03×m

...
...

...
. . .

...
...

J I
a 03×m 03×m · · · 03×m −JN

a

⎤
⎥⎥⎥⎦ (31)

JCp
=

⎡
⎢⎢⎢⎣

J I
p −J II

p 03×n · · · 03×n 03×n

J I
p 03×n −J III

p · · · 03×n 03×n

...
...

...
. . .

...
...

J I
p 03×n 03×n · · · 03×n −JN

p

⎤
⎥⎥⎥⎦ . (32)

4.3. Manipulability-based performance measure
In this paper, we focus only on the translational Jacobian
mapping—the sub-matrix of the second and the third rows
of the system Jacobian matrix J̄T , which we denote as J̄T ,tr.
The SVD of this matrix can now be used to examine the
manipulability characteristics and its interpretation in the
context of the manipulability ellipsoid geometry.

In our case, we adopt the isotropy index as the measure-
of-choice to characterize the performance of our cooperative
system. We summarize the evaluation of the isotropy index
here, and refer the interested reader to refs. 34, 42 for
descriptions of some of the benefits including boundedness
and excellent numerical behavior. Let an m × n system
Jacobian matrix be decomposed as

J̄T ,tr = U�V T (33)

where the columns of the matrices Um×m and Vn×n are,
respectively, orthonormal eigenvectors of [J̄T ,tr][J̄T ,tr]T and
[J̄T ,tr]T [J̄T ,tr]. If the rank of J̄T ,tr is k ≤ min (m, n), then

�m×n = diag

⎛
⎝σ1, σ2, . . . , σk︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

⎞
⎠, σ1 ≥ σ2 ≥ · · · ≥ σk

(34)

where σi , i = 1, 2, . . . , k are the singular values of J̄T ,tr

ordered from the minimum to the maximum. Finally, we
can define the isotropy index as

I,tr = σ1

σk

. (35)

However, J̄T ,tr depends upon the selection of the actuated and
unactuated joints. In subsequent sections, we examine some
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of the different case studies that arise due to such selections
of the type and location of the actuation.

5. Case studies
We consider the case of three mobile manipulators coming
together in a formation to cooperatively transport a common
payload. The individual modules are numbered I, II, and
III, as depicted in Fig. 3. We denote the revolute joints
R1k, R2k, and R3k, and the mobile bases MBk, where
k = I, II, III. When an object is placed at the end-effectors
of the mobile manipulator modules, it effectively creates a
mobile three-RRR planar parallel mechanism. The three-
module case permits us to provide linkage to some existing

Fig. 3. Three mobile modules (a) attach together by placing a
common payload to effectively form (b) a composite locomotion
system.

Fig. 4. Case I—Cooperative system with MB locked, R1 active,
and R2 passive.

literature, for example, the stationary composite system is
nothing more than the traditional three-RRR planar parallel
mechanism.43,44

Without the lost of generality, and for convenience of
comparison with the existing literature, we impose some
further design limitations. We require use of identical mobile
modules, i.e., the mobile bases have the same size and the
manipulators have the same link lengths. Further, we also
impose a requirement for symmetry of actuation within the
contributing subchains. Finally, note that the formulation can
be extended to increasing numbers of modules as well as the
various selections of actuator locations within the system.
Twenty-seven permutations are possible based on whether
MB, R1, and R2 are chosen to be locked, made passive,
or made active. However, only five interesting sets of cases
(depicted in Figs. 4–8) were selected for further study and
are listed in Table II.

5.1. Study parameters
For our study, we locate the MBs at the vertices of an
equilateral triangle of side 4 m, with the payload taking
the form of another equilateral triangle of side 1.7321 m,
as shown in Fig. 9. The end-effector frame is assumed to
be located at the centroid of the payload-triangle with an
orientation φE = 0◦. The workspace area spanned by the
mechanism is highly dependent on the dimensions of the

Table II. Five candidate cases based on the actuation-status of the
joints within each chain.

Cases MB R1 R2

I Locked Active Passive
II Locked Passive Active
III Active Passive Passive
IV Active Locked Passive
V Active Passive Locked
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Fig. 5. Case II—Cooperative system with MB locked, R1 passive,
and R2 active.

Fig. 6. Case III—Cooperative system with MB active, R1 passive,
and R2 passive.

links, and by imposing a design criterion that Lk
1 = Lk

2 for the
modules, we can realize a symmetrical workspace, without
any unreachable regions.3 The other critical dimensions are
shown in Table III. However, the mechanism has eight
working modes with different elbow configurations. We
denote 0 and 1 for elbow up and elbow down configuration,
respectively. Individual assembly mode can be identified as
abc, ∀a, b, c ∈ {0, 1}. We assume the elbow configuration of
111 throughout the paper. We compute the isotropy index,
bounded between 0 and 1, over the entire feasible workspace
on a 100 × 100 grid with spacing of 0.004 m and show these
results in the form of pseudo-color, contour, and surface plots
(Table III).

Fig. 7. Case IV—Cooperative system with MB active, R1 locked,
and R2 passive.

Fig. 8. Case V—Cooperative system with MB active, R1 passive,
and R2 locked.

Table III. Detailed study parameters.

Link lengths (m) Base positions (m)
Platform offset

angles (◦)

Lk
1 = 1.5

(
xI

1, y
I
1

) = (0, 0) δI = 330

Lk
2 = 1.5

(
xII

1 , yII
1

) = (3.4641, 2) δII = 210

Lk
3 = 1

(
xIII

1 , yIII
1

) = (0, 4) δIII = 90

5.1.1. Case I: MB locked, R1 active, R2 passive. In this
case, the mobile base of each module is locked in place
and the joint R1 of each module is actuated, creating
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Fig. 9. Location of the mobile bases and the geometry of the platform.

a stationary three-RRR1 planar parallel manipulator, as
seen in Fig. 4. This case was interesting from two
viewpoints: First, it allows us to validate the formulation
and results with the existing literature.43,45,46 Second, and
more importantly, such a system results when the mobile
bases are brought to a temporary halt and a relative
manipulation/reconfiguration of the payload with respect to
the bases is pursued. In this case, the active manipulation
rates are

˜
η̇a = [ θ̇ I

1 θ̇ II
1 θ̇ III

1 ]T , and passive manipulation rates
are

˜
η̇p = [ θ̇ I

2 θ̇ I
3 θ̇ II

2 θ̇ II
3 θ̇ III

2 θ̇ III
3 ]T . As seen in Fig. 10, the

plots of the isotropy index are symmetric with the highest
value occurring at the center of the workspace (the centroid
of the triangle formed by the MBs). However, it is important
to note that this surface would be different for each of the
eight kinematically distinct working modes.43

5.1.2. Case II: MB locked, R1 passive, R2 active. In this case,
the mobile base of each module is again kept fixed, but we
actuate R2 of each module instead of R1. This results in the
stationary three-RRR planar parallel manipulator shown in
Fig. 5. This enables us to see how the isotropy index surface
changes with an alternate actuation scheme. In this case, the
active manipulation rates are

˜
η̇a = [ θ̇ I

2 θ̇ II
2 θ̇ III

2 ]T , and
˜
η̇p =

[ θ̇ I
1 θ̇ I

3 θ̇ II
1 θ̇ II

3 θ̇ III
1 θ̇ III

3 ]T form the passive manipulation rates.
The computed isotropy index over the feasible workspace is
depicted in Fig. 11. In the plots, we can see that although
the geometrical (structural) properties of the mechanisms
are the same as in the previous case, changing the location
of the actuation alter the isotropy index distribution. As in

1 The underline under the first “R” indicates that the first joint of
each manipulator chain is actuated.

the previous case, the workspace is symmetrical with same
elbow configuration in each module. Again we also observe
that the isotropy index is symmetrical with the highest value
occurring at the centroid of the triangle formed by the MBs.
While the mechanism has eight working modes, they are
all kinematically identical and hence we obtain the same
isotropy index plots in all working modes.43

Finally, we realize that both stationary three-RRR and
three-RRR manipulators have a limited workspace. The
mobility of the bases can be used to create a locomoting
structure in order to extend the workspace to include the
entire plane.

5.1.3. Case III: MB active, R1 passive, R2 passive. In this
case, we allow the mobile base to move and free-
up all the other joints within the arm as shown
in Fig. 6. The active rates and passive rates can
be selected as

˜
η̇a = [ φ̇I vI

M φ̇II vII
M φ̇III vIII

M ]T and
˜
η̇p =

[ θ̇ I
1 θ̇ I

2 θ̇ I
3 θ̇ II

1 θ̇ II
2 θ̇ II

3 θ̇ III
1 θ̇ III

2 θ̇ III
3 ]T .

The Jacobian matrices are independent of the pose of the
mobile bases with respect to the inertial-fixed frame, but
dependent on their pose relative to the end-effector frame.
Thus, the benefit of formulating the Jacobian matrices of
the locomotion system in the end-effector frame becomes
evident here. In this case, JCp

is 6 × 9, so this system is
underconstrained. Hence, we need to lock 9 − 6 = 3 joints in
the system in order to eliminate all self-motion, which leads
us to explore these last two cases.

5.1.4. Case IV: MB active, R1 locked, R2 passive. Referring
to Fig. 7, the active manipulation rates are

˜
η̇a =

[ φ̇I vI
M φ̇II vII

M φ̇III vIII
M ]T and the passive manipulation
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Fig. 10. Isotropy index plots for three-RRR planar parallel mechanism in Case I: (a) pseudo-color plot, (b) contour plot, and (c) surface plot.

rates are
˜
η̇p = [ θ̇ I

2 θ̇ I
3 θ̇ II

2 θ̇ II
3 θ̇ III

2 θ̇ III
3 ]T . The corresponding

Jacobian matrices are

JTa
= [

E

˜
t I
φ̇

E

˜
t I
vM ˜

0
˜
0

˜
0

˜
0
]

(36)

JTp
= [

E

˜
t I
θ̇2

E

˜
t I
θ̇3 ˜

0
˜
0

˜
0

˜
0
]

(37)

JCa
=

[
E

˜
t I
φ̇

E

˜
t I
vM

−E

˜
t II
φ̇

−E

˜
t II
vM ˜

0
˜
0

E

˜
t I
φ̇

E

˜
t I
vM ˜

0
˜
0 −E

˜
t III
φ̇

−E

˜
t III
vM

]

(38)

JCp
=

[
E

˜
t I
θ̇2

E

˜
t I
θ̇3

−E

˜
t II
θ̇2

−E

˜
t II
θ̇3 ˜

0
˜
0

E

˜
t I
θ̇2

E

˜
t I
θ̇3 ˜

0
˜
0 −E

˜
t III
θ̇2

−E

˜
t III
θ̇3

]
.

(39)

As noted earlier, the MBs are instantaneously located at their
current positions but are actuated. Hence, they contribute to
the overall manipulability of the platform as can be seen
from the isotropy index plots, shown in Fig. 12. In the plots,
we note that the isotropy index surface plot is no longer
symmetrical due to the nonholonomic constraints imposed
by the MBs (in contrast to Case I). Further, the location of
the peak of the isotropy index is no longer the centroid of the
triangle formed by the MBs.

5.1.5. Case V: MB active, R1 passive, R2 locked. In this
case, we would like to see the effect on the manipulability
when locking different joints in the system. Referring to
Fig. 8, we allow the MBs to move but lock the joints R2
in each module. The active manipulation rates are

˜
η̇a =

[ φ̇I vI
M φ̇II vII

M φ̇III vIII
M ]T and passive manipulation rates are
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Fig. 11. Isotropy index plots for three-RRR planar parallel mechanism in Case II: (a) pseudo-color plot, (b) contour plot, and (c) surface plot.

˜
η̇p = [ θ̇ I

1 θ̇ I
3 θ̇ II

1 θ̇ II
3 θ̇ III

1 θ̇ III
3 ]T . The corresponding Jacobian

matrices are

JTa
=

[
E

˜
t I
φ̇

E

˜
t I
vM ˜

0
˜
0

˜
0

˜
0
]

(40)

JTp
=

[
E

˜
t I
θ̇1

E

˜
t I
θ̇3 ˜

0
˜
0

˜
0

˜
0
]

(41)

JCa
=

[
E

˜
t I
φ̇

E

˜
t I
vM

−E

˜
t II
φ̇

−E

˜
t II
vM ˜

0
˜
0

E

˜
t I
φ̇

E

˜
t I
vM ˜

0
˜
0 −E

˜
t III
φ̇

−E

˜
t III
vM

]

(42)

JCp
=

[
E

˜
t I
θ̇1

E

˜
t I
θ̇3

−E

˜
t II
θ̇1

−E

˜
t II
θ̇3 ˜

0
˜
0

E

˜
t I
θ̇1

E

˜
t I
θ̇3 ˜

0
˜
0 −E

˜
t III
θ̇1

−E

˜
t III
θ̇3

]
.

(43)

The plots of the isotropy index are shown in Fig. 13. In
the plots, we see that locking different joints changes the
manipulability characteristic in contrast with Case IV (and
with the Case II discussed earlier).

6. Conclusion
In this paper, we treated the cooperating system as a
Type 0 constrained system and leveraged the modeling
framework of constrained articulated mechanical system to
create a unified kinematic system model. This framework
takes the nonholonomic constraints, kinematic loop-closure
constraints, and mixtures of active, locked, and passive joints
into account explicitly. System-level performance measures
are developed for the overall cooperating system, in terms of
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Fig. 12. Isotropy index plots for the mobile planar three-RRR parallel mechanism with R1 locked in Case IV: (a) pseudo-color plot, (b)
contour plot, and (c) surface plot.

the system-level Jacobian matrix, which allows us to compare
a number of case scenarios. High values of the isotropy index
at a point or over a region of the configuration-space of the
system indicate the payload is equally manipulable in every
direction in the plane. In general, we observed that all three
factors (a) the holonomic constraints due to the kinematic
closed loops, (b) the existence of nonholonomic constraint
due to the disk wheels, and (c) selection of actuations of the
various joints, affected the performance of the cooperative
system.

However, in this paper, we focused on the role of the latter
two—the nonholonomic constraints and the joint actuation—
on system performance. We note that the wheeled mobile
bases facilitated the creation of the locomotive structure,
and thereby extended the overall workspace. In addition, the

overall resulting values of the isotropy index were higher
than the case where the bases are fixed but affected the
symmetry of the isotropy index surface. The designer also
has the capability of selectively actuating, locking, or rending
passive the various joints within the system. The case studies
using the mobile three-RRR planar manipulator configura-
tion permitted us to study the effect of different actuation
schema on the isotropy index surface systematically. In
general, from the viewpoint of system implementation, it
may be preferable to actuate the proximal joints and leave
the more distal joints passive or locked. However, the case
studies clearly portray the greater influence of actuation of
the distal joints on ensuring higher values and a more uniform
distribution of the isotropy index. Finally, we also note that
optimization-based methods may be used to determine sets

https://doi.org/10.1017/S0263574706002979 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002979


Cooperative payload transport 41

Fig. 13. Isotropy index plots for the mobile three-RRR parallel mechanism with R2 locked in Case V: (a) pseudo-color plot, (b) contour
plot, and (c) surface plot.

of optimal system configurations that retain high values of
the isotropy index along a given trajectory or over an entire
region, but these are not reported here.3,31
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