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SUMMARY

An efficient algorithm for generating an optimal plan for
part-bringing tasks, using robotic manipulators, is
introduced. The task of transporting a micro-part in a
partially unstructured environment, that includes obst-
acles whose locations are not initially known, is
introduced with the optimal plan formulated on the basis
of the observed environmental conditions. Fuzzy set
theory, well-suited to the management of uncertainty, is
introduced to address the uncertainty associated with the
part-bringing procedurc. A part-bringing algorithm for
generating the optimal plan related to a part assembly,
despite existing obstacles, is presented. It is shown that
the machine organizer using a sensor systcm can
intelligently determine an optimal plan, based on explicit
performance criteria, to overcome environmental uncer-
tainty. The algorithm utilizes knowledge processing
functions such as machine reasoning, planning, memory,
and decision-making. Simulation rcsults show the
cffectiveness of the proposed approach. The proposed
algorithm is applicable not only to a wide range of
robotic tasks including pick and place operations and
maneuvering mobile bascd robots around obstacles, but
also to the control of unmanned aircraft.

KEYWORDS: Optimal planning; Path planning; Machine
reasoning; Decision-making; Fuzzy entropy; Part assembly.

I OVERVIEW

A current direction of research in robotic systems focuses
on adding to accurate control some measure of
intelligence.'” The intelligence is essential for a robust
controller capable of operating reliably and efficiently in
a partially unknown or unstructurcd environment. Under
such uncertain conditions, a degree of reasoning,
planning, learning, and decision-making is required to
cope with complex tasks entailing a sequence of logical
steps.

The literature on robot obstacle avoidance consists
primarily of material handling applications for mobile
robots. Both known and unknown obstacles are
considered. However, the algorithms for obstacle
avoidance arc based on geometrical or topological
computations, and do not possess and inherent
intelligence.” © There has not been much work that
applied intelligence f{unctions, such as machine reason-
ing, to obstacle avoidance for robotic part assembly.
Morcover, it is rare that a measure of optimality is
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concurrently used, such as a cost function or
performance criterion, e.g. minimum fuzzy cntropy. In
the process planning for flexible part assembly, it is
necessary lo determine several feasible clement se-
quences. Each such sequence lists an order in which the
plan for assembly can be cxecuted.” The advantage of
this element sequence planning, as shown in the sequel,
is that it is easy to incorporate machine intelligence.

The proposed algorithm for generating the optimal
plan can be summarized as follows: First, the machine
organizer with its sensor systems, e.g. a vision system,
identificd the positions of the obstacles, part, and part
destination (target) within the workspace as shown in
Figures 1(a) and 2. This is accomplished by superposing
on the workspace a rectilinear grid, where the size of the
grid blocks is based on the sizes of the obstacles, the part
and the target. Each object in the workspace can then be
approximated by a contiguous collection of these blocks.
This idea will be refined later by representing each object
as a collection of vertical and horizontal ‘block chains.’
In Figure 1(a), the obstacles o, 0,, and 05 have different
shapes, and the obstacles o, and o, are slightly rotated.
Figure 1(b) shows the largest portions in thc obstacles’
areas observed from a top view. It is assumed that the
overhead reveals the maximum ‘footprint’ of the objects
in the workspace, and further that only paths some
specified  percentage wider that the part will be
considered feasible paths. In Figure 1(b) max[V,] is the
actual maximum area covered by each object, while in
Figure 1(c) min [V,], represents the minimum number of
contiguous  blocks that cover the object. Thus,
max [V,] =min [V,]. Clearly, by making the grid block
smaller makes min [V,] approach max [V,], allowing the
identification of narrower paths at the cost of more
computation.

The position of each block with respect to the world
coordinates (X, Y, Zw, 6,) can be obtained by the
sensor systems, such as a vision system. The information
about the positions of all the blocks is stored in .the
computer memory. Subtracting all blocks in the block
chains that cover the obstacles leaves the grid blocks
through which the part can be moved. The region
division algorithm, described in the sequel, then merges
these individual grid blocks into a minimal set of blocks
and merged blocks called path scgments. All feasible
paths not hitting obstacles taken from the permutations
ol this set of path segments are then generated. Next, the
machine reasoning and planning procedures are used to
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Fig. 1. (a) Partially unstructured workspace (b)(c) max [V,]=
min [V, ]

find the valid sequences of clements, that is, those
sequences of path segments from among all the
sequences, that are consistent with the specified rules for
the order of task execution. The feasible sequences of
path segments are then refined into sequences of events
which are the order of movement of the part’s pitch
angle, and x, y, and z directions; namely cvents e,
(s=x,y,2,6,), (i=1,2,...,n). This is accomplished by
introducing in Sections I1.7 and I1.8 a set of nodes within
the path segments. These nodes are then linked together
to form a feasible path. Finally, fuzzy set theory is
introduced to manage the uncertainty problem associated
with the above part-bringing procedure. Through the
machine decision-making procedure, an optimal plan for
a specific task execution that satisfies a certain criterion,
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or cost function, e.g. minimum fuzzy entropy, is
determined.

The information flow of the optimal planning
technique for the part assembly task is shown in Figure 2.
Based on the sensor information about the observed
partially unstructured workspace, the machine organizer
generates an optimal plan for a specific task execution by
performing knowledge (information) processing tasks.
The machine organization level is the most intelligent
part of a hierarchical system. It performs general
knowledge processing tasks, which may be composed of
reasoning, inferencing, planning, decision-making, learn-
ing and etc., of varying precision. The knowledge base
information, such as heuristics, experience, and expecta-
tion, affects the knowledge processing. The machine
organizer determines appropriate set points used by the
low level controller, e.g. joint angles, lateral distance,
and other parameters relevant to the low level
controller.” Similarly, necessary information from local
sensors and the gripper coordinator are fedback to the
top level of the hierarchy.

The above proposed methodology can be applied to a
variety of problems. For example, a pick and place robot
manipulator could pick up a part, at a location chosen by
the system, while avoiding collisions with nearby
obstacles. Then, using the proposed algorithmic proce-
dures, a part could be placed at a specified destination
despite existing obstacles. Alternatively, the technique
presented here allows a mobile base robot to travel from
a starting position to a target position, avoiding existing
obstacles. The part-bringing (path planning) algorithm
could be applied to the problem of guiding an unmanned
aircraft to its target while avoiding intervening obstacles,
such as buildings, trees, etc.

This paper is organized as follows: The algorithmic
procedure of the optimal planning technique is
described. A case study based on the proposed
algorithm, is then presented, followed by simulation
results and a closing discussions with conclusion. To
conserve space, the explanation of the algorithm draws
uses figures from the case study. Thercfore the reader
may want to review the case study before proceeding.

II ALGORITHM FOR OPTIMAL PLANNING

The objectives of the proposed algorithm are to
demonstrate how the machine organizer with its sensor
systems can intelligently formulate and determine an
optimal plan for a specific task execution based on a
particular performance criterion or cost function. The
overall algorithm is itself a collection of algorithms,
discussed individually below.

I1.1. Optimal block size for region division
The following discussion is simplified by making the
following definition:

Definition. A block chain is a contiguous horizontal or
vertical collection of grid blocks. A vertical block chain
consists of two or more grid blocks in a vertical column.
A horizontal block chain consists of two or more grid
blocks in a horizontal row.
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Fig. 2. Optimal planning tcchnique for part assembly

The workspace consists of block chains representing
obstacles, the part, the target, and available paths. The
following additional assumptions are also made. One, the
obstacles are higher than the part’s lowest point. Two, all
obstacles have vertical sides so that the footprint of the
obstacle in the workspace can be determined from a top
view of the obstacle. The proposed algorithm can be
applied to more complicated shapes if one or more side
views of the workspace are employed. Three, the
obstacle can be rotated at an angle to the grid blocks.
Four, all obstacles are separated by distances compaltible
with the size of the basic grid blocks used to deline the
workspace.

The implications of this last assumption will be clearer
once the algorithm for determining the appropriate grid
block size is discussed. At this juncture suffice it to say
that the basic grid block will be larger than the part, so
that the part can traverse the paths composcd of the
block chains. It is assumed that the size of the part is
known and thc target is bigger than the part but close to
the same size. The algorithm for determining the size of
the basic block is now given.

(B1). The rectilinear grid is chosen so that the basic
block size is compatible with the part size. Essentially,
the smallest possible block size would be the smallest
rectangle that covers the part. The basic block size may
subsequently be increased by thce other steps of the
algorithm. Onc can assume that the block size is initially
set to its smallest size and then modified by the following
steps.

(B2). Cover the part, the obstacles and the target with
the minimum number of block chains, as observed [rom
a top view. For the minimum block size, all feasible paths
between the part and the target should be available, and
the part, obstacles and target should be represented by
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nonoverlapping block chains. As the basic block size is
increasced, the some of block chains covering the part, the
obstacles and the target may overlap or merge in the
scnse that they have common vertical or horizontal
blocks chains. When this occurs the previously distinct
block chains are¢ merged into a single object.

(B3). Check if all the original feasible paths still exist. If
s0, increasc the block size and return to B2. This process
is repeated until the largest block size that does not
eliminate feasible paths is obtained.

11.2. Region division of feasible paths

The objective of this algorithm is to represent all feasible
paths between the part and the target using the smallest
number of path ‘scgments.” A path segment is obtained
by collecting into block chains the region not occupied by
the objects in the workspace, namely the part, the target
and the obstacles. The algorithm, to be described next,
will consider all possible permutations of these path
segments, which can be thought of a ‘coarse’ paths. Thus,
the goal is to make the total number of path segments as
small as possible. However, it is possible to overdo this
reduction, resulting in inconsistencies when finding
specific paths that traverse the adjoined path scgments.
This idea will beccome clearer as the algorithm unfolds.
The goal is to reduce the computational complexity by
using the minimum number of usefu/ path segments. The
steps of the algorithm are now given.

(R1). The block chains covering an obstacle can be
represented formally as

k
max[V,)=min | v, |
i=1

k

where V,, is the largest area of the i-th obstacle observed
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from the top view, and V, is the arca of the j-th block.
This expression can be used to identify path segments
that liec between obstacles. That is, if the total or partial
areas of adjacent obstacles lie on the same horizontal or
vertical block chain, then all empty individual blocks that
lie between the adjacent obstacles are merged into a
single path segment.

(R2). The workspace now contains the following objects:
the part, the target, obstacles and path segments between
adjacent obstacles. For each of these objects there will be
a region between the boundaries of the workspace and
the four sides ol each object. Each of these regions
becomes a single path segments. If one of the sides of the
objccts abutts the edge of the workspace, there is, of
course, no path segment on that side.

(R3). There may remain vertical or horizontal block
chains that span the workspace and contain none of the
objects from R2, namely the part, the target, the
obstacles and path segments between adjacent obstacles.
If these vertical or horizontal block chains exist each
becomes a single path segment.

(R4). Any path segment from the previous step with one
or more common vertical or horizontal block chains are
merged into a single path segment.
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(R5). Contiguous path segments that form a square or a
rectangle are merged into a single path segment. This
step may fragment existing path segments. This is
addressed in the next step of the algorithm.

(R6). If the path segments generated in steps R4 or RS
include part of path segments to the right and left of the
part or target, then thcese latter path segments are
merged with those generated by R4 or RS.

All feasible paths between the part and the target
based on all the permutations of the path segments
resulting from the region division arc generated. An
example of the above procedures is shown in Figure 3(b)
of Section 3.

11.3. Machine organizer’s sequencing rules

The next order of task is to generate all feasible paths
between the part and the target, by combining the paths
scgments generated by the region division algorithm.
These feasible paths can be obtained from the element
sequence rules given below. These feasible paths could
alternatively be obtained using either the precedence
graph method or the face-to-face composition method.” !
The element scquence rules provide a means of
scparating those element sequences which constitute a
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feasible path from thosc that do not. Here, an element is
a path segment. Any element sequence inconsistent with
the element sequence rules is removed. The sequencing
rules of the machine organizer are described next. Let
(Plomp)r and (Plomp)r+1 denote the elements e, and
€1 € Peomp» TeSPectively, where plomp = Peomp — Pob-

(S1). The rule peomp,=1e.}, (i=1,2,...,n) is a com-
position rule, stating that a plan for execution of a given
task consists of the elements e, ¢.,,...,and e, .

(82). The rule p,,, identifies elements that should not be
included in the elements ¢; € peomp, (i =1,2,..., n). For
example, if the group of elements {(e}, €5, ..., k) e
et (k=1,2,...,n) belongs to the list of elements in
Poss » the sequence of elements in a plan are formulated
with only the elements ¢; € (P eomp = €hn)-

(83). The rule p;,, identifies individual element, and the

rule  puop a groups of elements. For example
K k k K _ S o
{lel, es, ... en) €egonps (k=1,2,...,n) defines a

group consisting of individual elements.

(S4). The rule py,,, identifies the elements with which a
plan should begin. The rule pi.., is used to identify an
element contiguous to an element of py... The rule
Phegin 1dentifies elements in py.,, that have a higher
priority than the remaining clements in pregin.

(85). The rule p.,, identifics the clements with which a
plan should end. The rule pg,q identifics the elements
contiguous to the elements in p¢,q.

(S6). The following set relations apply.

pgrnup U phcgin U Pend U Pob = pcomp
and

— !
Peroup U pbcgin U Pend = Peomp
grouy I

(87). The rule p,..onn identifles elements e, and ¢, that
should not be contiguous. That is p, com = {(€,, ¢)}, if
invoked, means that any plan having the contiguous pair
(«..,ene,..)or (..., e,e,...) among its sequence of
clements is invalid. 87 is referred to as a contiguity rule.
The tollowing sct relations apply.

[pn connt & ((pc,‘(nnp)r X (pénmp)r+l)J
= [pn connt & ((pé()mp)ﬂrl X (pg/‘omp)r)J

(S8). The rules p., and p,,,, are concatenation rules uscd
to define vertical or horizontal sequences of threce or
more contiguous elements to be tested for feasibility as
part of a plan, where number of elements to be
considered is N, These rules are important to
determining the part’s vertical and horizontal movements
to avoid obstacles. The order of specification of the
elements in p., and p.. is crucial. For instance, for
Peat =1(e,,, €,,, €,)}, only the sequences e,,e¢,, ¢, and
e, ¢, ¢, are valid. That is, if p.,=1{(¢,, e,,, ¢, )} is used
to determine the valid sequence of elements, then a plan
having a sequence of elements (...,e,,¢,,¢,,...) or
(....e. ¢, ¢€,...)1is valid a plan but a plan with the
sequence (...,e,,¢e,,¢e,,...) is invalid. That is, for a
plan to be valid the elements specified by p., O prow
must appear in the plan in the order specified by p., and
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Drow OF In the reverse order. The following set relations
apply:

[Pcot  ((Plomp)r X (Plomp)rs1 X = )]

=[peic (X (péon1p)r+ X (péomp)r)l
[Prow © ((Péomp)r X (Péomp)rs1 X -+ )]

= [Prow = ¢ - X(Plomp)rst X (Plomp)r)]

(89). The rule p., ={(e,, e)} is a consistency rule that
determines order of execution, namely that clement e,
should be executed before element ¢,. Note that this rule
can be used as a priority rule. For instance, if ¢, is not to
be executed before ¢, then writing p.,, = {(¢,, ¢,)} insures
this.

(S10). The following set relations apply.

[p('o < ((péomp)r X (pénmp)rl I)]
# [pv() < ((péomp)rw 1 X (péump)r)l

[Pm < ((péomp)r X (pctomp)rJrI)J
= [pp() < ((pt"()mp)/‘Jrl X (pénmp)r)]

[p[m < ((pénmp)r X (péomp)r b—l)]
7 [[7,)0 = ((pé()mp)rl | X (pénmp)r)]

lp/m « ((pc{omp)r X (péwxw)r%—l)]
= [p('n < ((péomp)rl 1 X (péomp)r)]

(S11). A feasible sequence of clements p;, (i=

1,2,...,n) of a plan must be consistent with sequencing

rules S1-S10. That is,

(a) Seq' {Plomp} € Pregin» Where Seq' {plompt is the first
element in a plan,

(b) Seq" {plomp} € Penas Where Seq” {plompt is the last
element in a plan, and

(c) all sequences of elements in a plan must satisfy the
contiguity, concatenation, consistency, priority and
other specified sequencing rules.

11.4. Machine memory

The information about the positions of all the objects in
the workspace, codified as block chains, the region
division algorithm, and the machine rcasoning algorithms
must be stored in computer mcmory. This could
constitute a considerable amount of memory allocation.
The computation time, required to gencrate all
sequences of elements with all the permutations of
clements ¢; € (Peomp — Pob), and satisfying S1-S11 could
also be large. Both memory allocation and computation
time can be greatly reduced by considering only those
scquences of elements that begin with the elements in
Poeein a0d end with the element in p,,4. This, of course,
requires some method of carefully selecting beginning
and ending clements.

As an cxample, Table I shows the change in
computational requirement based on the number of
merged blocks and the number of beginning and ending
elements, where nj)' represents the number of merged
blocks, 7°¥™ the number of elements in pp.n, and ng™
the number of elements in p.,4. In Table I, for example,


https://doi.org/10.1017/S0263574798000149

52

Table I. Computational requirement ratio

[Case 1]

e = 1(2) [Case 2]
ny (Number of (Number of element  n)**" =1 and
merged block) in Poegin) ne=1

ny =5 20.0% (40.0%) 5.0%
5<ny=10 14.2% (28.5%) 2.3%
10<n?=15 7.5% (15.3%) 0.6%

when the number of merged blocks is 10<nj' =15, in
Case 1 the number of elements in py.qn iS, alternatively,
one or two with no restrictions on the number of
elements in p.,. The results is a reduction in
computation to 7.5% (15.3%) of that required if all
permutations are considered. In Case 2 both py.y, and
Pena are limited to either one or one elements, in which
case the savings are even more dramatic.

11.5. Machine reasoning

The sequence of steps that constitute the machine
organizer’s ‘reasoning’ to determine an order of task
executions can be described as follows.

1. Define the sets phcgim p%cgin, plliugim Pends pana pcomp»
Paroups and p,,.

(a) The machine organizer assigns the block or
merged block related to the present position of the part
and target to the elements of piegn and penq, respectively.

(b) The other sets are obtained similarly.

2. Define the sets peots Prows Ppo» aNA P, connt Telated to
the subportion of the specific task.

(a) Paris of empty block(s) or merged block(s) that
are not contiguous to each other are assigned as elements
of pneonm for all the clements e; € (Peomp = Pob)s
i=12,...,n).

(b) Vertical and horizontal, contiguous, empty blocks
or merged blocks are assigned as elements of p., and
Prow, Tespectively, if the number of the consecutive,
contiguous, empty blocks or merged blocks, N, is N, = 3.

(¢) All pairs {(e,, ¢;)} described below are assigned as
clements of p,,,.

(1) {e,epcnd‘r:LZ,...,na}and
{6/ Ep(l".rcgin ' l= 1’ 2) ER ma})

(") {er € (pcnmp —Pob _phcgin) | r= ], 2, ey I’l,,}
and {el Ephugin [= ], 2: R mb})

(iii) {e, € pena | r=1,2,...,n.}and
{el € (pcomp —_p()b _pcnd) l: 1) 2; R} m('}'

(v) The other rules are similarly implemented.

11.6. Muachine planning
The steps by which the machine organizer plans an order
of task execution are as follows.
1. For the n eclements in ¢ € (peomp— Posr) (=
1,2,...,n), generate all the possible n-clement
sequences such that  Seq' {Peomp = Pob} € Pocgin  and
Seq" {pcomp - [70/)} € Pena-

2. Eliminate any of the plans generated in step 1 that
do not satisfy S1-S11, that is the contiguity rule S7, the
consistency rule S9, etc.
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11.7. Linkage of subpaths of a feasible path

The path segments of the feasible paths between the part
and the target generated by the machine planning
algorithm, are linked together by determining nodes
within each path segment and then connecting the nodes
to establish a definitive path from the part to the target.
In short the ‘plan’ established before the node generation
is a collection of path segments of varying heights
and widths, within which a specific path has to be
established.

A node represents an intersection point of lines that
bisect rectangular horizontal and vertical block chains
within each subpath as shown in Figure 3 of Section III
for the case study presented later. The algorithm for
generating the nodes which are then connected to
generate a definitive path are as follows:

(N1). Bisect the entire path segments that contain the
part and the target both horizontally and vertically unless
the bisector is interrupted by obstacle(s). If the
horizontal or vertical bisector is interrupted by
obstacle(s), bisect the entire path segment between the
obstacle and the part or the target.

(N2). Bisect the distances between all neighboring
obstacles as follows:

(a) Bisect the distances both horizontally and
vertically between all neighboring obstacles that do not
partially or wholly belong to the same block chain.

(b) Bisect the distance between neighboring obstacles
vertically if they partially or wholly belong to a common
horizontal block chain and horizontally if they partially
or wholly belong to a common vertical block chain. It is
important to note that the horizontal or vertical block
chain to which the obstacles partially belong does not
have to be a block chain that defines either obstacle, but
is simply a block chain that does include part of both
obstacles.

(N3). Bisect the entire vertical (horizontal) block chain
between each of the four sides of the workspace and the
nearest obstacle, part, or target located on the same
horizontal {vertical) biock chain.

(N4). Extend all the bisected lines to their feasible
limits, left, right, up, and down, and assign all
intersection points as nodes.

(N5). Let n;; represent a node in the i-th column
(vertical block chain) and the j-th row (horizontal block
chain) of the workspace. Then if nodes ng.4) ;+1, and
Agriy+xy (K =0,1,...) occur in the same horizontal or
vertical block chain, respectively, choose the node(s) to
be connected into a path as follows.

If an obstacle, part or target lies between the nodes
Ry, G+ 1) (”(i+1),(j+k)) and nodes ngig), (”i,<j+k))
previously selected at part of a path then

(i) Choose the nearest node(s) left and right (above
and below) of the obstacle, part, or target.

(i1) Choose additional nodes left and right (above and
below) if the obstacle lying between the set of nodes
under consideration and the nodes in the next horizontal
(vertical) block chain to be considered shares common
vertical (horizontal) block chains with the nodes already
sclected. That is, the nearest nodes left and right that do
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not share common vertical (horizontal) block chains with
this next object.
(N6). For multiple nodes, in the same horizontal
(vertical) block chain as the part or the target choose the
nearest node(s) left or right (above or below) of the part
or target that do not share vertical (horizontal) block
chains with any obstacle between the nodes under
consideration and nodes selected in the previous step.
An example of the above procedures is shown in
Figures 3(c)(d) and 4(a).

I1.8. Determination of feasible paths

At this juncture a set of nodes have been selected within
each path segment. The next task is to connect these
nodes to form a sct of feasible paths from the part to the
target as described below.

(C1). All the coordinates for the nodes selected in the
previous section are stored in machine memory along
with the following associated data:

(i) The path segment to which the node belongs.

(ii) The neighboring nodes, that is the nodes to which
it is possible to move. An illustration is given in Table II.
(C2). For a given connected order of path segments the
nodes from an initial node to a final node are linked as
follows.

(a) Find the node in path segment i + 1 that is in the
list of neighboring nodes of the last selected node in path
segment i, (i =1,2,...,n—1). If there is no such node
then go to the next step to choose the next node within
path segment i.

(b) When linking nodes within a path segmemt a
‘dispersion” node may be encountered, that is a node
from which multiple paths can branch off. If one of the
neighboring nodes is in path segment i + 1 choose that
node. If none of the neighboring nodes is in path
segment i + 1, then choose a neighboring node from path
segment i. This process may have to be repeated until a
node within path segment i is found that has a
neighboring node in path segment i + 1.

(¢) Repeat steps (a) and (b) until the node in the final
block # is linked.

(C3). If two path segments are linked through a path

53

Table I1. Node linkage according to sequences of blocks and
merged blocks

Block or Node Neighboring nodes
merged block (coordinates)  [Block or merged block]
0y ng (3.5,0.5) n,[3'], 110[67]

0r n, (4.5, 6.5) ns[1'], ngl2']

1 ns (1, 4.5) n,[3'], na[1']
ny (1.5, 4.5) ni[1'], ns[1'], ns[2', 4]

n, (1.5, 6.5) n4[1'], n-(07]

2! ne (6, 6.5) n,[2'], n,.[0;]
n, (6, 4.5) ny[1’, 4'], nel2'], nyl2']

1 (6.5, 4.5) n,[2'], no[6']
4 ns (1.5, 4.5) 1], ns[17], ny{2', 4]
n; (6, 4.5) ny1', 4'), ne[2']. ny2']

segment that does not have a node, called an
intermediate path segment, then two approaches are
available. One is simply to define fictitious nodes within
each intermediate path segment. The second is to store
additional information about the nodes. For instance, in
Table II, one of the neighboring nodes for n, in path
segment 1’ is n,{2',4']. This notation means that n,
belongs to path segment 2’ and 7, is a neighboring node
to n, through the intermediate path segment 4’. Thus, in
Table 11, the merged block 1’ has three nodes; ns, ng,
and ns. The node #n, is linked to the contiguous nodes n
in the other merged block 2', through the merged block
4’ having no node. Therefore, n,[2',4'] and ny[1’, 4’}
should be included in the list of contiguous nodes of ny
and n, of path segments 1’ and 2’, respectively. The
choice of using fictitious nodes or the annotation scheme
described above is largely a matter of choice. The
fictitious node approach essentially eliminates the
concept of intermediate path segments, and will not
effect the total entropy of a path. The relative
computational efficiencies of the two approaches is not
much of an issue since intermediate path segments
usually are few in number.

7 Target
1 N 2'
ns oy Ng
Membership
4 grade
n4 ny: ng
n3 NL NS sz PS PL
4’ 1
2 mg4

ny i 10 ng 0 >

@)

Fig. 4. (a) Node connection (b) Entropy measure of €.
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For a known order of connected path segments, the
nodes can be casily linked from an initial position to a
desired position as illustrated in Table II.

11.9. Machine decision-making

The degree of uncertainty associated with the sequence
of events of a specific feasible plan is used as a criterion
for choosing an optimal plan for a specific task
exccution.'*"? After finding all the feasiblc plans, the
plan with the lowest degree of uncertainty, based on a
fuzzy entropy measure, is chosen as the optimal plan to
perform the task.

The uncertaintics associated with the part-bringing
task arise primarily from the existence of uncertainty,
incompleteness, and impreciseness in  measurements
provided by sensors. For instance, the sizes and positions
of obstacles, part, and target in a partially unstructured
workspace are obtained by sensor systems, such as a
vision system. Also, the size of the block used in the
basic rectilinear grid is determined based on the sizes of
obstacles, part, and target. Additionally, the size of the
block is directly related to the determination of control
values associated with the part’s movements, namely
events e, (s=x,y,2,6,), (i=1,2,...,n), since the
fcasible paths, which are derived from the connected
orders of path segments, are determined based on the
block chains. The fact that multiple feasible paths can be
generated, each involving a different sequence of
movements through the workspace is also a secondary
cause of uncertainty.

In fuzzy set theory, the degree of uncertainty of a

fuzzy set is called fuzziness. Fuzzy set theory is well
suitcd to addressing uncertainties of the type described
above. The membership value used for measuring the
uncertainty of a sequence of cvents that was formulated
based on sensor information is obtained through the
membership function. The universes of discourse U,
related to the maximum and minimum offset values of
the cvents e, arc determined. Finally, two methods are
used to measure the degree of uncertainty associated
with the sequence of events of a feasible plan.
(M1). The uncertainty associated with the sequence of
events of a plan is measured by Shannon’s entropy. The
entropy f as a measure of fuzziness of a fuzzy set F = {x,
pi(x) | x € XY is defined as £(F) = S5, wlpp(e)]
The total entropy of the specific plan p, is

"

E() =13 S ol ) M

where p,(x) is the membership function of F for the
fuzzy element, x, 7 is a constant, @, (x) = —x Inx — (1 —
x)1In (1 — x), the subscript / in x,; reflects the number of
the linguistic terms used for obtaining thc membership
grade of the offset value, and the plan p, consists of k
offset values of events. Figure 4(b) shows thc cntropy
measure of offset value of event e,y Whose entropy is
the sum of entropies w(mg,) and w(mg,) due to the
membership grades mg, and mg,, respectively.

(M2). The Euclidean distance measure,'> 8 =2, is used
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for measuring the degree of uncertainty of the sequence
of events of plan p,.

n nt 1/8

Ep)=3 | S -ntor]  xex @
k=1 =1 -

where wo(x) has a specific (crisp) value that charac-

terizes the fuzzy representation w,.(x), and 8 e [1, »].

[1.10. Machine learning

The movement of the part from one node to the next will
be called a fuzzy event because of the uncertainties
inherent in this movement, as discussed above. From a
lcarning algorithm based on the probability of a fuzzy
event and a modified distance metric measure, the
following stochastic approximation learning algorithm'®
is utilized to update the related probability of a fuzzy
event

Pk +1) = Py(k) + y(k + 1{§ = Ph(k);

where y(k +1) is a sequence for convergence, k is the
experiment number, and P}, is the probability of the mth
fuzzy set of plan composed of n events with each one
having an assigned degree of membership. A perfor-
mance index ¢ is 1 if f(p),) <f(p}) for g €{1,2,...} —
m, and 0O otherwise. f(py,) is a value of modified
Hamming distance metric measure (2) with g=1 and
te, a measure of degree of fuzziness, of the mth fuzzy
set of plan composed of # events p,, for a specified task.
Here, e is 0 if O<p, =3, and 1if w, =0 or p, > 3.
The fuzzy set, whose membership function is Borel
measurable, of a fuzzy event p/ € R” can be written as
p’ ={(x, w,r(x)) | x € R"}. The initial probability of each
fuzzy set of plan'® is then

P(P) = 2wy (9)P().

xep

I11. A case study

A robotic system 1is intended to bring a part to the
vicinity of the target for the purpose of a micro-part
insertion, despite existing obstacles, by adjusting the
part’s pitch angle, and x, y, and z directions which
corrcspond to the events, ¢,, e, ¢ and ¢,
(i=1,2,...,n), rcspectively. Figure 3 shows the
positions and shapes of the obstacles, part, and target in
a partially unstructured workspace. Figure 3(a) shows the
largest portions in the obstacles’ areas, observed from a
top view, which are covered with the minimum numbers
of block chains as shown in Figure 3(b), and also shows
that the obstacles 0,, 0,, and o5 have different shapes,
and the obstacles 0, and 05 are slightly rotated.

yir

* Uncertainty associated with the part assembly. The
uncertainties associated with the part-bringing procedure
are introduced for the reasons discussed in Section 11.9.
In Figure 3(c), for example, consider the part’s first
movement in the plan p;. The part moves in the right
direction, +x, as much as the width of three blocks in
order to avoid the obstacle 0;. If the block width is
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wy,(cm.), the first event of the plan p; is e,, = 3w, (cm.).
In order to overcome these uncertainties, fuzzy set
theory is introduced.

The universes of discourse realted to the offset values
of the events €X,, e,, €, and e, are U, ( U =U,

u,)=1-7,...,7, (i=1,2,...,n). For cxample 71n
U(,\ is 100 cm., 7 in U, is l()() cm., —7 in U, is —50cm.,
and —7 in U, is —10° "The mcmbershlp function related

to the offset values of the events e, e, €, and ¢,; is
,LL,:(X) — e*(,t*/))“/{l‘

where a and b are adjusted according to the linguistic

terms. In Figure 5, the linguistic terms NL, NS, SZ, PS,

and PL represent negative large, negative small, small

zero, positive small, and positive large, respectively.

+ Region division leading to feasible paths. Assume that
the workspace is divided into 49 regions (Figure 3). All
feasible paths are found by applying the procedures
described in Sections I11.1 and IL2. The result of the
region division is shown in Figure 3(b), where the
original 49 basic blocks have been merged into cleven
regions, composed of eight path segments and the three
block chains occupied by the obstacles.

¢ Machine reasoning and planning.
1. Define all the sets associated with the gross movement
portion of the specific task.

First, the part is adjusted to be vertically straight, and
the height of the part’s end point is maintained at a
certain level from the floor of the workspace, namely
Plegin = {€p,, €.). Then the feasible sequences with other
elements are determined.

pcomp = {ei}v (l = ]) 2) LIRS 49)’
phcgin = {646} pll;cgin = {eiroupa eir()up}a
Pend = {eﬁ} and pu1d { cgroups eimup}'

;!

In Figures 3 and 4, i’ stands for the group elements
Cyroups (1 = 1,2 L 60). P uroup = {€roupt, Where (e, €5, €3, €4,
€y — €1y, €15~ €17) € e;lu'oupa e (C’zx; €35, €42, 0’47'649) €
egmup, and eg — ¢, represents the elements from eg to ey,

The blocks from 11 (24, and 38) to 12 (27, 41),
respectively, arc occupied by thc obstacles. Therefore,
they are assigned to the elements of p,,, p., ={ehn},
(i=7,8,9), where e, cel,, (k=11,12), ¢, ey, (1=
24,...,27), and e,, € epp, (m =38,...,41).

2. Define all the sets rclated to the subportion of the
specific task.

Membership grade

I
0 p

4 2

Mernbcrshlp tunctl()n (NI NS, SL Pb PI)

55

(a) Assign the relevant elements among es, e4,, and
{e:zn)up}a (l =1,2 s 6) to P connts Peols and Prow-

Porconnt = 1€hroups €aroup)s (roups Caroup)s
(€roups €5)s - « - » (€46, €5)},
Peot = {(€groups Caroup)s (€aroups €group)s
(€group> group)s (€froups Coroup)}s
and
Prow = {(Ceroups €groups €aroup)s

3 5 6 6 3
(egmup’ egmupv cgmup)a L] (egruupa €46, egl‘nup)}'

(b) Assign the set of all the pairs {(e,, ¢;)} described
below to p,,,..

(1) {e, | r=1,2 s 1]} Gpgnd and {(f/ [ =
1; 2) sy 2]} Ep%cgin’
(11) {(3, r= 1) 2) e 38} € (pcomp — Pob _phcgin) and

€ e pbcgim
(1“) €1 € Pend

poh pcnd)
Therefore, P, ={(€4roups Coroup)s  (Caroups Coroup)s  (€aroups
‘gmuw)v (Lzzmhm’ ‘smur')’ (('5’ °4(v)’ (‘;ﬁmuw C46)’ (65’ H“UP)}
(r=1,2,...,6), and (s =1,2,...,6).
3. Generate all sequences of elements with all the
permutations of elements es, ey, and {e;mup}, (i=
1,2,...,6), and repeat it until the number of element of
plan is one element.
4. Remove the following scquences of elements, and
retain only valid sequences of  clements.
(a) ch] {pcnmp - po/:} ¢ pbcgim (b) Seqn {pcomp - poh} &
Penas (¢) does not satisfy the contiguity, the concatena-
tion, the consistency, and the priority rules, and (d) does
not satisfy other specified sequencing rules.

and

e

l: 1, 2, se ey 38} S (pcump_

* Determination of feasible paths. By applying the
procedurcs described in Sections I1.7 and IL1.8, for the
connection of the path segments, fcasible paths. For this
casc study a feasible path is really a sequence of events
constituting a plan. Figures 3(c)(d) and 4(a) show the
result of this procedure. In Figures 3(c) and (d), the
intersection point between the bisccted lines represents a
node, and also shows the cight feasible plans p,,
(i=1,2,...,8). Table Il shows the linkage of nodes
according to the connected orders of the blocks and
merged blocks. In Table II, for example, the merged
block 1" has thrce nodes. The node #n5, whose
coordinates are (1.5,6.5) in the workspace, is linked to

aN N N
Y .
\, N
/S \ . \
o \ )
2 4 6

Universe of discourse

Fig. 5. Membership function related to cvents ¢,, e,, ¢,, and ¢,
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the necighboring nodes n, in the same merged block 1’
and n,. in the block 0}, where the target is located. The
coordinates of the choscn nodes, the blocks to which
they belong, the neighboring nodes, and the blocks to
which they belong, are known. Given this information
and the connected order of the block(s) and merged
block(s), the nodes can be casily linked from the part
positon to the target position.

In Figures 3(c)(d) and 4(a), and Tables II and 111, the
sequences of events of a plan are formulated as {ollows.
Consider the plan pg. If the connected order of the
blocks and merged blocks is 0 —>3'—1"'—>4"—2'— 0},
then the sequence of events of plan py is formulated as
€p 7 €27 € 7 Cyyiyy) TP Clay a7 By Here,
e, (s=x,y,2,0,) represents the offset values of the
events ¢, and e, ,,, stands for the sum of the offset
values of the events ¢, and e,

- e)(,1’)'

* Machine decision-making and learning. The degree of
uncertainty associated with the sequence of cvents of a
plan is measured by (1). Figure 4(b) shows the
membership grades of the offset value of the event e,y
Through the above procedures, a plan p;, which has the
lowest degree of uncertainty with entropy measure,
among the generated valid plans p;, (i=1,2,...,8) is
chosen as an optimal plan for a specific task cxecution
(Figures 3 and 4, and Table III). Also, it turns out that
the plan p; has the lowest Euclidean distance measure
(2). The degree of unccrtainty of plan p,, using
Euclidean distance measure, was 9.33. Here, the
entropies of other plans p,, p,, pa, Ps, Pe, and p, were
measured 12.56, 15.43, 14.65, 12.49, 15.51, and 14.55,
respectively.

Since the plan p; has the lowest value in the distance
metric measure, its probability increases. If it s
subsequently used to perform the specified task,
equivalently; a high degree of a membership grade is
assigned to its fuzzy cvent and its probability will keep
on increasing as the result of reward. On the other hand,
the probabilities of other plans will keep on decreasing as
a result of punishment. If p; satisfies the condition & = 1
on the first 20 cxperiments, and in the interval between
60 and 80, this indicates that the plan p, is subscquently
used 20 times to carry out the given task over the
interval. Figure 6 shows the learning curves for p; for this
condition. It shows that thc probability of p; incrcases
during the above intervals. It decreases elsewhere.

Table III. Entropy measure for chosen feasible plans

Sequence of events of plan [e, (degree),

e, (em.), e, (cm.), e, (cm.)] [Connected Entropy
Plan order of blocks and merged blocks] measurc
Ps [4, 42,57, 10]— [4, —71, 28, 10] 11.61
— [4, 42,28, 10]
[0 =6 —=2"—4"—-1"—-0;]
Py [4, —35,57,10] >[4, 71, 28, 10] 11.71

—[4, 21,28, 10]

(05— 3 —1'—4" 25 0}]

https://doi.org/10.1017/50263574798000149 Published online by Cambridge University Press

Optimal planning

IV RESULTS

Simulation results are shown in Figure 7. For the
simulation, the width (x axis) and the length (y axis) of
the workspace in which the obstacles, the part, and the
target are located is set to 30cm.X30cm.. This
simulation displays the path finding process graphically
on a computer terminal. On the terminal the workspace
consists of an area on the screen 300 pixels wide by 300
pixels high. The center of the part’s starting position (in
cm.) is {12.5, 27.5) and that of the target (17.5,2.5). The
four edges of the obstacle O, arc (0,5), (19.9,5),
(19.9,9.9), and (0,9.9); of the obstacle O, are (0,15),
(14.9,15), (14.9,19.9), and (0, 19.9); of the obstacle O,
are (20, 20), (29.9, 20), (29.9,24.9), and (20, 24.9).

In this example, three feasible plans p,, p,, and p;
were generated. The path of p, is (15,27.5) —
(17.5,27.5)y — (17.5,12.5) — (2.4,12.5) — (2.4,2.5) —
(14.9,2.5); of p, is (15,27.5) — (17.5,27.5) — (17.5,17.5)
— (24.9,17.5) — (24.9,12.5) — (24.9,2.5) — (20,2.5); of
ps is (15,27.5) — (175,275) — (175,125) —
(24.9,12.5) — (24.9,2.5) — (20,2.5).

The degree of uncertainty associated with the specific
path is used as a criterion, or cost function, for choosing
an optimal path [or a specific task execution. The degree
of uncertainty associated with the specific path is
measured by (1). In Figure 7, the path p; (thick
dotted-line), which has the lowest degree of uncertainty
with fuzzy cntropy mcasure of 6.269, is chosen as an
optimal path for this specific task execution. The degree
of uncertainty of thc other plans p, and p, was measured
to be 6.831 and 6.973, respectively.

The simulation results shown that the machine
organizer with the optimal planning technique copes with
each different environmental condition properly.

V DISCUSSIONS AND CONCLUSION
Normally, a robot may be subject to unplanned events
and unfamiliar situations.. It will be required to respond
intclligently in these situations. Under such uncertain
circumstances, a certain degree of logical behaviour is
nceded to cope with the cases.

Previous work related to path planning for parts or
matcrial handling shows some fundamental work on
obstaclc avoidance by detouring, gecometric computation,

or topological calculation, and do not possess
intelligence.
In order to cope with complex tasks or non-

deterministic processcs partially or fully constrained by
the task geometry under environmental uncertainties, the
intelligent control that not only provides an effective
means of describing the behaviour of systems in highly
sensor dependent ecnvironments but also can be
incorporated into a controller in the form of a knowledge
base and an associated reasoning and planning
mechanism is indispensable.

In this paper, an algorithm of an optimal planning
technique for an intelligent robot’s part assembly task
under partially unstructured environment conditions has
been introduced. A convergence of the proposed
algorithm has bcen demonstrated through a case study
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Fig. 7. Simulation results

and a simulation, and the computational complexity of
the algorithm can be considerably reduced by consider-
ing the suggested method in Section IL.4. The intelligent
functions of the algorithm contribute to a more effective
control of the system for specific task execution in
circumstance of environmental uncertainty. The above
methodology is necessary for a robot manipulator to
perform complex assembly, manufacturing, or machining
tasks in a partially unknown or an unstructured
environment.
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