
A review of generalized planning

SERGIO JIMÉNEZ1, JAVIER SEGOVIA-AGUAS2 and ANDERS JONSSON2

1Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera s/n. 46022
Valencia, Spain; e-mail: serjice@dsic.upv.es;
2Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain;
e-mail: javier.segovia@upf.edu, anders.jonsson@upf.edu

Abstract

Generalized planning studies the representation, computation and evaluation of solutions that are valid
for multiple planning instances. These are topics studied since the early days of AI. However, in recent
years, we are experiencing the appearance of novel formalisms to compactly represent generalized plan-
ning tasks, the solutions to these tasks (called generalized plans) and efficient algorithms to compute
generalized plans. The paper reviews recent advances in generalized planning and relates them to exist-
ing planning formalisms, such as planning with domain control knowledge and approaches for planning
under uncertainty, that also aim at generality.

1 Introduction

Automated Planning (AP) can solve complex deliberative tasks in highly structured environments by
exploiting models of the agents and their environment (Ghallab et al., 2004; Geffner and Bonet, 2013).
Traditionally the solutions generated by automated planners are tied to a particular planning instance and
hence, do not generalize.

Generalized planning goes one step further and studies the computation of planning solutions that
generalize over a set of planning instances. In the worst case, each instance in the set may require a
different solution. In many cases, however, it is possible to compute a single compact solution that exploits
some common structure of multiple planning instances.

A generalized plan is an algorithm-like solution that is valid for a given set of planning instances. An
illustrative example is the following generalized plan for the well-known blocksworld domain (Slaney and
Thiébaux, 2001), where the goal is to stack the blocks on each other in a given pattern. This generalized
plan solves any instance in the domain, regardless of the number of blocks and the names of the blocks.

(1) Put all the blocks on the table.
(2) Move a block X on top of a block Y whenever (1) X and Y are clear; (2) X is supposed to be on Y in its

goal position; and (3) Y is already at its goal position.

Figure 1 depicts three different blocksworld instances (named Prob1, Prob2 and Prob3 with two, three
and four blocks, respectively) that are solvable by the previous generalized plan. For each instance, the
figure shows the blocks configuration for the initial state (left side) and the corresponding goal state
(right side).

The problem of computing general solutions for complex decision-making tasks has been studied since
the early days of AI (Newell et al., 1959). In recent years we are experiencing a renewed interest caused by
the appearance of novel formalisms for representing families of planning solutions, as well as new algo-
rithms to compute such solutions. These advances reveal the potential of techniques from generalized

The Knowledge Engineering Review, Vol. 34, e5, 1–28. © Cambridge University Press, 2019
doi:10.1017/S0269888918000231

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

mailto:serjice@dsic.upv.es
mailto:javier.segovia@upf.edu, anders.jonsson@upf.edu
https://doi.org/10.1017/S0269888918000231
https://doi.org/10.1017/S0269888918000231

planning and encourage the application of planning to diverse areas of computer science such as program
synthesis, autonomous control, data wrangling or form recognition (Torlak and Bodik, 2013; Alur et al.,
2015; Gulwani et al., 2015).

This paper reviews these recent advances in generalized planning and relates them to existing form-
alisms that also aim at generality within AP, such as planning with domain control knowledge and
different approaches for planning under uncertainty. First, the paper provides a background on AP,
formalizes the generalized planning task, and introduces our criteria for reviewing the work on generalized
planning. Second, the paper discusses different approaches for specifying sets of planning tasks. Third, the
paper surveys diverse representation formalisms for generalized plans analyzing their strengths and
weaknesses. Fourth, current algorithms for computing generalized plans are examined. Finally the paper
ends discussing different implementations and identifying open research questions to encourage future
research.

2 Background

This section introduces classical planning (the vanilla model for AP), proposes a formal model for
generalized planning based on classical planning, and defines the framework we use to analyze the existing
work on generalized planning.

2.1 Classical planning

The classical planning model is the most common model for AP, and is based on the following
assumptions:

1. The planning task to solve has a finite and fully observable state space.
2. Actions are deterministic and cause instantaneous state transitions.
3. Goals are conditions referred to the last state reached by a solution plan.

Therefore, a solution to a classical planning instance is a sequence of applicable actions that transforms
a given initial state into a goal state, that is, a state that satisfies a previously specified set of goal conditions
(Geffner and Bonet, 2013).

Formally we use F to denote a set of propositional variables or fluents that together describe a state. A
literal l is a valuation of a fluent f∈F, that is, l= f or l=¬f. A set of literals L on F is well-defined if there
does not exist a fluent f∈F such that f∈ L and ¬f∈L. Hence a well-defined literal set L assigns at most one
value to each fluent in F, effectively representing a partial assignment of values to fluents. We use LðFÞ to
denote the set of all well-defined literal sets on F. Given L, let ¬L= {¬l:l∈L} be its complement.

A state s is a literal set in LðFÞ such that |s| = |F|, that is, a total assignment of values to fluents.
Explicitly including negative literals in states simplifies subsequent definitions, but we often abuse nota-
tion by defining a state s only in terms of the fluents that are true in s, as is common in Strips planning.

A classical planning frame is a tuple Φ= 〈F, A〉, where F is a set of fluents and A is a set of actions.
Each action a∈A has a precondition preðaÞ 2 LðFÞ and a set of effects effðaÞ 2 LðFÞ. An action a∈A is
applicable in a given state s iff pre(a)⊆ s, that is, if its precondition holds in s. The result of executing an
applicable action a∈A in a state s is a new state θ(s, a)= (s\¬eff(a))∪ eff(a). Subtracting the complement
of eff(a) from s ensures that θ(s, a) remains a well-defined state.

Figure 1 Three different example instances from blocksworld. Each instance shows the blocks configuration for
the initial state (left side) and goal state (right side).

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N2

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Given a frameΦ= 〈F, A〉, a classical planning instance is a tuple P= 〈F, A, I,G〉, where I 2 LðFÞ is an
initial state (i.e. |I| = |F|) andG 2 LðFÞ is a goal condition. A plan for P is an action sequence π= 〈a1, … ,
an〉 that induces a state sequence 〈s0, s1, … , sn〉 such that s0= I and, for each i such that 1≤ i≤ n, ai is
applicable in si− 1 and generates the successor state si= θ (si − 1, ai). The plan π solves P if and only
if G⊆ sn, that is, if the goal condition is satisfied in the last state that is reached following the application
of π in I.

The Planning Domain Definition Language (PDDL) (McDermott et al., 1998) is the input language for
the International Planning Competition (IPC) (Vallati et al., 2015) and the de facto standard for repre-
senting classical planning instances. Besides classical planning, PDDL can represent more expressive
planning models such as temporal planning or planning with path constraints and preferences (Fox and
Long, 2003; Gerevini and Long, 2005).

PDDL separates the representation of a given planning instance into two parts, the domain and the
problem:

∙ A PDDL domain defines predicates and action schemas, whose parameters are instantiated on objects to
respectively form fluents and ground actions. Figure 2 shows the PDDL action schema unstack from
blocksworld, whose effect is to unstack the top block from a tower of blocks (in PDDL a question mark
denotes the start of a variable name and a semicolon denotes the start of a comment). Apart from
unstack, the PDDL definition of the blocksworld domain includes three other action schemas: stack for
stacking a block onto a tower of blocks and pick-up and put-down, for picking up a block from the table
or putting a block down the table.

∙ A PDDL problem defines the objects of the planning instance, the initial state of these objects, and their
goal conditions. Figure 3 shows the PDDL representation of the three classical planning instances
illustrated in Figure 1.

Both the fluent set F and the action set A of a given planning problem are instantiated by assigning
objects, from the PDDL problem, to the parameters of the predicates and action schemas (defined in the
PDDL domain). For example, if the unstack action schema is instantiated with parameters ?x= b1 and ?
y= b2, then pre(unstack (b1, b2))= {(on b1 b2), (clear b1), (empty)}.

PDDL assumes that different instances belonging to the same domain share the same actions schemas,
but this does not mean they share the same planning frame. For example, the three blocksworld instances
shown in Figures 1 and 3 have different sets of objects, which induce different fluent and action sets.

2.2 Generalized planning

Generalized planning is often used as an umbrella term that refers to more general notions of planning, like
the computation of plans with control flow structures, planning with domain control knowledge or diverse
models for planning under uncertainty (such as conformant, contingent, Markov decision process (MDP)
or partially observable Markov decision process (POMDP) planning (Geffner and Bonet, 2013)). This
paper is a review of the work on generalized planning under the assumptions of full state observability and
deterministic actions.

Definition 1. A generalized planning instance is a finite set of classical planning instances
P = fP1; ¼ ;PTg that share some common structure.

Figure 2 Action schema unstack from the blocksworld coded in Planning Domain Definition Language (PDDL).

A review of generalized planning 3

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Previous approaches to compute general knowledge for AP, such as macro-actions (Fikes et al., 1972),
case-based planners (Borrajo et al., 2015) or even the learning track of the IPC (Fern et al., 2011), assumed
that the given set of classical planning instances shares the same predicates and action schemes.

More recent work imposes a stronger constraint on the classical planning instances in a given gen-
eralized planning task, they must share the set of fluents and the set of actions. Formally, the {P1, … , PT}
instances in P belong to the same planning frameΦ and hence, P1= 〈F, A, I1, G1〉, … , PT= 〈F, A, IT, GT〉
share the same set of fluents and actions and differ only in the initial state and goals. This constraint forces the
set of planning instances in a generalized planning task to share the same state space. Note that this definition
of generalized planning still makes it possible to encode instances P 2 P with different number of objects
fixing their irrelevant fluents to False. For instance, when defining the two-block planning task illustrated in
Figure 1, any fluent referred to blocks b3 and b4 is set to False.

A generalized plan can be viewed as a procedural representation of the instances in a generalized
planning task. Generalized plans are then generative models that may have diverse forms. Each form with
its own expressiveness capacity and own computation and validation complexity. Generalized plans range
from programs (Winner and Veloso, 2003; Segovia-Aguas et al., 2016a) and generalized polices (Martn
and Geffner, 2004) to Finite State Controllers (FSCs) (Bonet et al., 2010; Segovia-Aguas et al., 2016b),
AND/OR graphs, formal grammars (Ramirez and Geffner, 2016) or hierarchical task networks (HTNs)
(Nau et al., 2003). We can classify generalized plans according to their specification of the action to apply
next:

∙ Fully specified solutions, that unambiguously specify the action to apply next, for solving every instance
in a given generalized planning task. Programs, generalized policies or deterministic FSCs belong to
this class. Conformant, contingent or POMDP plans belong also to this class (if we consider that the
possible initial states represent different classical planning instances all sharing the same state variables,
actions and goals (Hu and Giacomo, 2011)).

∙ Non specified. In this case the action to apply next is not explicitly specified. For instance, a classical
planner provided with a domain model is a non-specified generalized plan. Such a plan is very general
(covers any instance representable in the classical planner’s input language) but has an inefficient
execution mechanism (running the classical planner to produce a fully specified solution for every
instance in the generalized planning task).

Figure 3 Three planning problems from the blocksworld domain coded in Planning Domain Definition Language
(PDDL).

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N4

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

∙ Partially specified. Between these two extremes we find generalized plans that share elements of both:

1. A planner is still required to produce a fully specified solution for a particular instance.
2. Some general knowledge is exploited to constrain the possible solutions.

The different approaches for planning with domain-specific control knowledge (DCK) belong to this
class. This class includes planning with partially specified programs, non-deterministic FSCs, formal
grammars, AND/OR graphs or HTNs that do not exactly capture the action to apply next.

Despite the different forms of generalized plans, we can define the conditions under which a general-
ized plan is considered a solution to a given generalized planning task.

Definition 2. The execution of a generalized plan∏ in a classical planning instance P= 〈F, A, I, G〉 is a
classical plan, denoted as exec(∏, P)= 〈a1, … , an〉, that induces a state sequence 〈s0, s1,
… , sn〉 such that s0= I and, for each 1≤ i≤ n, ai is applicable in si− 1 and generates the
successor state si= θ(si− 1, ai).

Definition 3. A generalized plan ∏ is a solution to a given generalized planning instance
P = fP1; ¼ ;PTg iff the execution of∏ on every classical planning instance Pt, 1≤ t≤ T
produces a classical plan that solves Pt.

In the remainder of the paper we analyze, criticize and compare different approaches to generalized
planning following the abstract framework shown in Figure 4:

∙ The problem generator box refers to a generative model of the instances in the generalized planning
task. A generalized planning task comprises a set of individual planning tasks to be solved. This set of
planning tasks can either be finite or infinite. Likewise it can be specified in different ways, for example,
an explicit enumeration of classical planning instances or implicitly by using logic formulae, a
probabilistic distribution, a problem generation program, etc. Problem generation is skipped when an
explicit specification of the planning tasks is provided.

∙ The generalized planner box refers to an algorithm fed with an input-output specification of the
instances to solve and that generates a solution to these instances. The algorithms for generalized
planning range from pure top-down approaches, that search in the space of generalized plans a solution
that covers all the input instances, to bottom-up approaches, that compute a solution to a single instance,
generalizing it and merging it with previously found solutions to widen the coverage of the
generalized plan.

To illustrate our use of this abstract framework, we follow it here to look at classical planning as if it
were a generalized planning approach.

1. In classical planning the planner only receives as input a single and ground planning instance.
2. The state-of-the-art algorithms for classical planning are heuristic search in the state space (Helmert,

2006; Frances et al., 2017) or compilation to other forms of problem solving such as SAT
(Rintanen, 2012).

Figure 4 Abstract framework for generalized planning.

A review of generalized planning 5

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

3. A classical plan is a sequence of actions and both the execution and validation of a classical plan are
linear in the length of the plan. Nevertheless actions with conditional effects, variables and control-flow
structures can be used to compactly represent solutions to classical planning tasks (Hector, 2005; Scala
et al., 2016).

3 Representing sets of planning tasks

This section analyzes different formalisms for representing sets of planning tasks within generalized
planning.

3.1 Representing actions

Compact and general task representations usually require an action model where different effects can
occur depending on the current state of the world. An example is the agent-centered action model of the
ATARI video-game (Mnih et al., 2015), where the 18 possible actions have different effects according to
the current state of the video-game. Here, we review extensions to the classical planning action model that
aim more compact and general representations of the planning tasks and the planning solutions.

3.1.1 Conditional effects
The model of classical planning with conditional effects is more expressive than the basic classical
planning model. Conditional effects cannot be compiled away if plan size should grow only linearly
(Bernhard, 2000). A classical planning task with conditional effects is a tuple P= 〈F, A, I, G〉, as defined
for classical planning, except for the set of actions A. Now, each action a∈A with conditional effects is
defined as:

∙ The preconditions, a set of literals preðaÞ � LðFÞ.
∙ The set of conditional effects, cond(a). Each conditional effect C . E 2 condðaÞ is composed of two sets
of literals, C � LðFÞ (the condition) and E � LðFÞ (the effect).
An action a∈A with conditional effects is applicable in a state s if and only if pre(a)⊆ s, and the

resulting set of triggered effects is,

effðs; aÞ=
[

C.E2condðaÞ;C� s

E

that is, effects whose conditions hold in s. The result of applying a in s is a new state θ(s, a)= (s\¬eff (s, a))
∪ eff (s, a). The definition of a plan, and a solution plan, is analogous to that for planning problems without
conditional effects.

PDDL supports the definition of conditional effects with the when keyword. In PDDL the condition of a
given conditional effect has the same expressiveness as action preconditions and goals, so it can either be a
negation, a conjunction, a disjunction or a quantified formula, as defined in the action description language
formalism (Pednault, 1989; Fox and Long, 2003). Many classical planners natively cope with conditional
effects without compiling them away. In fact since 2014, the support of PDDL conditional effects is a
requirement for participating at IPC (Vallati et al., 2015).

The model of classical planning with conditional effects makes it possible to repeatedly refer to the
same action while the precise effects of the action are determined by the state where the action is applied.
For instance, the execution of the six-action sequence (unstack, put-down, unstack, put-down, unstack,
put-down) can unstack a single tower of either four, three or two blocks if unstack and put-down are
actions with conditional effects as defined in Figure 5. The effects of these actions are defined using the
universally quantified variables ?x and ?y of type block. Quantified variables do not increase the
expressiveness of the actions but allow a more succinct representation. Note that these actions are defined
with a single tower of blocks otherwise, if there is more than one tower, these actions would represent the
unstacking of multiple blocks at the same time.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N6

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

3.1.2 Update formulas and high-level state features
The series of work by Srivastava et al. (2011a) on generalized planning encodes the effects of actions
with update formulas. An update formula is an arbitrary first-order logic (FOL) formulae, that includes
transitive closure, defining the new value of a given predicate after an action application. The transitive
closure allows compact representation of connectivity properties such as the above concept in
blocksworld.

In more detail, a particular update formula for a predicate p has the form p0 � ½:p ^ Δ +
p;a� _ ½p ^ :Δ�

p;a�
where:

∙ p′ denotes the value of the predicate p after the application of action a.
∙ Δ +

p;a denotes the conditions under which p is changed to true by action a.
∙ Δ�

p;a denotes the conditions under which p is changed to false by action a.

While this model for the action effects encodes more expressive state transitions than simple condi-
tional effects, it is not supported by off-the-shelf PDDL classical planners.

Arbitrary FOL formulae, that include transitive closure, can be represented in PDDL using derived
predicates. Derived predicates can later be included in action preconditions, conditional effects and goals.
Figure 6 shows how PDDL defines the above derived predicate that models whether a block ?x is above
another block ?y in a blocksworld tower.

Derived predicates can represent expressive state queries including hierarchies over the state variables
and recursion (Thiébaux et al., 2005). This has proven useful for compactly representing planning tasks
and also for more effective planning (Ivankovic and Haslum, 2015). Figure 7 shows a PDDL derived
predicate, with a quantified variable ?b, that represents the set of blocksworld states where all blocks are on
the table. Apart from derived predicates, diverse formalisms have been used to represent state queries in
planning, ranging from first order clauses (Veloso et al., 1995) to description logic formulae (Martn and

Figure 5 Planning Domain Definition Language (PDDL) actions from a blocksworld version to unstack a single
tower of blocks using conditional effects and universally quantified variables.

Figure 6 Planning Domain Definition Language derived predicate with one existentially quantified variable ?z
that leverages recursion to capture when a block ?x is above another block ?y.

A review of generalized planning 7

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Geffner, 2004), or even linear temporal logic formulae to define queries about sequence of states (Cresswell
and Alexandra, 2004).

3.1.3 Sensing and non-deterministic actions
When states are fully observable, explicit sensing actions are not necessary given that any state infor-
mation is obtained via state queries. Sensing actions are then suitable for planning under partial obser-
vability and they do not model state transitions, but the observation of some piece of information from the
current state that is unknown. Planners apply sensing actions when the lack of information about the
current state prevents them from generating a plan that achieves the goals with certainty.

If we assume that uncertainty about the current state decreases monotonically (i.e. once the value of a
state variable is known it can change, but cannot become unknown again) sensing actions can be encoded
as non-deterministic actions (Muise et al., 2014). Figure 8 shows an example of a sensing action for
observing the color of a block encoded as a non-deterministic action. The oneof effect represents a kind of
state constraint (often called state invariant) expressing that as a result of the sensing action, a block can
only have one of these four colors: red, green, yellow or blue.

Sensing actions generate contingent plans, that is, plans with decision points predicated on the different
sensing outcomes (Albore et al., 2009). Contingent plans generalize noise-free decision trees. A decision
tree can be defined as a particular kind of contingent plan: whose internal nodes contain only sensing actions
and its leaf nodes only contain actions that set a particular class label (Segovia-Aguas et al., 2017b).

The action in Figure 8 assumes that there is no knowledge about the likelihood of the different sensing
outcomes (e.g. because this knowledge is non-stationary). When this knowledge is available, it can be
encoded with probabilistic effects using, for instance, PPDDL, the probabilistic version of PDDL (Younes
and Littman, 2004). Figure 9 shows a PPDDL action for sensing the color of a given block s.t. observing a
red block is twice as probable. Planning with probabilistic actions becomes an optimization task where the
planner aims at maximizing the probability of reaching the goals. Both non-deterministic and probabilistic
actions can also encode non-deterministic state transitions, like in Fully Observable Non-Deterministic
(FOND) or MDP planning (Mausam and Kolobov, 2012; Geffner and Bonet, 2013).

3.2 Representing initial and goal states

A set of states can be defined explicitly, enumerating each state in the set, or implicitly, defining the
constraints that a state has to satisfy to belong to the set.

The set of instances in a generalized planning task can also be explicitly specified, enumerating the
individual classical planning instances in the generalized planning task. An example of this is the set of
three blocksworld instances, shown in Figure 1, plus their shared domain model with the action schemes

Figure 7 Example of a Planning Domain Definition Language derived predicate, with one universally quantified
variable ?b, that captures when all the blocks are on the table.

Figure 8 Non-deterministic action for sensing the color of a given block.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N8

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

for the unstack, stack, pick-up and put-down actions. Implicit representations of generalized planning
tasks define two sets of constraints, one that defines the set of possible initial states, and a second one
defining the set of goal states. An example of this is the conformant planning task shown in Figure 10 taken
from IPC-2008.

Here we review different formalisms for representing a set of planning instances according to the
language used for specifying these constraints:

∙ Propositional logic. In this case the sets of possible initial and goal states are represented exclusively
using literals and the three basic logical connectives (and, to indicate a conjunction of literals or, to
indicate a disjunction of literals and not, to indicate negation). Examples of sets of planning instances
represented with propositional logic are conformant, contingent or POMDPs planning tasks that define
the different possible initial states of the task as a disjunction on the problem literals (goals are shared for
all the possible initial states in the planning task) (Bonet et al., 2010).

Figure 9 probabilistic version of Planning Domain Definition Language action for sensing the color of a given
block coded.

Figure 10 Conformant planning task for a 2-block blocksworld. A single goal condition is defined for the
different possible initial configurations of the two blocks.

A review of generalized planning 9

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

∙ First-order logic. The benefit of first-order logic constraints is that they can contain quantified
variables, include the transitive closure and represent unbounded sets of states. These features make
first-order formulae achieve compact representations of sets of planning instances as well as to represent
planning tasks of unbounded size (Srivastava et al., 2011a). For a given finite set of objects, a first-order
representation can be transformed straightforward into a propositional logic representation.

∙ Constraint programming. The previous representations restricted themselves to Boolean (two-valued)
state variables. In this case sets of states are defined by a set of finite-domain variables X= {x1, … , xn}
(where each variable xi, 1< i< n has an associated finite domain D(xi)) and a set of constrains C that
determines when a state is part of the set.

Finite-domain variables are already de facto being used by classical planners: a standard preprocess to
extract a many-valued representation from Boolean state variables. This preprocess can be quite expensive
but it is completely unnecessary if states are represented with finite-domain variables (Rintanen, 2015). In
addition, constraint programming languages offer a great representation flexibility and off-the-shelf con-
straint satisfaction problem (CSP) solvers can be used in this case to solve the generalized planning tasks
(Pralet et al., 2010). This representation can be transformed into a first order representation with a given set
of objects representing the domain of the variables.

∙ Three-valued logic. In this logic language there are three truth values 1 (true), 0 (false), or 12 (unknown).
Srivastava et al. (2011a) use three-valued logic for state abstraction, to compactly represent unbounded
sets of concrete states. Three-valued logic has also been useful to represent and solve conformant and
contingent tasks (Petrick and Bacchus, 2004; Albore et al., 2009; Palacios and Geffner, 2009).

Apart from the sets of initial and goals states, further information can be used to specify a set of
planning instances such as domain invariants (Srivastava et al., 2011a), or even classified execution
histories including positive and negative examples (Hu and Giacomo, 2013), similar to what is done in
Inductive Logic Programming (ILP) (Ross Quinlan, 1990).

4 Generalized plans

With respect to classical plans, generalized plans have two benefits, compactness and generality. In other
words, generalized plans can be more succinct and be valid for solving multiple classical planning
instances.

4.1 Representation

As mentioned in Section 2, generalized plans may have diverse forms, each with different expressiveness
capacities and different execution mechanisms. The syntax and semantics of the formalism chosen for
representing generalized plans defines the space of solutions that can be computed as well as the worst case
computation complexity.

4.1.1 Control flow
Control-flow structures augment the flexibility of generalized plans with respect to classical plans:

∙ Branching: the execution of the plan branches according to the result of the evaluation of a given
expression in the current state. Examples of planning solutions with branching structures are AND/OR
tree-like contingent plans (Albore et al., 2009) or K-fault tolerant plans (Domshlak, 2013).

∙ Loops: the execution of a plan segment is repeated until a given condition holds in the current state.
Examples of planning solutions with loops include the policy-like plans used for representing solutions
to MDPs (Kolobov, 2012), and FOND planning tasks (Muise et al., 2014).

The size of a solution plan containing only branching constructs can be exponential in the number of
possible state observations. Combining branching and loops is often helpful to compress generalized
plans. In some solution representations, like DSPlanners (Winner and Veloso, 2003), branching and loops

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N10

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

correspond to different control-flow constructs but often, they are implemented with the same construct
(e.g. conditional transitions) to keep the solution space tractable. This is what happens in FSCs (Bonet
et al., 2010), generalized policies (Martn and Geffner, 2004), or with the conditional gotos used in
planning programs (Segovia-Aguas et al., 2016a).

Figure 11 shows a generalized plan, in the form of a planning program, for unstacking a single
tower of blocks no matter its height. The plan contains actions unstack and put-down (as defined in
Figure 5) for unstacking the block at the top of the tower and putting it down on the table, respectively. The
control flow instruction 2.goto (0, ! (empty)) jumps back to the first step, 0. put-down, when the robot hand
is not empty. Note that such a compact and general plan is definable because the actual effects of put-down
and unstack depend on the current state (put-down and unstack have the conditional effects shown in
Figure 5).

4.1.2 Variables
Unstacking multiple towers of blocks is more challenging than unstacking a single tower of blocks (there
can be an arbitrary number of towers, each with different height). A general solution to this task cannot be
compactly represented branching and looping over the ground values of the given state variables.

DSPlanners address this issue representing solutions with quantified variables (Winner and Veloso,
2003). Quantified variables makes it possible to identify objects with particular features and to apply
selective actions to the identified objects. Figure 12 shows a generalized plan for unstacking multiple
towers of blocks that uses two existential variables, ?b1 and ?b2. These variables capture the block to move
next, linking the parameters of lifted predicates and actions. The generalized plan in Figure 12 has the form
of a DSPlanner and its execution in a given planning instance requires unifying variables ?b1 and ?b2 with
actual blocks in the current state of the planning task.

In the different formalisms for representing generalized plans, quantified variables appear as:

∙ Existential variables. An existential variable is a variable that asserts that a given property, or relation,
holds for at least one possible variable value. Besides DSPlanners, existential variables also appear in
choice actions (Srivastava et al., 2011a), that is, actions instantiated during the execution of the plan and
as a result of evaluating a FOL formula in the current state. Another example are generalized policies,
whose rules contain variables to be unified with the current state (Khardon, 1999). PDDL can represent
policies with derived predicates (Ivankovic and Haslum, 2015), Figure 13 shows the PDDL derived
predicates representing a two-rule policy for unstacking multiple towers of blocks (the encoding
requires that these derived predicates are added as extra preconditions of the corresponding actions to
make up the policy). More recently conjunctive queries, including existential variables, are used to
address classification tasks that are modeled as generalized planning (Lotinac et al., 2016).

Figure 11 Example of a generalized plan for unstacking a single tower of blocks.

Figure 12 DSPlanner for unstacking multiple towers of blocks.

A review of generalized planning 11

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

∙ Universal variables. A universal variable asserts that a given property or relation holds for all the
possible variable values. Figure 14 shows that the program in Figure 11, for unstacking a single tower of
blocks, can be rewritten using the (all-ontable) derived predicate with universal variables defined in
Figure 7.

The use of derived predicates, that evaluate a given expression over quantified variables, applies also to
other forms of generalized plans such as FSCs. Figure 15 shows a FSC for collecting a green block in a
tower of blocks that achieve generalization because observations H and G are the result of evaluating an
expression over quantified variables. In particular H holds when a block is being held and G when the top
block is green. These two observations are defined using the derived predicates shown in Figure 16. The
state queries depend on the joint variant HG with four possible values (true-true, true-false, false-true and
false-false). Related to universal/existential variables are also the angelic/devilish concepts used in the
literature to define planning hierarchies (Marthi et al., 2007).

Figure 14 Example of a generalized plan for unstacking a single tower of blocks using the (all-ontable) derived
predicate.

Figure 15 Finite State Controllers for collecting a green block in a tower of blocks by observing whether a block
is being held (H), and whether the top block is green (G).

Figure 16 Derived predicates with existential variables that capture when a block is being held (H), and when the
top block is green (G).

Figure 13 Two-rule policy for unstacking towers of blocks represented with two Planning Domain Definition
Language derived predicates.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N12

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

4.1.3 Call stack
A call stack is another artifact borrowed from programming to make generalized plans more flexible (Fritz
et al., 2008). Although one can explicitly encode a call stack using only basic control-flow and variables,
more compact solutions are often derived with a call stack (e.g. tasks with recursive solutions (Segovia-
Aguas et al., 2016b)). Figure 17 shows a generalized plan for visiting all the nodes of a binary tree
implementing a recursive Depth First Search with one procedural parameter. The instructions call(0, node)
are recursive calls assigning argument node to the only parameter of the program and restarting the
execution from its first line, 0. visit (current).

A given generalized plan can also be represented as a formal grammar with a call stack (Ramirez and
Geffner, 2016; Segovia-Aguas et al., 2017a). For instance, Figure 18 shows a grammar that encodes a
generalized plan for blocksworld. The first instruction of this plan, 0. choose (1|5|8), is a choice instruction,
that jumps to one of these three possible targets, line 1, line 5 or line 8 and hence, represents a rule
selection. This action is non-deterministic since the rule selection is initially unknown and determined only
during the execution of the program. Lines 1–4 encode the first grammar rule while lines 5–8 encode the
second grammar rule. The third grammar rule parses the empty string and is encoded implicitly by line 8.

Furthermore, the benefits of using a call stack in generalized planning come from the reuse of
existing generalized plans and the incremental building of hierarchical generalized plans (Segovia-Aguas
et al., 2016b). Figure 19 illustrates these benefits showing a two-module generalized plan for sorting
lists of numbers that implements the selection sort algorithm and reuses Π1, a previously generated
generalized plan for finding the minimum number in a list. Here Π0, left side, is the main program and its
instruction call (1) invokes the execution of the auxiliary program Π1, right side, from its first line, 0. inc-
pointer (inner).

Figure 17 Example of a generalized plan πDFS(node) implementing a recursive Depth First Search (DFS) for
traversing a binary tree of arbitrary size.

Figure 18 Grammar encoding a partially specified generalized plan for blocksworld.

(a) (b)

Figure 19 Generalized plan with a procedure call for sorting list of numbers of arbitrary size and that corresponds
to the selection sort algorithm. (a) II0: Main program that repeatedly selects the minimum value and swap contents.
(b) II1: Auxiliary program that selects the minimum value from current position outer.

A review of generalized planning 13

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

As a rule of thumb, a call stack allows the execution of a given generalized plan to jump to another
generalized plan:

∙ Keeping different contexts. Each generalized plan can have different local state/variables.
∙ Sharing information. Passing information between the generalized plans as procedural parameters or
using global state/variables.

4.2 Execution and validation

Generalized plans can branch, loop and have variables so executing a generalized plan on a particular
classical planning instance requires specific machinery, different from the one traditionally used in clas-
sical planning:

∙ Branching. The execution of a generalized plan with different possible execution branches requires a
mechanism for selecting the corresponding execution branch according to the current value of the state
variables. The execution of several generalized plan that branch (like an HTN, an AND/OR tree-like
plan or a policy) can be compiled into classical planning (Albore et al., 2009; Alford et al., 2009;
Ivankovic and Haslum, 2015). As explained in Section 3, different possible execution outcomes
according to different values of the state variables can be effectively modeled in classical planning via
conditional effects (Bernhard, 2000).

∙ Loops. Executing generalized plans that explicitly represent loops, like programs (or FSCs), requires to
keep track of the current program line (or controller state). The execution of FSCs and programs can be
compiled into classical planning by encoding the corresponding automata (its states and possible
transitions) as extra state variables (Baier et al., 2007; Segovia-Aguas et al., 2016a; 2016b).

∙ Variables. If the generalized plan contains quantified variables, then plan execution requires unification
mechanisms that assign possible values to these variables. Early planning systems implemented variable
binding algorithms for matching control rules (Veloso et al., 1995). Nowadays Fast-Downward
evaluates derived predicates with quantified variables implementing the marking algorithm (Helmert,
2006). A different approach is to leverage external solvers, such as Answer Set Programming
(Ivankovic and Haslum, 2015) or CSP (Francès and Geffner, 2016) solvers, to ground quantified
variables. The compilation approach has also been followed for binding existential variables in
conjunctive queries (Lotinac et al., 2016) and to evaluate FOL state queries with the transitive closure
(Porco et al., 2011). Unfortunately most current off-the-shelf planners only effectively support simple
conditions as conjunctions of propositional atoms and compiling away existentially quantified formulas
have an exponential cost (Francès and Geffner, 2015).

The simplest desired property for the execution of a generalized plan on a given planning instance is
termination, also referred in literature as the halting problem. In the worst case, the number of actions of a
generalized plan execution has an upper bound given by the total number of possible states of the gen-
eralized plan. Infinite loops can then be detected counting the number of actions during plan execution and
checking if this count exceeds the previous upper-bound (Bäckström et al., 2014).

A second property for the execution of a generalized plan is guaranteeing that the plan solves a given
instance. Testing this property is called validation, proving validation subsumes the proof of termination
and is implicitly required as a part of plan generation. Plan validation in classical planning is linear, since
either a validation proof or a failure proof is straightforward obtained by executing the plan starting from
the initial state of the classical planning task. VAL (Howey et al., 2004), introduced in the third IPC, is the
standard plan validation tool for classical planning.

The execution of a generalized plan (that can branch, loop and have variables) on a given planning
instance can fail to solve that instance because:

1. The plan is unsound:

∙ The generalized plan does not satisfy the termination condition because it enters into an infinite loop.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N14

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

∙ The action-to-apply-next (according to the generalized plan) cannot be applied. For instance, the
preconditions of the recommended action do not hold in the current state.

∙ The execution of the plan ended but it did not achieve the goals of the planning task. Some forms of
generalized plans include explicit termination actions (or states) so goal testing is only done when such
actions are applied (or such states reached) (Srivastava et al., 2011b; Jiménez and Jonsson, 2015). If the
generalized plan lacks these termination actions (or states) goal achievement has to be tested after
executing every plan step (Bonet et al., 2010).

2. The plan is incomplete. There is no action-to-apply-next for the current state (e.g. a policy with no
applicable rule at the current state).

The execution of a generalized plan on a given classical planning task can be compiled into another
classical planning task (Baier et al., 2007; Segovia-Aguas et al., 2016a, 2016b) and hence, an off-the-shelf
classical planner can be used to effectively check the previous validation conditions. In that case, the
validation of a generalized plan is as complex as the synthesis of a classical plan. When actions have non-
deterministic effects plan validation becomes more complex since it requires proving that all the possible
plan executions reach the goals (Cimatti et al., 2003). In such scenariomodel checking (Clarke et al., 1999)
and non-deterministic planning are suitable approaches (Hoffmann, 2015).

Unlike classical plans, that are tied to a particular planning instance, generalized plans can also be
executed on a set of different planning instances. The validation of a generalized plan on a generalized
planning task requires executing the plan in all the instances comprised in the task and verifying that the
plan solves them all. This means that the validation of a given generalized plan in a given instance should
be polynomial in the size of the plan to be effective. The execution of a generalized plan in a set of planning
instances can be implemented following two different approaches:

∙ Sequential, that is, executing the generalized plan at each instance separately one after the other. This is
the approach followed for executing generalized plans using a classical planner that sequentially
executes the plan in each of the individual planning instances comprised in a given generalized planning
task (Segovia-Aguas et al., 2016a).

∙ Parallel. The generalized plan is executed simultaneously in the set of instances of a generalized
planning task (like in conformant, contingent or POMDP planning where the execution of an action
progresses a set of states (Geffner and Bonet, 2013)).

The implementation of the sequential approach is simpler but its utility is limited by the number of
instances. The parallel approach allows to handle larger sets of instances (or instances with unbound
number of objects) but it requires elaborated state progression techniques, such as belief tracking (Bonet
and Geffner, 2014) or the application of action updates on abstract states (Srivastava et al., 2011a).
Evaluating expressive goals, or derived fluents, becomes more complex in a parallel execution since it
implies formulae evaluation over sets of states (Geffner and Bonet, 2013). A third way to validate gen-
eralized plans is to show that some property holds before and after execution, like in program validation
with Hoare triples (Schwinghammer et al., 2009).

4.3 Evaluation

Given a set of planning instances, different generalized plans can be consistent with it, for example, the
different generalized plans shown in Figures 11, 12 and 14 can unstack a tower of blocks of any height. It is
then necessary to define methods that quantify the aptitude of a given generalized plan to articulate
preferences among the possible solutions.

The aptitude of a generalized plan can be assessed with regard to different metrics:

∙ Coverage. The domain coverage of a generalized plan can be assessed as the ratio of the number of
problem instances with size n that the generalized plan can solve, divided by the total number of
solvable problem instances with this same size (Srivastava et al., 2011a). In practice knowing these
numbers implies solving large sets of planning tasks, so it is often intractable. Statistical Machine

A review of generalized planning 15

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Learning (ML) techniques estimate the quality of a solution according to how well the solution performs
on a representative sample of the domain instances, called test set (Mitchell, 1997). In generalized
planning one could also define a test set of instances and count how many are covered by a solution. If
we view a classical planner as a particular form of a generalized plan, this is what is done at the
sequential-optimal track of the IPC (Vallati et al., 2015) where planners are awarded according to the
amount of unseen instances they solve.

∙ Complexity. Because generalized plans are algorithm-like solutions their complexity can be
theoretically assessed, for example, using asymptotic analysis that characterize how their running time
and space requirements grow according to the size of the input tasks. In practice the complexity of a
generalized plan can be quantified by the length of the sequence of actions produced by the execution of
the plan on a given input instance. Then a generalized plan is optimal for a given instance when the
length of this sequence is minimum for that instance. This is somehow related to what is done in the
sequential-satisfying track of the IPC (Vallati et al., 2015) where the final value of a planner is reported
as the accumulated quality of the solutions in the instances of a testing set.

∙ Succinctness. The size of a given generalized plan can be assessed regarding to its number of program
lines, controller states, policy rules or quantified variables. Similar metrics were already introduced in
ILP systems to quantify the compactness and readability of solutions and to prefer models with the least
number of rules and rules with the smallest size (Muggleton, 1999). Note that in classical planning the
execution complexity of a plan directly corresponds to its size.

5 Computing generalized plans

This section describes the two main approaches for the computation of generalized plans and reviews
different plan reuse techniques to avoid computing generalized plans from scratch. The section ends
reviewing particular implementations of different approaches for generalized planning.

5.1 Top-down/bottom-up generalized planning

The top-down approach for generalized planning searches for a solution that covers all the instances in the
generalized planning task. On the other hand, the bottom-up approach computes a solution to a single
instance (or to a subsets of the instances in the generalized planning task) and widens the coverage of the
solution until covering all the instances in the generalized planning task. With respect to ML, the top-down
approach relates to off-lineML algorithms that compute a model to cover, in a single iteration, the full set
of input instances, for example, the induction of decision trees (Mitchell, 1997). The bottom-up approach
is related to the on-line versions of ML algorithms, that iterate to incrementally adapt the model as more
input instances are presented to the learning algorithm (Utgoff, 1989).

Top-down algorithms for generalized planning typically search for a solution in the space of possible
generalized plans. The initial state of this search is the empty generalized plan and the search operators
build a single step in the generalized plan (e.g. adding an instruction to a program, a new state or transition
to a FSC, a new rule to a policy, etc.). The set of goal states of the search includes any state where the built
generalized plan solves the given set of instances.

Examples of this approach are compilations of generalized planning into other forms of problem
solving such as classical planning (Jiménez and Jonsson, 2015), conformant planning (Bonet et al., 2010),
CSP (Pralet et al., 2010) or a Prolog program (Hu and Giacomo, 2013). These compilations implement a
search space as described above, and benefit from off-the-shelf solvers (with efficient search algorithms
and heuristics) to complete the search for a generalized plan. The main limitation of the compilation
approach is scalability. In practice, it is common to bound the size of the possible generalized plans (e.g.
the maximum number of program lines, controller states, policy rules or quantified variables) with the aim
of keeping the search tractable. This is similar to what is done in SATPLAN approaches that fix a
maximum plan length (Rintanen, 2012) and iteratively increments it until a solution is found.

Off-line algorithms for contingent (Albore et al., 2009), conformant (Palacios and Geffner, 2009) and
POMDP planning (Geffner and Bonet, 2013) can also be understood as top-down algorithms for

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N16

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

generalized planning if we consider that the possible initial states represent different planning instances all
sharing the same goals. In this case the search for a solution is not typically carried out in the space of
possible generalized plans but in the space of reachable belief states (a belief state is a probability dis-
tribution over the states that are deemed possible). Here the scalability limitations come from the fact that
the set of reachable belief states grows quickly (it is then key to exploit techniques for uncertainty
reduction to keep the set of possible states tractable) and from the difficulty of defining effective heuristics
that provide informative estimates with belief states.

Bottom-up generalized planning refers to an iterative and incremental approach where (1) a single
planning instance (or a subset of the instances in the generalized planning task) is chosen, (2) a solution to
it is computed, (3) generalized and finally (4), merged with the previously found and generalized solutions.
This four-step process is repeated until all the instances in the generalized planning task are covered. The
bottom-up approach is related to plan repair (Fox et al., 2006), case-based planning (CBP) (Borrajo et al.,
2015) and transfer learning (Pan and Yang, 2010) because it also requires mechanisms to identify why a
given solution does not cover a given instance (in this case validation mechanisms for generalized plans
are suitable to find the cause of an assertion failure in a given plan (Winner and Veloso, 2003)) as well as
mechanisms to adapt a given solution to a new scenario (this kind of adaptation mechanisms are also
present when planning with imperfect control knowledge (Yoon et al., 2008)).

While top-down approaches can be implemented as compilations to other forms of problem solving,
bottom-up approaches require specific techniques to lift and merge plans. On the other hand, bottom-up
approaches provide anytime behavior and may be able to automatically build a small set of instances that
achieve generalization (Srivastava et al., 2011b).

5.2 Reusing generalized plans

An alternative to the computation of generalized plans starting from scratch is to reuse existing solutions.
Even when a certain generalized plan is unsound (in the sense that it fails to solve a given instance) or
incomplete (it does not define the action to apply next for the given instance), it may contain useful
knowledge. For example, the plan may be able to solve a sub-problem of the given generalized planning
task, or similar instances (e.g. it is a solution but for objects of a different type), or solve new instances after
tuning the conditions in the control-flow structures. In these cases adapting a previously existing gen-
eralized plan can pay off.

With this regard, bottom-up approaches for generalized planning are equipped with mechanisms to
adapt a plan to unseen instances and incrementally increase its coverage (Srivastava et al., 2011b). On the
other hand, top-down approaches can start with a partially specified solution instead of with the empty
generalized plan. This has shown useful to narrow the search space and/or focus the search process making
possible to address more challenging generalized planning tasks (Segovia-Aguas et al., 2016a, 2016b).

Next, we review different techniques for reusing previously found plans:

∙ Compilations. When the existing generalized plan has the form of a generalized policy it can be
compiled into a set of PDDL derived predicates, one for each rule in the policy, that captures the
different situations where the actions should be applied (Ivankovic and Haslum, 2015). Figure 13
illustrated this approach showing an example of PDDL derived predicates representing a two-rule
policy for unstacking towers of blocks. Existing generalized plans in the form of programs, FSCs or
AND/OR graphs, can be encoded into a classical PDDL planning task by computing the cross product
between the corresponding automata and the original planning task (Baier et al., 2007; Ramirez and
Geffner, 2016; Segovia-Aguas et al., 2016a). In this case, new extra state variables are added to the
original planning task to represent the states and transitions of the automata corresponding to the
program, FSC or AND/OR graph.

∙ Planning actions. Actions in classical planning do not only represent primitive actions but can also
represent a generalized plan themselves. Figure 20 shows a classical planning action that corresponds to
a generalized plan for unstacking any block in a blocksworld, that is, the first step in a general solution
for solving any blocksworld instance.

A review of generalized planning 17

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

The compilation of existing solutions into new planning actions is well-studied for the particular case of
macro-actions. A macro-action can be viewed as a parameterized generalized plan, without control flow,
that can be reused in a straightforward way to enrich a domain theory (macro-actions have the form of
standard classical planning actions). Figure 21 shows the classical planning actions unstack and drop from
the blocksworld domain, for unstacking a block X from another block Y and for putting a block X onto the
table, as well as the macro-action unstack-drop resulting from assembling them. The assembly of these two
actions can, for example, be computed following the early planning algorithm of the triangle-table (Fikes
et al., 1972).

A limitation of macro-actions is that their structure is too rigid so many generalized plans cannot be
encoded as macro-actions. For instance, the generalized plan introduced in Section 1 for solving any
blocksworld instance, cannot be encoded as a macro-action. Further research is necessary to automatically
compile arbitrary generalized plans into planning actions, that can be directly included in a domain theory,
without adding extra state variables. Recent work on planning with simulators opens the door to
more effective approaches for reusing existing procedural solutions as black-box actions (Frances
et al., 2017).

∙ Domain-specific heuristics. Incorrect and/or incomplete generalized plans have also been used to
improve the performance of a classical planner working as domain-specific heuristics (Yoon et al.,

Figure 20 Action for unstacking all the blocks in a blocksworld task. The action is encoded in Planning Domain
Definition Language (PDDL) using universally quantified variables and conditional effects.

Figure 21 Two primitive actions from the blocksworld described in Planning Domain Definition Language
(PDDL) and the macro-action resulting from assembling them.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N18

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

2008; Rosa et al., 2011). This approach is specially useful at planning tasks where domain independent
heuristics have flaws, for example, due to strong goal interactions.

5.3 Implementations

Now we review particular approaches for generalized planning. We analyze how they represent the tasks
to solve, the representation of the generalized plans and the algorithms for computing them.

5.3.1 Computing macro-actions
Macro-actions are one of the first suggestions to compute general knowledge valid for solving different
planning tasks (Fikes et al., 1972). There are diverse approaches in the literature for computing macro-
actions (Botea et al., 2005; Coles and Smith, 2007; Jonsson, 2009; Lukás, 2010) but the most common
approach is to: (1) solve a training set of classical planning instances that share the same domain theory
with an off-the-shelf classical planner and (2), identify, in the solution plans, sub-sequences of actions that
are frequently used together.

The strength of macro-actions is that they have the form of standard classical planning actions so they
can be added straightforward to the domain theory without requiring extra state variables. This makes
macro-actions a practical and robust approach for reusing general planning knowledge: On the one hand,
either planning with macro-actions or the execution and validation of plans that contain macro-actions do
not require specific algorithms. On the other hand, adding incomplete or incorrect macro-actions will not
prevent a planner to find a solution to a solvable task because the planner can always build a solution using
the original actions.

The main limitation of macro-actions for defining general planning strategies is its sequential execution
flow, that is too rigid. A solution involving macros may not be applicable to other problems, even when
macro-actions are parameterized.

5.3.2 Computing generalized policies
A generalized policy is a set of rules that defines a mapping of state and goals, into the preferred action to
execute next. Like macro-actions, generalized policies also allow parameters and can be induced from a set
of solutions to classical planning instances that share the same domain theory (Martn and Geffner, 2004;
Yoon et al., 2008; Rosa et al., 2011). Generalized policies are, however, more flexible than macro-actions
since they can define execution flows with branching and loops.

Computing a good generalized policy is complex and, nowadays, the success of this approach is still
limited to a reduced number of benchmarks. On the one hand, correct and complete generalized policies
are not computable for many domains using the given representation for the states, actions and goals. In the
past, the limitations of the given representation language has been addressed by hand-coding high-level
state features that increase the expressiveness of the given representation (Khardon, 1999) or changing the
representation language to reason better about classes of objects (Martn and Geffner, 2004; Fern et al.,
2006; Yoon et al., 2008). On the other hand, the algorithms for computing generalized policies tradi-
tionally consider planning and generalization as two separated phases. This separation produces noisy
examples difficult to be generalized due to the high number of symmetries and transpositions that typically
appear in solution plans.

If a correct generalized policy is available, it can be added to a domain theory using derived predicates
that capture the states where an action should be applied (Ivankovic and Haslum, 2015), as shown in
Figure 13. If the policy is incomplete or incorrect, adding it to the domain theory can turn solvable
planning instances into unsolvable (adding the policy means adding new constraints to the original
planning task). A more robust approach to reuse imperfect policies is to consider them as domain-specific
heuristics that guide the search for a solution plan. Exploiting policies in such way requires the mod-
ification of the planner (Yoon et al., 2008; Rosa et al., 2011).

A review of generalized planning 19

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

5.3.3 Computing Finite State Controllers
FSCs generalize policies with a finite amount of memory (Bonet and Geffner, 2015). A FSC with a single
state represents a policy, that is, a memory-less controller. The additional controller states of FSCs provide
them with memory that allows different actions to be taken given the same observation. The FSC form-
alism can also be extended with a call stack to represent hierarchical and recursive solutions (Segovia-
Aguas et al., 2016b).

The existing algorithms for computing FSCs for generalized planning follow a top-down approach that
interleaves programming the FSC with validating it and hence, they tightly integrate planning and gen-
eralization. To keep the computation of FSCs tractable, they limit the space of possible solutions bounding
the maximum size of the FSC. In addition, they impose that the instances to solve share, not only the
domain theory (actions and predicates schemes) but the set of fluents (Segovia-Aguas et al., 2016a) or a
subset of observable fluents (Bonet et al., 2010).

The computation of FSCs for generalized planning includes works that compile the generalized plan-
ning task into another forms of problem solving so they benefit from the last advances on off-the-shelf
solvers (e.g. classical planning (Segovia-Aguas et al., 2016a), conformant planning (Bonet et al., 2010),
CSP (Pralet et al., 2010) or a Prolog program (Hu and Giacomo, 2013)). This last case requires a behavior
specification of the FSC consisting on classified execution histories that (1) accept all legal execution
histories leading to a goal-satisfying state, and (2) reject those that contain repeated configurations
(indicating an infinite loop) and that cannot be extended (indicating a dead end) (Hu and Giacomo, 2013).

5.3.4 Computing programs
Programs increase the readability of FSCs separating the control-flow structures from the primitive
actions. Like FSCs, programs can also be computed following a top-down approach, for example,
exploiting compilations that program and validate the program on instances with the same state and action
space (Segovia-Aguas et al., 2016a). Since these top-down approaches search in the space of solutions, it is
helpful to limit the set of different control-flow instructions. For instance, using only conditional gotos that
can both implement branching and loops (Jiménez and Jonsson, 2015).

One of the first attempts to represent generalizes plans as programs are DSPlanners (Winner and
Veloso, 2003; Winner and Veloso, 2007). A DSPlanner is a domain-specific program that can contain if-
then-else and while constructs. These constructs branch and loop the execution control flow of the program
according to FOL queries on the current state and/or the goals of the planning task.

The algorithm to compute DSPlanners is called Distill and implements a bottom-up approach on a set of
classical planning instances that share the same domain theory. Given an instance, Distill computes a
partially ordered plan for that instance and integrates it into an existing DSPlanner as follows. First, Distill
lifts the partially ordered plan choosing a parameterization that matches the existing DSPlanner. If no such
parameterization exists, Distill randomly assigns variable names to the objects in the plan. Then Distill
attempts to identify if statements and unrolled loop iterations in the solution to replace them by the
corresponding control-flow structure.

The work on generalized planning by Srivastava et al. introduces a powerful and compact structure to
programs, called choice actions, that combines existential variables and control flow (Srivastava et al.,
2011a, 2011b). Input instances in this work are expressed as an abstract FOL representation with the
transitive closure. This formalism allows to represent planning tasks with an unbounded number of objects
and to guarantee the generalization of solutions for such tasks.

The generalized planning algorithm by Srivastava et al. implements also a bottom-up strategy. The
algorithm starts with an empty generalized plan, and incrementally increases its coverage by identifying an
instance that it cannot solve, invoking a classical planner to solve that instance, generalizing the obtained
solution and merging it back into the generalized plan. The process is repeated until producing a gen-
eralized plan that covers the entire desired class of instances (or when a predefined limit of the computation
resources is reached).

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N20

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Both programs and FSCs can be compiled into a planning domain theory (Baier et al., 2007; Segovia-
Aguas et al., 2016a, 2016b). Like happens with policies, this compilation is safe (is not turning solvable
planning instances into unsolvable) when the given program (or FSC) is correct.

Table 1 is a summary of the reviewed approaches for generalized planning. The table indicates whether
a given solution representation allows the use of variables, the kind of control-flow and whether the
execution of the solution requires particular machinery.

6 Related work

Here we review other forms of planning and problem solving that are related to the generalized planning
approaches reviewed in the paper.

6.1 Planning under partial observability: conformant, contingent and POMDP planning

Conformant planning computes sequences of actions whose execution is consistent with a set of
different initial states (Palacios and Geffner, 2009). The difference to the classical planning model is
the uncertainty in the initial state, which is described by means of clauses. A conformant plan is a
sequence of actions that solves all the classical planning tasks given by the set of possible initial states that
satisfy these clauses. The execution of same sequence of actions can produce different outcomes for
different initial states because actions have conditional effects. The main approaches for conformant
planning are:

∙ Uncertainty reduction. Compiling the conformant planning into classical planning to compute:

1. A plan prefix that removes any relevant uncertainty. In other words, only a single state (or at least a
single partial state for the subset of state variables that are relevant for achieving the goals) is possible
after the prefix application (Palacios and Geffner, 2009).

2. A plan postfix that transforms the state (or partial state), where the relevant uncertainty is removed, into
a state that achieves the goals of the conformant planning task.

∙ Belief propagation. Searching in the space of belief states where: the root belief state represents the set
of possible initial states and the goals are the belief states s.t., all the possible states in the belief state
satisfy the goal condition of the planning task (Cimatti et al., 2004; Hoffmann and Brafman, 2006).
While the previous approach leverages the classical planning machinery, this approach requires (1)
mechanisms for the compact representation and update of beliefs states and (2), effective heuristics to
guide the search in the space of belief states.

Table 1 Summary of the diverse approaches for generalized planning according to the solution representations

Variables Control-flow Execution

Classical plan – – Ground actions
Macro-actions Action parameters – Lifted actions
Generalized
policy

Rule parameters Branching and loops Lifted rules

DSPlanners Existential Branching and loops Lifted predicates and lifted actions
FSCs Quantified Branching and loops Derived predicates
Hierarchical
FSCs

Quantified and
parameters

Branching, loops and call
stack

Derived predicates and parameter
passing

Programs Quantified and
parameters

Branching, loops and call
stack

Derived predicates and parameter
passing

FSC= Finite State Controllers.

A review of generalized planning 21

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Contingent planning extends the conformant planning model with a sensing model. This sensing model
is a function that maps state-action pairs (the true state of the system and the last action done) into a non-
empty set of observations (Albore et al., 2009; Albore et al., 2011). Observations provide only partial
information about the true state of the system because the same observation may be possible in different
states. A contingent plan must satisfy that:

∙ Its execution reaches a goal belief state (all the states in the belief satisfy the goal condition of the
planning task) in a finite number of steps.

∙ The conditions for branching and looping refer to the observations (or the subset of state variables that
are observable).

Like generalized plans, contingent plans can have different forms such as policies, AND/OR graphs,
FSCs or programs (Bonet et al., 2010).

POMDP planning extends the contingent planning model allowing to encode uncertainty through
probability distributions, rather than with sets of possible initial states and with sets of possible observa-
tions (Geffner and Bonet, 2013). With this regard, the Bayes’ rule is used to update belief states after an
action application or after an observation of the current state. The aim of a POMDPs solution is to
maximize the expected cost to the goals, so POMDP planning becomes an optimization task. An optimal
conformant/contingent/POMDP plan is the one that minimizes the cost of achieving the goals in the
worst case.

Generalized planning can be seen as a particular example of contingent/POMDP planning: (1) the
initial states and goals of the different instances comprised in a generalized planning task can be encoded
as the different possible initial states of a POMDP task and (2) our definition of generalized planning
assumed deterministic actions and full observability (the conditions for branching and looping can refer to
the value of any state variable).

6.2 Planning with control knowledge

Since the beginning of research in planning, control knowledge has shown effective to improve the
scalability of planners (Bacchus and Kabanza., 2000; Nau et al., 2003). This was evidenced at IPC-2002
where planners exploiting DCK performed orders of magnitude faster than state-of-the-art planners (Long
and Fox, 2003).

Algorithm-like representations of DCK (Baier et al., 2007) bear strong resemblances with generalized
plans. Indeed both DCK and generalized plans represent general strategies that are valid for solving
different planning instances. Despite the distinction between them is thin, one can claim that a generalized
plan is a fully specified solution, that does not require a planner to be applied in a particular instance. On the
other hand, DCK corresponds to partially specified solutions (contain non-deterministic constructs and
missing/open segments to be determined by a planner at the time of the plan generation). Therefore DCK
requires a planner to produce a fully specified solution to a given classical planning instance.

A different approach to define DCK is with a database of solved instances. In fact an alternative view of
a generalized plan is as a compact library of plans. CBP is the approach to AP that aims saving compu-
tational effort by reusing previously found solutions (Borrajo et al., 2015). A CBP system implements
retrieval mechanisms that identify instances similar to the one to solve as well as adaptation mechanisms
that repair flaws in a retrieved solution to make it applicable to another instance. Retrieval and adaptation
mechanisms of CBP are relevant to bottom-up algorithms for generalized planning since they identify
when a given generalized plan does not cover an instance and adapt the plan to cover it (Winner and
Veloso, 2003; Srivastava et al., 2011a). The development of such mechanisms for large case libraries
following a domain-independent approach is still a challenge.

Another formalism for representing and exploiting DCK is hierarchical planning. Like classical
planning, hierarchical planning deals with deterministic and fully observable planning tasks but uses a
different task representation. While in classical planning actions are characterized in terms of their pre and
postconditions, and their choice and ordering is computed automatically by a planner, hierarchical
planning specifies a sketch of the solution with extra information about (1) which subgoal to pursue

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N22

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

(Shivashankar et al., 2012), and/or (2) which actions can be applied for achieving a given subgoal (Nau
et al., 2003).

In hierarchical planning the separation between the representation of the task to be solved and the
strategy for solving it is not as clear as in classical planning. A hierarchical planning task can be under-
stood as a partially specified generalized plan (or a domain-specific planner) where the missing parts of the
plan are determined during its execution, by running a hierarchical planner. While a classical planner aims
to compute a sequence of applicable actions that transforms a given initial state into a goal state, the
hierarchical planner computes a sequence of applicable actions that: (1) transforms a given initial state into
a goal state and (2), this transformation is compliant with the given hierarchy.

6.3 GOLOG

The Golog family of action languages has proven to be a useful mean for the high-level control of
autonomous agents (Levesque et al., 1997). Apart from conditionals, loops and recursive procedures, an
interesting feature of Golog programs is that they can contain non-deterministic parts. A Golog program
does not need to represent a fully specified solution, but a sketch of it, where the non-deterministic parts are
gaps to be filled by the system. This feature provides the Golog programmer with the flexibility to chose
the right balance between:

∙ Determine predefined behavior, which normally implies larger programs.
∙ Leave certain parts to be solved by the system by means of search, which normally implies larger
computation times.

The basic Golog interpreter uses the PROLOG back-tracking mechanism to resolve the search. This
mechanism basically amounts to do a blind search so, when addressing planning tasks, it soon becomes
unfeasible for all but the smallest instance sizes. IndiGolog (Sardina et al., 2004) extends Golog to contain
a number of built-in planning mechanisms. Furthermore, the semantics compatibility between Golog and
PDDL (Röger et al., 2008) can be exploited and a PDDL planner can be embedded (Claßen et al., 2008) to
address the sub-problems that are combinatorial in nature.

6.4 Program synthesis

Program synthesis is the task of automatically generating a program that satisfies a given high-level
specification. Many ideas from this research field are relevant to generalized planning but they are not
immediately applicable since generalized planning follows a domain-independent approach and handles
its own specific representation for states, actions and goals. Here we review two of the most successful
approaches for program synthesis:

∙ Programming by Example (PbE), computes a set of programs consistent with a given set of input-output
examples. Input-output examples are intuitive for non-programmers to create programs moreover, this
type of specification makes program synthesis more tractable than reasoning with abstract program
states. PbE techniques have already been deployed in the real world and are part of the Flash Fill feature
of Excel in Office 2013 that generates programs for string transformation (Gulwani, 2011). In this case
the set of synthesized programs are represented succinctly in a restricted Domain-Specific Language
using a data-structure called version space algebras (Mitchell, 1982). The programs are computed with a
domain-specific search that implements a divide and conquer approach.

∙ In Programming by Sketching (PbS) programmers provide a partially specified program, that is, a
program that expresses the high-level structure of an implementation but that leaves low level details
undefined to be determined by the synthesizer (Solar-Lezama et al., 2006). This form of program
synthesis relies on a programming language called SKETCH, for sketching partial programs. PbS
implements a counterexample-driven iteration over a synthesize-validate loop built from two
communicating SAT solvers, the inductive synthesizer and the validator, to automatically generate
test inputs and ensure that the program satisfy them. Despite, in the worst case, program synthesis is

A review of generalized planning 23

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

harder than NP-complete, this counterexample-driven search terminates on many real problems after
solving only a few SAT instances (Lake et al., 2015).

7 Conclusions

Generalized plans are able to solve planning tasks beyond the scope of classical planning: they can address
planning tasks that comprise multiple instances or with an unbound number of objects, as well as planning
tasks with partial observability and non-deterministic actions (Bonet et al., 2010; Hu and Levesque, 2011;
Srivastava et al., 2011b; Hu and Giacomo, 2013). Generalized planning is then a promising paradigm for
problem solving but further research is needed to effectively address arbitrary planning tasks.

∙ Representation of generalized planning tasks. Implicit representations allow to handle large sets of
planning instances. However, these representations require specific mechanisms for state progression,
as well as for testing goals and action preconditions, that are different from the ones traditionally
implemented in off-the-shelf planners.

Apart from the representation formalism, the given set of instances in a generalized planning task
affects to the performance of the different approaches for computing a plan that generalizes. Sometimes
small sets of representative instances can be built using corner cases. Corner cases push state variables to
their minimum or maximum value so the plan behavior, is only considered on those specific states as
opposed to consider all the possible input instances. For the general case, it is complex to automatically
identify a small number of representative instances so often, the selection of representative instances in a
generalized planning task, is still done by hand.

A first step towards automatically determining the instances to compute a solution that generalizes is
characterizing the conditions under which a policy generalizes to other problems (Bonet and Geffner,
2015). This approach opens the door to the development of methods for automatically generating the
simplest set of instances that is required to compute a solution that generalizes.

∙ Computation of generalized plans. Current algorithms for generalized planning are only able to address
relatively small tasks. Further research on specific heuristics for generalized planning, the automatic
identification of relevant state variables (e.g. finding the subset of state variables that could appear in the
conditions of the loops and branches) or the automatic serialization of goals, can help to increase the
scalability of generalized planners.

Domain-specific decompositions allow also to address more challenging generalized planning tasks
(Segovia-Aguas et al., 2016a). Unfortunately these decompositions are currently done by hand and it is
still an open issue how to automatically compute them from the representation of the generalized planning
task. With this regard, planning landmarks can be an interesting research direction (Hoffmann et al.,
2004). An alternative work-line to improve the scalability of generalized planners is to explore the
transformation of a given planning task into a smaller one that (1) is solvable by the same generalized plan
and (2) has a more tractable search space (Bonet and Geffner, 2015).

With regard to the reuse of generalized plans, key issues are the evaluation of the suitability of a given
generalized plan for a given planning instance (like similarity metrics from CBP), and the reuse of
incomplete or incorrect generalized plans. In this case, reusing existing generalized plans as domain-
specific heuristics or preferences, is a safer approach that forcing to follow the generalized plans at every
moment.

∙ Representation of generalized plans. Generalized plans that include variables and control-flow require
more sophisticated execution mechanisms than a plan that just comprises a sequence of ground actions
but, they may be able to represent more tasks. The same claim applies for partially specified solutions
(whose execution is more complex because it requires a planner) with respect to fully specified
solutions. Given a generalized planning task, identifying the kind of solution that is more suitable for
solving it, is also an open issue.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N24

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

The computation of a generalized plan is constrained by the given instances in the generalized planning
task but also by the given representation for coding the states, actions and goals. The automatic derivation
of alternative representations that allow more effective computation of generalized plans is a promising
research direction with multiple links to previous research on AI such as ILP predicate invention (Craven
and Slattery, 2001) or feature generation in ML.

Last but not least, generalized plans are generative models that can address tasks beyond planning. For
instance, given a generalized plan and an execution trace, the parsing task can be defined as the task of
determining whether that execution trace could be generated with the given generalized plan. This
approach is useful for object classification (Lotinac et al., 2016) but also for goal recognition (Ramírez and
Geffner, 2010) and task classification (Segovia-Aguas et al., 2017b). Furthermore, solutions to these tasks
can be implemented with techniques very similar to the ones used for the computation of generalized
plans. With this same regard, there are previous works using PbE techniques to synthesize a parser from
input/output examples (Leung et al., 2015). This task have been addressed with classical planning for
small context-free grammars (Segovia-Aguas et al., 2017a), however, further research has to be done for
building more challenging parsers.

Acknowledgment

This work is partially supported by grant TIN-2015-67959 and the Maria de Maeztu Units of Excellence
ProgrammeMDM-2015-0502, MEC, Spain. S. J. is supported by the Ramon y Cajal program, RYC-2015-
18009, funded by the Spanish government.

References

Albore, A., Palacios, H. & Geffner, H. 2009. A translation-based approach to contingent planning. In IJCAI.
Albore, A., Ramrez, M. & Geffner, H. 2011. Effective heuristics and belief tracking for planning with incomplete

information. In ICAPS.
Alford, R., Kuter, U. & Nau, D. S. 2009. Translating htns to PDDL: a small amount of domain knowledge can go a

long way. In IJCAI.
Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M., Seshia, S. A., Singh, R., Solar-Lezama, A.,

Torlak, E. & Udupa, A. 2015. Syntax-guided synthesis. Dependable Software Systems Engineering 40, 1–25.
Bacchus, F. & Kabanza., F. 2000. Using temporal logics to express search control knowledge for planning. Artificial

Intelligence 116(1), 123–191.
Bäckström, C., Jonsson, A. & Jonsson, P. 2014. Automaton plans. Journal of Artificial Intelligence Research 51,

255–291.
Baier, J. A., Fritz, C. & McIlraith, S. A. 2007. Exploiting procedural domain control knowledge in state-of-the-art

planners. In ICAPS.
Bernhard, N. 2000. On the compilability and expressive power of propositional planning formalisms. Journal of

Artificial Intelligence Research 12, 271–315.
Bonet, B. & Geffner, H. 2014. Belief tracking for planning with sensing: width, complexity and approximations.

Journal of Artificial Intelligence Research 50, 923–970.
Bonet, B. & Geffner, H. 2015. Policies that generalize: solving many planning problems with the same policy.

In IJCAI.
Bonet, B., Palacios, H. & Geffner, H. 2010. Automatic derivation of finite-state machines for behavior control.

In AAAI.
Borrajo, D., Roubickova, A. & Serina, I. 2015. Progress in case-based planning. ACM Computing Surveys (CSUR) 47

(2), 35.
Botea, A., Enzenberger, M., Müller, M. & Schaeffer, J. 2005. Macro-ff: improving AI planning with automatically

learned macro-operators. Journal of Artificial Intelligence Research 24, 581–621.
Cimatti, A., Pistore, M., Roveri, M. & Traverso, P. 2003. Weak, strong, and strong cyclic planning via symbolic model

checking. Artificial Intelligence 147(1–2), 35–84.
Cimatti, A., Roveri, M. & Bertoli, P. 2004. Conformant planning via symbolic model checking and heuristic search.

Artificial Intelligence 159(1–2), 127–206.
Claßen, J., Engelmann, V., Lakemeyer, G. & Röger, G. 2008. Integrating golog and planning: an empirical evaluation.

In Non-Monotonic Reasoning Workshop.
Clarke, E. M., Grumberg, O. & Peled, D. 1999. Model checking. MIT press.

A review of generalized planning 25

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Coles, A. & Smith, A. 2007. Marvin: a heuristic search planner with online macro-action learning. Journal of Artificial
Intelligence Research 28, 119–156.

Craven, M. & Slattery, S. 2001. Relational learning with statistical predicate invention: better models for hypertext.
Machine Learning 43(1), 97–119.

Cresswell, S. & Alexandra, M. 2004. Coddington. Compilation of LTL goal formulas into PDDL. In ECAI.
Domshlak, C. 2013. Fault tolerant planning: complexity and compilation. In ICAPS.
Fern, A., Khardon, R. & Tadepalli, P. 2011. The first learning track of the international planning competition.Machine

Learning 84(1–2), 81–107.
Fern, A., Yoon, S. & Givan, R. 2006. Approximate policy iteration with a policy language bias: solving relational

markov decision processes. Journal of Artificial Intelligence Research 25, 75–118.
Fikes, R. E., Hart, P. E. & Nilsson, N. J. 1972. Learning and executing generalized robot plans. Artificial intelligence 3,

251–288.
Fox, M., Gerevini, A., Long, D. & Serina, I. 2006. Plan stability: replanning versus plan repair. In ICAPS.
Fox, M. & Long, D. 2003. Pddl2. 1: an extension to pddl for expressing temporal planning domains. Journal of

Artificial Intelligence Research 20, 61–124.
Francès, G. & Geffner, H. 2015. Modeling and computation in planning: better heuristics from more expressive

languages. In ICAPS.
Francès, G. & Geffner, H. 2016. E-strips: existential quantification in planning and constraint satisfaction. In IJCAI.
Frances, G., Ramrez, M., Lipovetzky, N. & Geffner, H. 2017. Purely declarative action representations are overrated:

classical planning with simulators. In IJCAI.
Fritz, C., Baier, J. A. & McIlraith, S. A. 2008. Congolog, sin trans: compiling congolog into basic action theories for

planning and beyond. In KR.
Geffner, H. & Bonet, B. 2013. A concise introduction to models and methods for automated planning. Synthesis

Lectures on Artificial Intelligence and Machine Learning 8(1), 1–141.
Gerevini, A. & Long, D. 2005. Plan constraints and preferences in pddl3. The language of the fifth international

planning competition. Technical Report, Department of Electronics for Automation, University of Brescia, 75.
Ghallab, M., Nau, D. & Traverso, P. 2004. Automated Planning: Theory and Practice. Elsevier.
Gulwani, S. 2011. Automating string processing in spreadsheets using input-output examples. In ACM SIGPLAN

Notices 46, 317–330. ACM.
Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S. H., Schmid, U. & Zorn, B. 2015. Inductive

programming meets the real world. Communications of the ACM 58, 90–99.
Hector, J. 2005. Levesque. Planning with loops. In IJCAI.
Helmert, M. 2006. The fast downward planning system. Journal of Artificial Intelligence Research 26, 191–246.
Hoffmann, J. 2015. Simulated penetration testing: From dijkstra to turing test + + . In ICAPS.
Hoffmann, J. & Brafman, R. I. 2006. Conformant planning via heuristic forward search: a new approach. Artificial

Intelligence 170(6–7), 507–541.
Hoffmann, J., Porteous, J. & Sebastia, L. 2004. Ordered landmarks in planning. Journal of Artificial Intelligence

Research 22, 215–278.
Howey, R., Long, D. & Fox, M. 2004. Val: automatic plan validation, continuous effects and mixed initiative planning

using pddl. In ICTAI.
Hu, Y. & Giacomo, G. D. 2011. Generalized planning: synthesizing plans that work for multiple environments.

In IJCAI.
Hu, Y. & Giacomo, G. D. 2013. A generic technique for synthesizing bounded finite-state controllers. In ICAPS.
Hu, Y. & Levesque, H. J. 2011. A correctness result for reasoning about one-dimensional planning problems.

In IJCAI.
Ivankovic, F. & Haslum, P. 2015. Optimal planning with axioms. In IJCAI.
Jiménez, S. & Jonsson, A. 2015. Computing plans with control flow and procedures using a classical planner.

In SOCS.
Jonsson, A. 2009. The role of macros in tractable planning. Journal of Artificial Intelligence Research 36, 471–511.
Khardon, R. 1999. Learning action strategies for planning domains. Artificial Intelligence 113(1), 125–148.
Kolobov, A. 2012. Planning with markov decision processes: an AI perspective. Synthesis Lectures on Artificial

Intelligence and Machine Learning 6(1), 1–210.
Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. 2015. Human-level concept learning through probabilistic

program induction. Science 350(6266), 1332–1338.
Leung, A., Sarracino, J. & Lerner, S. 2015. Interactive parser synthesis by example. In ACM SIGPLAN Notices, 50,

565–574. ACM.
Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. & Scherl, R. B. 1997. Golog: a logic programming language for

dynamic domains. The Journal of Logic Programming 31(1–3), 59–83.
Long, D. & Fox, M. 2003. The 3rd international planning competition: results and analysis. Journal of Artificial

Intelligence Research 20, 1–59.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N26

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Lotinac, D., Segovia-Aguas, J., Jiménez, S. & Jonsson, A. 2016. Automatic generation of high-level state features for
generalized planning. In IJCAI.

Lukás, C. 2010. Generation of macro-operators via investigation of action dependencies in plans. The Knowledge
Engineering Review 25(3), 281–297.

Marthi, B., Russell, S. J. & Wolfe, J. A. 2007. Angelic semantics for high-level actions. In ICAPS.
Martn, M. & Geffner, H. 2004. Learning generalized policies from planning examples using concept languages.

Applied Intelligence 20(1), 9–19.
Mausam & Kolobov, A. 2012. Planning with markov decision processes: an AI perspective. Morgan & Claypool

Publishers.
McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D. & Wilkins, D. 1998. Pddl-the

planning domain definition language.
Mitchell, T. M. 1982. Generalization as search. Artificial Intelligence 18, 203–226.
Mitchell, T. M. 1997. Machine Learning, 1st edition. McGraw-Hill Inc.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,

Fidjeland, A. K., Ostrovski, G. & Petersen, S. 2015. Human-level control through deep reinforcement learning.
Nature 518(7540), 529–533.

Muggleton, S. 1999. Inductive logic programming: issues, results and the challenge of learning language in logic.
Artificial Intelligence 114(1), 283–296.

Muise, C. J., Belle, V. & McIlraith, S. A. 2014. Computing contingent plans via fully observable non-deterministic
planning. In AAAI.

Muise, C., McIlraith, S. A. & Belle, V. 2014. Non-deterministic planning with conditional effects. In ICAPS.
Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D. & Yaman, F. 2003. Shop2: An HTN

planning system. Journal of Artificial Intelligence Research 20, 379–404.
Newell, A., Shaw, J. C. & Simon, H. A. 1959. A general problem-solving program for a computer. Computers and

Automation 8(7), 10–16.
Palacios, H. & Geffner, H. 2009. Compiling uncertainty away in conformant planning problems with bounded width.

Journal of Artificial Intelligence Research 35, 623–675.
Pan, S. J. & Yang, Q. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22

(10), 1345–1359.
Pednault, E. P. D. 1989. Adl: Exploring the middle ground between strips and the situation calculus. In KR.
Petrick, R. P. A. & Bacchus, F. 2004. Extending the knowledge-based approach to planning with incomplete

information and sensing. In ICAPS.
Porco, A., Machado, A. & Bonet, B. 2011. Automatic polytime reductions of np problems into a fragment of strips.

In ICAPS.
Pralet, C., Verfaillie, G., Lematre, M. & Infantes, G. 2010. Constraint-based controller synthesis in non-deterministic

and partially observable domains. In ECAI.
Ross Quinlan, J. 1990. Learning logical definitions from relations. Machine Learning 5, 239–266.
Ramírez, M. & Geffner, H. 2010. Probabilistic plan recognition using off-the-shelf classical planners. In AAAI.
Ramirez, M. & Geffner, H. 2016. Heuristics for planning, plan recognition and parsing. arXiv preprint

arXiv:1605.05807.
Rintanen, J. 2012. Planning as satisfiability: heuristics. Artificial Intelligence Journal 193, 45–86.
Rintanen, J. 2015. Impact of modeling languages on the theory and practice in planning research. In AAAI, 4052–4056.
Röger, G., Helmert, M. & Nebel, B. 2008. On the relative expressiveness of adl and golog: the last piece in the puzzle.

In KR.
Rosa, T. D. L., Jiménez, S., Fuentetaja, R. & Borrajo, D. 2011. Scaling up heuristic planning with relational

decision trees. Journal of Artificial Intelligence Research 40, 767–813.
Sardina, S., Giacomo, G. D., Lespérance, Y. & Levesque, H. J. 2004. On the semantics of deliberation in indigolog

from theory to implementation. Annals of Mathematics and Artificial Intelligence 41(2–4), 259–299.
Scala, E., Ramirez, M., Haslum, P. & Thiebaux, S. 2016. Numeric planning with disjunctive global constraints via

smt. In ICAPS.
Schwinghammer, J., Birkedal, L., Reus, B. & Yang, H. 2009. Nested hoare triples and frame rules for higher-order

store. In International Workshop on Computer Science Logic.
Segovia-Aguas, J., Jiménez, S. & Jonsson, A. 2016a. Generalized planning with procedural domain control knowledge.

In ICAPS.
Segovia-Aguas, J., Jiménez,S.& Jonsson,A.2016b.Hierarchicalfinite state controllers for generalized planning. In IJCAI.
Segovia-Aguas, J., Jiménez, S. & Jonsson, A. 2017a. Generating context-free grammars using classical planning.

In IJCAI.
Segovia-Aguas, J., Jiménez, S. & Jonsson, A. 2017b. Unsupervised classification of planning instances. In ICAPS.
Shivashankar, V., Kuter, U., Nau, D. & Alford, R. 2012. A hierarchical goal-based formalism and algorithm for single-

agent planning. In AAMAS.
Slaney, J. & Thiébaux, S. 2001. Blocks world revisited. Artificial Intelligence 125(1), 119–153.

A review of generalized planning 27

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S. & Saraswat, V. 2006. Combinatorial sketching for finite programs.
ACM SIGOPS Operating Systems Review 40, 404–415.

Srivastava, S., Immerman, N. & Zilberstein, S. 2011a. A new representation and associated algorithms for generalized
planning. Artificial Intelligence 175(2), 615–647.

Srivastava, S., Immerman, N., Zilberstein, S. & Zhang, T. 2011b. Directed search for generalized plans using classical
planners. In ICAPS.

Thiébaux, S., Hoffmann, J. & Nebel, B. 2005. In defense of pddl axioms. Artificial Intelligence 168(1), 38–69.
Torlak, E. & Bodik, R. 2013. Growing solver-aided languages with rosette. In ACM international symposium on New

ideas, new paradigms, and reflections on programming & software, 135–152. ACM.
Utgoff, P. E. 1989. Incremental induction of decision trees. Machine Learning 4(2), 161–186.
Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M. & Sanner, S. 2015. The 2014 international planning

competition: progress and trends. AI Magazine 36(3), 90–98.
Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E. & Blythe, J. 1995. Integrating planning and learning: the

prodigy architecture. Journal of Experimental & Theoretical Artificial Intelligence 7(1), 81–120.
Winner, E. & Veloso, M. 2003. Distill: learning domain-specific planners by example. In ICML.
Winner, E. & Veloso, M. 2007. Loopdistill: Learning looping domain-specific planners from example plans.

In ICAPS, Workshop on Artificial Intelligence Planning and Learning.
Yoon, S., Fern, A. & Givan, R. 2008. Learning control knowledge for forward search planning. The Journal of

Machine Learning Research 9, 683–718.
Younes, H. L. S. & Littman, M. L. 2004. PPDDL1. 0: an extension to pddl for expressing planning domains with

probabilistic effects. Technical Report, CMU-CS-04-162.

S . J I M É N E Z , J . S E G O V I A - A G U A S A N D A . J O N S S O N28

https://doi.org/10.1017/S0269888918000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888918000231

	A review of generalized planning
	1Introduction
	2Background
	2.1Classical planning

	Figure 1Three different example instances from blocksworld.
	2.2Generalized planning

	Figure 2Action schema unstack from the blocksworld coded in Planning Domain Definition Language (PDDL).
	Figure 3Three planning problems from the blocksworld domain coded in Planning Domain Definition Language (PDDL).
	Figure 4Abstract framework for generalized planning.
	3Representing sets of planning tasks
	3.1Representing actions
	3.1.1Conditional effects
	3.1.2Update formulas and high-level state features

	Figure 5Planning Domain Definition Language (PDDL) actions from a blocksworld version to unstack a single tower of blocks using conditional effects and universally quantified variables.
	Figure 6Planning Domain Definition Language derived predicate with one existentially quantified variable ?z that leverages recursion to capture when a block ?x is above another block�?y.
	Outline placeholder
	3.1.3Sensing and non-deterministic actions

	3.2Representing initial and goal states

	Figure 7Example of a Planning Domain Definition Language derived predicate, with one universally quantified variable ?b, that captures when all the blocks are on the�table.
	Figure 8Non-deterministic action for sensing the color of a given�block.
	Figure 9probabilistic version of Planning Domain Definition Language action for sensing the color of a given block�coded.
	Figure 10Conformant planning task for a 2-block blocksworld.
	4Generalized plans
	4.1Representation
	4.1.1Control flow
	4.1.2Variables

	Figure 11Example of a generalized plan for unstacking a single tower of blocks.
	Figure 12DSPlanner for unstacking multiple towers of blocks.
	Figure 14Example of a generalized plan for unstacking a single tower of blocks using the (all-ontable) derived predicate.
	Figure 15Finite State Controllers for collecting a green block in a tower of blocks by observing whether a block is being held (H), and whether the top block is green�(G).
	Figure 16Derived predicates with existential variables that capture when a block is being held (H), and when the top block is green�(G).
	Figure 13Two-rule policy for unstacking towers of blocks represented with two Planning Domain Definition Language derived predicates.
	Outline placeholder
	4.1.3Call stack

	Figure 17Example of a generalized plan πnobreakDFS(node) implementing a recursive Depth First Search (DFS) for traversing a binary tree of arbitrary�size.
	Figure 18Grammar encoding a partially specified generalized plan for blocksworld.
	Figure 19Generalized plan with a procedure call for sorting list of numbers of arbitrary size and that corresponds to the selection sort algorithm.
	4.2Execution and validation
	4.3Evaluation

	5Computing generalized plans
	5.1Top-down/bottom-up generalized planning
	5.2Reusing generalized plans

	Figure 20Action for unstacking all the blocks in a blocksworld task.
	Figure 21Two primitive actions from the blocksworld described in Planning Domain Definition Language (PDDL) and the macro-action resulting from assembling�them.
	5.3Implementations
	5.3.1Computing macro-actions
	5.3.2Computing generalized policies
	5.3.3Computing Finite State Controllers
	5.3.4Computing programs

	6Related work
	6.1Planning under partial observability: conformant, contingent and POMDP planning

	Table 1Summary of the diverse approaches for generalized planning according to the solution representations
	6.2Planning with control knowledge
	6.3GOLOG
	6.4Program synthesis

	7Conclusions
	Acknowledgment
	ACKNOWLEDGEMENTS
	References

