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In studies of the turbulent air flow over water waves it is usually assumed that
the effect of viscosity near the water surface is negligible, i.e. the Reynolds number,
Re = u∗λ/ν, is considered to be high. However, for short waves or low wind speeds this
assumption is not valid. Therefore, a second-order turbulence closure that takes into
account viscous effects is used to simulate the air flow. The model shows reasonable
agreement with laboratory measurements of wave-induced velocity profiles. Next, the
dependence of the dimensionless energy flux from wind to waves, or growth rate,
on Re is investigated. The growth rate of waves that are slow compared to the
wind is found to increase strongly when Re decreases below 104, with a maximum
around Re = 800. The numerical model predictions are in good agreement with
analytical theories and laboratory observations. Results of the study are useful in
field conditions for the short waves in the spectrum, which are particularly important
for remote sensing applications.

1. Introduction
The air flow over water waves and the consequential growth of the waves are

a permanent subject of investigation. The main reason for this is that numerical
model predictions of wave growth rates are consistently lower than indicated by
measurements (Mastenbroek et al. 1996; Belcher & Hunt 1998). Observed growth
rates were compiled by Plant (1982) and plotted as a function of c/u∗, where c is the
phase velocity of the wave and u∗ the friction velocity of the air flow. Considerable
scatter is present, which suggests that other parameters may be necessary to explain
variations in the growth rate. Such a parameter, which has received little attention
so far, is the Reynolds number, Re = u∗λ/ν (here λ is the wavelength and ν the
kinematic viscosity of the air). In most studies it is assumed that Re is high enough
that dynamic effects of viscosity can be neglected. However, this assumption breaks
down for short waves or low wind speeds.

The purpose of the present article is to investigate numerically the influence of the
Reynolds number on the structure of the air flow over water waves. This impact is
not only important for a proper interpretation of laboratory experiments, but also in
the field the assumption that Re is high is sometimes violated, as was concluded in
an analysis by Harris, Belcher & Street (1996) of experiments by Snyder et al. (1981).
Furthermore, Re is especially low for short waves, which are always present on the
sea surface. They support a large part of the momentum flux from the atmosphere
to the sea (Makin, Kudryavtsev & Mastenbroek 1995) and are important for remote
sensing applications.
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In numerical simulations of the air flow above waves, the choice of the turbulence
closure scheme is crucial. Belcher & Hunt (1993) applied the theory of rapid distortion
of turbulence to the description of the flow over hills and waves. From their work,
it follows that turbulence closures based on an eddy viscosity concept overestimate
stress perturbations in the so-called outer region of the flow. Mastenbroek et al. (1996)
confirmed this by comparing numerical results from different turbulence models with
laboratory observations. They recommended the use of a second-order Reynolds
stress closure.

A numerical study taking into account viscous effects was carried out by Harris et
al. (1996). They used a linear model with an e-ε turbulence closure and performed
calculations for both coupled and uncoupled air water flow. The eddy viscosity was
damped in the outer region to avoid overestimation of the stress perturbations.
Simulating the flow over hills they found that the form drag increases considerably
when Re drops below 2× 104.

In this work we solve full nonlinear equations for the air flow and employ a low-Re
second-order turbulence closure scheme (Craft & Launder 1996). The numerical model
is thought to be general enough to describe the important features of the air flow.
In comparison with Harris et al. our approach has the advantage that no artificial
adjustments to the model have to be made. The model computations are compared
with observations performed by Stewart (1970). This experiment is particularly suited
for the present investigation, because it was conducted at low Reynolds numbers
and covered a wide range of wave ages. Next, growth rates following from the low-
Re model are compared with experiments, analytical theories and other numerical
models. It is concluded that viscous effects are important when Re < 104 and lead to
enhanced wave growth.

2. Numerical model
The flow of air over a train of monochromatic water waves is investigated. The

waves, propagating in the x-direction, give a surface elevation η, which is assumed to
be

η = a cos (kx− ωt), (2.1)

where a is the amplitude and ω the angular frequency of the wave; k is the wavenum-
ber and t is time. The wind also blows in the x-direction and the water surface is
taken to be invariant under translations in the y-direction, so that the remaining
problem is two-dimensional. For a wave in deep water the dispersion relation gives

ω2 = gk +
γ

ρw
k3, (2.2)

where g is the acceleration due to gravity, γ the surface tension of water and
ρw the water density. Finally, the air flow is considered to be statistically steady,
incompressible and neutrally stratified.

2.1. Governing equations and turbulence modelling

The air flow is governed by the Reynolds-averaged Navier–Stokes equations:

∂ūj

∂xj
= 0, (2.3)
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∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi

∂xj
− u′iu′j

)
. (2.4)

Here (u1, u2, u3) ≡ (u, v, w) denotes the velocity vector, (x1, x2, x3) ≡ (x, y, z) is the
spatial coordinate, p the pressure, ρ the air density and ν the kinematic viscosity
of the air. Bars represent Reynolds-averaged quantities and primes denote turbulent
fluctuations. In the remainder of this paper the bars above the velocity components
and pressure will frequently be dropped for notational convenience.

The above set of equations contains the Reynolds stresses u′iu′j , which must be
parameterized. In second-order closure schemes, conservation equations are solved
for these turbulent stresses:

∂u′iu′j
∂t

+ ūk
∂u′iu′j
∂xk

= Pij + dij +Πij − εij , (2.5)

where the terms on the right-hand side denote production, diffusion, pressure–velocity
correlations and dissipation, respectively. Additionally, an equation is solved for the
dissipation rate, ε, of turbulent kinetic energy. Most terms in these equations require
modelling. In this study, a closure scheme (Craft & Launder 1996) is used which is
valid down to the viscous sublayer close to the air–sea interface. This model will be
referred to as the low–Reynolds model. It is outlined in detail in the Appendix.

To assess the impact of the Reynolds number, control runs are performed with a
second-order model (Launder, Reece & Rodi 1975) that does not take into account
viscous effects and is called the high-Re model in this paper. Results obtained with
this model were presented in Mastenbroek et al. (1996). In § 3, it is explained why
such advanced closure schemes are used.

2.2. Computational set-up

For solution of the conservation equations (2.3), (2.4) and (2.5), the coordinates
(x, z) are transformed to wave-following coordinates (χ, ξ): χ = k(x − ct)/2π, where
c = ω/k is the wave phase velocity, and ξ = (z − η)/(h− η), where h is the height of
the computational domain.

2.2.1. Boundary conditions

The length of the computational domain is one wavelength λ = 2π/k. Periodic
conditions are applied at the up- and downstream boundaries. The height of the
domain is normally taken as h = λ. At this height, the wave-induced perturbations
are negligible. Therefore, at the upper boundary the horizontal velocity component
is specified and the vertical component is set to zero. For the turbulent moments
the vertical gradient is set to zero. In boundary layers, the dissipation ε is inversely
proportional to the distance from the surface. Thus, a proper boundary condition is
∂(εz)/∂z = 0.

At the lower side of the domain, the orbital velocities of the wave, u0 = aω cos
(kx−ωt) and w0 = aω sin (kx−ωt), are imposed. For the remaining flow variables the
numerical treatment of the lower boundary is different in the low-Re and the high-Re
model. In the former, the homogeneous dissipation rate and the Reynolds stresses
are set to zero. In the latter, synthetic boundary conditions have to be used, which
require specification of the roughness length z0. Via z0, the local tangential surface
stress along the wave surface is calculated and, subsequently, equilibrium values for
the turbulent stresses and the dissipation are imposed. Details on the implementation
can be found in Mastenbroek (1996).
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2.2.2. Numerical method and discretization

The conservation equations listed in § 2.1 comprise a set of ten coupled nonlinear
partial differential equations for ten flow variables, subject to the boundary con-
ditions described in § 2.2.1. They are solved in the following way. The momentum
equations are rewritten to obtain a Poisson equation for the pressure. This equation
is solved using the successive over-relaxation method with Chebyshev acceleration.
The conservation equations are then iteratively integrated forward in time with a
second-order predictor–corrector method, where, at every timestep, an updated value
for the pressure, as obtained by the above method, is used. The difference between
integration with a first- and second-order accurate method is used to estimate the
optimal size of the next timestep. The calculations start from an initial condition and
proceed until a steady state is reached.

For the spatial discretization of the conservation equations, a second-order finite
difference method is used. The grid is staggered: the pressure is calculated at cell
centres, the other variables at cell edges. To obtain sufficient resolution near the
surface, non-uniform meshes are used in which the grid points are closely spaced near
the air–water interface and distributed logarithmically away from the surface. Thus,
the spacing between two subsequent vertical layers increases with a constant factor.
Meshes are chosen such that at least some grid points are within the viscous sublayer,
bounded by z+ = zu∗/ν < 5. A typical mesh has 60 points in the vertical and 32
(uniformly spaced) in the horizontal direction. With these grids, the solution is found
to be indifferent to a further increase of the resolution. More detailed information on
the numerical implementation can be found in Burgers & Makin (1993).

2.3. Representation of the data

In § 4, model results are compared with experimental data. This comparison concerns
the vertical profiles of wave-induced perturbations. Let q̃ denote the wave-induced
part of a quantity q:

q̃ = q̄ − 〈q̄〉, (2.6)

where 〈 〉 represents horizontal averaging over a wavelength. In the remainder of this
paper, it is also denoted by capitals (e.g. U = 〈ū〉). Wave-following coordinates are
used in the model, but the averaging can be performed both in Cartesian and in
wave-following coordinates.

For the analysis, it is convenient to look at the amplitude q̂ of the first harmonic
of q̃:

q̃ = 1
2
[q̂e2πiχ + q̂∗e−2πiχ] + harmonics, (2.7)

where χ is the wave-following horizontal coordinate and q̂∗ denotes the complex
conjugate of q̂. The complex amplitude is a function of z only. The real part Re[q̂]
gives the amplitude in phase with the wave elevation; the imaginary part Im[q̂] gives
the amplitude in phase with the wave slope. A positive value of Im[q̂] corresponds
to an enhancement of q above the windward slope of the wave.

2.4. Dimensionless parameters

At this point it is worthwhile to note which dimensionless parameters determine the
solution of the above described problem. The first parameter is the steepness of the
wave, ak. When the steepness is low (ak < 0.1), the first-order perturbations induced
by the wavy surface are of primary importance, and nonlinear effects are small. This
means that the growth rate (see § 5) is then independent of ak, which was confirmed,
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e.g. by Gent & Taylor’s (1976) numerical simulations. In this paper, we will focus on
waves with a low steepness.

The ratio of the phase velocity of the wave to the wind speed is the second
parameter. It is represented by the wave age, c/u∗. The third parameter is dependent
on the model that is used. In the case of the low-Reynolds model, the dynamic effects
of viscosity are important. Hence, the actual value of the velocity, which is non-
dimensionalized in the Reynolds number, is important. From the various possible
definitions of the Reynolds number, we will use Re = u∗λ/ν, as was mentioned
before. In the high-Re model the Reynolds number is assumed to be so large that its
actual value does not matter. In exchange, another parameter must be considered: the
roughness. Whereas in the low-Reynolds model a smooth surface is assumed, the high-
Re model captures roughness elements on the surface by employing the dimensionless
roughness length kz0. From the above, it may be clear that the applicability of the
low-Re model is limited. The computational requirements increase with the range of
scales that have to be resolved, from the smallest ν/u∗ to the largest λ, and this range
grows exactly with the Reynolds number.

3. Characterization of the wave boundary layer
In this section we briefly repeat the framework of the rapid distortion theory of

turbulence, as introduced by Belcher & Hunt (1993) for the flow over water waves.
Special attention will be paid to the inclusion of viscosity into their scaling arguments.

3.1. Wave-induced turbulence

For a proper description of turbulence in the air flow above waves, two timescales
are relevant. First, the advection timescale TA ∼ λ/|U(z) − c| represents the time it
takes for a turbulent eddy to pass over a wave. On this timescale, turbulent eddies
feel changes in the velocity gradient of the mean flow. The second timescale TL
(Lagrangian timescale) characterizes the time it takes for an eddy to come into
equilibrium with the local velocity gradient. It is the ratio of the typical size, κz, and
velocity scale, u∗, of an eddy: TL ∼ κz/u∗. Here, κ = 0.41 is the von Kármán constant.

The wave boundary layer is now divided into an inner and an outer region, where
TA > TL and TA < TL, respectively. The location of the top of the inner region, lH ,
is given by TL ∼ TA and it is defined with a proportionality constant such that:

klH = 2κ
u∗

|U(lH )− c| . (3.1)

In the inner region close to the water surface, eddies adjust to local conditions before
they are substantially transported. On the other hand, in the outer region, they have
no time to come into equilibrium with the mean shear; they are rapidly distorted.
This implies that the turbulent shear stress perturbations decay quickly in the outer
region, because advection smoothes out stress variations over the wave. In § 4 it will be
outlined that the shear stress perturbations in the inner region produce asymmetries
in the air flow, which finally cause growth of the wave.

This division has consequences for turbulence modelling. In the inner region, where
production and dissipation of turbulence are locally in balance, the use of an eddy-
viscosity closure is appropriate. However, in the outer region advection of turbulent
moments has to be taken into account and this can be done by using a second-order
scheme. It was shown by Mastenbroek et al. (1996) that, with such a closure, the
effects of rapid distortion can be modelled, whereas eddy-viscosity closures fail to
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Figure 1. Location of layers in the wave boundary layer as a function of wave age: −−−, inner
region depth kl; − − −, critical height kzc; − · −, depth of viscous sublayer kzν . �, Re = 250;
M, Re = 1500; �, Re = 8000.

reproduce correctly the wave-induced turbulence in the outer region. For this reason,
a second-order Reynolds stress model is used in this study.

3.2. The role of viscosity

In a viscous layer, perturbations to the shear stress decay on a scale

z =

(
2ν

k|U(z)− c|
)1/2

. (3.2)

This fact can be used to generalize (3.1). A rough estimate for the mean horizontal
velocity profile is needed. It is obtained by integrating

∂U

∂z
=

u2∗
ν + νt

, (3.3)

with the turbulent viscosity νt defined as

νt(z) = κzu∗fD(z). (3.4)

Here fD(z) = 1 − exp (−z+/A+), with A+ = 28, is the Von Driest damping function
(e.g. Baldwin & Lomax 1978). Now the definition of the inner region depth can be
generalized to:

kl =

(
2[ν + νt(l)]k

|U(l)− c|
)1/2

. (3.5)

This equation describes the height at which the combination of viscous and turbulent
stress perturbations decays.

In figure 1 the inner region depth following from (3.5) is plotted as a function
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Case U∞ [m s−1] u∗ [m s−1] Re c/u∗ Uλ/c kl kzc kzν

1 2.27 0.117 3015 6.83 3.46 0.11 0.02 0.06
4 1.02 0.058 1487 13.9 1.58 0.49 0.27 0.13
7 0.56 0.036 867 23.8 0.86 0.03 24 0.22

Table 1. Parameters for selected cases of Stewart’s experiment.

of the wave age for three different Reynolds numbers. The height of the viscous
sublayer, given here by z+

ν = 30, is also shown. For Re = 8000, the larger part of the
inner region is outside the viscous layer. This means that asymmetry in the flow is
mainly created by turbulent stresses. By contrast, when Re = 250, the inner region
falls completely within the viscous layer and thus molecular forces are responsible for
wave growth.

The critical height, zc, is also plotted. It is the height at which the wind speed equals
the phase velocity of the wave: U(zc) − c = 0. For waves that are slow compared
to the wind, zc is low. In contrast, fast waves have a large critical height. It follows
from figure 1 that when Re decreases, the range of wave ages for which a wave is
considered to be slow, becomes smaller.

4. Comparison with experiment
In this section, model calculations are compared with Stewart’s (1970) experiment.

In this experiment, detailed observations of the velocity field above water waves were
performed. The observations are particularly suited for comparison with the present
model, since the Reynolds numbers are low: Re = 870–3000. Additionally, the flow
can be considered smooth. An indicator for this is the roughness Reynolds number,
Rer = z0u∗/ν, which is approximately Rer = 0.24 in Stewart’s experiment, whereas an
ideally smooth surface would give Rer = 0.11. A wide range of wave ages is covered,
which allows a detailed investigation of wave-age dependence. Other laboratory
observations of the air flow over water waves include those by Hsu & Hsu (1983)
and Mastenbroek et al. (1996). However, these are less appropriate for the present
purposes, because their Reynolds numbers are fairly high (6000 < Re < 13 000 for
Hsu & Hsu and 8700 < Re < 13 000 for Mastenbroek et al.).

4.1. Experimental set-up

Stewart’s measurements were carried out in a wind–water tunnel, which was 5.90 m
long, 59 cm high and 57 cm wide and contained 21 cm of water. The waves were
created by a submerged flat plate, hinged at the bottom. They had a wavelength
λ = 40.8 cm and an amplitude a = 0.64 cm (steepness ak = 0.1). The waves were
short enough not to feel the bottom of the tank, so that the deep-water dispersion
relation gives c = 79.6 cm s−1. A fan at the downwind end of the tunnel produced a
variable wind speed. From the seven reported cases, we pick three to compare with
the numerical model. An overview of the free-stream velocities U∞ for these cases is
given in table 1. The instruments were located at 3.96 m from the entrance and 2.74 m
from the wave-maker. At this location the boundary-layer depth was about 10 cm.
The velocity measurements were performed with hot-wire anemometers.
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4.2. Error estimation

Stewart gives a detailed estimate of the errors in the observations. The first class
of error sources includes the inaccuracy of the electronic measurements, the tem-
perature dependence of the hot wires and the inaccuracy of the calibrations. These
lead to an accuracy of the mean velocity within 1.5%. Next, there are geometrical
errors in resolving the velocity components, so that part of the horizontal velocity
can appear as a vertical velocity. These errors are particularly felt in the wave-
induced velocities ũ and w̃. These quantities are thought to be resolvable to 1%
of the mean horizontal velocity. The measurements of the spectra of the wave-
induced velocities include contributions from turbulent fluctuations. However, these
contributions are found to be small and thus cause little error. The influence of
fluctuations in U∞ on the results was tested by repeating the measurements several
times. The magnitude of q̂ was found to vary about 20% and the phase about
10◦. Finally, the error made in retrieving the data from the plots in Stewart is
small enough to be ignored. The error bars in figures 2 to 4 show the largest of
the errors above mentioned. However, at the lowest wind speeds, notably in case
7, the accuracy of the hot-wire anemometers is questionable and the error may be
larger.

4.3. Set-up of the simulations

In the simulations we attempt to approximate the experimental conditions as closely
as possible. Special care is necessary for the wind speed. In the model, an open
boundary layer is simulated and the flow is driven by Uλ, the mean horizontal wind
speed at height z = λ. In contrast, the experiment is in a tunnel and the flow is
forced by a pressure gradient. To define the model runs a value for Uλ is obtained
by extrapolating the logarithmic part of the mean horizontal velocity profile of the
measurements to the height λ. This leads to the values in table 1.

Of course caution is needed when comparing confined-flow experiments with open-
boundary-layer calculations. However, it can be argued (e.g. Yaglom 1979) that the
influence of the pressure gradient in a channel flow may be neglected when z � δp,
where δp is the pressure gradient lengthscale, which equals the channel half-width. In
the experiment δp = 19 cm and measurements were taken at z < 8 cm.

Another parameter to be specified in the high-Re model is the surface roughness
z0. It is obtained from the logarithmic fit through the mean velocity data.

4.4. Results

In figures 2 to 4 the observed vertical profiles of the amplitudes of the wave-
induced velocity are compared with those computed by the numerical model. The
amplitudes are scaled with the wave steepness ak and the velocity at the centre of
the channel U∞. The vertical axis gives the dimensionless height kz above the mean
water level.

Figure 2 shows the results for the highest wind speed. This case is typical for a
relatively slow wave. The models predict almost the same vertical profiles for the
real part of the horizontal, Re [û], and the imaginary part of the vertical velocity
perturbation, Im [ŵ]. These two components form the part of the flow in phase with
the wave, i.e. in phase with the orbital movement of the water. Compared to the
measurements, Im [ŵ] is slightly overestimated. The components Re [ŵ] and Im [û]
are created by the work of viscous and turbulent stresses in the inner region. This
can be clarified with the out-of-phase part of the momentum conservation equation
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Figure 2. Vertical profiles of the wave-induced amplitudes of the horizontal and vertical velocity
for case 1: ——, low-Re model; −−−, high-Re model; �, measurements (Stewart 1970).
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Figure 3. As figure 2, but for case 4.

(2.4) for the wave-induced perturbations, which reads in Cartesian coordinates:

−(U − c) Im [û] + Re [ŵ]
dU

dkz
=

1

ρ

(
Im [p̂] +

d Re [τ̂]

dkz

)
, (4.1)

(U − c) Re [ŵ] =
1

ρ

(
−d Im [p̂]

dkz
+ Re [τ̂]

)
. (4.2)
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Here, the shear stress τ is the sum of a viscous and a turbulent contribution:

τ = ρν

(
∂u

∂z
+
∂w

∂x

)
− ρu′w′. (4.3)

Normal turbulent and viscous stresses have been left out for convenience. If there is
no stress perturbation acting as a forcing in these equations, then no Re [ŵ] and Im [û]
will be formed. This is the case in inviscid flow. However, a shear stress related to the
components Re [û] and Im [ŵ] produces asymmetry in the flow. The energy flux from
the air to the waves can be derived directly, when we note that it is mainly provided
by the pressure–slope correlation Im[p̂] at the surface (see § 5.1). This component is
found by integrating (4.2) from zero to infinity:

Im [p̂]z=0 =

∫ ∞
0

ρ(U − c) Re [ŵ]dkz −
∫ ∞

0

Re [τ̂]dkz. (4.4)

The component Re [ŵ], which is formed in the thin inner region, decays exponentially
in the outer region, where it contributes to the slope-correlated pressure according to
the first integral on the right-hand side of (4.4). As was noted before, the shear stress
perturbations are almost zero in the outer region and thus the contribution of the
second integral to the growth rate is normally small. Hence, the magnitude of Re [ŵ]
gives a good indication of the growth rate. In figure 2 it can be seen that the low-Re
model predicts a larger Re [ŵ] than the high-Re model. This corresponds to a higher
growth rate at this Reynolds number (Re ≈ 3000). The measurements are not precise
enough to favour one of the two models.

Case 4, which has Re ≈ 1500 and c/u∗ ≈ 14, is presented in figure 3. The model
predictions for the part of the flow in phase with the wave are similar and in agreement
with the measurements. The observations further indicate that Re [ŵ] is zero, which
corresponds to hardly any growth. This is clearly reproduced by the low-Re model.
However, the high-Re model predicts large values for this component. According to
this model, a wave with c/u∗ ≈ 14 is in the intermediate regime, i.e. it is in the
transition range between slow and fast. For these waves, the highest growth rates are
predicted, and thus a large value for Re [ŵ] is found. From figure 1 it can be seen
that when Re becomes lower, the region of intermediate waves shifts to lower wave
ages. Therefore, the low-Re model treats this wave as a fast wave, meaning no growth
and almost zero Re [ŵ]. Notice that the predicted profile of Im [û] also shows good
agreement with the measurements.

In figure 4 the wave-induced velocity profiles for case 7 are plotted. This case
concerns a fast wave. Here, the wave-induced air flow is practically inviscid. The
orbital velocities are dominating, and the part of the flow out of phase with the wave
is almost zero. This feature is shown by both models. In this case the way in which
stresses are parameterized has hardly any influence on the wave-induced velocity
profiles. Therefore, the results from both models are almost the same.

It is unclear why the computations for Im [ŵ] differ so much from the observations.
The measurements seem to violate continuity. This can be explained by regarding the
in-phase part of the continuity equation (in Cartesian coordinates):

Re [û] = −d Im [ŵ]

dkz
. (4.5)

While the observations show that the derivative of Im [ŵ] tends to zero near the
surface, Re [û] is large and negative. Possibly, this discrepancy is due to the fact
that the wind speed is very low and thus the accuracy of the hot-wire measurements
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Figure 4. As figure 2, but for case 7.

breaks down. The existence of a secondary flow may be a different explanation. Such
a secondary flow can arise in the flow over smooth wavy surfaces (Gong, Taylor &
Dörnbrack 1996). When it is present, continuity in two dimensions is, of course, not
obeyed.

5. Growth rates
In this section some results will be presented concerning the growth rate. This

quantity reflects the energy transfer from wind to waves and is crucial as input in
wave models. The energy flux, Ė, per square metre of water surface from the air to a
wave can be written as:

Ė = 〈−p(w − ηxu) + τ(u− ηxw)〉ξ=0, (5.1)

with ηx = ∂η/∂x. A contribution of normal turbulent and viscous stresses to the
growth is also present, but it has been omitted here for convenience, as it is small
for all wave speeds. For slow waves, the flux is formed mainly by the pressure-slope
correlation, while for fast waves the contribution via the shear stress is dominant (see
Mastenbroek et al. 1996). The energy flux is normally scaled with the energy, E, of
the wave per unit surface area. For a sinusoidal wave E = 0.5ρwkc

2a2.
Results will be presented in the form of the growth rate coefficient β, which is

defined by

Ė

ωE
=

ρ

ρw

(u∗
c

)2

β. (5.2)

While (5.1), plus the normal stress contribution, is used to calculate β from the model
results, for low steepness it provides insight to linearize (5.1), which leads to:

β =
(Im [p̂] + Re [τ̂])ξ=0

akρu2∗
. (5.3)
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Figure 5. Growth rate as a function of Reynolds number. ——, low-Re model; − − −, high-Re
model; − · −, van Gastel et al. (1985). Symbols show measurements of Larson & Wright (1975):
+, u∗ = 0.12 m s−1; �, u∗ = 0.18 m s−1; M, u∗ = 0.24 m s−1; �, u∗ = 0.53 m s−1.

5.1. Impact of Reynolds number on growth rate

First, attention will be paid to the impact of the Reynolds number on the growth
rate of relatively slow waves (c/u∗ < 5). In figure 5 predictions of the low-Re model
are compared with measurements by Larson & Wright (1975) and with the analytical
model of van Gastel, Janssen & Komen (1985). They presented the growth rates in
dimensional form as a function of k for constant u∗. Then, analysis is complicated
because the dimensional growth rate increases quadratically with the friction velocity.
We present the data in the non-dimensional form of β, as defined in (5.2). The low-
Re-model results were obtained for low-steepness waves (ak = 0.01). The individual
curves show results for a constant u∗. Between the curves, u∗ varies from 0.14 to
0.9 m s−1. The fact that they almost coincide indicates that the Reynolds number is
indeed the most important explaining parameter; variations in the wave age cause
only slight differences for these slow waves.

Van Gastel et al. (1985) described analytically the growth of gravity–capillary waves
using linear instability theory. With asymptotic methods, they solved the governing
Orr–Sommerfeld equation for the perturbations to a given basic flow, both in the
water and in the air. Viscosity was taken into account, but turbulence was neglected.
They presented net growth rates; i.e. including dissipation due to the viscosity of the
water. To compare with our model, we add to their growth rate results (see their figure
2) the viscous dissipation term 4νwk

2, where νw is the kinematic viscosity of water.
The curves, which were obtained for u∗ varying between 0.14 and 0.25 m s−1, coincide
reasonably. The agreement between our model and their analytical results is excellent.
This confirms the validity of our numerical model in the very low Re range. Although
van Gastel et al. neglected turbulence, the agreement is perhaps not so surprising,
since at these low Reynolds numbers growth is mainly created by viscosity.
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Figure 6. Vertical profiles of wave-induced perturbations above a slow wave (c/u∗ = 2) at
Re = 1000: ——, low-Re model; − − −, high-Re model. The heights of the critical layer, inner
region and viscous sublayer (z+

ν = 30) are indicated by horizontal bars.

Larson & Wright (1975) measured growth rates in a laboratory wave tank using mi-
crowave backscatter. Their radars were aligned to respond to waves with wavelengths
in the range 0.7–7 cm. To isolate the growth due to wind, they added to the measured
values the viscous dissipation term, as described above. To non-dimensionalize their
growth rates we use values of u∗ other than those reported. Donelan & Pierson (1987)
pointed out that the reported values are too large, since they were measured at steady
state after the wave spectrum had attained its fetch limit. The exponential growth
of the waves under consideration, though, took place in the first seconds, when the
fetch limit had not yet been reached. Therefore, they proposed alternative values, as
listed in the figure caption. Although some scatter in the measurements remains, the
general agreement between model and observations is good.

The predicted growth rate shows a maximum β ≈ 35 at Re ≈ 800. Towards higher
Reynolds numbers β decreases and at Re ≈ 104 the difference between low- and
high-Re models disappears. Therefore, we conclude that for Re > 104 the influence
of viscosity near the water surface may be neglected. Note that the high-Re model is
in principle not dependent on the Reynolds number. However, we used z0 = 0.11ν/u∗
and thus Re influences the calculations indirectly via the roughness length. From
figure 5 it is clear that this influence is small.

The differences between the high- and low-Re models are shown in more detail
in figure 6. The figure gives vertical profiles of wave-induced perturbations in wave-
following coordinates for Re = 1000, which is near the peak of the predicted growth
rates. The enhanced growth rate of the low-Re model can be inferred directly from
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Figure 7. Form drag on a smooth hill as a function of Reynolds number: ——, low-Re model;
−−−, high-Re model; −·−, Harris et al. (1996); · · ·, Harris (update); M, Zilker & Hanratty (1979);
×, Henn & Sykes (1999); �, Sullivan et al. (2000).

the imaginary part of the pressure perturbation. The maximum of Re [ŵ] is also
clearly much higher in the low-Re model. The reason for the increased growth is not
completely clear. The maximum around Re = 800 is also observed for the form drag
of hills (see § 5.2). There we will discuss possible explanations.

5.2. Form drag on a smooth hill

We now turn to the limiting case of the flow over smooth stationary rigid waves. In
the notation of this article this case is represented by c = u0 = w0 = 0 m s−1. The
form drag, S , on such hills is the equivalent of the growth rate parameter for waves.
It is defined as

S =
2π〈pηx〉ξ=0

ρu2∗(ak)2
. (5.4)

Harris et al. (1996) found that the form drag on a hill increases strongly when the
Reynolds number becomes low, as shown in figure 7. They solved, apart from the
base flow, linearized equations for the wave-induced perturbations. Turbulence was
modelled by the e-ε scheme. This closure is based on an eddy viscosity and thus, as
was noted before, overestimates Reynolds-stress perturbations in the outer region. To
solve this problem Harris et al. damped the eddy viscosity in the outer region. Both
the present model and Harris et al. show an increase of S for low Re. This again gives
evidence that viscous effects must be taken into account; the high-Re model cannot
reproduce the trend of enhanced form drag.

The low-Re model predicts a peak of the form drag for Re ≈ 800; at lower
Reynolds numbers S decreases again. For β, in the case of a slowly moving wave, this
was also noticed and found in experiments (see § 5.1). In contrast, Harris et al. (1996)
found no reduction of the form drag towards low Reynolds numbers. However, recent
calculations, represented by the dotted line in figure 7, with their model for Re < 600
did lead to such a reduction (J. A. Harris, personal communication). The updated
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Figure 8. Inner region depth in flow over hills: ——, kl from (3.5); − − −, klH from (3.1); · · ·,
z+ = 10; symbols denote half the height where max (Re [ŵ]/u∗) is located, from the low-Re (�) and
high-Re (M) models.

drag values are slightly lower since the definition of their eddy-viscosity damping
function was modified to take into account the actual value of the mean velocity
profile. Certainly they are considerably higher than predicted by our model, yet a
similar trend is found.

In figure 7 the form drag from an experiment by Zilker & Hanratty (1979) is
also plotted. It is in good agreement with our low-Re-model predictions. Recently,
Henn & Sykes (1999) presented results of their large-eddy simulations of the flow
over hills. They found drag values more than twice as large as Zilker & Hanratty.
They then claimed that Zilker & Hanratty’s form drag was not consistent with an
integration of the measured surface pressure data and should therefore be treated
with caution. However, Henn & Sykes performed their simulations at a much lower
Reynolds number than Zilker & Hanratty. According to the present model results
this explains the discrepancy of the form drag values. Sullivan, McWilliams & Moeng
(2000) conducted direct numerical simulations of the flow over waves at Re = 260.
The form drag resulting from their model appears to confirm that S decreases towards
very low Reynolds numbers.

An interesting question concerns the existence of a maximum form drag around
Re = 800. First, we note that a critical layer does not exist over hills, so this can be
excluded from our considerations. The depth of the inner region and of the viscous
sublayer are expected to be important scales.

The inner region depth is supposed to be related to the height where the maximum
of Re [ŵ] is located, since Re [ŵ] is formed in the inner region and decays exponentially
in the outer region, where the shear stress perturbations vanish. Thus, it is useful
to compare this height with the estimates for kl, (3.1) and (3.5), given in § 3. These
estimates were derived from scaling arguments and are fixed except for an O(1) factor.
Hence, they are plotted in figure 8 together with half the height of the maximum
of Re [ŵ] found in the numerical calculations. A good agreement is found, except at
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the highest Re. This indicates that the kl-estimates are in general consistent with the
numerical calculations.

The scale of the viscous sublayer is also plotted. It is defined here at z+ = 10, where
the (continued) linear and logarithmic part of the mean velocity profile intersect.
Around Re = 103 the inner region and the viscous sublayer are of comparable
depth. For lower Re the inner region is located inside the viscous layer. This means
that mainly viscous stresses are responsible for creating asymmetry in the flow. In
contrast, for higher Re the viscous layer is a negligible part of the inner region, so that
turbulent stresses cause asymmetry. Around Re = 103 both mechanisms are active in
establishing the form drag. This combination appears to be very effective, leading to
a maximum drag.

5.3. Impact of wave age on growth rate

So far, we have discussed the flow over hills and slowly moving waves. Now the
growth of faster waves is investigated. In figure 9 the growth rate is shown as a
function of the wave age. The predictions of the high-Re model were presented in
Mastenbroek et al. (1996). They give rise to the following picture of wave growth (see
Belcher & Hunt 1998). Slow waves, with c/u∗ < 10, have a critical height that is so
low that it plays no dynamical role. Growth is caused by the work of stresses in the
inner region. With increasing wave age the inner region thickens and the critical layer
height increases. Apart from the asymmetry created by turbulent stresses, additional
asymmetry could be provided by the critical-layer mechanism (Miles 1957). However,
the details of the role of the critical layer in the inner region, which is not inviscid,
remain to be clarified. When the wave age increases even further, negative growth
from the reverse flow below the critical height becomes important. This explains the
sharp drop in β around c/u∗ = 19. In (4.4) this effect is seen in the Re [ŵ] term: below
zc its contribution is negative. Finally, fast waves, with c/u∗ > 20, have effectively a
reverse air flow, which damps the wave. The critical height is so large that it plays no
role.

The same picture also seems to be valid for the low-Re-model results. There are
two differences, however. First, the growth rate curves shift to lower wave ages, when
the Reynolds number decreases. This shift must be related to the fact that the critical
layer height increases, when Re becomes lower (see figure 1). Thus, the definition
of slow, intermediate and fast wave regimes, should be altered likewise. Secondly,
the magnitude of β for slow waves is higher according to the low-Re model, as was
already pointed out in § 5.1. This result is in agreement with the parameterization of
Plant (1982), who concluded, on the basis of various experimental data, that for slow
waves β = 32± 16.

In figure 9 the growth rate values found in Sullivan et al.’s (2000) direct numerical
simulations are represented by squares. They are in excellent agreement with our
calculations at Re = 260, except that, for unclear reasons, we predict a much stronger
damping of fast waves.

6. Conclusions
Laboratory observations of the air flow above water waves show that high-Re

turbulence models cannot correctly reproduce this air flow when its Reynolds number
is low. Therefore, corrections are necessary to include effects of viscosity close to the
water surface. In this paper a turbulence closure scheme (Craft & Launder 1996) is
applied that takes into account such effects.
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Figure 9. Growth rate as a function of wave age: ——, low-Re model for �, Re = 260,
M, Re = 1000 and ×, Re = 4000; − − −, high-Re model (kz0 = 10−4); �, direct numerical
simulation at Re = 260 by Sullivan et al. (2000).

In comparison with laboratory observations of the wave-induced velocity field
above waves by Stewart (1970) the low-Reynolds model in general leads to improved
agreement. In the case with the highest wind speed, the high-Re and low-Re models
perform similarly. In an intermediate case, observations show that the velocity com-
ponents out of phase with the wave are suppressed. In contrast to the high-Re model
this is reproduced by the low-Re version. Finally, a case with a very low wind speed,
and a relatively fast wave, again leads to similar predictions by both models. Here,
the wave-induced air flow is practically inviscid, and, thus, the way in which stresses
are parameterized is not so important for the velocity perturbation profiles.

A quantity directly following from the velocity, stress and pressure distributions
above waves is the growth rate. It is shown that the growth rate of slowly moving
waves increases when the Reynolds number becomes smaller than 104, with up to
a factor 2 for Re ≈ 800. For smaller Re, the growth rate drops again. A similar
maximum is also found for the form drag on smooth stationary waves. It seems to be
related to the relative depths of the inner region and the viscous sublayer. These are
comparable near the location of the maximum, meaning that viscous and turbulent
stresses both play a role in creating growth.

Observed growth rates, e.g. those compiled by Plant (1982), are larger than predicted
by advanced turbulence models and exhibit an amount of scatter that is not taken
away by a wave age dependence. The present modelling work indicates that the
Reynolds number is necessary to explain the growth rates of short laboratory waves.
This is confirmed by a comparison with Larson & Wright’s (1975) microwave-
backscatter experiments. In the field, the enhanced growth also has an impact. If, for
example, the wind speed is around 10 m s−1, corresponding to u∗ ≈ 0.4 m s−1, then
viscous effects will be important for the waves in the spectrum with λ < 40 cm. The
waves in this range support most of the momentum flux from the atmosphere to the
sea and are important for remote sensing applications.
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Appendix. Description of the low-Reynolds-number model
The formulation of the second-order turbulence closure for low Reynolds numbers

applied in this work follows Craft & Launder (1996). Modifications include the
neglect of terms that are not important for the flow we consider. A special feature
of the closure is that no wall-normal vectors are used. To still be able to identify
near-surface effects, the flatness parameter, A, is introduced. It is defined as

A = 1− 9
8
(A2 − A3), (A 1)

where A2 = aijaij and A3 = aijajkaki are the second and third invariants of the
dimensionless stress anisotropy, aij , respectively:

aij =
u′iu′j
e
− 2

3
δij , (A 2)

where e = 1
2
u′iu′i is the turbulent kinetic energy. The flatness parameter is one in

isotropic turbulence and vanishes near a surface, where the turbulent fluctuations
reduce to a two-component form.

The closure of the terms in (2.5) for the Reynolds stresses is as follows.
The production term needs no parameterization:

Pij = −
(
u′iu′k

∂ūj

∂xk
+ u′ju′k

∂ūi

∂xk

)
. (A 3)

The diffusion term reads

dij =
∂

∂xk

(
ν
∂u′iu′j
∂xk

− u′iu′ju′k
)
. (A 4)

The triple correlation appearing in this expression is modelled as

u′iu′ju′k = −cs e
ε

(
u′iu′l

∂u′ju′k
∂xl

+ u′ju′l
∂u′ku′i
∂xl

+ u′ku′l
∂u′iu′j
∂xl

)
, (A 5)

with cs = 0.11.
The pressure correlation term is modelled as in Craft, Ince & Launder (1996).

It is split into two parts: Πij = φij + d
p
ij . Here, the pressure–diffusion term, dpij , is

incorporated in dij . The pressure–strain correlation, φij , reads

φij =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (A 6)

For modelling it is split into:

φij1 = −c1ε̃
[
aij + c′1

(
aikakj − 1

3
A2δij

)]− ε̃Aaij (A 7)
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φij2 = −0.6
(
Pij − 1

3
δijPkk

)
+ 0.3aijPkk

−0.2

e

[
u′ku′j u′lu′i

(
∂ūk

∂xl
+
∂ūl

∂xk

)
− u′lu′k

(
u′iu′k

∂ūj

∂xl
+ u′ju′k

∂ūi

∂xl

)]
(A 8)

−c2[A2(Pij − Dij) + 3amianj(Pmn − Dmn)].
Here,

Dij = −
(
u′iu′k

∂ūk

∂xj
+ u′ju′k

∂ūk

∂xi

)
(A 9)

and the coefficients are

c1 = (3.75A
1/2
2 + 1)A, c′1 = 0.7, c2 = 0.6.

The homogeneous dissipation rate ε̃, appearing in (A 7), is related to the kinematic
dissipation rate ε by

ε̃ = ε− 2ν

(
∂e1/2

∂xj

)2

. (A 10)

The stress dissipation, finally, is taken to be:

εij = fε2ε
ε′ij
ε′kk

+ (1− fε) 2
3
εδij , (A 11)

where

ε′ij = ε
u′iu′j
e

+ 2ν

(
u′lu′n
e

∂e1/2

∂xl

∂e1/2

∂xn
δij +

u′lu′i
e

∂e1/2

∂xj

∂e1/2

∂xl
+
u′iu′j
e

∂e1/2

∂xi

∂e1/2

∂xl

)
. (A 12)

The coefficient fε manages the transition from isotropic dissipation in the fully
turbulent part of the flow to anisotropic dissipation towards the surface. Following
Launder & Li (1994) we take

fε = exp (−20A2). (A 13)

To close the system, the following conservation equation for the homogeneous dissi-
pation rate is solved:

∂ε̃

∂t
+ ūk

∂ε̃

∂xk
= cε1

ε̃Pkk

2e
− cε2 ε̃

2

e
− c′ε2 (ε− ε̃)ε̃

e

+
∂

∂xl

[(
νδlk + cεu

′
lu
′
k

e

ε

) ∂ε̃

∂xk

]
+ cε3νu

′
iu
′
j

e

ε

∂2ūk

∂xi∂xl

∂2ūk

∂xj∂xl
, (A 14)

where the coefficients are

cε1 = 1.0, c′ε2 = 1.0, cε3 = 1.75, cε = 0.18,

cε2 =
1.92

1 + 0.7AdA
1/2
2

, Ad = max (0.2, A).

The constant cε3 was used to tune the model such that it reproduces the law of the
wall for a flat plate boundary layer. Its value is somewhat higher than mentioned in
Craft & Launder (1996), which can be explained by the omission of their cε4 term.
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