
Mathematical Structures in Computer Science (2019), 29, pp. 1379–1410
doi:10.1017/S096012951900001X

PAPER

Abstract machines, optimal reduction, and streams
Anna Chiara Lai1, Marco Pedicini2,∗, and Mario Piazza3

1Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Antonio Scarpa 16, 00181
Rome, Italy, 2Department of Mathematics and Physics, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy,
and 3Classe di Lettere e Filosofia, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
∗Corresponding author. Email: marco@iac.cnr.it

(Received 30 November 2015; revised 31 December 2018; accepted 31 December 2018; first published online 08 April 2019)

Abstract
In this paper, we propose and explore a new approach to abstract machines and optimal reduction via
streams, infinite sequences of elements. We first define a sequential abstract machine capable of perform-
ing directed virtual reduction (DVR) and then we extend it to its parallel version, whose equivalence is
explained through the properties of DVR itself. The result is a formal definition of the λ-calculus inter-
preter called Parallel Environment for Lambda Calculus Reduction (PELCR), a software for λ-calculus
reduction based on the Geometry of Interaction. In particular, we describe PELCR as a stream-processing
abstract machine, which in principle can also be applied to infinite streams.

Keywords: Geometry of Interaction, Parallel Implementation, Functional Programming, Streams, Linear Logic, Curry-
Howard Isomorphism

1. Introduction
In the 1960s, Peter Landin introduced the Stack, Environment, Core, and Dumpmachine (SECD),
the first abstract machine for the λ-calculus (Landin 1964). Since then, abstract machines describ-
ing the implementations of functional languages have been conceived of as bridges between a
high-level language and a low-level architecture (Accattoli et al. 2014; Cousineau andMauny 1998;
Curien 1991; Fairbairn andWray 1987; Hindley and Seldin 1986). From the vantage point of logic
and proof theory in particular, it is well known that the Curry–Howard isomorphism guaran-
tees a direct correspondence between typed λ-calculus and constructive logic, so that concepts
like λ-terms and formal proofs turn out to be different representations of the same mathemat-
ical objects. Namely, cut-elimination on proofs may be regarded as structurally analogous to
β-reduction on λ-expressions, allowing for the mathematical description of abstract machines as
executions of programs. Specifically, some abstract machines (Asperti et al. 1996) have been pro-
posed as a tool for studying the theory and implementation of optimal reduction of the λ-calculus
(Lamping 1989; Lévy 1978, 1980) (see also Asperti and Guerrini 1998 for an overview of the topic).
Other abstract machines (Mackie 1995; Pedicini 1998; Pinto 2001) are based on the Geometry of
Interaction (GoI), a mathematical framework developed by J.Y. Girard to provide a semantical
view of linear logic as well as to model the dynamics of cut-elimination (Girard 1989; Gonthier
et al. 1992).

In this paper, we explore a new approach to abstract machines and optimal reduction through
streams—infinite sequences of elements—which are ubiquitous in mathematics and computer
science (see, for instance, Rutten 2005a, 2005b). Our main goal is to introduce a mathematical

© Cambridge University Press 2019

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X
mailto:marco@iac.cnr.it
https://doi.org/10.1017/S096012951900001X

1380 AC Lai et al.

model of computation oriented to the quantitative analysis and the optimisation of machines per-
forming optimal reduction on parallel architectures. To this end, we begin by designing sequential
abstract machine whose dynamics of execution relies on the algebraic properties of dynamic
monoids, alias free inverse semigroups (see Lawson 1998). After which, we extend sequential exe-
cution to some degree of parallelisation and finally we restrict our investigation to computations
based on GoI to prove the soundness of parallel execution with respect to the sequential case.

We recall that the virtual reduction (VR) (Danos and Regnier 1993) is a fine-grained way
to achieve optimal reduction based on Girard’s dynamic algebra �∗. VR hinges on a local and
confluent reduction on graphs whose elementary computational step consists of adding to the
graph (representing the state of the computation) new edges representing composed paths. By
keeping ‘algebraic trace’ of the performed compositions to be stored on the current graph, VR
allows one to compute without useless (re)compositions. In particular, the directed virtual reduc-
tion (DVR) (Danos et al. 1997) is a variant of VR exploiting the original algebraic machinery of
GoI by removing the added part of the algebra in Danos and Regnier (1993) while managing to
avoid recompositions. The proposed sequential abstract machine is a generalisation to arbitrary
dynamic monoids of DVR.

The extension of the abstract machine performing DVR to its parallel implementation leads to
a formal definition of the PELCR (Parallel Environment for optimal Lambda-Calculus Reduction)
engine, which is a parallel implementation of DVR described in Pedicini and Quaglia (2007)
whose open source code is available online at https://github.com/pis147879/PELCR. The style of
parallelism of PELCR is similar to the Bulk Synchronous Parallelism (BSP) originally introduced
in Valiant’s paper Valiant (1990). In BSP, the computational load is divided on many process-
ing elements alternating working on separate data sets with communicating and synchronising of
results; actually, in PELCR such a communication phase is not strictly synchronised, and there are
no synchronisation barriers like in the BSP approach. The notion of BSP has been applied in the
parallel programming model known as Partitioned Global Address Space (PGAS) and included
in the language X10 specified by IBM (Charles et al. 2005). As a remedy for the difficulties in
automatic parallelisation, PGAS allows people to choose one proper parallel programming model
(or a mixture of models) to develop their parallel applications on particular platform. PGAS’s
programming style is a special parallelism, oriented to the partitioning of data sets. On the other
hand, PELCRmay be regarded as an ante litteram implementation of a distributed memorymodel
with a global addressing memory space for storing the current state of the computation. This state
is here represented by a partially evaluated graph of the GoI interpretation of the initial λ-term.
Global addressing of the memory is obtained by using communication of virtual addresses via the
libraries for Message Passing Interface (MPI) available on many computer architectures.

To conclude this introduction, let us mention some of the advantages of our formal represen-
tation of PELCR’s parallelism. First, it allows us to compare various models of parallel execution
in a uniform setting. By providing an in-deep analysis of parallel execution on different mod-
els (Valiant 2011), our representation may permit to assess quantitatively their differences and
could impact PELCR itself. Moreover, it provides a grammar to describe extensions of λ-calculus
oriented towards parallel execution, and to quantify the efficiency of their evaluation strategies
(Allombert and Gava 2018). It is also worth stressing that the framework of GoI is flexible enough
to deal with resource sensitive calculi (Solieri 2016) as well as with the implicit computational
complexity of logical systems (Baillot and Pedicini 2001) or to model the complexity classes in
pure abstract mathematical terms (Pedicini and Piazza 2018). In Canavese et al. (2014, 2015);
(Cesena et al. 2012) the implementation of a software library of algebraic type in terms of implicit
computational complexity combines a formal approach to complexity with a view of PELCR as
the physical device for the distributed execution of arithmetic functions.

Contributions of the paper may be summarised as follows.

(a) A novel stream-based description of the implemented PELCR engine as a sequential
abstract machine (Sections 2, 3, and 5).

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://github.com/pis147879/PELCR
https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1381

(b) Definitions of the synchronous and the asynchronous parallel version of the sequential
machine (Section 6).

(c) A proof of soundness of the parallelised versions with respect to the sequential one
(Section 7).

(d) It is shown that the machines rely on a generalisation of DVR, from Girard’s dynamic
algebra to an arbitrary dynamic monoid.

(e) Novel encodings of two particular systems (other than untyped λ-calculus) into
dynamic graphs, namely natural numbers and deterministic finite automata (Section 4).

The main advantage of reformulating the implemented parallel evaluation is that we can associate
the very formal description with a mathematical setting. In this setting, it is then possible to study
the qualitative properties of the parallel execution and to express them in quantitative terms. For
instance, we have in mind non-determinism and probabilistic execution as well as distribution
strategies based on quantitative measures, so as to furnish a conceptual tool for analysing perfor-
mances with respect to different parallelisation strategies like in Pedicini and Quaglia (2002).

This paper is organised as follows. In Section 2, we first recall the behaviour of the PELCR
implementation as originally introduced in Pedicini and Quaglia (2018, 2007) and then we refor-
mulate its definition in a set-theoretic framework: this supplies a preliminary, informal description
of our setting. In Section 3, we begin the formal definition of the abstract machine: we set the alge-
braic structure, i.e. the set of polarised dynamic graphs, representing the state of the device; then,
we introduce the notion of action, which is a graph-oriented encoding of instructions. In general,
a single action involves several elements (edges) of the state of the machine: such a set of edges is
called context of an action. In Section 3.2, we furnish a formal definition of the context of an action
and of the elementary computational step, which is the description of the interaction between an
action and its context. Section 4 contains two extra logical examples: we provide an encoding of
natural numbers and of finite automata in terms of dynamic graphs; we sketch how the elemen-
tary computational step may be a tool for computing the successor of a natural number; we prove
how this tool can be used to compute the language of an automaton as well. Note that the pre-
sentation of these models is far from being a rigorous model of calculus: it simply aims to suggest
potential non-standard applications of GoI machinery via our abstract machines. In Section 5, we
use streams (and related operations on them) and SECD formalism to describe the (sequential)
computational dynamics of the abstract machine. In Section 6, we extend such approach to both
synchronous and asynchronous parallel architectures. In Section 7, we prove the soundness of the
parallel computation with respect to the sequential one in the case of machines performing DVR.
Finally, Section 8 presents our conclusions.

2. The Computational Behaviour of PELCR
Our goal here is to make the reader acquainted with the behaviour of the PELCR implementation
that is reflected in the model of computation defined on streams (see Section 3.1). PELCR imple-
mentation relies on a particular strategy of DVR, called half-combustion in (Pedicini and Quaglia
2007), from which we extrapolate our description.

We begin by reporting the pseudocode of the PELCR implementation, which is a parallel
interpreter for λ-terms based on GoI. In PELCR, many processing elements Up cooperate to the
evaluation of a single λ-term viewed as a dynamic graph. The single processing unit execution
flow is sketched in Algorithm 1.

The main evaluation loop consists of the following phases:

1) buffering instructions transferred as messages from other processing units (line 4);
2) processing these instructions one by one (while-loop at lines 5–17);

(a) extracting one instruction from the buffer of pending instructions (line 6);
https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1382 AC Lai et al.

Algorithm 1 Original pseudocode for a process Up in PELCR as given in (Pedicini and Quaglia
2007).
1: function Up
2: initialize()
3: while not end_computation do
4: 〈collect all incoming messages and store them in incomingp〉
5: while not empty(incomingp) do
6: 〈extract a messagem from incomingp〉;
7: ifm.target ∈ nodesp then
8: for each edge e ∈ nodesp(m.target).combusted do
9: 〈compose the edge carried bym with e〉;
10: 〈select the destination process Uj for hosting the node originated by the composition〉;
11: 〈send the edges produced by the composition to Uk and Uh hosting m.source and e.source,

respectively〉
12: end for
13: else
14: 〈addm.target to nodesp〉;
15: end if
16: 〈add the edge carried bym to nodesp(m.target).combusted〉
17: end while
18: end while
19: end function

(b) for each edge already hosted by the same target node of the extracted instruction (for-
loop at lines 8–12);
–i– composing the edge with the extracted instruction (line 9)
–ii– deciding where the new node originated by residuals of the composition must be

allocated (line 10);
–iii– sending residual edges as instructions to the processing units hosting their

respective target nodes (line 11).

The description of this process amounts to an evaluation protocol activated during the
computation. This protocol is designed to express the order of execution of operations like receiv-
ing/sending messages, loading/storing elements in the memory, scheduling of operations. We
remark that the evaluation protocol is irrespective of the soundness with respect to the λ-calculus:
rather, it is the theory on which PELCR is based on, namely (directed) VRs, which is on charge of
the soundness of the computation. Indeed, the link with DVR (therefore with GoI and ultimately
with the λ-calculus) is not manifest until the composition step (line 9), which involves an algebraic
product in the specific structure introduced for the GoI.

To sum up, the configuration of the machine has two components: the buffer of pending mes-
sages and the graph of already used edges. The behaviour of the processing units (described in the
algorithm) consists in receiving a message, computing residuals of one step of DVR between the
edge carried by the message and all the edges already hosted on the same node in the graph, and
finally buffering residuals to the buffer of pending messages.

2.1 PELCR execution: a set-theoretic view
An informal set-theoretic reformulation of the evaluation protocol of execution will be use-
ful when it will come to extracting the basic notions for the machines presented formally in
Sections 3.1 and 3.2. Section 3.1 deals with the formal definition of the algebraic structure con-
cerning memory and instructions, Section 3.2 gives the elementary computational step associated
with an instruction (half-combustion step), and Section 5 illustrates the algebraic version of the
communication layers between components.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1383

current graph/state of the machine

vt

v1 v2 v3 vm

w1 w2 w3 wm

pending actions/sequence of instructions

vt

vs

α

. . .

A G

w

Figure 1. Graphical representation of the machine configuration (A,G) ready to apply the evaluation protocol after the
choice of the action α.

Roughly speaking, instructions are specifications of (polarised labelled) edges called actions,
concatenated to form the flow of control. A PELCR processing unit receives a flow of actions from
other units (possibly the same unit) and processes them one by one, operating on the current state
which is represented by a graph. Thus, at any evaluation step a machine configuration is a pair
(A,G) (see Figure 1) such that:

— A is a set of pending actions (on the left of Figure 1),
— G is a (dynamic) graph (on the right part of Figure 1).

In Figure 1, the action α and the node vt involved in the description of the elementary
computational step below are highlighted, whilst the other actions of A and nodes of G are
shadowed.

What is described in the evaluation protocol is the set-theoretic version of the abstract machine
transition (formally defined in Section 3.2). Here, this transition consists in applying an action α,
taken from A, to the current graph G.

In fact, the action α alone conveys the information required to transform the graph and coin-
ciding with the edge description. To perform the transition associated with α, we have to compute
two parts:

— by accessing the target node of the edge, the computational payload is expressed by the
interaction of α with its context (any edge in G with the same target node). We call this
one-to-many interaction the elementary computational step, whose outcome is a set �α of
new instructions to be executed, called residual actions of α;

— after the elementary computational step, the set A is updated by replacing α with the
residual actions �α , while the graph G is updated adding the edge carried by α.

In short, by the evaluation protocol, a transition (A,G)→ (A′,G′) consists in:

1) choosing an element α ∈A (line 6 in the Algorithm 1);
2) performing the elementary computational step by computing the set�α (while-loop at lines

8–12);
3) defining A′ and G′ by adding �α to A and α to G, respectively (lines 14 and 16), which is

A′ =A \ {α} ∪�α and G′ =G∪ {α}.
The above transition is an intuitive description of a step of the half-combustion strategy of

DVR (see Pedicini and Quaglia 2007): it includes (in the elementary computational step) symbolic
computations in the algebraic structure associated with the graph.

For the sake of perspicuity, in Section 3.1, we display in two steps the structure given in the
original GoI definition: we first present the notion of dynamic monoid (a (sub)structure of Girard’s
dynamic algebra) through which we fix then the minimal set of operations and axioms required

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1384 AC Lai et al.

for the definition of the evaluation protocol based on half combustion of DVR. Namely, such a
dynamic monoid satisfies the stable form condition (Definitions 1 and 2). Note that by requiring
the further properties which extend a dynamic monoid to the dynamic algebra, we recover as
an extra bonus a setting for the evaluation of λ-calculus and GoI which is sound with respect to
normalisation.

In such a set-theoretic setting, a computation starts with the empty graph initialising the
machine’s memory and the execution of a terminating program can be summarised by a finite
sequence of transitions(

A0, ∅)−→ (
A1,G1)−→ · · · −→ (An,Gn)−→ (∅,Gn+1). (1)

The initial action set A0 plays the role of the program executed by the machine, whilst the
final graph Gn+1 represents the result of the evaluation. Following the GoI terminology, we say
that the final graph Gn+1 is the execution formula of the initial sequence A0. De facto, in our
formulation the final graph contains the execution formula as given in Girard (1989) together
with any edge used during the computation, since no edge is removed from the graph of used
edges at any time. Actually, PELCR implements a strategy for removing from the graph edges
that are not necessary in successive steps of computation; this mechanism can be considered as a
kind of garbage collection, but it is not analysed in the present paper, we just sketch the solution
envisaged in PELCR, in Remark 9.

In some cases, the termination condition (given by the emptiness of the set Ai, for some i)
could never occur during the computation, leading to an infinite sequence of transitions. Non-
terminating cases justify the crucial role of the streams: if we conceive of PELCR as a device which
performs a computation and produces a result, then this result should be usable as an input for
a further computation. This general property is assured in GoI by the so-called associativity of
the execution formula. If we combine associativity with the local and asynchronous version of the
GoI represented by DVR (which enables the parallelism in PELCR), then we get the possibility
of starting the computation of the execution from the result of another execution, even when the
former is unfinished, that is, let us say, from a finite approximation. In those cases where the first
computation does not terminate, the second computation gets an infinite input. Such an ability to
process infinite inputs well motivates the introduction of streams of actions.

Let us conclude the informal presentation of PELCR’s computational behaviour by rephras-
ing Algorithm 1 in terms of the set-theoretic notation just introduced (see Algorithm 2). This
should put the reader in a better position to appreciate the connection between the PELCR eval-
uation protocol and the formal presentation of abstract machines in the next sections. Note that
the pseudocode represents the evaluation protocol that the unit has to follow while concurrently
evaluates a λ-term with other units.

3. Sequential Abstract Machines
We start now a formal description of a family of abstract machines whose functioning relies on
algebraic requirements satisfied by the PELCR evaluation machine. Moreover, these requirements
can be applied to the design of various evaluation models in principle executable through our
abstract machines. We show in Section 4 an application to automata.

3.1 The state of the machine: polarised dynamic graphs
Our aim here is to rearrange notions from GoI and DVR to shape a new presentation of the alge-
braic setting for the abstract machine. Its processing unit is a universal device which consumes
a pipeline of elementary instructions, while producing further instructions to be processed. The
machine’s memory is represented by a dynamic graph, i.e. a graph characterised by some algebraic

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1385

Algorithm 2 Original pseudocode for a process Up rephrased in accord to the set-theoretic
presentation of PELCR.
1: function Up
2: initialize()
3: while not end_computation do
4: 〈 collect all incoming messages and store the corresponding actions in Ap〉;
5: while Ap
= ∅ do
6: 〈take an α from Ap 〉;
7: if target(α) ∈G then
8: for each edge βi ∈ target(α) in G do
9: 〈perform the interaction between α and βi〉;
10: 〈select the destination process Uj for hosting the node originated by the composition〉;
11: 〈send the edges produced by the composition to Uk and Uh hosting source(α) and source(βi)

respectively〉
12: end for
13: else
14: 〈update the part of G hosted on Up by adding the node target(α)〉;
15: end if
16: 〈update the part of G hosted on Up by adding α 〉
17: end while
18: end while
19: end function

properties of its labels, which are assumed to be taken in a dynamic monoid (see Definition 1).
Moreover, the instructions to be executed are edges and their execution is given by the trans-
formation of the graph in memory and the production of a sequence of new instructions to be
executed.

First of all we recall the definition ofmonoid and freemonoid. Amonoid is a setM closed under
an associative binary operation ·, called the product, and with an identity element 1 (i.e. 1 ·m=
m · 1=m, for any m ∈M). The free monoid generated by a set � is the set �∗ whose elements
are all the finite sequences of zero or more elements from �, with sequence concatenation as the
monoid operation.

Definition 1. A dynamic monoid over the alphabet � is the free monoid M generated by � such
that

— there exists 0 ∈M such that 0 is an absorbing element for product (i.e. 0 ·m=m · 0= 0, for
any m ∈M);

— M is endowed with an inversion operator (·)∗ (an involutive antimorphism for 0, 1 and
product, i.e. 0∗ = 0, 1∗ = 1 and (a∗)∗ = a and (ab)∗ = b∗a∗, for any a, b ∈M).

Any free inverse semigroup is indeed a dynamic monoid as pointed out in Lawson (1998,
chapter 6).

Definition 2 (Stable form condition). Let M be a dynamic monoid. A non-zero element a of M is
positive if it does not contain any inversion (·)∗. Let a, b be positive elements of M: we say that b∗a
has a (or can be rewritten in) stable form if there exist non-zero a′, b′ ∈M (uniquely determined
by a, b) such that b∗a= a′b′∗. We say that the dynamic monoid satisfies the stable form condition
(SFC) if

for any a, b ∈M either b∗a= 0 or it has a stable form. (SFC)

If SFC holds and it is computable (in linear time), we may perform computation by means
of DVR. However, while a dynamic monoid satisfying SFC suffices to execute computations in

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1386 AC Lai et al.

the machines we present here, a special kind of dynamic monoid is required if we wish to have
invariant properties (e.g. the invariance of normal form) given by the logical interpretation of
programs. To this aim, we introduce the dynamic monoid employed by Girard in defining GoI
for linear logic, a monoid which can be also applied to the interpretation of λ-calculus.

Definition 3 (Girard dynamic algebra �∗). The Girard dynamic algebra �∗ is the dynamic
monoid generated by the constants p, q, and a family W = {wi}i∈N of exponential generators, with a
morphism !(.), such that for any u ∈�∗:

x∗y= δxy for x, y ∈ {p, q,wi}, (ANNIHILATION)
!(u)wi =wi!ei(u), (COMMUTATION)

where δxy is the Kronecker operator, ei is an integer associated with wi called the lift of wi, i is called
the name of wi and we often write wi,ei to explicitly note the lift of the generator.

Remark 1. The reader is referred to Danos and Regnier (1995). Note well that the morphism ! is
indeed an endomorphism for the dynamic monoid; thus,

!(uv)= (!u)(!v) !(u∗)= (!u)∗ !1= 1 and !0= 0 for any u and v.

Note also that annihilation and commutation rules imply that for every a, b ∈�∗ either b∗a= 0 or
it has a stable form, that is �∗ satisfies SFC. For instance, setting a=w1,2 and b=!2q, by applying
the commutation rule we get

b∗a= (!2q)∗w1,2 =!(!q∗)w1,2 =w1,2!2(!q∗)=w1,2(!3q)∗ = a′b′∗ (2)

with a′ = a and b′ =!b.

Definition 4 (Dynamic graph, polarity). Given a dynamic monoid M satisfying SFC, a dynamic
graph G on M is a graph G= (V , E⊂V2 ×M) labelled with elements of M.

A polarised dynamic graph on M is a dynamic graph G whose edges e are endowed with a source
polarity εs ∈ {+,−} and a target polarity εt ∈ {+,−}. More precisely, the edge set E is a subset
of {+,−}2 ×V2 ×M and each edge e is represented by a triplet ((εt , εs), (vt , vs),w), where εt , εs ∈
{+,−} are the target and source polarities of e, respectively; vt , vs ∈V are the target and source nodes
of e, respectively; and w ∈M is the label of e.

Definition 5. For any dynamic monoid M we denote by GM (resp. G+M) the set of all (resp.
polarised) dynamic graphs on M.

To point out the peculiar role played by the edges with respect to the execution of the abstract
machines, we define the actions in terms of graph transformation instructions. Any action has
as a payload information concerning an edge to be added to the current dynamic graph. It is
then possible to compute the composition with other edges via interaction rules producing new
instructions from residual edges.

Now we have to introduce the notion of reference to identify those nodes having multiple
occurrences in a sequence of graphs.

Definition 6 (Node reference).Given a sequence of graphs (Gi)i∈I where Gi = (Vi, Ei), by reference
(to a node) we mean an injective map ρ from the set of all nodes

⋃
i∈I Vi to integers.

Observe that a reference of a node is determined by a function ρ which depends on a sequence
of graphs by definition. If we abstract from the sequence, we obtain a function defined on the set
of the nodes of all possible graphs.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1387

+v1
−v1

+v2
−v2

+vt
−vt

w1 w2

Figure 2. A polarised graph.

Definition 7 (Set of actions). The set AM of all possible polarised actions on M is a set of graph
edge specifications, more precisely:

AM = {〈(εt , εs), (ρ(vt), ρ(vs)),w〉, where ρ(vt) and ρ(vs) are references to nodes of
some graph inG

+
M, εt , εs are polarities, and w ∈M}

Pending actions are sequences of instructions for transforming graphs: the fundamental trans-
formation that any instruction represents is the addition of nodes and edges to the graphs, as we
show in Section 5.1. It is possible for actions to make reference to nodes which are not in the
current graph (for instance, consider the initial (empty) graph and the initial stream of pending
actions). Therefore, to be more precise we have to say that an action has information on an edge,
while nodes are expressed as references. We can apply the same strategy in presenting parallel
abstract machines: in this case, the current graph is decomposed by allocating nodes in different
processing units, and it may happen that one edge has source node on a unit and the target node on
another. In such a case, edge information is hosted in the dynamic graph to which the target node
belongs, whilst source node information is given as a reference to a node of the part of the dynamic
graph hosted by the other unit. For the sake of simplicity, however, we use always the node
notation to avoid to distinguish graphically between a node v and references to that node ρ(v).

Notation 1. Polarisation induces a bipartition of edges coincident on the same node v in two sets
of edges with the same polarity. We denote the two sets by v+ and v− according to their respective
polarities and we call v+ (resp. v−) the positive seminode (resp. negative seminode) of v.

Example 1. Consider the polarised dynamic graphG ∈G+M in Figure 2.We haveG= (V , E) where
V = {v1, v2, vt}. The edges of G are

α1 = ((+,−), (vt , v1),w1) and α2 = ((−,+), (vt , v2),w2).

Finally we notice that the seminodes associated with vt are the edge sets v+t = {α1} and v−t = {α2}.

Example 2 (Encoding λ-terms as inputs for the machine via GoI). We consider the pure λ-term
representing the self application �= λx.xx applied to the term I = λx.x. In a quite standard
way (Danos and Regnier 1995; Regnier 1992), this term is translated in a linear logic proof net,
represented in Figure 3.

Indeed, the term (� I) may be typed in linear logic by extending the type system with a fixed
point equation on formulas (namely, the one used to define Scott domains: D=D→D). By fol-
lowing its representation as a pure proof net, we get the corresponding GoI interpretation, that is
this matrix with entries in the Girard dynamic algebra:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ax]1 [ax]2 [ax]3 [ax]4 [cut]1 [t]1
[ax]1 0 0 0 0 qw2 + qw1q 0
[ax]2 0 0 0 0 qw1p+ p 0
[ax]3 0 0 0 0 q!q+ q!p 0
[ax]4 0 0 0 0 p 1
[cut]1 w∗2q∗ + q∗w∗1q∗ p∗w∗1q∗ + p∗ (!q∗)q∗ + (!p∗)q∗ p∗ 0 0
[t]1 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1388 AC Lai et al.

[ax]2 [ax]3

[ax]4

[t]1[cut]1

[ax]1

Figure 3. Proof net of (� I).

pending actions

[cut]1 [cut]1 [cut]1 [cut]1 [cut]1 [cut]1 [cut]1 [t]1

1pq!q q!qqw1q qw1p pqw2

[ax]1 [ax]1 [ax]2 [ax]2 [ax]3 [ax]3 [ax]4 [ax]4

Figure 4. Initial list of pending actions for the
computation of the Execution Formula of (� I).

The matrix representation is redundant (the matrix is in a way symmetric aij = a∗ji, we would
say hermitian in some model for �∗) and sparse. This drawback was one motivation in Danos
and Regnier’s (1993 paper) for considering VR using a graph as a notation for the sparse matrix.
Hence, our example becomes a graph where nodes are axioms, cuts and conclusions (terminal
nodes):

V = {[ax]1, [ax]2, [ax]3, [ax]4, [cut]1, [t]1}
and edges 〈(vt , vs),w〉 get a weight w ∈�∗. Note that here vt is the target node and vs is the source
node. In this example, the ‘sparse’ representation, consisting of the list of edges with a non-null
weight, is more compact:

E= {(([cut]1, [ax]1), qw1q), (([cut]1, [ax]1), qw2), (([cut]1, [ax]2), qw1p),
(([cut]1, [ax]2), p), (([cut]1, [ax]3), q!q), (([cut]1, [ax]3), q!p),
(([cut]1, [ax]4), p), (([t]1, [ax]4), 1)}.

(3)

To compute the Execution Formula associated with the term, we initialise the list of pending
actions with such an edge set (see Figure 4), and we proceed with the evaluation of these actions
on an initial empty graph as described in Equation (1) (for simplicity, at this stage the polarities
are omitted in the notation).

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1389

Figure 5. Elementary computational step (as half-combustion). Note that the computation ofm interactions originates 2n
residual edges, with n≤m.

3.2 The elementary computational step: generalized half-combustion
Definition 8 (Context). Let G ∈G+M be a polarised dynamic graph and let α = 〈(εt , εs), (vt , vs),w〉
be an action on G. By context of α, we mean the set of all edges {β1, . . . , βm} of G such that

βi = ((− εt , εi), (vt , vi),wi) for some εi, vi, and wi.

In other words, the context of α is the set of edges belonging to the seminode v−εt
t , namely the

edges of G insisting on the same target node as α but with opposite target polarity.
Now, consider an action α and an element of its context, βi. By the definition of dynamic

graph, the weights of each edge are elements of a dynamic monoid M, i.e. w= a and wi = bi for
some a, bi ∈M.

Definition 9 (DVR step).We define the result of the step of DVR between the action α and the edge
βi when b∗i a
= 0, and a′ib′i

∗ is its stable form, as the new actions

αi :=
〈
(εi, ε), (vi, v′i), a′i

〉
and β ′i :=

〈
(εs,−ε), (vs, v′i), b′i

〉
, (4)

where ε is arbitrarily chosen in {+,−} and v′i is a newly generated node.

Note that the node v′i is a new node to be added to the graph together with its outgoing
edges (vi, v′i) and (vs, v′i). Therefore, the new edges αi and β ′i represent the new payload of the
computation and are the forthcoming actions, as we see in the next definition.

The elementary computational step associated with the action α consists in the computation of
the set of residuals of the action with respect to its context in the graph G. Therefore, it involves
the computation of pairwise action-edge interactions as in Figure 5, and in collecting actions
produced by the DVR steps:

Definition 10 (Residuals of an action). Given an action α and a polarised dynamic graph G, we
define the set of all residual actions originated by α with respect to G as the set

ResG(α) :=
{
αi1 , β

′
i1 , . . . , αin , β

′
in
}

(5)

where {β1, . . . , βm} is the context of α in G and, for each ij such that a′ijb
′∗
ij
= 0, the pair of actions(

αij ,β ′ij
)
is the result of the DVR step between α and βij .

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1390 AC Lai et al.

(a) (b)

Figure 6. Elementary computational step of an action α acting on a context with one edge.

Remark 2. Since the number of residual pairs is possibly less than the number of edges βi in the
context, we write n≤m residuals. The reason is that for some of them there may not be a stable
form of the product bi∗a (i.e. the result is null).

Example 3. As in Definition 3, assumeM=�∗, a=!2q and b=w1,2. Let α = 〈(+,−), (vt , vs), a〉
and assume that its context is {β}, namely the singleton containing the edge β =
((−,−), (vt , v1), b). Recall from Equation (2) that b∗a= a′b′∗ where a′ =!3q and b′ =w1,2. We
have in Figure 6, the elementary step of computation associated with the action α with respect to
the context {β} which produces the set of actions Res(α).

Remark 3 (The role of polarity in DVR). In the DVR procedure, introduced in Danos et al.
(1997), a strong assumption on the input is made: that is, the input graph is the interpreta-
tion of a proof-net into a virtual net (the proof net, at its turn, could be the interpretation of a
λ-term). Consequently, each edge in the virtual net represents a half of a straight path. We recall
that a straight path in a proof net is any path which is neither bouncing nor twisting. A path is
non-bouncing if it does not contain any edge a followed by the same edge taken in the reversed
direction a∗, whereas the path is non-twisting if it does not contain any edge ai followed by a∗j ,
which is a distinct premise aj of the same link (with i
= j) taken in the reversed direction. Note
that although neither non-bouncing nor non-twisting properties are preserved by path composi-
tion, we know that all the weight of straight paths incident on the same node form two orthogonal
sets, such that residuals of orthogonal paths are still orthogonal Pedicini and Quaglia 2007, §3.

The original purpose of introducing polarity in DVR procedure was then to distinguish the
elements belonging to each of those orthogonal sets, so as to reduce useless computation. Indeed,
if two labels belong to orthogonal sets, then their normal form is 0: if this information is properly
stored in the polarity sign (and properly propagated to the residuals), then one can avoid to com-
pute their normal form. Such a mechanism is automatised by restricting the computation to those
edges with opposite target polarities. In the more general framework presented here, this orthog-
onality property of incident edges does not hold: assigning a polarity to the edges is a procedure
more oriented to flow control than to the optimisation of the computation.

4. Examples
We show a pair of applications that can be embedded in the algebraic setting of dynamic monoids
and computed through the PELCR evaluation protocol. The purpose of these examples is twofold:
to give evidence that the machine we are going to define may be used in a wider range of situations
and not only in the λ-calculus evaluation, and to support the interest in the parallel version of the
machine, which is irrespective of the algebraic specification.

Example 4 (Encoding natural numbers via Girard dynamic algebra). As a first step towards an
embedding of recursive functions into dynamic graphs, we represent the natural number n ∈N in
terms of the polarised dynamic graph G�∗(n) in Figure 7(a), whereas in Figure 7(b) we show the
representation of the successor of n. We illustrate how to obtain, through the same GoI reduction

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1391

1

!nw1,2

Integer n
1

!n+1w1,2

Integer n + 1

w1,2

1

!nw1,2

Successor function applied to n

(a) (b)

(c)

Figure 7. Polarised dynamic graphs representing
the two integer numbers n and n + 1, and the succes-
sor function applied to n.

Successor function applied to n Residuals after the execution of some ele-
mentary steps of computation(possible one,
depending on the order of actions.)

The sub-graph of the final graph repre-
senting n+1

w1,2

1

!nw1,2
(a)

w1,2

!n+1w1,2w1,2

1

(b)

1

!n+1w1,21

1

(c)

Figure 8. The pending actions represented in (a) and (b) give rise to a part of the polarised dynamic graphs representing
intermediate states during the reduction of the successor function applied to an integer number n. The graph in (c) is the
part of the final graph which corresponds to the result of the computation.

mechanism, a representation of the successor function on integers. For the sake of simplicity,
the labels of nodes are here omitted, while keeping the fact that polarities split nodes in two sets
separated by a line (not necessarily vertical) in the figures.

The application of the successor function to n is represented by the interaction betweenG�∗(n)
and the action labelled with w1,2 (note that in GoI this interaction represents the reduction of a
commutative cut). Figure 7c displays the application of the successor function to the integer n,
whilst

Figure 8 shows two groups of pending actions ((a) and (b)) which at different time steps trigger
an elementary computational step.

In Figure 8c, it is depicted the sub-graph of the execution formula (i.e. the final graph) of the
successor of n that represents n+ 1. The reader may notice that the sub-graph is not exactly the
representation of n+ 1 as given in Figure 7b, containing identity labelled edges not appearing in
the definition. To overcome this type of problem, however, we resort to a modified interaction
treated in Pedicini and Quaglia (2007) and called optimisation of one (see Figure 9a). In the case
of residuals labelled by identity, such an interaction works by creating only one residual instead

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1392 AC Lai et al.

(a)
(b)

(b)

(c)

(d)

Figure 9. Optimisation of one. Optimised interaction rule: the elementary computational step (for the dynamic graph on
the left) in general (if the product of the labels involved in the interaction is different from 0) includes the creation of a
new source node vs and of a pair of edges targeting the nodes v1 and v2 (with labels, say, u1 and u). Nevertheless, in the
particular case where u1 = 1, an optimised rule can be applied avoiding the creation of the node vs and only a residual is
created (corresponding to an edge with source v1 and target v2 and labeled with u as depicted on the right).

of the two prescribed by the usual interaction rule (see Equation 4). This example also illustrates
how a computation runs during execution by means of elementary steps, and, on the other
hand, the encoding of such a basic function (in the class of recursive functions) is the evidence
that other basic recursive functions can be realised by this computational device. Anyway, the
problem of completeness of dynamic graphs with respect to the class of recursive functions is not
considered with this encoding of integers, being beyond the scope of the present paper.

Example 5 (Computing languages of automata). In this example, we show an encoding into
dynamic graphs for deterministic finite-state automata. This approach is informally justified by
taking into account the particular case of paths preserved by reduction. The task of this example is
to offer some clues about non-standard applications of the GoI machinery; however, the rigorous
discussion of the general case is postponed to future work.

LetA= (T, q0, F) be a deterministic finite-state automaton with alphabet A= {a1, . . . , an} and
finite set of states Q= {q0, q1, . . . qm}.

The transition function T :Q×A→Q for any pair (q, a) associates a new state T(q, a). The
state q0 is called the initial state and F⊂Q is the set of final (accepting) states. Note that we assume
by definition that T is a total correspondence, whereas some authors admit partial transition
functions making the correspondence of non-accepting state if the undefined transition occurs.

We establish here a correspondence between automata and dynamic graphs on the Girard
monoid �∗, whereby the computation of the execution of the graph corresponds to the
computation of the regular language accepted by the automaton.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1393

q1 q2
a �→ v−q1 v+

q1 v−q2 v+
q2

v−
H v+

H

[a] 1

Encoding of the transition T (q1, a) = q2

q1 q2
a �→ v−q1 v+

q1 v−q2 v+
q2

v−H v+H

[a] 1

Encoding of the transition T (q1, a) = q2 when q2 ∈ F

q1 q2

a1

a2

�→ − + −− +
+

[a1] 1

[a2]

1

+ −

Encoding of a loop

(c)

(b)

(a)

Figure 10. Graph representations of some automata and their encoding as dynamic graph.

Definition 11. For any automaton A let us define its dynamic graph [A] :=G ∈G+�∗ equipped
with additional information (v0,VF); the polarised dynamical graph G has nodes in VQ ∪VH,

— each state q ∈Q is associated with a vertex vq ∈VQ and in particular the initial node q0 is
encoded into the vertex v0; final states q ∈ F are encoded as nodes of the set vq ∈VF ⊂VQ;

— each element of the alphabet ai ∈A is encoded as the element !wi of �∗ with lift l(wi)= 1 for
any i; we adopt the same notation as for the encoding of automaton itself, that is [ai] :=!wi;

— for any transition T(q1, a)= q2 two edges belong to the graph

e1 = ((+,−), (vq1 , vH), [a]) e2 = ((−,+), (vq2 , vH), 1)
where vH ∈VH is one of the auxiliary nodes associated univocally with the transition, shown
in Figure 10(a);

— source nodes of identity labelled edges with target node in VF belong to VF too.

The evaluation of the graph proceeds by sequences of elementary steps of computation start-
ing from the pair ([A], ∅), as in Equation (1); moreover, the set of final nodes VF is updated as
prescribed in Figure 11. For any pair of edges involved in a DVR step, we have that they have
common target node, the two edges have opposite polarities and one has weight 1 and the other
one has weight [a] for some a ∈A. Whenever the source node of the edge which is not labelled by
the identity belongs to Vt

F , then we have that the new source node vh ∈Vt+1
F (i.e. the set of final

nodes is increased with the new node vh). This dynamical annotation of the set of final nodes is
important in the statement and proof of Theorem 1which the definition of the read-backmapping
crucially depends on.

As an example, consider the automaton Aeven in Figure 12 and its encoding according to the
rules in Figure 13.

We denote by

LA = {u | u ∈A∗ accepted byA},

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1394 AC Lai et al.

Figure 11. The rule for dynamically updating the set VF of final nodes (here, represented by bold shaped nodes) before (on
the left) and after (on the right) performing one interaction.

a0 a0

a1

a1

Figure 12. The automaton Aeven of alphabet {a0, a1} which decides the
language of words containing an even number of a1’s.

Figure 13. Dynamic graph [Aeven] encoding the automaton Aeven in
Figure 12.

for any automaton A of alphabet A. With this notation, we have that LAeven , the set of words
accepted by the automaton given in Figure 12, is the set of words containing an even number
of a1’s.

We showed the encoding function of any automatonA as a dynamic graph [A] ∈G+�∗ now we
need to specify how accepted words can be read-back from a dynamic graph during the evaluation.
Computation starts from the pair ([A], ∅), which is the pair given by the set of edges correspond-
ing to the encoding of the automaton A and the empty graph; the initial set of final nodes is also
required to perform the evaluation.

Definition 12. For any automatonA of alphabet A, let us consider the dynamic graph [A]. Then

1) A path in [A] is a sequence of edges ϕ = α1α2 . . . αn such that αi = vi
ai→ vi+1 for any 1≤ i≤

n− 1. Note that an edge can be regarded as a path of length 1.
2) For any path ϕ ∈ [A], we define the word [ϕ]−1 ∈A∗ as the concatenation of the preimages

[αi]−1 of the algebraic weights ai associated with each edge αi.

Note that [αi]−1 is the preimage of the algebraic label of the edge αi = vi
ai→ vi+1, i.e. ui ∈A if

[ui]= ai (by definition, the label of an edge with algebraic label 1 is [1]−1, i.e. the empty word).
Now we are in position to state the soundness and completeness of the computation of LA with

respect to the execution of the abstract machine: launched by the interpretation of the automaton,
the machine generates each word in LA as the word [ϕ]−1 associated with some path ϕ starting

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1395

in a node v ∈Vt
F (for some t ∈N) and ending in v0 (the node corresponding to the initial state).

Through this approach, we may regard the computation of the language decided by an automaton
as themodel, while the abstract machine is the syntactic object performing the computation which
starts from the automaton interpretation as a dynamic graph (to be executed).

Theorem 1. Let beA an automaton of alphabet A.

a) (soundness) For any t ∈N, any path ϕ starting in a node v ∈Vt
F and reaching v0 is such that

[ϕ]−1 ∈ LA.
b) (completeness) For any u ∈ LA, there exists a t such that there exists a sequence of elementary

steps of computation applied to the initial configuration ([A], ∅,VF), so that it reaches a
configuration (At ,Gt ,Vt

F) containing a path v
ϕ→ v0 with v ∈Vt

F such that [ϕ]−1 = u.

Proof. We prove soundness by induction on the length of a path vq
ϕ→ v0, where vq ∈Vt

F for
some t; the thesis to be proved is that [ϕ]−1 ∈ LA.

We employ same notations for a configuration (At ,Gt ,Vt
F) at step t; therefore, At is the set of

actions. For what concerns the basis of induction we consider a ϕ of length 1: if [ϕ]−1 is the empty
word, then the base of induction trivially follows. We then discuss the case [ϕ]−1 = a. We show
that the smallest time step t1 at which vq ∈Vt1

F must be the initial one, then in such case being
[ϕ]−1 = a the statement is proved since by definition q is a final state: a ∈ LA.

Let us prove now that assuming t1 > 0 yields a contradiction. To this end, note that t1 > 0
implies that vq is a newly generated node by the reduction of some pair of actions

α := 〈(−,+), (v′q, vq0), 1〉, β := 〈(+,−), (v′q, v∗), [a]〉 ∈At2 ,

with v∗ ∈Vt2
F , for some t2 < t1. This implies that vq0 is source node of some action of the initial

encoding (sources of residuals are always new nodes) and this is not possible by construction of
the encoding of the automaton.

Now assume as inductive hypothesis that for any given automaton A if vq
ϕ→ v0 with vq ∈

Vt
F for some t and |ϕ| = n, then [ϕ]−1 ∈ LA. Let us consider a path of length n+ 1, namely

[ϕ]−1 = au with vq
ϕ→ v0 with vq ∈Vt

F for some t and for some a ∈A and some u ∈An. Let
qa be such that T(q0, a)= qa and note that then the last edge of ϕ necessarily connects vHa ,
the auxiliary node associated with the transition T(q0, a), to vq0 . Also note that the the action
αa := 〈(−,+), (vqa , vHa), 1〉, which, by construction, belongs to the encoding of A, enjoys the fol-

lowing path-preserving property. If v ∈Vt
F and v ϕ′→ vqa , then the interaction between αa and all

the edges in ϕ′ yields a path ϕ′′ from a final state v′ ∈Vt1
F , with t > t1, to vHa with the same read-

back [ϕ′]−1 = [ϕ′′]−1. Up to a reordering of the actions, we can assume that for some t1 < t we

have a path vq
ϕ′→ vqa whose read-back is u and that the action αa := 〈(+,−), (vqa , vHa), 1〉, which,

by construction, belongs to the encoding ofA, has not yet been consumed, namely αa ∈At1 .
Now take the automaton Aa := (T, qa, F), whose language is LAa := {u | au ∈ LA}. We then

can see that ϕ′ is a path of length n from a final state of [Aa] to its initial state; hence, by induc-
tive hypothesis u= [ϕ′]−1 ∈ LAa . Now we are done, since by construction au= [ϕ]−1 and by
definition of LAa , au ∈ LA.

We show completeness by induction: an accepted word of length 1 is such that u ∈ LA and
T(q0, a)= q ∈ F where u= a, then by definition in [A] we have an edge (which is a path of
length 1) ϕ = v [a]→ v0 and v ∈Vt

F ; therefore, [ϕ]−1 = a.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1396 AC Lai et al.

By induction hypothesis, we know that the property holds for any automaton and any word of
length n. We consider a word u′ = au ∈ LA with length of u equals to n, and the state q= T(q0, a),
then we have that the word u ∈ LAq with Aq = (T, q, F), i.e. with same transitions and final states
of A but with initial state q; therefore, there exists a path v ϕ→ vq such that [ϕ]−1 = u. Since the
encoding of the transition q= T(q0, a) is given by the two edges

e1 = ((+,−), (v0, vH), [a]) e2 = ((−,+), (vq, vH), 1)
we have that e2 interacts with any edge of the path ϕ starting in v and ending in vq.

At the end of this sequence of interactions, the new path starting in the node v′ produced by
the interaction of the last edge of ϕ is a path from the final node v′ to v0 and it is labeled as
a[ϕ]−1 = au.

5. Streams
In what follows we resort to streams to distribute the computational load onmany devices and this
means that we are to define streams of actions. For any given set A, we regard A as the set of all
possible actions the computational device can perform. To make the exposition of the execution
equivalence in Section 7 easier, we consider A as the set of formal sums of elements of A. In
particular, there exists a null element (the empty sum) 0, such that 0+ α = α. Following Rutten
(2005), we give the following:

Definition 13. A stream S on A is a sequence S :N→A of elements of A. We define the set Aω of
all streams as Aω := {S | S :N→A}.

For a stream S, we call S(0) the initial value of S and we adopt the following notations: if S=
(S(0), S(1), S(2), . . .), then

α :: S := (α, S(0), S(1), S(2), . . .)

and nil as the stream defined by the equation

nil := 0 :: nil.
A finite stream is a stream eventually coinciding with nil.

We consider the following operations on streams.

Definition 14 (Shift and zip). The shift operation (also called derivative or tail) is defined by

S= S(0) :: shift(S). (6)

The zip of two streams S and T is given by the system of equations{
zip(S, T)(0)= S(0)
shift(zip(S, T))= zip(T, shift(S))

We also adopt the following notation S� T := zip(S, T).

Remark 4. Note that by definition

zip(S, T)(2i)= S(i),
zip(S, T)(2i+ 1)= T(i)

for all i ∈N. Also note that zip is neither commutative nor associative: in general S1 � (S2 � S3)
=
(S1 � S2)� S3. In what follows, we adopt the following notation S1 � S2 � S3 := (S1 � S2)� S3.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1397

We give a rather obvious coinductive definition of sub-stream as follows:

Definition 15 (Sub-stream). S2 is a sub-stream of S1 if one of the two conditions holds:

• either S2(0)= S1(0) and shift(S2) is a sub-stream of shift(S1),
• or S2(0)
= S1(0) and S2 is a sub-stream of shift(S1).

A proper sub-stream S2 of S1 is a sub-stream S2 of S1 which is different from S1.

Definition 16 (Strip). If S2 is a proper sub-stream of a stream S1, then the strip of S2 from S1 is

strip(S1, S2) :=
{

strip(shift(S1), shift(S2)) if S1(0)= S2(0)
S1(0) :: strip(shift(S1), S2) if S1(0)
= S2(0)

Definition 17 (Weak-bisimulation and weakly bisimilar streams). A weak-bisimulation on A is
a relation γ ⊂Aω ×Aω such that, for all streams S and T on A, if (S, T) ∈ γ then following holds:

S(0)= T(0) and (shift(S), shift(T)) ∈ γ (7a)
S(0)= 0 and (shift(S), T) ∈ γ (7b)
T(0)= 0 and (S, shift(T)) ∈ γ (7c)

Two streams S and T defined on A are weakly-bisimilar, denoted S≈ T, if there exists a weak-
bisimulation γ such that (S, T) ∈ γ .

Note that S≈ T if and only if strip(S, nil)= strip(T, nil). Needless to say, it is not possible
to have strip(nil, nil) since nil is not a proper subsequence of itself.

Remark 5. In the rest of the paper, we consider only streams of actions in A0 :=A∪ {0} of this
sub-type:

Aω := {S | S :N→A0} ⊂Aω.

We need to introduce now the notion of view of base v (or node view) of a stream S of actions
on a dynamic monoidM:

Definition 18. Given a stream of actions S ∈Aω
M and a node v, the polarised view of base vε is

defined by selecting actions with target node v and opposite target polarity with respect to the polarity
of the base. Namely:

(S)vε :=

⎧⎪⎨
⎪⎩
nil if S= nil
S(0) :: (shift(S))vε if S(0)= 〈(− ε, εs), (ρ(v), ρ(vs)),w〉
(shift(S))vε otherwise

We define also the view of base v as (S)v := (S)v+ � (S)v− .

In a similar way, it is possible to define the graph view of a stream of actions S:

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1398 AC Lai et al.

Definition 19. Given a stream of actions S and a graph G= (V , E) ∈G+M, we define a sub-stream
of actions by selecting actions with target node in V:

(S)G :=

⎧⎪⎨
⎪⎩
nil if S= nil
S(0) :: (shift(S))G if S(0)= 〈(ε, εs), (ρ(v), ρ(vs)),w〉 and v ∈V
(shift(S))G otherwise.

The elementary computational step associated with an action α yields the set of residuals
Res(α) (Definition 10). Such a set is then transformed into the stream execute(α) to be com-
bined with the stream of actions to be processed as specified in the abstract machine definitions
(Figures 14, 16, 17 and 18).

Definition 20. Given a set X⊂A we define

set2stream(X) :=
{
x :: set2stream(X\x) for some x ∈ X,
nil if X=∅.

In other words, the function set2stream recasts sets to streams, up to permutations. In
particular, if the input is a finite set, then the function returns a finite stream.

Given an action α, and the corresponding set of residuals Res(α) (as in Equation (5)), we define
the finite stream obtained by rearranging actions in Res(α) as

execute(α) := set2stream(Res(α)).

Note that Res(α) may be an empty set, in this case

execute(α)= set2stream(∅)= nil.

Remark 6. This non-deterministic definition stems from one of the main features of local and
asynchronous execution displayed in VRs: parallel implementation circumvents the typical con-
fluence and the synchronisation difficulties in distributed systems, inasmuch as the underlying
algebraic machinery ensures the correctness of the computation.

5.1 Streams and sequential abstract machines
In a way similar to that of classical SECD machines, we define the set of machine configurations
in terms of four components:

— the stack S, which is a finite sequence of actions used to store the current action;
— the environment E that is a node of the graph D providing the local environment where the

current action has to be performed, or it is not determined (NULL);
— the core stream C that is a stream of actions either provided as initial input or created during

the execution of other actions, to be executed in the context of the graph D;
— the dump D that is the current dynamic graph containing the environment for the next

actions.

For a given dynamic monoid M, at any step of computation the machine has a configuration
taken in the set:

CM :=
⎧⎨
⎩(S, E, C,D) such that S ∈

⋃
n≥0

(
A0
M
)n,D= (VD, ED) ∈G+M , E ∈VD, C ∈Aω

M

⎫⎬
⎭,

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1399

Figure 14. Sequential abstract machine.

where S is a tuple of actions of A0
M (see Definition 7 and Remark 5), D is a dynamic graph, E

is a vertex of D, and C is a possibly infinite sequence of actions from AM . As it is clear by the
definition above, at any step of computation only a finite number of edges do connect to a given
node. Therefore S, which is a set of residuals with the same target node, contains a finite number
of actions. On the other hand, the number of involved edges can increase, so that the number n of
actions to be stacked in S is not bounded.

For the sake of simplicity, we adopt the following notation when we have to add nodes to
the dump: D∪ {vt , vs} = (VD ∪ {vt , vs}, ED), or when we have to add an edge D∪ {α} = (VD,
ED ∪ {α}). Moreover, in the latter case we denote the edge to be added in the same way as the
action. Namely, if the action uses references to nodes α = 〈(εt , εs), (ρ(vt), ρ(vs)),w〉, then the
corresponding edge is 〈(εt , εs), (vt , vs),w〉.

We denote the empty dump (resp. a new/uninitialized environment) with ∅ (resp. NULL). We
also introduce the notation

target(α) :=
{
vt if α = 〈(εt , εs), (vt , vs),w〉
NULL if α = 0.

This function takes as a value a node of the graph, considered as the environment where the action
represented by α has to be done (if α = 0 we get the NULL environment). Then, target(α) is added
to the graph as a node. Again if α = 0 we have

D∪ {target(0)} =D.
We define the basic operations of this SECD machine in terms of a series of transitions from

one configuration to another:

name
configuration before
configuration after

We denote by R1; R2 the composition of the application of the transition rule R1 followed by
the application of R2. So, let us assume that the machine has configuration c= (S, E, C,D). Then,
we obtain the new configuration c′ = (S′, E′, C′,D′) by applying the transition R1 and we write
R1(c)= c′.

Figure 14 displays the five types of transition which fully describe the sequential abstract
machine. The infinite execution loop for it is given by

(INIT; ((POP;NENV)∗; POP; ENV;HC)∗)∗ (8)
to be applied to the initial configuration c0 := (〈〉, NULL, nil, ∅). Each time the machine reaches the
initial configuration c0 a call to the read() function is issued. Such a function returns a stream of
actions which becomes the new core stream. The read() can be specialised to match different uses
of the machine: it can be realised as the connection of the machine to a communication channel
in order to intercept the result of another execution, or to connect to the interpreter of a program
which injects the stream of actions corresponding to the program.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1400 AC Lai et al.

Algorithm 3 Restatement of the execution cycle (Equation (8)) of the sequential machine in
Figure 14.
configuration← c0
while true do

configuration← INIT(configuration)
while ¬T0 do

configuration← POP(configuration)
if T1 then

configuration← NENV(configuration)
else

configuration← ENV;HC(configuration)
end if

end while
end while

Remark 7. In the setting of Example 2, the stream returned by the function read() is the GoI
interpretation of the λ-term (�I) concatenated with the stream nil.

Note that the infinite loop in Equation (8) is the only way to concatenate the transitions; in fact,
if we consider the distinct cases of configurations before applying the rules, we have the following
mutually exclusive conditions: (

configuration= c0
)

(T0)(
configuration= (〈α〉, NULL, C,D)

)
and α = 0 (T1)(

configuration= (〈α〉, NULL, C,D)
)
and α
= 0 (T2)(

configuration= (〈α〉, target(α), C,D)) and target(α)
= NULL (T3)

We can restate the machine in a procedural style as reported in Algorithm 3. For an example of
its application, we refer to Figure 15.

Remark 8. By construction, at any step of computation the stack S is either the empty stack,
S= 〈〉, or it contains the next action acting on the graph, S= 〈α〉. However, by definition S may
contain any finite number of actions: this more general setting actually serves to define the Full
Combustion Abstract Machine, defined in Section 5.2 and to prove the correctness of the parallel
execution with respect to the sequential machine (see Theorem 2). We use the same notation to
implement push and pop operations on stacks, so that:

α :: 〈α1, . . . , αn〉 := 〈α, α1, . . . , αn〉.

Remark 9 (On the effectiveness of stream-based computation). The fact that the computation is
stream oriented—i.e. the input is a finite or infinite stream—implies that the machine never stops:
if the input is infinite, then it has no last non-null action; if the input is finite, then it is a stream
which eventually coincides with nil.

Input stream is injected in the core stream C whenever the INIT rule is applied to a configu-
ration and a read() function is called. Both cases display the problem of getting the result of the
computation, for the result it has to be extracted from the dumpD. This problem consists in parti-
tioning the dump graph into terminal nodes and non-terminal ones. To effectively cope with the
terminal nodes, during initialisation we explicitly tag them. Then, in the course of a computation,
the tag for a terminal node is broadcasted to nodes which are source node of actions pointing to
those nodes. As an alternative, actions pointing to terminal nodes can be instantly emitted through

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1401

Figure 15. First steps of computation with the sequential abstract machine of the successor function applied to the integer
n= 10 described in Example 4.

a devoted output streamwithout inserting them in the dump graph. Note that in the special case in
which the input stream has a finite number of actions pointing to terminal nodes, the termination
can be checked dynamically during the computation even if the input stream is infinite.

5.2 Generalised full combustion abstract machine
Now we introduce a variant of the SECD machine defined in Section 5.1. Such a variant pro-
cesses all the actions in a view of base v before focusing on another node: this execution strategy
generalizes the full combustion strategy for DVR to arbitrary dynamic monoids.

Operations of the full combustionmachine differ from the ones in the sequential case since the
POP and ENV rules have been combined in a unique POP† rule. This rule depends on the choice
of a node v, and it can be applied whenever the stream C contains a finite set of actions whose
target refers to v. Moreover, if v does not occur as source node of any action in the stream (as a
consequence of the half combustion rule), no further action with v as target node can be residual
of the action. Whenever an explicit reference to the node v is required, we write POP†v .

Definition 21 (Zero-out-valence node). By zero-out-valence node v of a stream of actions C,
we mean any node not occurring as source node of any action in C. By ZOVC(v), we indicate the
condition holding when v is a zero-out-valence node of C.

While executing steps of the sequential full combustion machine, the choice of the node v in the
POP rule must fall on a zero-out-valence node, otherwise the NENV rule is applied. By following
this strategy we are granted that after processing any action in the stack, the node v is not involved
in any further step of computation.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1402 AC Lai et al.

Figure 16. Sequential full combustion abstract machine.

Processing actions in the stack by the elementary computational step HC is then carried one
action at time step as in the sequential machine until the empty stack is reached. This machine is
given in Figure 16.

The behaviour of this machine is described by the following loop:

(INIT; (NENV∗; POP†;HC∗)∗)∗. (9)

5.3 Strong local confluence in the case M= �∗

In Section 2.1, we supply the set-theoretic description of our computing device where the state is
represented by the dynamic graph G and the task to be executed is represented by the sequence
of pending actions A, see Equation (1). The machine consumes the first action of the sequence,
modifies the state (i.e. the dynamic graph) and computes residual actions�α which are then added
to the sequence of pending actions. The computation of residuals of α has been formalised as the
elementary computational step (Section 3.2) and included in the formal description of the SECD
machine in Section 5.1.

If M=�∗ and the input is the encoding of a λ-term into a virtual net (see Example 2), then
an elementary computational step coincides with a half-combustion step of DVR. In Danos and
Regnier (1993), the theory of VRs was introduced to optimize the execution order: the resulting
calculus was a local and asynchronous way to compute the GoI Execution Formula. Moreover that
calculus was in line with the theory of interaction nets and a strong local confluence property was
shown: in fact, the algebraic modification was sufficient to keep the computation coherent making
the execution formula (the result of the computation) irrespective of the order of execution.

As a consequence, since DVR is obtained as a special case of VR, we get that the generated
residuals can be applied in any order to the graph without affecting the result. This fact is at the
origin of the idea that the computational device can be easily parallelised, and therefore it may
be viewed at the origin of the implementation of PELCR as well (Danos et al. 1997; Pedicini and
Quaglia 2007).

Remark 10. While introducing a model of machine evaluating in parallel (with two or more
computational units exchanging data), we take in account two aspects: first, a term in untyped
λ-calculus may not have a finite execution and second, by the compositional nature of declarative
programming, the machine possibly have to execute the application of a term to the infinite result
of a non-terminating λ-term reduction.

A further motivation for a stream-based approach is that already when there are two compu-
tational units, the second one is required to cope with the infinite sequence of actions produced
by the first one. Hence, in the case of infinite execution, the second computational unit receives a
stream of actions as an input. This is in accordance with the idea that the result of a computation
must be usable as the input of a different computation.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1403

6. Parallel abstract machines
A parallel abstract machine consists of a tuple of units. Any unit has its own configuration consti-
tuted by four components: a stack, an environment, a core stream and a dump. Note that to ensure
that units are capable of performing elementary computational steps independently of each other,
actions need to be properly distributed in the various units. In particular, actions in the core stream
of each unit must have their target node in the dumped graph of the same unit.

We employ the symbol ⊗ to denote the Cartesian product of corresponding components
(stacks, environments, cores, and dumps) belonging to different units. This notation is justified by
considering that concurrent evaluation on each unit requires consistency conditions on the way
the global configuration’s decomposition is managed. Intuitively, the tensor should be regarded as
a disjoint union of the components plus some constraints; for instance, the global dumped graph
(of the machine) is in fact decomposed into a tuple of dynamic graphs, one for each unit; the core
stream of the corresponding unit, which is a stream of actions, must contain only actions with
target node in the dump of the same unit.

First of all, we can use a compact notation for the components of the machine assembled from
k corresponding components of the units. For example, in the case of the stack component we
have:

k⊗
i=1

Si = S1 ⊗ S2 ⊗ · · · ⊗ Sk.

Then, in the special case where all the Si’s are the empty stack, we introduce such a notation:

〈〉k = 〈〉 ⊗ · · · ⊗ 〈〉︸ ︷︷ ︸
k−times

=
k⊗

i=1
〈〉.

Note that the dumped graph D=D1 ⊗D2 ⊗ · · · ⊗Dk is definable as the union of edge sets in
the individual Di that is

D=
k⋃

i=1
Di.

As tradition, we distinguish between synchronous and asynchronous parallel machines. In the
first case, the computing units perform a step of computation at the same time, units are clock
synchronised and the computation proceeds on each unit. An asynchronous computation can be
modelled as a machine with independent units: for instance, the fact that a unit performs many
steps of computation while other units perform one single step can be captured by introducing
a scheduler selecting the unit from which the action is taken and the corresponding elementary
computational step performed.

6.1 Synchronous case
The synchronous model of execution makes the machine run into the computational cycle in a
synchronous way. In other terms, the same step of computation is performed (synchronously) on
any computational unit. This forces to mix together the rules ENV and NENV: in Figure 17 such a
mixed rule is referred to as ENV, while NENV is used to denote the special situation in which all
the current actions in the stack of each unit are 0.

We also stress that at any step of computation the dumped graphs provide a partition of the
global current graph D=D1 ∪ · · · ∪Dk; the graph is decomposed into the disjoint union of its
edges; any edge is attached to one and only one graph Di for some i. In fact, the edge information
is required at the unit hosting the target node, since it is there that an action meets edges of its

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1404 AC Lai et al.

Figure 17. Parallel k-units synchronous abstract machine.

context. Therefore, it is possible that an edge belongs to Di and its source node belongs to Dj
with i
= j. To deal the case of edges with a source node on a graph and target node, we adopt the
following strategy, aiming to avoid duplication of nodes: edges are stored on a graph by accessing
the source node with the reference and the target node explicitly. Thus, in the HC step of Figure 17
we write Di ∪ {αi} meaning that from an action αi we dump an edge specified by the target node
and the reference to the source node:

αi =
((

εit , ε
i
s
)
,
(
vit , ρ

(
vis
))
,wi
)
, (10)

which uniformly treats each edge of the graph and solves the question of the special edges which
cross the partition of the graph.

Remark 11.

1. The computation of the stream (execute(αj))Di is performed by the jth computing unit,
while the sub-stream relative to the nodes in the ith dumped graph Di is zipped to the
stream Ci on the ith computing unit: this leads to the communication of residual actions
towards their respective computing units.

2. Actions in the set of residuals Res(αi) of the action αi possibly have target nodes in the
dumped graph distributed on the units. In fact, the target node of these residual actions
coincides with the source node vis. The unit hosting the node vis is selected by considering
the view (Definition 18) with respect to the dumped graph of the unit; namely, when from
the stream execute(αj) we extract the sub-stream (execute(αj))Di by selection of actions
with target node in Di.

3. In the HC rule we have the formula
k⊗

i=1

(
Ci � (execute(αi1))Di � . . .�

(
execute

(
αid
))

Di

)
expressing the essence of PELCR parallelism: units perform in parallel elementary com-
putational steps associated with the action in the respective stack (if it is non-null) and
produced residual actions are recombined with the core stream of the respective tar-
get node. In particular, this last recombination implicitly involves a communication step
among units which have to transfer residual actions produced by a unit to the unit hosting
the target node of each one.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1405

Figure 18. Parallel k-units asynchronous abstract machine.

4. Note that the source node of pairs of residuals coming from the same action-edge inter-
action is a newly created node v. The new node v can be allocated to any computing unit
depending on the chosen load balancing strategy, whereas vis is hosted by the unit decided
once it was created as a source node in previous steps of computation.

6.2 Asynchronous case
In the asynchronous case one deals with modelling the behaviour of the parallel machine when
the execution steps are not performed at the same time on all computing units. This behaviour is
realised through an asynchronous scheduling mode establishing the order of execution.

The configuration of an asynchronous parallel machine with k computing units is represented
by the four (SECD) components together with a control number taken in the set {1, . . . , k} of unit
identifiers. The control number p attached to the configuration identifies the unit to be activated
at the next transition step:

(p, S, E, C,D)= (p, S1 ⊗ · · · ⊗ Sk, E1 ⊗ · · · ⊗ Ek, C1 ⊗ · · · ⊗ Ck,D1 ⊗ · · · ⊗Dk)

where p ∈ {1, . . . , k}.
The asynchronous model of execution makes the units proceed in the computational cycle

in an independent way. Each unit has to follow the execution cycle as specified in Equation (8),
irrespective of the order of application at different units. At each transition the configuration
is updated by following the rules in Figure 18, where also the control number is updated: the
sequence of control numbers (which is referred as the scheduling) is in turn a stream (of unit
identifiers) and it can be either explicitly specified (forcing the machine to follow a deterministic
strategy in the choice of the unit) or it can be completely random, so that any order of updating
may possibly occur.

This is to say that our asynchronous machine is very similar to the sequential one (and the two
definitions coincide for k= 1). The reader may observe that conditions for determining the rule
to be applied are the very same T0, T1, T2 and T3 of the sequential machine (see Algorithm 3),
albeit parametrised by the control number p.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1406 AC Lai et al.

Remark 12. By choosing the scheduling constant to 1 and by allocating newly created nodes (see
Remark 11.2) to the first unit, we recover the sequential machine. Moreover, if we fix the round-
robin scheduling 1, 2, . . . , k, 1, 2, . . . k, . . . which scans the computing units sequentially one after
the other, we have a k-steps correspondence with the parallel synchronous model.

In the sequel, we use full combustion strategy as a means to show invariance of execution with
respect to the parallel version. To this aim, we introduce full combustion also in the case of k-units
machines. This strategy is straightforwardly implemented in the asynchronous case by adding a
POP† rule which performs on the unit hosting the chosen zero-out-valence node v. Therefore, the
scheduling in the full combustion strategy for the parallel asynchronous machine is determined
by the chosen sequence of nodes v, i.e., the scheduling is a sequence of repeated control number
p(v), the number associated with the hosting unit of v, for the subsequent HC transitions, until the
stack is emptied.

The POP-rule for the k-units machine performing full combustion is therefore given as

POP†(v)

p := p(v)

⎛
⎝p, 〈〉k, NULLk,

k⊗
i=1

Ci,
k⊗

i=1
Di

⎞
⎠ X= {α1, . . . , αn} (Cp)v = set2stream(X) ZOVCp(v)

⎛
⎝p, 〈〉p−1 ⊗ 〈α1, . . . , αn〉 ⊗ 〈〉k−p, NULL p−1 ⊗ v⊗ NULLk−p,

p−1⊗
i=1

Ci ⊗ strip(Cp, (Cp)v)⊗
k⊗

i=p
Ci,

p−1⊗
i=1

Di ⊗Dp ∪ {v} ⊗
k⊗

i=p+1
Di

⎞
⎠

Thus, the full combustion consists in applying rules in a loop similar to Equation (9) by following
scheduling driven by the choice of a node v and acting on the hosting unit p(v):

(INIT; (NENV∗; POP†(v); HC∗)∗)∗. (11)

Note that by HC, we mean a k-ary version of the half combustion rule in Figure 16 since in this
mode of execution at most one stack is non-empty at any given step

HC

⎛
⎝p, 〈〉p−1 ⊗ α :: S⊗ 〈〉k−p, NULLp−1 ⊗ v⊗ NULLk−p,

k⊗
i=1

Ci,
k⊗

i=1
Di

⎞
⎠

⎛
⎝p, 〈〉p−1 ⊗ S⊗ 〈〉k−p, NULL p−1 ⊗ v⊗ NULLk−p,

k⊗
i=1

Ci � (execute(α))Di ,
p−1⊗
i=1

Di ⊗Dp ∪ {α} ⊗
k⊗

i=p+1
Di

⎞
⎠

Note also that in such a version of the machine the scheduling is determined by the choice of
the node selected in the POP rule; therefore, it may be omitted when stating the POP and HC.

7. Execution equivalence
In this section, we assume that M=�∗ and that the input is the encoding of a λ-term into a
virtual net. As mentioned in Section 5.3, under these assumptions the sequential machine realises
the graph reduction introduced in Danos et al. (1997), namely DVR. We sketch the soundness
of the parallel computation with respect to the sequential one. We assume the soundness of the
sequential machine by definition of DVR and we obtain the soundness of the parallel version by
showing that for any input stream obtained by the read() function at step 0 of the parallel and of
the sequential machines, we have the same sequence of computational steps, executed by both the
machines (up to zero steps or reordering of residuals of computational steps).

We are to introduce the notion of equivalence of the configurations of two machines.

Definition 22 (Dynamic graph isomorphism). A graph isomorphism φ :D1→D2 is a bijection
between graphs preserving adjacency (i.e. v1 and v2 are adjacent in D1 if and only if φ(v1) and φ(v2)
are adjacent in D2).

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1407

We extend this definition to polarised dynamic graphs by assuming that φ also preserves the labels
of edges and the product of target polarities of pairs of edges incident on the same node. In particular,
for each edge e1 = ((εt , εs), (vt , vs),w) of D1 one has φ(e1)= ((ε′t , ε′s), (φ(vt), φ(vs)),w) and for all
pairs of edges incident on the same node, the corresponding target polarities, say εt1 and εt2 , satisfy
εt1εt2 = ε′t1ε

′
t2

1.

Definition 23. Let c1 = (S1, E1, C1,D1) and c2 = (S2, E2, C2,D2) be configurations of the machines
M1 and M2, respectively. We say that c1 is equivalent to c2 (c1 � c2) whenever there exists an
isomorphism φ of dynamic polarised graphs between D1 and D2 such that:

1. for any node v ∈D1 we have equivalent views on the two core streams when taking v and its
corresponding node φ(v), that is (C1)v ≈ σ ((C2)φ(v)) for some permutation of actions σ ,

2. the two stacks contain isomorphic actions: S1 = 〈α〉 is isomorphic with S2 = 〈β〉 (i.e.
β = φ(α)).

Lemma 1. The relation� between configurations is an equivalence relation.

Proof. Trivial:� is the intersection of two equivalence relations.

Another important fact is that any elementary step of reduction, performed on actions with the
same target node, is executed on the same computational unit:

Lemma 2. For any fixed polarised node vε , actions in α ∈ (S)vε are originated by actions acting on
the same node, i.e. there exists v0 such that for any α ∈ (S)vε there exists β with target(β)= v0 and
α ∈ Res(β).

Proof. Immediate after the definition of polarised view of the core stream with respect to a node
(Definition 18).

Remark 13. Sequential abstract machines are initialised with empty configurations. Also, after a
read operation, the view of base v even if considered onmultiple streams (like in the case of parallel
machines) corresponds to the viewwith respect to just one stream. This is because the base v possi-
bly belongs to atmost one of the dumped graphs (as a consequence of the redistribution of residual
actions with respect to the dumped graph where a node is dumped, see Equation (10)). Thus, the
notion of full action v.c amounts to the configuration obtained starting with configuration c after
the execution of one step of full-combustion with base v, i.e.

v.c := POP†v ;HC∗(c)
When applied to parallel machines, it results in performing the pop of the set of actions with target
node v and then by iterating the elementary computational step on such a set of actions on the unit
containing the node v. Note also that the dumped graphs of the other units are left unchanged.

We are in position to prove that full combustion implemented in the parallel case is equivalent
to sequential full combustion:

Theorem 2. Let M1 be a sequential machine and M2 a parallel machine. If a configuration c1 of
M1 is equivalent to the configuration c2 of M2 (i.e. there exists a graph isomorphism φ satisfying
Assumptions 1 and 2 of Definition 23), then v.c1 is equivalent to φ(v).c2.

Proof. By hypothesis, v.c1 is one step of full-combustion with base v. This implies that v is a zero-
out valence node with respect to the core stream of the configuration c1 (otherwise, by definition,
we cannot perform the step of full combustion). On the other hand, the equivalence c1 � c2 also

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1408 AC Lai et al.

ensures that φ(v) is a zero-out valence node with respect to the core stream of the configuration
c2. After this step of computation, we can show that c′1 := v.c1 is equivalent to c′2 := φ(v).c2 by
establishing an isomorphism φ′ between c′1 and c′2. For any pair (αi, αj) of opposite polarities in
the view of base v, we possibly have a pair of residuals (α′i , α′j) after performing the full action v.c1;
these two residuals have a new common source node vs; thus, it suffices to consider φ′ coinciding
with φ on nodes and edges in c1 and defining φ′(vs) as equal to the common source node of the
pair of residuals of (φ(αi), φ(αj)).

8. Conclusions
In this paper, we introduce a stream-based class of abstract machines whose elementary step gen-
eralises the half-combustion strategy for DVR. When one considers the classical GoI setting, the
proposed approach supplies a stream-based description of PELCR, thus highlighting the message
interchangemechanism at the base of the parallel executions of termswith PELCR. Although there
exist implementations of functional languages that are generally more efficient in the sequential
case, the advantage of PELCR is that it can execute those jobs whose huge size turns out to be
intractable on sequential machines. Parallel implementations of optimal reductions are tricky,
insofar as without optimisation they are not particularly efficient. Moreover, most of the signif-
icant optimisations only works in the sequential case, like in Asperti’s implementation based on
safe operators (Asperti and Chroboczek 1997), which employs a sequential safe-tagging algorithm.
PELCR’s capability of distributing dynamically the workload among the available processors dis-
plays intrinsic parallelism of programs at hand (thus requiring no annotation on the part of the
programmer).

Starting from this work, it is our intention to conduct a quantitative analysis of the behaviour of
PELCR when executed on parallel and distributed architectures. We finally remark that the paper
also contains a first exploration of possible applications of PELCR to input structures different
from virtual nets. Indeed, an example of computation of the language recognised by an automaton
and an encoding of natural numbers are proposed. In future work, we plan to investigate possible
further relations between PELCR and other models of computations. We wish also to introduce
a probabilistic dimension in the parallel evaluation of functional programming languages, with
a very simple semantics and therefore a clear interpretation of what is a stochastic evaluation of
λ-terms, independent from the evaluation strategy. The idea is to have a semantics relying on the
adequacy of the local and asynchronous evaluation.

Author ORCIDs. Marco Pedicini https://orcid.org/0000-0002-9016-074X

Acknowledgements. A preliminary version of this paper was presented at the Symposium on Trends in Functional
Programming 2014 as Pedicini et al. (2014). The new presentation of similar contents is here improved and corrected by
filling deficiencies in their presentation as well as by considering new cases in examples, including a new result (Theorem 1)
stating how abstract machines can be used as a computational device in the context of formal languages.

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and
suggestions.

Notes
1 Note that by construction, when considering pairs of dynamic graphs generated by the sequential abstract machine, the
product of source polarities of edges outgoing from the same node is automatically preserved.

References
Accattoli, B., Barenbaum, P. and Mazza, D. (2014). Distilling abstract machines. In: Proceedings of the 19th ACM SIGPLAN

International Conference on Functional Programming, Gothenburg, Sweden, September 1–3, 2014, 363–376.
Allombert, V. and Gava, F. (2018). An ML implementation of the MULTI-BSP model. In: 2018 International Conference on

High Performance Computing Simulation (HPCS), 500–507. Orleans, France.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://orcid.org/0000-0002-9016-074X
https://doi.org/10.1017/S096012951900001X

Mathematical Structures in Computer Science 1409

Asperti, A. and Chroboczek, J. (1997). Safe operators: Brackets closed forever optimizing optimal lambda-calculus implemen-
tations. Applicable Algebra in Engineering, Communication and Computing 8(6) 437–468.

Asperti, A., Giovanetti, C. and Naletto, A. (1996). The Bologna optimal higher-order machine. Journal of Functional
Programming 6(6) 763–810.

Asperti, A. and Guerrini, S. (1998). The Optimal Implementation of Functional Programming languages, vol. 45, Cambridge
University Press.

Baillot, P. and Pedicini, M. (2001). Elementary complexity and geometry of interaction. Fund. Inform. 45(1–2) 1–31. Typed
lambda calculi and applications (L’Aquila, 1999).

Canavese, D., Cesena, E., Ouchary, R., Pedicini, M. and Roversi, L. (2014). Can a light typing discipline be compatible with
an efficient implementation of finite fields inversion? Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8552:38–57.

Canavese, D., Cesena, E., Ouchary, R., Pedicini, M. and Roversi, L. (2015). Light combinators for finite fields arithmetic.
Science of Computer Programming 111(3) 365–394. Special Issue on Foundational and Practical Aspects of Resource
Analysis (FOPARA) 2009–2011.

Cesena, E., Pedicini, M. and Roversi, L. (2012). Typing a core binary-field arithmetic in a light logic. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7177 LNCS:19–35.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C. and Sarkar, V. (2005). X10:
an object-oriented approach to non-uniform cluster computing. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, 519–538. ACM. San
Diego, California, USA.

Cousineau, G. and Mauny, M. (1998). The Functional Approach to Programming, Cambridge University Press.
Curien, P.-L. (1991). An abstract framework for environment machines. Theoretical Computer Science 82(2) 389–402.
Dal Lago, U., Faggian, C., Valiron, B. and Yoshimizu, A. (2015). Parallelism and synchronization in an infinitary context. In:

2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015), IEEEComputer Society, Los Alamitos,
CA, 559–572.

Danos, V., Pedicini, M. and Regnier, L. (1997). Directed virtual reductions. In: Computer science logic (Utrecht, 1996), vol.
1258 of Lecture Notes in Computer Science Springer, Berlin, 76–88.

Danos, V. and Regnier, L. (1993). Local and asynchronous beta-reduction (an analysis of Girard’s execution formula). In:
Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science (LICS 1993), IEEE Computer Society
Press, 296–306.

Danos, V. and Regnier, L. (1995). Proof-nets and the Hilbert space. In: Advances in Linear Logic, Montreal, Quebec, Canada.
Cambridge University Press, 307–328.

Fairbairn, J. and Wray, S. (1987). TIM : A Simple Lazy Abstract Machine to Execute Supercombinators. In: Kahn, G. (eds.)
Proceedings of Conference on Functional Programming and Computer Architecture, vol. 274 of Lecture Notes in Computer
Science, Springer-Verlag, 34–45.

Girard, J.-Y. (1989). Geometry of Interaction I. Interpretation of system F. In: Logic Colloquium ’88 (Padova, 1988), vol. 127
of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 221–260.

Girard, J.-Y. (1990). Geometry of Interaction II. Deadlock-free algorithms. In: COLOG-88 (Tallinn, 1988), volume 417 of
Lecture Notes in Computer Science, Springer, Berlin, 76–93.

Girard, J.-Y. (1995). Geometry of interaction III: Accommodating the additives. In Advances in Linear Logic, Cambridge
University Press, 329–389.

Gonthier, G., Abadi, M. and Lévy, J.-J. (1992). The Geometry of Optimal Lambda Reduction. In: Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Albuquerque, New
Mexico, 15–26.

Hindley, J. R. and Seldin, J. P. (1986). Introduction to Combinators and λ-Calculus, vol. 1 of London Mathematical Society
Student Texts, Cambridge University Press.

Lamping, J. (1989). An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM, 16–30. San Francisco, California, USA.

Landin, P. J. (1964). The mechanical evaluation of expressions. Computer Journal 6(4) 308–320.
Lawson, M. V. (1998). Inverse Semigroups: The Theory of Partial Symmetries, World Scientific.
Lévy, J.-J. (1978). Réductions Correctes et Optimales Dans le Lambda-Calcul. PhD thesis, Université Paris VII.
Lévy, J.-J. (1980). Optimal reductions in the lambda-calculus. To HB Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism, 159–191.
Mackie, I. (1995). The geometry of interaction machine. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM, 198–208. San Francisco, California, USA.
Muroya, K. and Ghica, D. R. (2017). The dynamic geometry of interaction machine: a call-by-need graph rewriter. In:

Computer science logic 2017, volume 82 of LIPIcs. Leibniz Int. Proc. Inform., Art. No. 32, 15. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern.

Pedicini, M. (1998). Exécution et Programmes. PhD thesis, Université Paris VII.

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X

1410 AC Lai et al.

Pedicini, M., Pellitta, G. and Piazza, M. (2014). Sequential and parallel abstract machines for optimal reduction. In: Hage, J.
(ed.) Preproceedings of the 15th Symposium on Trends in. Functional Programming. Soesterberg, the Netherlands.

Pedicini, M. and Piazza, M. (2018). Kálmar elementary complexity and von Neumann algebras. Panamerican Mathematical
Journal 28(4) 1–28.

Pedicini, M. and Quaglia, F. (2000). A parallel implementation for optimal lambda-calculus reduction. In: Proceedings of the
2nd ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming – PPDP ’00. Montreal,
Quebec, Canada.

Pedicini, M. and Quaglia, F. (2002). Scheduling vs communication in PELCR. In: Monien, B. and Feldmann, R. (eds.) Euro-
Par 2002 Parallel Processing, Springer, Berlin Heidelberg, 648–655.

Pedicini, M. and Quaglia, F. (2007). PELCR: parallel environment for optimal lambda-calculus reduction. ACM Transactions
on Computational Logic (TOCL) 8(3).

Pinto, J. S. (2001). Parallel Implementation Models for the Lambda-Calculus Using the Geometry of Interaction. In:
Abramsky, S. (eds.) Typed Lambda Calculi and Applications, vol. 2044 of Lecture Notes in Computer Science, Springer,
Berlin, 385–399.

Regnier, L. (1992). Lambda-calcul et réseaux. PhD thesis, Université Paris VII.
Rutten, J. J. M. M. (2005a). A coinductive calculus of streams.Mathematical Structures in Computer Science 15(01) 93–147.
Rutten, J. J. M. M. (2005b). A tutorial on coinductive stream calculus and signal flow graphs. Theoretical Computer Science

343(3) 443–481.
Solieri, M. (2016). Geometry of resource interaction and Taylor-Ehrhard-Regnier expansion: A minimalist approach.

Mathematical Structures in Computer Science 1–43.
Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the Association of Computing Machinery

33(8) 103–111.
Valiant, L. G. (2011). A bridging model for multi-core computing. Journal of Computer and System Sciences 77(1) 154–166.

Cite this article: Lai AC, Pedicini M and Piazza M (2019). Abstract machines, optimal reduction, and streams.Mathematical
Structures in Computer science 29, 1379–1410. https://doi.org/10.1017/S096012951900001X

https://doi.org/10.1017/S096012951900001X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951900001X
https://doi.org/10.1017/S096012951900001X

