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AUTOMORPHISM GROUPS OF COUNTABLE ARITHMETICALLY
SATURATEDMODELS OF PEANO ARITHMETIC

JAMES H. SCHMERL

Abstract. IfM,N are countable, arithmetically saturated models of PeanoArithmetic andAut(M) ∼=
Aut(N ), then the Turing-jumps of Th(M) and Th(N ) are recursively equivalent.

Since 1991, when the question

Are there countable, recursively saturated models M, N of PA such that
Aut(M) �∼= Aut(N ) (as abstract groups)?

appeared in [8], it has been of interest to determine to what extent (the isomorphism
type of) the group Aut(M) of all automorphisms of a countable, recursively satu-
rated modelM of Peano Arithmetic determines (the isomorphism type of)M. It
was proved in [8] that whenever bothM andN are countable, recursively saturated
models of PA and exactly one of them is arithmetically saturated, then Aut(M)
and Aut(N ) are not isomorphic as topological groups. In 1994, Lascar [17] proved
that countable, arithmetically saturatedmodels of PA have the small index property,
and that result then implied that Aut(M) �∼= Aut(N ) as abstract groups. This gave
the first positive answer to the above question. A neater way, in which the use of
the small index property is masked, that automorphism groups distinguish those
models that are arithmetically saturated from the other countable recursively satu-
rated ones was obtained the next year in [13, Coro. 3.9] (or see [15, Th. 9.3.10]): If
M is countable and recursively saturated, thenM is arithmetically saturated iff the
cofinality of Aut(M) is uncountable. Finally, we mention that Kaye’s Theorem [7]
(see §1) characterizing the closed normal subgroups of Aut(M), which appeared
in the same volume [9] as did Lascar’s Theorem, yields that wheneverM,N are
countable, arithmetically saturated models andM is a model of True Arithmetic
(TA) while N is not, then Aut(M) �∼= Aut(N ).
Recall that a countable, recursively saturated modelM of PA is determined up

to isomorphism by two invariants: its standard system SSy(M) and its first-order
theory Th(M). Correspondingly, there are the following complementary questions
for a countable, recursively saturated modelM of PA.
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To what extent does Aut(M) determine SSy(M)? Th(M)?
Subsequent to Lascar’s proof about the small index property, the focus has been
almost entirely on countable, arithmetically saturated models. The “SSy” question
for these models was answered soon thereafter.

Theorem 0.1 (Kossak–Schmerl [14]). If M,N are countable, arithmetically
saturated models of PA such that Aut(M) ∼= Aut(N ), then SSy(M) = SSy(N ).
Progress on the “Th” question has been slower. Nurkhaidarov [19] proved the
following in 2006.

Theorem 0.2 (Nurkhaidarov [19]). There are countable, arithmetically saturated
modelsM0,M1,M2,M3 of PA such that whenever i < j < 4, then SSy(Mi) =
SSy(Mj) and Aut(Mi) �∼= Aut(Mj).

Although not explicitly stated in [19], the proof of Theorem 2 also proves the
following stronger result.

Theorem 0.3 (Nurkhaidarov [19]). There are completions T0, T1, T2, T3 of PA
such that whenever i < j < 4 andMi ,Mj are countable, arithmetically saturated
models of Ti , Tj , respectively, then Aut(Mi) �∼= Aut(Mj).

Theorem 3 implies Theorem 2 because whenever T is a countable set of comple-
tions of PA, then there is an X such that each T ∈ T has a countable, arithmetically
saturated model whose standard system is X.
This paper improves Theorem 3 by increasing the cardinal number 4 in that the-
orem to the maximum possible of 2ℵ0 , thereby answering Question 2 in Kotlarski’s
survey [16]. If X,Y ⊆ �, then we write X ≤T Y if X is Turing-reducible (or recur-
sive relative) to Y , and X ≡T Y if X is recursively equivalent to T (that is,
X ≤T Y ≤T X ). As usual, the Turing-jump of X is X ′. The following theorem is
our principal new result.

Theorem 0.4. IfM,N are countable, arithmetically saturated models of PA and
Aut(M) ∼= Aut(N ), then Th(M)′ ≡T Th(N )′.
Aconsequence of this theorem is that the cardinal 4 in Theorem 2 can be increased
to the maximum possible of ℵ0. In fact, we get the following corollary that yields
some answers to Question 15 in [15, Chap. 12].

Corollary 0.5. For any countable jump ideal X, there are infinitely many count-
able arithmetically saturated models M0,M1,M2, . . . of PA such that whenever
i < j < �, then Aut(Mi) �∼= Aut(Mj) and SSy(Mi) = X.

One may wonder whether Theorems 1 and 4 tell the whole story. In other words,
ifM,N are countable, arithmetically saturated models of PA such that Aut(M) ∼=
Aut(N ), then is it the case that SSy(M) = SSy(N ) and Th(M)′ ≡T Th(N )′?
We easily see that this is not so since the 4 theories in Theorem 3 can be chosen to
be recursively equivalent. However, we can do even better.

Theorem 0.6. For each n < �, there are recursively equivalent completions
T0, T1, . . . , Tn of PA such that whenever i < j ≤ n and Mi ,Mj are countable,
arithmetically saturated models of Ti , Tj , respectively, then Aut(Mi) �∼= Aut(Mj).

The results presented in this paper suggest the question that is dual to the one
asked in [8] and that could have just as easily been asked there.
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Question 0.7. Are there countable, recursively saturatedmodelsM,N of PA such
thatM �∼= N and Aut(M) ∼= Aut(N )?

The analogous question for countable, arithmetically saturated models is also
open.
There are six sections that follow this introductory one. Some preliminaries are

in §1, which consists of some notation, definitions, and results that will be used in
the succeeding sections. The next two sections do not overtly refer to automorphism
groups. Some special types of models of PA, the lofty models and those with the
�-property, are discussed in §2. In §3, we consider substructure lattices, carefully
reviewing a result from [13]. Ourmain result, Theorem 4, is proved in §4. Theorem 6
is proved in §5, and some additional results are given in §6.

§1. Some Preliminaries. Notation and terminology used here will generally fol-
low [15]. The reader should refer to [15] for insufficiently explained notions. The
proof of Theorem 4 relies on a number of results that are proved or stated in [20].
It is suggested that the reader have that paper available.
The language appropriate for PA is LPA = {+,×,≤ 0, 1}. It is to be tacitly

understood that all models referred to in this paper are models of PA. All models
are assumed to have the standard model N = (�,+,×,≤, 0, 1) as a submodel.
Models will be denoted by (possibly adorned) script letters such asM,N ,M1, . . .,
and their universes are denoted by the corresponding roman letters M,N,M1, . . .,
although models and their universes may occasionally be confounded.
Suppose thatX,Y ⊆ �. As alreadymentioned,X ≤T Y iffX is Turing-reducible

to Y , X ≡ Y iff X and Y are recursively equivalent, and X ′ is the Turing-jump
of X . For a small ordinal α, X (α) is the α-th jump of X . If there is n < � such
that X ≤T Y (n), then X is arithmetically reducible to Y (in symbols: X ≤a Y ). If
X ≤a Y ≤a X , then X and Y are arithmetically equivalent (in symbols: X ≡a Y ).
We let X ⊕ Y = {2x : x ∈ X} ∪ {2y + 1 : y ∈ Y}.
A Turing ideal is a nonempty subset X ⊆ P(�) such that whenever X,Y ∈ X

and Z ≤T X ⊕ Y , then Z ∈ X. A jump ideal is a Turing ideal X such that Y ∈ X
whenever Y ≤a X ∈ X.
Suppose thatM is an arbitrary model. IfA ⊆M , then themodel generated byA,

denoted by Scl(A), is the smallest elementary substructure ofM containing A. The
modelM is finitely generated iffM = Scl(a) (= Scl({a})) for some a ∈ M . A
subset I is a cut ofM iff 0 ∈ I and whenever x ≤ y ∈ I , then x + 1 ∈ I . A cut
I is invariant iff I = sup(I ∩ Scl(0)) or I = inf(Scl(0)\I ), and it is exponentially
closed iff 2x ∈ I whenever x ∈ I . We let Lt(M) be the lattice of elementary
substructures ofM and Lt0(M) be its ∨-subsemilattice consisting of those models
in Lt(M) that are finitely generated. It is a consequence of Ehrenfeucht’s Lemma
([15, Theorem 1.7.2]) that Aut(M) is trivial wheneverM is finitely generated. The
standard system of M is SSy(M) = {D ∩ � : D is a definable subset of M}.
In general, SSy(M) is a Scott set or, equivalently, (N,SSy(M)) |= WKL0. IfM is
recursively saturated, thenM is arithmetically saturated iff (N,SSy(M)) |= ACA0
iff (N,SSy(M)) |= RT32 iff SSy(M) is a jump ideal iff � is a strong cut ofM. Here,
we are letting RTn2 denote infinite Ramsey’s Theorem for 2-colored n-sets.
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The usual interval notation will be used. IfM is a model and a, b ∈ M , then
[a, b] = {x ∈M : a ≤ x ≤ b} and [a, b) = {x ∈M : a ≤ x < b}.
If T ⊇ PA is a theory (which, for us, is a (not necessarily deductively closed)
consistent set of sentences) andX ⊆ �, then X is a real represented by T if there is
a unary formula ϕ(x) such that for each n < �,

n ∈ X ⇐⇒ T � ϕ(n)⇐⇒ T �� ¬ϕ(n).

As usual, Rep(T ) is the set of reals represented by T . If T is complete, then Rep(T )
is the standard system of the prime model of T .
If G = Aut(M) and A ⊆ M , then the pointwise stabilizer of A is the
subgroup G(A) = {g ∈ G : g(a) = a for all a ∈ A} and the setwise stabilizer is
G{A} = {g ∈ G : g[A] = A}. If A = {a}, then Ga = G(A) = G{A}. When consider-
ing G as a topological group, the stabilizers of finite subsets ofM are its basic open
subgroups. Equivalently, the basic open subgroups are the pointwise stabilizers of
finitely generated elementary submodels. Since finitely generated models do not
have any nontrivial automorphisms, the basic open subgroups are also the setwise
stabilizers of finitely generated elementary submodels.
The following theorem has already been mentioned.

Kaye’s Theorem. IfM is a countable recursively saturated model andH ≤ G =
Aut(M), then the following are equivalent:
(1) H is a closed normal subgroup of G .
(2) H = G(I ), where I ⊆M is an invariant, exponentially closed cut.
Even though the next theorem will be not explicitly used in this paper, we state
it since it shows that for the implication (1) =⇒ (2) in Kaye’s Theorem there is a
unique such I .

Smoryński’s Theorem. Suppose thatM is a countable recursively saturatedmodel
and thatH ≤ G = Aut(M). IfH = G(I ) for some cut I ⊆M , then there is a unique
exponentially closed cut J ⊆M such thatH = G(J ).
Smoryński actually proved more (see [15, Theorem 8.4.2]): IfM is a countable
recursively saturated model and I ⊆M is an exponentially closed cut, then there is
f ∈ Aut(M) such that I = Ifix(f) = {x ∈M : f(y) = y for all y < x}.
For the record, we state Lascar’s Theorem on the small index property.

Lascar’s Theorem. Suppose that M is a countable, arithmetically saturated
model. If H ≤ Aut(M), thenH is open iff its index |Aut(M) : H | is countable.
Scott [21] introduced the notion of a Scott set and proved two related theorems
concerning standard systems and sets of represented reals.Wewill need the following
variants of these two theorems, the first of which also appears as [6, Theorem 13.6].

Theorem 1.1 (Wilmers [23]). Suppose that T is a completion of PA and X is a set
of subsets of �. The following are equivalent :

(1) X is a countable Scott set and T ∈ X.
(2) There is a countable recursively saturatedM |= T such that SSy(M) = X.

If X ⊆ � and i < �, then (X )i = {j < � : 〈〈〈i, j〉〉〉 ∈ X}. If X is a set of subsets
of � and X ⊆ �, then X is enumerated by X if X = {(X )i : i < �}. Then next
theorem can be found in [1, Coro. 19.8].
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Theorem 1.2 (Knight [10, Coro. 1.6] and D. Marker). If X is a Scott set enu-
merated by X and X ≤T Y , then PA has a completion T such that Rep(T ) = X and
T ≡T Y .
The next proposition collects together some well known properties of countable,

recursively saturated models most of which can be found in various places in [15].

Proposition 1.3. Suppose thatM is a countable, recursively saturated model.

(1) M is tall.
(2) M is generated by a set of indiscernibles of any countable order type with no
last element.

(3) M is homogeneous.
(4) IfM0 �cf M, thenM0 is recursively saturated.
(5) There isM0 ≺end M such thatM0

∼=M.
What follows in this paragraph is a small exception to our convention that all

models considered here are models of PA. Consider the language L* = LPA ∪ {U},
whereU is a new unary relation symbol, and then let PA∗ be theL∗-theory obtained
from PA by adjoining all instances of the induction scheme in this expanded lan-
guage. Eachmodel ofPA∗ expands amodel ofPA. Every statement in this paper that
applies to models of PA has a natural extension that applies to models of PA∗. We
will have several occasions when we will want to refer to such an extended version
of some result, and we will do so by referring to its ∗-version.

§2. Loftiness and the �-property. This section is concerned with some proper-
ties of models that were introduced in [4], [5], and [11]. Results of this section will
be used in the proofs of the main results although automorphism groups do not
appear here. The results may be of independent interest. Theorem 2.8 has to do with
constructing countable models that have the�-property but are not recursively sat-
urated. Corollary 2.9 is a common generalization of Proposition 1.3(2),(4), and (5).
We begin with the definitions.

Definition 2.1. Suppose thatM is a nonstandard model and I is a cut.

(1) I is upward monotonically �-lofty if there is a ∈M such that I = sup{(a)i :
i < �}.

(2) I is downwardmonotonically�-lofty if there is a ∈M such that I = inf{(a)i :
i < �}.

(3) I is uniformly �-lofty if there is a ∈ M such that whenever p < I < q, then
p < (a)i < q for some i < �.

(4) M is uniformly �-lofty if for any b ∈ M there is a ∈ M such that whenever
� < e ∈M , then Scl(b) ⊆ {(a)i : i < e}.

(5) M has the �-property if there is N �end M such that M is an upward
monotonically �-lofty cut ofN .

Various notions of loftiness were introduced and studied in [4] and [5].Definitions
(1), (2), and (3) are from [5, Def. 3.1]. Definition (4) is not the one given in
[4, Def. 1.4(iii)], although it is equivalent. One direction of this equivalence is
given in [13, Theorem 1.7(1b)]; the other is easy to see. It is straightforward to
see that every recursively saturated model is uniformly �-lofty. In fact, if we let

https://doi.org/10.1017/jsl.2015.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.1


1416 JAMES H. SCHMERL

t0(x), t1(x), t2(x), . . . be a recursive list of all Skolem terms, thenM is recursively
saturated iff for every b ∈ M there is a ∈ M such thatM |= (a)i = ti(b) for all
i < � ([5, Prop. 1.6]). Clearly, every uniformly �-lofty model is tall. Finally, (5)
was introduced by Kossak in [11] and studied by him in [11] and [12].
According to [11], the following lemma is implicit in [5]; it is explicitly proved in
[11, Theorem 2.7].
Lemma 2.2. IfM is tall and has the �-property, thenM is uniformly �-lofty.
Lemma 2.3. Suppose thatM is countable and uniformly�-lofty. The following are
equivalent:
(1) M is recursively saturated.
(2) M is generated by a set of indiscernibles.
(3) M is isomorphic to someM0 ≺end M.
Proof. (1) =⇒ (2) and (1) =⇒ (3) are (2) and (5) of Proposition 1.3.
For the converses, we rely on [5, Lemma 1.8 – Theorem 1.13] fromwhich it follows
that ifM0 ≺end M andM0 is not recursively saturated, then there is a ∈ M\M0
that realizes a type not realized inM0. Both of the implications (2) =⇒ (1) and
(3) =⇒ (1) are easy consequences. �
Suppose thatM ≺ N and I is a cut ofM. We say that N fills the cut I if there
is b ∈ N such that I = {a ∈M : N |= a < b}. In case I = �, we use the notation
M ≺� N to indicate thatN fills �. For us, the significance of this definition is the
following well known equivalence: IfM is a countable, nonstandard model, then
SSy(M) is a jump ideal iff there is N such thatM ≺� N and SSy(M) = SSy(N ).
See, for example, [15, Theorem 7.3.4].
The next lemma is Lemma 3.11 of [5].
Lemma 2.4. Suppose thatM is a countable model and I is a proper cut ofM. If I
is not downward monotonically �-lofty, then there is a countableN �cf M such that
N ��� M and supN (I ) is an upward monotonically �-lofty cut ofN .
Proof. We sketch the proof as it will be needed later on. The key notion that is
used in the proof of Lemma 3.11 of [5] is that of an 〈S,Q〉-rich set ([5, Def. 3.6]).
We say that C is 〈S,Q〉-rich if C,S,Q ∈ Def(M), S is bounded, and whenever
f : S −→ Q is definable inM, then there is c ∈ C such that (c)i = f(i) for every
i ∈ S.
Suppose that I is not downward monotonically �-lofty.
The key combinatorial fact that is used in the proof of Lemma 3.11 is the
following:
Fact 2.5 ([5, Lemma 3.10]). Suppose that r < � < s ∈ M , I < q ∈ M , C is

〈[r, s), [0, q)〉-rich, and g :M −→M is definable. Then one of the following holds:
(1) There are n, t < � and {di : i ∈ [r, t)} ⊆ I such that r ≤ t and {c ∈ C :
g(c) ≤ n and (c)i = di for r ≤ i < t} is 〈[t, s), [0, q)〉-rich.

(2) There are n, v, u ∈ M such that n > �, � < v ≤ s , I < u ≤ q and
{c ∈ C : g(c) > n} is 〈[r, v), [0, u)〉-rich.

The proof then proceeds as follows. Choose arbitrary s0 = q0 > I , and let
r0 = 0 and C0 = M . Obtain a decreasing sequence C0 ⊇ C1 ⊇ C2 ⊇ · · · such
that each Ci is 〈[ri , si), [0, qi)〉-rich, where ri < � < si and I < qi . Also, there
are d0, d1, . . . , dri−1 ∈ I such that whenever c ∈ Ci and j < ri , then (c)j = dj .
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Furthermore, for each definable g : M −→ M there is an i < � such that Ci+1
is obtained from Ci in the obvious way using Fact 1. And finally, for each d ∈ I
there are i, n < � such that (c)n = d for all c ∈ Ci . This sequence determines
a type over M. Then, let N be an elementary extension of M generated by an
element c realizing this type. Clearly, I = {(c)n : n < �}, so supN (I ) is upward
monotonically �-lofty. �
We get the following corollary (to be improved by Corollary 2.7 and again by

Theorem 2.8).

Corollary 2.6. Suppose that M is nonstandard and countable. Then there is
N �cf M such thatN ��� M andN has the �-property.
Proof. LetM0 �end M be such thatM0 is countable andM is not a downward

monotonically�-lofty cut ofM0. (For example, letM0 be a countable, conservative
extension of M.) Apply Lemma 2.4 to get a countable N0 �cf M0 such that
supN0 (M ) is an upward monotonically �-lofty cut ofN0. Then the unique N such
thatM �cf N ≺end N0 is as required. �
A construction, due to Paris, of a countableN that has the �-property but is not

recursively saturated is presented in [11, Theorem 3.2]. Another way of getting such
a modelN is by use of the previous corollary. First, we need a definition taken from
[4, page 111] (or see [5, Notation 2.1(5)]). IfM is a model and I ⊆M is a cut, then
we say that I is recursively definable if there are an element a ∈M and two recursive
sequences t0(x), t1(x), t2(x), . . . and t′0(x), t

′
1(x), t

′
2(x), . . . of Skolem terms such

that I = inf{ti(a) : i < �} = sup{t′i (a) : i < �}. Obviously, no recursively
saturated model has a recursively definable cut. In fact,M is recursively saturated
iff it is tall and has no recursively definable cuts ([4, Theorem 2.7(i)]). There are
prime models whose standard cuts are recursively definable ([5, Theorem 2.3]),
and every completion of PA has a finitely generated model whose standard cut is
recursively definable ([5, Coro. 2.4]).
Now, start with a nonstandard countable modelM whose standard cut is recur-

sively definable. By Corollary 2.5, let N �cf M be such that N is countable,
N ��� M and N has the �-property. Since the standard cut of N is recursively
definable, N is not recursively saturated.
We next show that Corollary 2.5 can be somewhat improved. To do so, we need

the following variant of Lemma 2.4.

Lemma 2.7. Suppose thatM is a countable model, I is a proper cut ofM and
X ⊆ � is such that X �∈ SSy(M). If I is not uniformly �-lofty, then there is a
countable N �cf M such that N ��� M, supN (I ) is upward monotonically �-lofty
and X �∈ SSy(N ).
Proof. As in the proof of Lemma 2.4, we will obtain a decreasing sequence

C0 ⊇ C1 ⊇ C2 ⊇ · · · that has all the properties required of it in that proof. But we
also need an additional property that we get by interleaving into the construction
some additional steps that are applications of the following fact.

Fact 2.8. Suppose that r < � < s ∈M , I < q ∈M , C is 〈[r, s), [0, q)〉-rich, and
g : M −→ M is definable. Then there are n, v, t, u ∈ M and {di : i ∈ [r, t)} ⊆ I
such that n < �, r ≤ t < � < v ≤ s , I < u ≤ q and {c ∈ C : (g(c))n = 0⇔ n �∈ X
and (c)i = di for r ≤ i < t} is 〈[t, v), [0, u)〉-rich.

https://doi.org/10.1017/jsl.2015.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.1


1418 JAMES H. SCHMERL

We give a proof of this fact. Define two functions f0, f1 :M × [r, s] −→ [0, q] as
follows. For each n ∈ M and t ∈ [r, s], let f0(n, t) be the largest u ≤ q such that
{c ∈ C : (g(c))n = 0} is 〈[r, t), [0, u)〉-rich, and let f1(n, t) be the largest u ≤ q
such that {c ∈ C : (g(c))n > 0} is 〈[r, t), [0, u)〉-rich. Both of these functions are
well defined since both {c ∈ C : (g(c))n = 0} and {c ∈ C : (g(c))n > 0} are
〈[r, t), [0, 0)〉-rich,
Observe that for each n ∈M and e ∈ {0, 1}, if r ≤ t1 ≤ t2 ≤ s , then fe(n, t1) ≥
fe(n, t2).
We consider three cases.

Case 1. There are n < � and v > � such that f0(n, v), f1(n, v) > I . We have
two possibilities depending on whether or not n ∈ X .
(1) n �∈ X : Let u = f0(n, v). Then, {c ∈ C : (g(c))n = 0} is 〈[r, v), [0, u)〉-rich.
(2) n ∈ X : Let u = f1(n, v). Then, {c ∈ C : (g(c))n > 0} is 〈[r, v), [0, u)〉-rich.
Case 2. There are n < � and t < � such that f0(n, t), f1(n, t) < I . We again
have two possibilities.

(1) n �∈ X : Let u = f1(n, t)+1. Since {c ∈ C : (g(c))n > 0} is not 〈[r, t), [0, u)〉-
rich, there are dr, dr+1, . . . , dt−1 < u such that there is no c ∈ C such that
(c)i = di whenever r ≤ i < t and (g(c))n > 0. Therefore, {c ∈ C : (g(c))n =
0 and (c)i = di for r ≤ i < t} is 〈[t, s), [0, u)〉-rich.

(2) n ∈ X : Let u = f0(n, t)+1. Since {c ∈ C : (g(c))n = 0} is not 〈[r, t), [0, u)〉-
rich, there are dr, dr+1, . . . , dt−1 < u such that there is no c ∈ C such that
(c)i = di whenever r ≤ i < t and (g(c))n = 0. Therefore, {c ∈ C : (g(c))n >
0 and (c)i = di for r ≤ i < t} is 〈[t, s), [0, u)〉-rich.

Case 3. Neither of the previous cases apply. Since I is not uniformly �-lofty, there
are b, d such that b < I < d ≤ q and [b, d )∩{f0(n, t) : n < �, r ≤ t < �} = [b, d )∩
{f1(n, t) : n < �, r ≤ t < �} = ∅. By overspill, there is u such that � < u ≤ s and
[b, d )∩{f0(n, t) : n ≤ u, r ≤ t ≤ u} = [b, d )∩{f1(n, t) : n ≤ u, r ≤ t ≤ u} = ∅.
Without loss of generality, we can take u = s .

Define two functions h0, h1 : [0, s) −→ [0, q] as follows. For each n < s , let
h0(n) = max{t ∈ [r, s] : f0(n, t) ≥ d} and h1(n) = max{t ∈ [r, s] : f1(n, t) ≥ d}.
Both functions are well defined since f0(n, r) = f1(n, r) = q ≥ d .
We claim, for all n < �, that h0(n) < � iff h1(n) > �. For, if h0(n), h1(n) > �,
then v = min(h0(n), h1(n)) would put us into Case 1. And if h0(n), h1(n) < �, then
t = 1 +max(h0(n), h1(n)) would put us into Case 2.
Let Y = {n < � : h0(n) < h1(n)}. Clearly, Y ∈ SSy(M), so Y �= X . Let n < �
be such that n ∈ Y iff n �∈ X . We have two possibilities.
(1) n �∈ X : Let v = h0(n) > � and continue as in (2) of Case 1.
(2) n ∈ X : Let t = h0(n) + 1 < � and then continue as in (2) of Case 2.
This completes the proof of Fact 2.
We leave it to the reader to supply the missing details of the proof of the
lemma. �
Corollary 2.9. Suppose that M is nonstandard and countable, X ⊆ � and
X �∈ SSy(M). Then there is N �cf M such thatN ��� M, X �∈ SSy(N ) andN has
the �-property.
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Proof. LetM0 be a countable conservative end extension ofM. Then, one easily
checks thatM is not a uniformly �-lofty cut ofM0. Now, proceed as in the proof
of Corollary 2.5 but invoking Lemma 2.6 instead of Lemma 2.4. �
Both Corollaries 2.5 and 2.7 imply that some countable, nonstandard models

M that fail to be recursively saturated have cofinal extensions N that have the
�-property and also fail to be recursively saturated. This can happen if � is a
recursively definable cut (Corollary 2.5) or if Th(M) �∈ SSy(M) (Corollary 2.7).
We show next that, in fact, this is the case for all countable, nonstandardM that
are not recursively saturated.

Theorem 2.10. Suppose that M is nonstandard, countable, and not recursively
saturated. Then there is a countable N �cf M such that N ��� M, N has the
�-property andN is not recursively saturated.
Proof. We can assume thatM is tall, as otherwise Corollary 2.5 does it. Since

M is tall and not recursively saturated, there are a ∈M and a recursive set Φ(x, y)
of formulas such that Φ(x, y) includes x < y and Φ(x, a) is finitely realizable in
M but is omitted byM. The cofinal extension N that we will obtain will fail to be
recursively saturated by virtue of also omitting Φ(x, a). By [4, Lemma 2.4], there
is a recursively definable cut I ofM such that for any cofinal extension N ofM,
N realizes Φ(x, a) iff N fills I . So we will ignore trying to omit Φ(x, a) and focus
instead on trying not to fill I .
By [5, Lemma 3.17], there is a countableM0 �cf M that fills neither I nor �

and has the property: whenever N � M0, then N fills � iff N fills IM0 . Apply
Corollary 2.5 to get N �cf M0 such that N ��� M0 and N has the �-property.
Then N ��� M and N does not fill IM0 , so, as an extension ofM, N does not
fill I . �
It is possible to get the natural common generalization of Lemma 2.6 and

Theorem 2.8.
Theorem 2.8 allows us to get some characterizations of countable, recursively

saturated models.

Corollary 2.11. Suppose that M is countable and tall. The following are
equivalent:

(1) M is recursively saturated.
(2) Every countableN �cf M is generated by a set of indiscernibles.
(3) Every countableN �cf M is isomorphic to someN0 ≺end N .
Proof. The implications (1) =⇒ (2) and (1) =⇒ (3) are consequences of

Proposition 1.3.
We prove the converse implications. Suppose that M is not recursively satu-

rated. Let N be as in Theorem 2.8. By Lemma 2.2,M is uniformly �-lofty. Then
Lemma 2.3 implies thatN is not generated by a set of indiscernibles and there is no
N0 ≺end N that is isomorphic toN . �
If the requirement in Corollary 2.9 thatM is tall is replaced with the weaker one

thatM is nonstandard, then the equivalence (1) ⇐⇒ (3) still holds. However, we
do not know if (1)⇐⇒ (2) still holds.
We next give a characterization of those countable models that code their own

theories.
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Corollary 2.12. Suppose that T is a completion of PA andX is a countable Scott
set such that Rep(T ) ⊆ X. The following are equivalent:

(1) T �∈ X;
(2) Whenever N |= T is countable and tall and SSy(N ) = X, then N has
a countable, cofinal extension N1 �cf N that is not generated by a set of
indiscernibles.

Proof. (1) =⇒ (2): Suppose that T �∈ X. Consider an arbitrary countable and
tall N |= T such that SSy(N ) = X. By Corollary 2.7, let N1 �cf N be a countable
model that has the �-property such that T �∈ SSy(N1). By Lemma 2.2, N1 is uni-
formly �-lofty. Since T = Th(N1) �∈ SSy(N1), thenN1 is not recursively saturated,
so N1 is not generated by a set of indiscernibles according to Lemma 2.3.
(2) =⇒ (1): Suppose that T ∈ X. By Theorem 1.1, we can let N be a countable,
recursively saturated model of T such that SSy(N ) = X. By Propositions 1.3(2)
and (4), every countable N1 �cf N is generated by a set of indiscernibles. �

§3. Substructure Lattices. It was proved in [13, Theorem 5.1] that ifM,N are
arithmetically saturated models and Lt(M) ∼= Lt(N ), then SSy(M) ∼= SSy(N ). In
this section we will take a closer look at the proof of that result in order to obtain
a refinement of it stated below as Theorem 3.2. This theorem follows immediately
from Lemma 3.1, which is the main result of this section and will be applied later
on in proving the main results of this paper.
If L = (L,∨,∧) is a lattice, we will sometimes think of it as a partially ordered
set (L,≤), where x ≤ y iff x = x ∧y iff y = x ∨y. We let 0L be the least element of
L if there is one, and we let 1L be the largest element if there is one. If n < �, then
n is the lattice that is a chain having exactly n elements. We let B2 be the 4-element
Boolean lattice; that is, B2 is the unique 4-element lattice that is not 4. If K,L are
two lattices and both 1K, 0L exist, then their linear sum K ⊕ L is the lattice that is
the disjoint union of K and L (except that we set 1K = 0L) such that both K,L
are sublattices of K ⊕ L and x ≤ y whenever x ∈ K and y ∈ L. (For example,
2⊕ 3 = 4.)
We next define some more lattices that are the same ones defined in [13, §5]. If
X ⊆ n < �, we define the lattice D0(X, n) by recursion on n as follows. Let

D0(∅, 0) = 1,

and then if X ⊆ n + 1, let

D0(X, n + 1) =
{
D0(X ∩ n, n)⊕ 2 if n ∈ X,
D0(X ∩ n, n)⊕ B2 if n �∈ X.

Note that |D0(X, n)| = 3n + 1 − 2|X |. (Roughly, D0(X, n) is a stack of n lat-
tices in which the i-th one is 2 iff i ∈ X and is B2 iff i �∈ X .) If X ⊆ n + 1,
then D0(X ∩ n, n) is an ideal of D0(X, n + 1). Next, if X ⊆ n, let D(X, n) =
D0(X, n)⊕ 2. If X ⊆ n + 1, we consider that D(X ∩ n, n) ⊆ D(X, n + 1) by setting
1D(X∩n,n) = 1D(X,n+1).
If X ⊆ �, we defineD(X ) =

⋃
n<� D(X ∩ n, n), and then let D′(X ) be the lattice

obtained fromD(X ) by adding one more element that is less than 1D(X ) but greater
than every other element of D(X ). Thus, each D(X ∩ n, n) is a sublattice of D(X )
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which, in turn, is a sublattice of D′(X ). In fact, D′(X ) is the completion of D(X ),
and D(X ) is the sublattice of D′(X ) consisting of the compact elements in D′(X ).

Lemma 3.1. Suppose thatM is recursively saturated and X ⊆ �. The following
are equivalent.

(1) There isM1 ≺ M such that Lt(M1) ∼= D′(X ).
(2) There is Y ∈ SSy(M) such that X ≤T Y ′.

Proof. (1) =⇒ (2): LetM1 ≺ M be such that Lt(M1) ∼= D′(X ). Since 1D′(X )
exists and has a unique immediate predecessor, it must be that M1 is finitely
generated. Let M1 = Scl(a), and Y = tp(a). Since,M is recursively saturated,
Y ∈ SSy(M).
We easily see thatX is Δ02 inY . First, n ∈ X iff there isZ ⊆ n+1 such that n ∈ Z

and there are Skolem terms tr(x) for each r ∈ D0(Z, n) (where we let m = 1D0(z,n)
and also Skolem terms trs (y) for each r ≤ s ∈ L(Z, n) such that each formula
trs (ts (x)) = tr(x) is in tp(a) and whenever t(y) is a Skolem term, then for each
s ∈ D0(Z, n) there is a unique r ≤ s such that t(ts (x)) = tr(x) is in tp(a). Similarly,
n �∈ X iff there is Z ⊆ n + 1 such that n �∈ Z and all the same conditions hold for
this Z.
(2) =⇒ (1): This part of the proof relies on the technology for constructing

models with a prescribed substructure lattice as presented in [15, Chap. 4.5]. Since
the application of this technology is quite routine, we will present just a sketch of
the proof.
LetM0 be the prime elementary submodel ofM. For some finite lattices L, we

define by recursion a representation αL : L −→ Eq(A), which we will call a regular
representation. Each regular representation that we define will be definable inM0,
and we will define it only up toM0-definable isomorphism.

• If L = 2, then αL is regular if A =M0.
• If L = B2, then assume that b1, b2 are the two atoms of B2. Then, αL is regular
if A = {〈x1, x2〉 ∈ M 20 : x1 < x2}, and whenever 〈x1, x2〉, 〈y1, y2〉 ∈ A and
e ∈ {1, 2}, then

〈
〈x1, x2〉, 〈y1, y2〉

〉
∈ α(be) iff xe = ye .

• If α0 : L0 −→ Eq(A0) and α1 : L1 −→ Eq(A1) are regular and L = L0 ⊕ L1,
thenα : L −→ Eq(A) is regular ifA = A0×A1 andwhenever 〈x0, x1〉, 〈y0, y1〉 ∈
A and r ∈ L0 ⊕ L1, then

〈
〈x0, x1〉, 〈y0, y1〉

〉
∈ α(r) iff one of the following

holds:
(0) r ∈ L0 and 〈x0, y0〉 ∈ α0(r),
(1) r ∈ L1, x0 = y0 and 〈x1, y1〉 ∈ α1(r).

Whenever L = D0(X, n) or L = D(X, n), the regular representation is well defined
and unique (up toM-definable isomorphism).
We observe some facts about regular representations of the D(X, n)’s. Suppose

that α : D(X, n) −→ Eq(A) is a regular representation.
(1) If m < n, then α�D(X ∩m,m) is regular.
(2) If n < m < �, Y ⊆ m and X = Y ∩ n, then there a regular representation
� : D(Y,m) −→ Eq(A) such that α = ��D(X, n).

(3) If Θ ∈ Eq(A) is definable inM0, then there isB ⊆ A such thatα|B is regular
and there is r ∈ D(X, n) such that α(r) ∩ B2 = Θ ∩ B2.
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The proofs of (1)–(3) will be omitted. The reader can consult with [13, §5] where
some analogous statements are proved.
Each of (1)–(3) is effective. This is trivial for (1). For (2), this means that given
n < m < �, Y ⊆ m and a formula that defines α, then a formula that defines �
can be effectively obtained. For (3), this means that given n < � and formulas that
define α and Θ, then a formula defining B can be effectively obtained.
Since Th(M) ∈ SSy(M), we can assume without loss of generality that
Th(M) ≤T Y .
Let 〈Xn : n < �〉 be a sequence of finite sets that is recursive in Y ′ such that
limn Xn = X in the sense that for all i < �, there is m < � such that whenever
m ≤ n < �, then i ∈ X iff i ∈ Xn. We can also require that there is a sequence
0 = k0, k1, k2, . . . such that whenever n < �, then Xn ⊆ kn < � and either
kn+1 = kn + 1 and Xn = Xn+1 ∩ n or else kn+1 ≤ kn and Xn+1 = Xn ∩ n + 1.
Let �0(x, y), �1(x, y), �2(x, y), . . . be a recursive list of 2-ary formulas in the
language of PA so that each definable equivalence relation Θ ⊆ M 20 is defined by
infinitely many of the formulas. We construct a sequence of regular representations
〈αn : D(Xn, kn) −→ An〉. (More precisely, we construct a sequence ϕ0, ϕ1, ϕ2, . . .
of formulas such that ϕn defines αn inM0, and this sequence should be recursive
in Y ′.)
Let α0 : 2 −→ Eq(M0) be a regular representation. Now suppose that we
αn. We will effectively obtain αn+1. If kn+1 = kn + 1, apply (2) to get a regular
α : D(Xn+1, kn+1, and if kn+1 ≤ kn, then let α = αn�D(Xn+1, kn+1). Since α is
regular, we apply (3) with Θ being the equivalence relation defined bt �n to get
αn+1 = α|B.
Thus, for each n < �, we have αn : L(Xn, kn) −→ Eq(An). The sequence
A0 ⊇ A1 ⊇ A2 ⊇ is recursive and determines a complete type p(x). Let a realize
this type inM, and then letM1 = Scl(a).
One then checks that Lt(M1) ∼= D′(X ). �
The previous lemma easily implies the following theorem.

Theorem 3.2. If M,N are recursively saturated models and Lt(M) ∼= Lt(N ),
then for each X ∈ SSy(M) there is Y ∈ SSy(N ) such that X ′ ≡T Y ′.

IfM is recursively saturated, thenM3 is an ideal of Lt(M) iffM is not a model
of TA. Can Theorem 3.2 be improved if neither (or both) are models of TA?

§4. The Proof of Theorem 4. Lascar’s Theorem shows (in the terminology of
[20]) that open subgroups are recognizable for the class of countable, arithmeti-
cally saturatedmodels. This means: ifM,N are countable, arithmetically saturated
models, α : Aut(M) −→ Aut(N ) is an isomorphism and H ≤ Aut(M), then
H is an open subgroup of Aut(M) iff α[H ] is an open subgroup of Aut(N ).
This consequence of Lascar’s Theorem was improved in [20, Coro. 3.14] where it
was shown that basic open subgroups are recognizable.1 In particular, if M,N
are countable, arithmetically saturated models, α : Aut(M) −→ Aut(N ) is an
isomorphism and H ≤ Aut(M), then H is the stabilizer of a finite set iff α[H ]

1Henceforth, the term “recognizable” will be used in a somewhat informal way, and it is be understood
as meaning “recognizable for the class of countable, arithmetically saturated models”.
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(as a subgroup of Aut(N )) is the stabilizer of a finite set. This allows us to define
the function α̃ : Lt0(M) −→ Lt0(N ) as follows: IfM1 ∈ Lt0(M), then α̃(M1)
is that unique N1 ∈ Lt0(N ) such that Aut(N )(N1) = α[Aut(M)(M1)]. We easily see
that α̃ is an isomorphism from the semilattice Lt0(M) onto the semilattice Lt0(N ).
Thus, it extends uniquely to an isomorphism of the lattices Lt(M) and Lt(N ). We
denote this extension also by α̃. Thus, we have the following lemma.

Lemma 4.1. Suppose thatM,N are countable, arithmetically saturated models
and that α : Aut(M) −→ Aut(N ) is an isomorphism. Then α̃ : Lt(M) −→ Lt(N )
is an isomorphism.
We will typically invoke this lemma without referencing it.
The isomorphism α̃ is implicit in [20, Coro. 3.15]. Observe that if a ∈ M and

g ∈ Aut(M), then g ∈ Aut(M)a iff α(g) ∈ α̃(Aut(M)a).
The map α �→ α̃ is functorial in the sense that ifM1,M2,M3 are countable,

arithmetically saturated models and α : Aut(M1) −→ Aut(M2), � : Aut(M2) −→
Aut(M3) are isomorphisms, then �̃α = �̃α̃ and α̃−1 = α̃−1.
We can now comment about the general strategy that is used in this section. Of

course, the ultimate goal is to proveTheorem4. Itwill be seen thatTheorem4 follows
almost immediately from Lemma 3.1 and the fact, to be proved as Lemma 4.15,
that recursively saturated structures are recognizable. To get that conclusion, we will
prove that recursive saturation can be characterized in terms of properties already
shown to be recognizable. But to get the recognizability of these other properties,
we will show that they too are characterizable in terms of other properties that were
previously shown to be recognizable. And so on. Thus, we will build a catalogue of
recognizable properties and show that recursive saturation is in this catalogue.
We begin by showing that isomorphism is recognizable.
Lemma 4.2. Suppose thatM,N are countable, arithmetically saturatedmodels and

that α : Aut(M) −→ Aut(N ) is an isomorphism. IfM1,M2 � M andM1
∼=M2,

then α̃(M1) ∼= α̃(M2).
Proof. Let G = Aut(M). Suppose thatM1,M2 � M and thatM1

∼=M2. Let
N1 = α̃(M1) andN2 = α̃(M2). We wish to show thatN1 ∼= N2.
First, suppose thatM1 is finitely generated. Then,M2 is finitely generated, and

G(M1) and G(M2) are conjugate subgroups, so let g ∈ G be such that gG(M1)g−1 =
G(M2). Applying α yields

α(g)Aut(N )(N1)(α(g))
−1 = Aut(N )(N2),

so that Aut(N )(N1), Aut(N )(N2) are conjugate subgroups of Aut(N ). Therefore,
N1 ∼= N2.
We have just proved the lemma in the caseM1,M2 are finitely generated. Observe

that if f ∈ G , then f�M1 is an isomorphism fromM1 ontoM2 iff fG(M1)f
−1 =

G(M2).
Next, suppose thatM1 � M is not finitely generated, and that ϕ :M1 −→ M2

is an isomorphism. Let M1,0 ≺ M1,1 ≺ M1,2 ≺ · · · be a sequence of finitely
generated, elementary substructures ofM1 such thatM1 =

⋃
i<�M1,i . For each

i < �, let ϕi = ϕ�M0,i andM2,i = ϕi [M1,i ]. Then,M2 =
⋃
i<�M2,i . Let fi ∈ G

be such that fi ⊇ ϕi . Since ϕ0 ⊆ ϕ1 ⊆ ϕ2 ⊆ · · · , we have that whenever i ≤ j < �,
then fjG(M0,i )f

−1 = G(M1,i ).
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Let N1,i = α̃(M1,i) and N2,i = α̃(M2,i . Then, N1 =
⋃
i<� N1,i and N2 =⋃

i<� N2,i . By the first part of this proof, each N0,i ∼= N1,i . Let �i : N0,i −→ N1,i
be the unique isomorphism. Let gi = α(fi). Then, whenever i ≤ j < �, then
gj Aut(N )(N0,i )g

−1
j = Aut(N )(N1,i ). Thus, if i ≤ j < �, then gj�N0,i : N0,i −→ N1,i

is an isomorphism. Hence,
⋃
i<� gi�N0,i is an isomorphism fromN0 ontoN1. �

The next lemma says that both cofinal extensions and end extensions are
recognizable and also that both tall models and short models are recognizable.

Lemma 4.3. Suppose thatM,N are countable, arithmetically saturated models,
α : Aut(M) −→ Aut(N ) is an isomorphism andM1,M2 � M.
(1) IfM1 ≺cf M2, then α̃(M1) ≺cf α̃(M2).
(2) IfM1 ≺end M2, then α̃(M1) ≺end α̃(M2).
(3) IfM1 is tall, then α̃(M1) is tall.
(4) IfM1 is short, then α̃(M1) is short.
Proof. First, note that the special case of (2) in whichM2 = M is one of the
parts of [20, Prop. 2.1] and is also [15, Coro. 9.4.10], where a proof is given. For us,
an easier proof comes from an application of Kaye’s Theorem, or, more precisely,
the ∗-version ofKaye’s Theorem that applies to structures of the form (M, a), where
a ∈M . Observe thatH < Aut(M) is the pointwise stabilizer of a short elementary
cut iff for some a ∈ M , H is the smallest, nontrivial, closed normal subgroup of
Aut(M)a = Aut(M,a). Then note that every elementary cut is the union of a set
of short elementary cuts, and, conversely, the union of any set of short elementary
cuts is an elementary cut.
We now prove (1)–(4).
(1): This is due to the following equivalence: M1 ≺cf M2 iff M1 ≺ M2 and
wheneverM1 � M3 ≺end M, thenM2 � M3.
(2): This is a consequence of (1), and the following equivalence:M1 ≺end M2 iff

M1 ≺ M2 and there is noM3 such thatM1 ≺cf M3 � M2.
(3): This is a consequence of (2) sinceM1 is tall iff there is a sequenceM1,0 ≺end

M1,1 ≺end M1,2 ≺end · · · such thatM1 =
⋃
i<�M1,i .

(4):M1 is short iffM1 is not tall. �
Suppose thatM is arithmetically saturated. The interstices and interstitial gaps
ofMwere first defined and studied in [2]. The least interstice ofM, denoted by Ω� ,
is the set {x ∈M : � < x < a for all a ∈ Scl(∅)\�}. The arithmetic saturation of
M entails that Ω� �= ∅. Observe that Ω� ∪ � is the smallest nonstandard invariant
cut ofM. We partition Ω� into convex sets, called interstitial gaps (or igaps for
short) as follows. First, let F be the set of∅-definable functionsf :M −→M such
that whenever x ≤ y < �, then x ≤ f(x) ≤ f(y) < �. Then, for each a ∈ Ω� ,
define the igap around a to be the set

igap(a) = {b ∈ Ω� : a ≤ f(b) and b ≤ f(a) for some f ∈ FM}.
The set of igaps is linearly ordered with order type of the rationals. It is a routine
exercise in recursive saturation to show that whenever �1 < �2 are igaps and a ∈ Ω� ,
then there is g ∈ Aut(M) such that �1 < g(a) < �2. A cut I ⊆ M is an icut if
I ⊆ � ∪Ω� and whenever � is an igap such that � ∩ I �= ∅, then � ⊆ I .
Kaye’s Theorem implies that Aut(M)(Ω�) is the largest, closed proper normal
subgroup of Aut(M).
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The following lemma improves Proposition 4.2 of [20] by eliminating the
hypothesis that bothM andN are 2-Ramsey.2

Lemma 4.4. Suppose thatM,N are countable, arithmetically saturated models
and that α : Aut(M) −→ Aut(N ) is an isomorphism. Suppose that H1 ≤ Aut(M)
andH2 = α[H1] ≤ Aut(N ).
(a) If H1 is a pointwise stabilizer of an icut, then so is H2.
(b) If H1 is a setwise stabilizer of an icut, then so is H2.
(c) If H1 is a pointwise stabilizer of an igap, then so is H2.
(d) If H1 is a setwise stabilizer of an igap, then so is H2.
Proof. We will prove (a). Then parts (b)–(d) will follow just as in the proof of

[20, Prop. 4.2].
Let G = Aut(M). The concepts of least interstice, igap and icut extend naturally

to models (M, a), where a ∈M .
Suppose that a ∈ M . Let J (a) = sup((� ∪ Ω�) ∩ Scl(a)) and then let N(a) =

G(J (a)) ∩ Ga . It is easily checked that J (a) is an icut. By the ∗-version of Kaye’s
Theorem (applied to (M, a)), N(a) is the smallest closed subgroup H such that
G(Ω�) ∩ Ga < H � Ga .
We will say that two groups N(a) and N(b) are equivalent if there is c ∈M such

thatN(a) ∩ Gc = N(b) ∩ Gc .
Claim. If a, b ∈M , then N(a) and N(b) are equivalent iff J (a) = J (b).
To prove the claim, consider a, b ∈ M . If J (a) = J (b), then c = 〈a, b〉 is such

thatN(a) ∩ Gc = N(b) ∩ Gc .
For the converse, suppose that J (b)\J (a) �= ∅. Then, by recursive saturation,

for any c ∈M , there is f ∈ G(J (a) ∩Gc that moves some d ∈ J (b). This proves the
claim.
It follows from the arithmetic saturation ofM that for any c ∈ M\ Scl(J (a)),

there is an f ∈ G(J (a)) such that f(c) �= c. Thus, we have that G(J (a)) is the closure
of

⋃
{N(b) : N(b) is equivalent toN(a)}. Thus, for any a ∈M there is b ∈ N such

that α̃(Scl(N(a)) = Scl(N(b)).
Now suppose that I is an arbitrary icut. Either there is an igap such that I =

sup(�) or there is not. If there is no such �, then I is the union of all those J (a)
such that J (a) ⊆ I , and if there is such a �, then I is the intersection of all those
J (a) such that J (a) ⊇ I . Thus,H is the pointwise stabilizer of an icut iff it is either
the union or the intersection of a set of subgroups of the form G(J (a)), from which
(a) easily follows. �
In the next lemma, we formally record that certain kinds of models are rec-

ognizable. In particular, those described in (2) and (3) of Lemma 2.3 are. The
recognizability of those models in (1) of Lemma 2.3 will be shown in Lemma 4.15.

Lemma 4.5. Suppose thatM,N are countable, arithmetically saturated models
and that α : Aut(M) −→ Aut(N ) is an isomorphism. Suppose thatM0 ≺ M.
(1) IfM0 is homogeneous, then α̃(M0) is homogeneous.
(2) IfM0 is generated by a set of indiscernibles, then so is α̃(M0).
(3) IfM0 is isomorphic to someM1 ≺end M0, then α̃(M0) is isomorphic to some

N1 ≺end α̃(M0).

2According to [20], a modelM is n-Ramsey iff (N,Rep(Th(M))) |= RTn2 .
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Proof. The proofs are straightforward. We only note that (1) follows from the
characterization:M0 is homogeneous iff whenever a0, a1, b0 ∈ M0 and tp(a0) =
tp(b0), then there is b1 ∈M0 such that tp(a0, a1) = tp(b0, b1). �
One sort of problem that arises when working inside an arithmetically saturated
modelM is that some familiar constructions cannot be carried out. For an exam-
ple, take the MacDowell–Specker Theorem: For everyM0 there isM1 such that
M0 ≺end M1. However, even ifM is arithmetically saturated, there isM0 ≺ M for
which there is noM1 such thatM0 ≺end M1 � M. One way around this problem
is by restricting attention to just the coded elementary substructures ofM. We next
make the appropriate definitions.
IfM is a model, then a subsetA ⊆M is coded (inM) if there is a ∈M such that
A = {(a)i : i < �}. In particular, SSy(M) is the set of coded subsets of�. A model
M0 is coded inM ifM0 ≺ M andM0 is coded. IfM is recursively saturated and
A ⊆M is coded, then Scl(A) is coded. Clearly, every finitely generated elementary
substructure of a recursively saturatedmodel is coded. IfM is recursively saturated
andM0 ≺ M is coded, then there is a codedM1 ≺ M such thatM0 ≺end M1.
The following proposition shows that even more is true.

Proposition 4.6. Suppose thatM is recursively saturated andM0 ≺ M is coded.
Then there is a coded, tallM1 ≺ M such thatM0 ≺end M1 andM1 is a conservative
extension ofM0.

Proof. Suppose thatM0 is coded. Let a ∈ M realize a minimal type inM. By
recursive saturation, there is b ∈ M such that for each i < �,M0 < (b)i < (b)i+1
and tp((b)i ) = tp(a). ThenM1 = Scl(M0 ∪ {(b)i : i < �}) is coded and tall and is
a conservative extension ofM0. �
Recall the notion of a superminimal extension as in [15, §2.1.2]. IfM1 ≺ M2,
thenM2 is a superminimal extension ofM1 ifM3 � M1 for everyM3 ≺ M2. It is
clear that superminimal extensions are recognizable.

Lemma 4.7. Suppose thatM is arithmetically saturated andM1 � M. ThenM1

is coded iffM1 has a superminimal end extensionM2 ≺ M.
Proof. (=⇒): Every countable model has a superminimal elementary end exten-
sion. After checking the proof of this (for example, in [15, Theorem 2.1.12]), we see
that ifM1 is coded, then a superminimal extensionM2 can be constructed so that
M2 ≺ M.
(=⇒): LetM2 ≺ M be a superminimal extension ofM1. (It is not necessary
that it be an end extension.) First note thatM2 is finitely generated, so it is coded.
Let b ∈ M codeM2; that is,M2 = {(b)n : n < �}. Let t0(x), t1(x), t2(x), . . . be a
recursive list of all Skolem terms. Let I ⊆ � be such that i ∈ I iff ti(b) ∈M1. Thus,
i ∈ I iff there is no Skolem term t(y) such that t(ti (b)) = b. Clearly, I is recursive
in tp(b)′. Let in be the n-th member of I . SinceM is arithmetically saturated, the
set of formulas {(x)n = tin (b) : n < �} is realized inM by, say, a ∈ M . Then a
codesM1. �
Corollary 4.8. Suppose thatM,N are countable, arithmetically saturated mod-
els and that α : Aut(M) −→ Aut(N ) is an isomorphism. IfM0 ≺ M andM0 is
coded, then α̃(M0) is coded in N .
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Proof. Suppose thatM0 ≺ M is coded. By Lemma 4.7, letM1 ≺ M be a super-
minimal end extension ofM0. Then, by Lemma 4.3(2), α̃(M1) is a superminimal
end extension of α̃(M0), so, by Lemma 4.7, α̃(M0) is coded in N . �
Lemma 4.9. Suppose thatM,N are countable, arithmetically saturated models

and that α : Aut(M) −→ Aut(N ) is an isomorphism. IfM1,M2 � M are coded
and SSy(M1) ⊆ SSy(M2), then SSy(α̃(M1)) ⊆ SSy(α̃(M2)).

Proof. This lemma was proved in [20, Coro. 5.3] under the additional hypotheses
thatM,N are 2-Ramsey and thatM1,M2 are finitely generated. The requirement
thatM,N are 2-Ramseywas neededonly because it also appeared inProposition 4.2
of [20], which is our Lemma 4.4 except that Proposition 4.2 has the added hypothesis
thatM andN are 2-Ramsey.
Now suppose thatM1,M2 are coded (as in the lemma) and that SSy(M1) ⊆

SSy(M2). Then, by Lemma 4.7, there are superminimal end extensionsM3 �end

M1 and M4 �end M2 and, therefore, SSy(M3) = SSy(M1) ⊆ SSy(M2) =
SSy(M4). Then, α̃(M3), α̃(M4) are finitely generated and, by Lemma 4.3(2),
are end extensions of α̃(M1), α̃(M2), respectively. Thus, we that SSy(α̃(M1)) =
SSy(α̃(M3)) ⊆ SSy(α̃(M4)) = SSy(α̃(M2)). �
The next lemma is a variation of Corollary 2.7 that takes place inside an

arithmetically saturated model.

Lemma 4.10. Suppose thatM is an arithmetically saturated model,M0 ≺ M is
coded and X ∈ SSy(M)\ SSy(M0). Then there is a codedM1 �cf M0 such that
X �∈ SSy(M1) andM1 has the �-property.

Proof. The main concern is that the appropriate variant of Lemma 2.6 can
be proved. It is left to the reader to show that the proof of Lemma 2.6 can be
appropriately modified. �

Remark. In this lemma, it is required thatM1 have the �-property. In fact, it
will have the stronger property that there are a codedM2 �end M1 and a ∈ M2
such thatM1 = supM2{(a)i : i < �}.

The next lemma is a variant of Corollary 2.10 that takes place inside an
arithmetically saturated model.

Lemma 4.11. Suppose thatM is an arithmetically saturated model,M0 ≺ M is
coded and X = SSy(M0). The following are equivalent:

(1) Th(M) �∈ X;
(2) for every tall coded M1 ≺ M such that SSy(M1) = X, there is a coded

M2 �cf M1 that is not generated by a set of indiscernibles.

Proof. Let T = Th(M).
(1) =⇒ (2): Suppose that T �∈ X. Let M1 ≺ M be tall and coded such

that SSy(M1) ⊆ X. By Lemma 4.10, let M2 ≺ M be such that M1 ≺cf M2,
T �∈ SSy(M2) and M2 has the �-property. By Lemma 2.2, M2 is uniformly
�-logty. Since T �∈ SSy(M2),M2 is not recursively saturated, so, by Lemma 2.3,
M2 is not generated by a set of indiscernibles.
(2) =⇒ (1): Suppose that T ∈ X. Let M1 ≺ M be coded, recursively sat-

urated and be such that SSy(M1) ⊆ SSy(M0). Then, M1 is tall, and every
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countableM2 �cf M1 is recursively saturated and, hence, generated by a set of
indiscernbles. �
The next corollary says that those elementary submodels that code their own
theories are recognizable.
Corollary 4.12. Suppose that M,N are countable, arithmetically saturated
models and that α : Aut(M) −→ Aut(N ) is an isomorphism. If M1 � M and
Th(M) ∈ SSy(M1), then Th(N ) ∈ SSy(α̃(M1)).
Proof. Suppose that M1 � M and Th(M) ∈ SSy(M1). Let a ∈ M and

M0 = Scl(a) be such that Th(M) ∈ SSy(M0). Since α̃(M0) � α̃(M1), it suffices
to show that Th(N ) ∈ SSy(α̃(M0)).
By (2) =⇒ (1) of Lemma 4.11, there is a tall codedM2 such that SSy(M2) =
SSy(M0) and every codedM3 �cf M2 is generated by a set of indiscernibles.
For a contradiction, suppose that Th(N ) �∈ SSy(N0). Since N2 is tall and coded
and SSy(N2) = SSy(N0), then by By (1) =⇒ (2) of Lemma 4.11, there is a tall
coded N3 � N2 that is generated by a set of indiscernibles. But thenM3 � M2 is
tall, coded and generated by a set of indiscernibles, which is a contradiction. �
Corollary 4.12 has a ∗-version, so it can be generalized frommodelsM to models
(M, a) as in part (a) of the next lemma. Let us say that a modelM is a self-coder
if tp(a) ∈ SSy(M) whenever a ∈ M . Every recursively saturated model is a self-
coder.Moreover, ifM0 is countable, then,M0 is a self-coder iff there is a countable,
recursively saturatedM1 � M0 such that SSy(M1) = SSy(M0). Part (b) of the
next lemma says that self-coders are recognizable.
Corollary 4.13. Suppose that M,N are countable, arithmetically saturated
models, α : Aut(M) −→ Aut(N ) is an isomorphism, andM1 � M.
(a) If a ∈ M1, α̃(Scl(a)) = Scl(b) and tp(a) ∈ SSy(M1), then tp(b) ∈
SSy(α̃(M1)).

(b) IfM1 is a self-coder, then α̃(M1) is a self-coder.
Lemma 4.14. Suppose thatM0 is countable. ThenM0 is recursively saturated iff
each of the following holds:
(1) M0 is homogeneous;
(2) M0 is a self-coder;
(3) if p(x) ∈ SSy(M0) is a complete 1-type for Th(M0), then p(x) is realized in

M0.
Proof. (=⇒): By Proposition 1.3, every countable, recursively saturated model
is homogeneous and, as previously mentioned, every recursively saturated model is
a self-coder. Lastly, observe that (3) is a straightforward consequence of recursive
saturation.
(⇐=): For the converse, suppose thatM0 satisfies (1)–(3). It follows from (2)
that Th(M0) ∈ SSy(M0). Thus, by Theorem 1.1, there is a countable, recursively
saturatedM1 ≡ M0 such that SSy(M1) = SSy(M0). If p(x) is a complete type,
then (2) and (3) imply that p(x) is realized inM0 iff p(x) ∈ SSy(M0). Thus,M0

andM1 realize exactly the same types. Since both are countable and homogeneous,
they are isomorphic, soM0 is also recursively saturated. �
The next lemma asserts that recursively saturated elementary submodels are
recognizable.
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Lemma 4.15. Suppose thatM,N are countable, arithmetically saturated models,
α : Aut(M) −→ Aut(N ) is an isomorphism, andM0 � M. IfM0 is recursively
saturated, then α̃(M0) is recursively saturated.
Proof. Suppose thatM0 is recursively saturated, so thatM0 satisfies (1)–(3) of

Lemma 4.14. Let N0 = α̃(M0). Then, N0 is homogeneous by Lemma 4.5(1) and is
a self-coder by Corollary 4.13(b). To get thatN0 is recursively saturated, it remains
to show that it has the property described in (3) of Lemma 4.14. So, consider a
complete type q(x) ∈ SSy(N0), and let b ∈ N realize q(x) inN . Let a ∈M be such
that α̃(Scl(a)) = Scl(b). By Corollary 4.13(a), tp(a) ∈ SSy(M0), and, therefore,
by Lemma 4.14(3),M0 realizes tp(a). Let a′ ∈ M0 be such that tp(a′) = tp(a).
Then, Scl(a) ∼= Scl(a′), so by Lemma 4.2, Scl(b) ∼= α̃(Scl(a′)). Let b′ ∈ α̃(Scl(a′))
be such that tp(b′) = tp(b). But then b′ ∈ N0 and tp(b′) = q(x). �
We can now complete the proof of Theorem 4. Suppose thatM,N are countable,

arithmetically saturated models and that α : Aut(M) −→ Aut(N ) is an isomor-
phism. Let T = Th(M) (so that T ′ is the Turing-jump of T ). It suffice to prove
that T ′ ≤T Th(N )′.
Since T ∈ SSy(M0) for every recursively saturated M0 � M, we get from

(2) =⇒ (1) of Lemma 3.1, that every recursively saturated M0 � M has an
elementary substructureM1 ≺ M0 such that Lt(M1) ∼= D′(T ′). Then Lemma 4.15
implies that
(∗) every recursively saturatedN0 � N has an elementary
substructureN1 ≺ N0 such that Lt(N1) ∼= D′(T ′).

Now suppose, for a contradiction, that T ′ �≤T Th(N )′. There is a countable Scott
set X ⊆ SSy(N ) such that Th(N ) ∈ X and X ′ ≤T Th(N )′ for every X ∈ X.
(See [22, Theorem VIII.2.17].) Hence, T ′ �≤T X ′ for every X ∈ X. By Theorem 1.1,
let N0 be recursively saturated model of Th(N ) such that SSy(N0) = X. Since
X ⊆ SSy(N ), we can assume that N0 ≺ N . Then, by (1) =⇒ (2) of Lemma 3.1,
there is no N1 ≺ N0 such that Lt(N1) ∼= D′(T ′), contradicting (∗) and completing
the proof of Theorem 4. �
We next prove Corollary 5. We will actually prove something somewhat stronger

since we will obtain completions T0, T1, T2, . . . such that eachMi that we obtain is
a model of Ti .
Let X0 be a Scott set that is enumerated by some arithmetical X . Apply

Theorem 1.2 to get, for each n < �, a completion Tn of PA such that Tn ≡n X (2n)
and Rep(Tn) = X0. For any countable jump ideal X, Theorem 1.1 implies that there
are modelsMn |= Tn such that SSy(Mn) = X. EachMn is arithmetically saturated
since X is a jump ideal. By Theorem 4, Aut(Mi) �∼= Aut(Mj) whenever i < j < �.

§5. The Proof of Theorem 6. Lemma 4.15 showed that recursively saturated ele-
mentary submodels are recognizable. It is also the case that arithmetically saturated
elementary submodels are recognizable.
Lemma 5.1. Suppose thatM,N are countable, arithmetically saturated models,

α : Aut(M) −→ Aut(N ) is an isomorphism, andM0 � M. IfM0 is arithmetically
saturated, then α̃(M0) is arithmetically saturated.
Proof. There are several ways to prove this. One way is to use [8, Coro. 5.4]

that asserts: IfM0 is recursively saturated, thenM0 is arithmetically saturated iff
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there is g ∈ Aut(M0) and an open H < Aut(M0) such that for all f ∈ Aut(M0),
f−1gf �∈ H . We leave it to the reader to complete this proof. �
Suppose that T is any completion of PA. Theorem 1.1 implies that there is a
(necessarily unique) recursively saturated modelM |= T such that SSy(M) is the
smallest jump ideal to which T belongs. This model is arithmetically saturated and
is elementarily embeddable in every arithmetically saturatedmodel ofT .We refer to
thisM as the minimal arithmetically saturatedmodel of T . Minimal arithmetically
saturated models are recognizable.

Corollary 5.2. Suppose thatM,N are countable, arithmetically saturated mod-
els, α : Aut(M) −→ Aut(N ) is an isomorphism, andM0 � M. IfM0 is a minimal
arithmetically saturated model, then so is α̃(M0).
Recall the following key result of [19, Theorem 3.8].

Lemma 5.3. Suppose that M,N are countable, arithmetically saturated mod-
els, Aut(M) ∼= Aut(N ) and 1 ≤ n < �. If (N,Rep(Th(M))) |= RTn

2, then
(N,Rep(Th(N ))) |= RTn

2.
The following is a rephrasing of Lemma 5.3 when n = 3.

Corollary 5.4. Suppose thatM,N are countable, arithmetically saturated mod-
els and Aut(M) ∼= Aut(N ). IfM0 ≺ M and N0 ≺ N are the prime elementary
submodels and SSy(M0) is a jump ideal, then SSy(N0) is a jump ideal.
The ∗-version of the previous corollary implies that finitely generated models
whose standard systems are jump ideals are recognizable. But this is also so for
coded models.

Lemma 5.5. Suppose thatM,N are countable, arithmetically saturated models,
α : Aut(M) −→ Aut(N ) is an isomorphism, andM0 ≺ M. IfM0 is coded and
SSy(M0) is a jump ideal, then SSy(α̃(M0)) is a jump ideal.
Proof. By Lemma 4.7, letM1 ≺ M be a superminimal end extension ofM0.
ThenM1 is finitely generated and SSy(M1) = SSy(M0). Also, α̃(M1) is finitely
generated, α̃(M1) �end α̃(M0) (by Lemma 4.3(2)) and α̃(M1) is finitely generated.
Therefore, SSy(α̃(M1)) is a jump ideal and so is SSy(α̃(M0)). �
Given an arithmetically saturated modelM, we let j(M) be the cardinality of
the set of all jump ideals X for which there areM0 � M1 � M such thatM0 is
coded, SSy(M0) = X andM1 is a minimal arithmetically saturated model.

Lemma 5.6. Suppose thatM,N are countable, arithmetically saturated models
and Aut(M) ∼= Aut(N ). Then, j(M) = j(N ).
Proof. Immediate from Lemmas 4.9, 5.2, and 5.5. �
Wewill say that a completion T ofPA is tight if there ism < � such that whenever

M is a countable, arithmetically saturated model of T , then j(M) = m. If T is
tight, then we let j(T ) be thatm.
We now prove Theorem 6. Fix n < �. Our goal is to obtain recursively equivalent
completionsT0, T1, . . . , Tn such that for each i ≤ n,Ti is tight and j(Ti ) = n+1−i .
Clearly, by Lemma 5.6, these theories will suffice to confirm Theorem 6.
Consider any A0 ⊆ � and then let A0, A1, A2, . . . , An ⊆ � be such that A0 <a
A1 <a A2 <a · · · <a An and whenever A is such that A0 ≤a A ≤a An, then there
is a unique i ≤ n such that A ≡a Ai . That there are A1, A2, . . . , An follows from
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a very special case of the theorem of Harding [3]. For each i ≤ n, let Bi be the
jump ideal {B ⊆ � : B ≤a Ai}, and then let Xi ∈ Bi and Xi ⊆ Bi be such that Xi
is a Scott set, Ai ∈ Xi and Xi enumerates Xi . (See [22, Theorem VIII.2.17].) Let
X = X0 ⊕ X1 ⊕ · · · ⊕ Xn ⊕ An, so Bn is the smallest jump ideal containing X . By
Theorem 1.2, let Ti be a completion of PA such that Ti ≡T X and Rep(Ti) = Xi .
Each Ti ∈ Bn, so by Theorem 1.1, there is a countable, recursively saturatedMi |=
Ti such that SSy(Mi) = Bn. Clearly, Mi is a minimal arithmetically saturated
model of Ti . It is clear that j(Mi) ≤ n + 1 − i as that is the cardinality of the
set {Bi ,Bi+1, . . . ,Bn}, which is the set of all jump ideals X such that Rep(Ti ) ⊆
X ⊆ SSy(Mi). Moreover, ifM is any arithmetically saturated model of Ti , then
j(M) ≤ n + 1− i .
Thus, it remains to show that j(Ti) ≤ n + 1 − i ; that is, we must show that

whenever i ≤ j ≤ n, then there is a coded elementary submodel of Mi whose
standard system is Bj . This is a consequence of the next lemma, which we state
separately since it has its own interest. �
Lemma 5.7. Suppose thatM is arithmetically saturated,X0 is a Scott set enumer-

ated by someX ∈ SSy(M) andRep(Th(M)) ⊆ X0. Then there is a finitely generated
M0 ≺ M such that SSy(M0) = X0.

Proof. For n < �, let Ln = LPA ∪ {c0, c1, . . . , cn−1}, where the ci ’s are new and
distinct constant symbols. Thus, L0 = LPA. Let L = LPA ∪ {c0, c1, c2, . . .}.
Suppose that X ⊆ � enumerates X0. (For the time being, no other assumptions

are being made.) To simplify notation, let Xn = (X )n.
We will construct a complete Henkin L-theory T ⊇ Th(M), and then letM0

be the Henkin model of T . The theory T will be the union of an increasing chain
T0 ⊆ T1 ⊆ T2 ⊆ · · · of theories such that for each n < �,
(1) Tn is an Ln-theory and Tn ⊆ Πn ∪ Σn ;
(2) for every Ln-sentence � ∈ Πn , either � ∈ Tn or ¬� ∈ Tn;
(3) {(b2n)i = 0 : i ∈ Xn} ∪ {(b2n)i = 1 : i ∈ �\Xn} ⊆ T2n+1;
(4) the sentence ∃xϕn(x)→ ϕn(b2n+1) is in T2n+2.
(5) Tn ∈ X0;
(6) Tn ∪ Th(M) is consistent.
Suppose that we have obtained the sequence T0 ⊆ T1 ⊆ T2 ⊆ · · · satisfying

(1)–(5) and that T is its union.
It follows from (1) and (6) that T is an L-theory, from (2) that T is complete,

from (2) and (6) that T ⊇ Th(M), from (4) that T is a Henkin theory, from (3)
that Rep(T ) ⊇ X0, and from (5) that Rep(T ) ⊆ X0. Thus, we can letM1 be the
LPA-reduct of the Henkin model of Th(M). Hence,M1 ≡ M and SSy(M1) = X0.
The construction of the sequence of theories proceeds by recursion.
Let T0 = Π0 ∩ Th(M).
Suppose that n = 2k + 1. Let T ′

n = Tn−1 ∪ {(b2k)i = 0 : i ∈ Xk} ∪
{(b2k)i = 1 : i ∈ �\Xk}. Clearly, T ′

n ∈ X0 and T ′
n ∪ Th(M) is consistent. Let

T ′′
n ∪ ((Πn ∪ Σn) ∩ Th(M)). Then, T ′′

n ∈ X and T ′′
n is consistent, so there is a

complete Ln-theory T ′′′
n ⊇ T ′′

n . Let Tn = T
′′′
n ∩ (Πn ∪ Σn).

Suppose that n = 2k + 2. Let T ′
n = Tn−1 ∪ {∃xϕn(x) → ϕk(b2k+1)}. Clearly,

T ′
n ∈ X and T ′

n ∪Th(M) is consistent. Now obtain Tn from T ′
n exactly as was done

in the previous case.
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Wehave shownhow to obtain amodelM1 ≡ M such that SSy(M1) = X0. (Thus,
we have proved one of Scott’s theorems.) We next indicate how the construction can
be refined to a more effective one that yields a codedM1 ≺ M.
First, we recall a theorem of Marker [18] that says that if a Scott set has an enu-
meration, then it has an effective enumeration. (More details about this, including a
definition, can be found in [1, Chap. 19] or in [10].) It can be checked that if a Scott
set has an enumeration in a jump ideal X, then it also has an effective enumeration
in X. Thus, we can assume that X0 is effectively enumerated by X ∈ SSy(M).
It can be checked that the construction of the sequence of theories is recursive in
X⊕T . Let Φ(x) be the set of 1-aryLPA-formulas that are obtained by replacing each
occurrence of cn by (x)n . Then, Φ(x) ∈ SSy(M) and is consistent with Th(M), so
there is some a ∈ M that satisfies Φ(x). Thus, without loss of generality, a codes
M1. By Lemma 4.7, let M0 be a superminimal end extension of M1 such that
M0 ≺ M. �
We end this section by asking if Theorem 6 can be improved.

Question 5.8. Are there infinitely many, recursively equivalent completions
T0, T1, T2, . . . of PA such that whenever i < j < � and Mi ,Mj are countable,
arithmetically saturated models of Ti , Tj , respectively, then Aut(Mi) �∼= Aut(Mj)?

In the absence of a positive answer to the previous question (or even following
an unlikely negative answer), we could still ask the next question.

Question 5.9. Are there infinitelymany countable, arithmetically saturatedmodels
no two of which have isomorphic automorphism groups but all of which have the same
standard systems and recursively equivalent theories?

§6. Some Additional Results. A consequence of Theorems 1 and 4 is that there
is a set T of 2ℵ0 completions of PA such that ifM,N are nonisomorphic countable
arithmetically saturatedmodels andTh(M),Th(N ) ∈ T , thenAut(M) �∼= Aut(N ).
The next corollary is a strengthening of this.

Corollary 6.1. Suppose that X is a countable Scott set. There is a set T of
2ℵ0 completions of PA such that every T ∈ T has Rep(T ) = X and if M, N are
nonisomorphic countable arithmetically saturatedmodels such thatTh(M),Th(N ) ∈
T , then Aut(M) �∼= Aut(N ).
Proof. Let X ⊆ � enumerate X. For every Y ≥T X , apply Theorem 1.1 to get
a completion TY ≡T Y such that Rep(TY ) = X. Then T = {TY : Y ≥T X} has
cardinality 2ℵ0 . �
The proof of themain result of [20] showed that ifM,N are saturatedmodels and
Aut(M) ∼= Aut(N ), thenTh(M)(�) ≡a Th(N )(�). The conclusion can be improved
in the manner of Theorem 4 with essentially the same proof as Theorem 4.

Theorem 6.2. If M,N are saturated models and Aut(M) ∼= Aut(N ), then
Th(M)′ ≡T Th(N )′.
Theorem 6 also has a version for saturated models.

Theorem 6.3. For each n < �, there are recursively equivalent completions
T0, T1, . . . , Tn of PA such that whenever i < j ≤ n and Mi |= Ti , Mj |= Tj
are saturated models, then Aut(Mi) �∼= Aut(Mj).
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Proof. Use the same theories as in the proof of Theorem 6. �
There is another approach to prove the previous two theorems using the corre-

sponding results for arithmetically saturated models and the following lemma, the
proof of which we omit but which the reader should be able to work out.

Lemma 6.4. Suppose that M,N are saturated models and that Aut(M) ∼=
Aut(N ). If M0 ≺ M and N0 ≺ N are minimal arithmetically saturated models,
then Aut(M0) ∼= Aut(N0).

§7. Acknowledgments. Roman Kossak and Ermek Nurkhaidarov are thanked
for their helpful comments on various precursors of this paper.
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