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The study of radially symmetric motion is important for the theory of explosion waves. We construct
rigorously self-similar entropy solutions to Riemann initial-boundary value problems for the radially
symmetric relativistic Euler equations. We use the assumption of self-similarity to reduce the rela-
tivistic Euler equations to a system of nonlinear ordinary differential equations, from which we obtain
detailed structures of solutions besides their existence. For the ultra-relativistic Euler equations, we
also obtain the uniqueness of the self-similar entropy solution to the Riemann initial-boundary value
problems.
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1 Introduction

The motion of a relativistic fluid in the Minkowski space-time is governed by the relativistic
Euler equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(1.1)

where (u1, u2, u3) denotes the velocity of the fluid in three-dimensional space and

q =
√

u2
1 + u2

2 + u2
3 is required to be less than the speed of light which is normalised to be one.
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In system (1.1), the thermodynamic quantities n, p, e, T , S, ρ = n + e, and i = ρ + p denote the
average rest-mass density, the pressure, the internal energy per unit volume, the absolute temper-
ature, the entropy per particle, the total mass-energy per unit volume, and the enthalpy per unit
volume, respectively. The readers can see [13, 14, 23] for the details.

There are many results about Cauchy problems for the one-dimensional (1D) relativistic Euler
equations. Smoller and Temple [21] considered the system of conservation laws in energy and
momentum in special relativity⎧⎪⎪⎪⎨
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with the equation of state p = σ 2ρ, where σ is a positive constant smaller than one. They solved
the Riemann problem and the Cauchy problem for the system. Martí and Müller [17] also studied
the Riemann problem for (1.2) with the equation of state p = σ 2ρ. Chen [5], Hsu et al. [10],
and Li et al. [1, 15] extended Smoller and Temple’s results to more general equations of state
p = p(ρ). Chen and Yang [3] studied the Riemann problem of (1.2) for a Chaplygin gas equation
of state.

Li et al. [2, 16] studied the Cauchy problem for the system of conservation laws in baryon
number and momentum in special relativity⎧⎪⎪⎨
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(1.3)

with the equation of state p = p(ρ) that satisfies p′(ρ) > 0 and p′′(ρ) ≥ 0. Chen and Yang [4]
studied the Riemann problem of system (1.3) for the Chaplygin gas.

Chen [6] studied the Riemann problem for the 1D full-relativistic Euler equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(1.4)

with the equation of state p = Snγ , where γ is the adiabatic constant. More recently, Wissman
[24] extended Smoller and Temple’s result to the system (1.4) with the equation of state p = σ 2ρ.

The global existence of entropy solution to the Cauchy problem for the multi-dimensional
relativistic Euler equations is still a complicated open problem. Thus, it has been profitable
to consider some special problems, such as multi-dimensional Riemann problems which refer
to Cauchy problems with special initial data that are constant along each ray from the origin.
However, as far as we know, there are few results about the global existence of entropy solution
to the multi-dimensional Riemann problems for the relativistic Euler equations. In this paper, we
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consider Riemann initial-boundary value problems for the multi-dimensional relativistic Euler
equations with radial symmetry.

The conservation laws in energy and momentum in special relativity with radial symmetry
have the form ⎧⎪⎪⎪⎨
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where N = 2 (or 3) represents the dimension of space. We consider (1.5) with the initial and
boundary conditions

(u, p)(0, r) = (u0, p0), (ρu)(t, 0) = 0. (1.6)

We take the ultra-relativistic fluid, of which the equation of state has the form

p = 1

3
ρ.

We look for self-similar solutions that depend only on the self-similar variable ξ = r/t. The main
result can be stated as the following theorem:

Theorem 1.1 For any datum (u0, p0) with p0 > 0 and u0 ∈ (−1, 1), the problem (1.5), (1.6)
admits a unique self-similar entropy solution. Moreover,

• if u0 ∈ (0, 1), then the solution is continuous (see Figure 1(a));
• if u0 ∈ (−1, 0), then the solution contains a single shock followed by a constant state (see

Figure 1(c)).

We also consider the radially symmetric full-relativistic Euler equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(1.7)

with the initial and boundary conditions

(u, p, S)(0, r) = (u0, p0, S0), (ρu)(t, 0) = 0. (1.8)

Here, the equation of state for (1.7) is given by

ρ = n + p

γ − 1
, p = Snγ , (1.9)

where γ is a constant between 1 and 5/3. The main result can be stated as the following theorem:

Theorem 1.2 For any datum (u0, p0, S0) with p0 > 0, S0 > 0, and u0 ∈ (−1, 1), the problem (1.7),
(1.8) admits a self-similar entropy solution. Moreover,
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FIGURE 1. Self-similar solutions of the relativistic Euler equations with radial symmetry.

• if u0 ∈ (0, 1), then the solution is continuous (see Figure 1(a) and (b));
• if u0 ∈ (−1, 0), then the solution contains a single shock followed by a constant state (see

Figure 1(c)).

The Riemann initial-boundary value problems can be seen as special multi-dimensional
Riemann problems with data that possess a certain symmetry. Consider, e.g., (1.1) with the
Riemann initial data(

n, S, u1, u2, u3
)
(0, x1, x2, x3) = (

n0, S0, u0 sin ϕ cos θ , u0 sin ϕ sin θ , u0 cos ϕ
)
, (1.10)

where (x1, x2, x3) = (r sin ϕ cos θ , r sin ϕ sin θ , r cos ϕ), r > 0 is the radial variable, ϕ ∈ [0, π ],
θ ∈ [0, 2π ), and n0 > 0 and S0 > 0 and u0 ∈ (−1, 1) are three constants. The problem (1.1), (1.10)
allows us to look for radially symmetric solution

n = n(r, t), S = S(r, t), u1 = u(t, r) sin ϕ cos θ , u2 = u(t, r) sin ϕ sin θ , u3 = u(t, r) cos ϕ.

We can then reduce (1.1) to (1.7) with N = 3.
Another problem that admits self-similar solutions is the ‘spherical piston’ problem which

describes the wave motion produced by a circle (sphere) which expands with constant speed into
a quiet gas; see Coruant and Friedrichs [7]. This problem was first worked out by Taylor [22].
We also refer the reader to [9, 19] and the references cited therein for more related works. We
intend to generalise the result about the spherical piston problem for the Euler equations to the
relativistic Euler equations.

We consider (1.5) with the initial and boundary conditions

(u, p)(0, r) = (0, p0), u(t, αt) = α, (1.11)

where α ∈ (0, 1) represents the speed of expansion of the circle (sphere). We obtain the following
theorem:

Theorem 1.3 For any p0 > 0 and α ∈ (0, 1), the spherical piston problem (1.5), (1.11) admits a
unique self-similar entropy solution; see Figure 2.

We also consider (1.7) with the initial and boundary conditions

(u, p, S)(0, r) = (0, p0, S0), u(t, αt) = α, (1.12)

where α ∈ (0, 1). We obtain the following theorem:
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FIGURE 2. Self-similar solution of the spherical piston problem.

Theorem 1.4 For any p0 > 0, S0 > 0, and α ∈ (0, 1), the spherical piston problem (1.7), (1.12)
admits a self-similar solution; see Figure 2.

The self-similar solutions of the radially symmetric Euler equations for polytropic gases were
first studied by Taylor, et al.; see [7] and the survey paper [12]. The readers can also see Zheng
et al. [25, 26] for further examples of self-similar flows with swirl. They used the assumption
of self-similarity to reduce the Euler equations for polytropic gases to a system of nonlinear
autonomous ordinary differential equations. However, for the relativistic Euler equations, the
ordinary differential equations derived by self-similar transformation are not autonomous and
are quiet complex. That is the main difficulty of the present paper.

The spherical piston problem for (1.5) with the equation of state p = σ 2ρ was first solved by
Ding and Li [8]. In the present paper, we solve the spherical piston problem for (1.5) with general
convex equations of state and for the full-relativistic Euler equations (1.7). Here, the convex
equations of state are referred to the equations of state that satisfy (p + ρ)p′′(ρ) + 2p′(ρ)(1 −
p′(ρ)) > 0. There are also some other related work. For more general existence of weak solutions
with radially symmetry for system (1.1) outside a core region, we refer the reader to [11, 18].

The rest of the paper is organised as follows. Section 2 is devoted to solve the problem
(1.5), (1.6) for the ultra-relativistic fluid. Section 3 is devoted to solve the problem (1.7), (1.8).
Actually, using the approach of Section 3, one can solve the problem (1.5), (1.6) for more gen-
eral convex equations of state. Section 4 is devoted to solve the spherical piston problem for the
relativistic Euler equations.

2 Self-similar solutions of the radially symmetric ultra-relativistic Euler equations

2.1 Ordinary differential equations

Since the problem (1.5), (1.6) is invariant under self-similar transformation, we look for self-
similar solutions that depend only on ξ = r/t. By self-similar transformation, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
− ξ
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By computations, we get⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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= − (N − 1)iu(u − ξ )
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} ,

du
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= − (N − 1)(uξ − 1)u(1 − u2)

ξ
{[

ξ (1 − u2) + 4(u − ξ )
]
(u − ξ ) + (1 + u2 − 2uξ )(uξ − 1)

} ,

(2.1)

where we have used the equation of state p = 1
3ρ of the ultra-relativistic fluid. The initial and

boundary conditions (1.6) become

lim
ξ→+∞(u, p)(ξ ) = (u0, p0), (ρu) |ξ=0 = 0. (2.2)

Let s = 1/ξ . We thus have the following initial value problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du

ds
= (N − 1)(u − s)u(1 − u2)

f
,

dp

ds
= 4(N − 1)up(us − 1)

f
,

(2.3)

(u, p) |s=0 = (u0, p0), (2.4)

where

f = [
(1 − u2) + 4(us − 1)

]
(us − 1) + [

(1 + u2)s − 2u
]
(u − s)

= 3(us − 1)2 − (u − s)2.

In order to solve the problem (2.3) and (2.4), we first study the initial value problem

du

ds
= (N − 1)(u − s)u(1 − u2)

f
, u |s=0 = u0, (2.5)

and then p = p(s) can be obtained by integrating the second equation of (2.3). The sign of f is
important in the following discussions.

Remark 2.1 We have the following conclusions about f :

(1) if 0 < s ≤ 1 and −1 < u <
√

3+s√
3s+1

, then f > 0;

(2) if s > 1 and u <
√

3−s
s
√

3−1
, then f > 0;

(3) if s > 1 and
√

3−s√
3s−1

< u <
√

3+s√
3s+1

, then f < 0;

see Figure 3.

Lemma 2.1 The initial value problem (2.3) has a unique solution in (0, 1) for any 0 < u0 < 1.
Moreover, this solution satisfies

0 < u(s) < 1 and
du

ds

⎧⎨
⎩

> 0, u > s;
= 0, u = s;
< 0, u < s

as 0 < s < 1. (2.6)
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FIGURE 3. f (u, s) = 0.

Proof The problem (2.3) is classically well-posed which has a unique local solution u = u(s).
We then prove that the solution satisfies 0 < u(s) < 1. If there exists a s∗ such that u(s) < 1 as
s < s∗ < 1 and u(s∗) = 1, then∫ 1

u(s∗−ε)

1

1 − u
du =

∫ s∗

s∗−ε

(N − 1)(u − s)u(1 + u)

f
ds, (2.7)

where ε > 0 is sufficiently small. The left part of (2.7) is infinite, while the right part is finite.
This leads to a contradiction. Similarly, if there exists a s∗ such that u(s) > 0 as s < s∗ < 1 and
u(s∗) = 0, then ∫ 0

u(s∗−ε)

1

u
du =

∫ s∗

s∗−ε

(N − 1)(u − s)(1 − u2)

f
ds, (2.8)

which leads to a contradiction.
By Remark 2.1(1), we know that the local solution can be extended to (0, 1) and satisfies

du
ds > 0 as u > s; = 0 as u = s; < 0 as u < s. We then complete the proof of this lemma.

2.2 Continuous solution for u0 ∈ (0, 1)

We are going to show that the problem (1.5), (1.6) has a continuous self-similar solution for any
u0 ∈ (0, 1). Interestingly, when u0 is sufficiently large the wave structures for N = 2 and N = 3
are different.

2.2.1 N = 2

Lemma 2.2 Assume N = 2. Then, for any u0 ∈ (0, 1), there exists a s0 ∈ (0, 1) such that the
solution of the problem (2.5) satisfies s < u(s) < 1 as 0 < s < s0 and u(s0) = s0; see Figure 4(left).
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Proof If 0 < s < u < 1, then we have

1 − us > 1 − s > 0 and 0 < u − s < 1 − s,

and hence

3(us − 1)2 − (u − s)2 > 2(1 − s)2.

Thus, if 0 < s < u < 1, then

du

ds
<

(u − s)(1 − u)

(1 − s)2
. (2.9)

We now consider the initial value problem

dū

ds
= (ū − s)(1 − ū)

(1 − s)2
, ū |s=0 = u0. (2.10)

It is obviously that the problem (2.10) admits a solution u = ū(s) in (0, 1) and 0 < ū(s) < 1 as
0 < s < 1, as shown in (2.7) and (2.8). By computation, we have

d2ū

ds2
= (1 − ū)2(2ū − s − 1)

(1 − s)4
. (2.11)

If u0 ∈ (0, 1
2 ), then by (2.11) we know that ū(s) < 1+s

2 and ū′′(s) < 0 and ū′(s) < u0 as 0 < s < 1.
Hence, there exists a s̄0 such that ū(s̄0) = s̄0.

We next prove that if u0 ∈ [ 1
2 , 1) there also exist a s̄0 such that ū(s̄0) = s̄0. We shall prove this

by contradiction. Suppose that there exists a u0 ∈ [ 1
2 , 1) such that the solution of (2.10) satisfies

ū(s) > s as 0 < s < 1. Then, by (2.11) we have

ū(s) >
1 + s

2
as 0 < s < 1. (2.12)

That is because if there exists a s0 ∈ (0, 1) such that ū(s0) = 1+s0

2 , then we have ū′(s0) = 1/4

and ū′′(s) < 0 as s0 < s < 1. Consequently, ū(s) < 1+s0

2 + (s−s0)
4 < s as s is sufficiently close to 1,

which leads to a contradiction. From (2.11) and (2.12), we have

ū′′(s) > 0 as s ∈ (0, 1). (2.13)

Thus, we can define d := lim
s→1

dū
ds . By (2.12), (2.13), and 0 < ū(s) < 1 as 0 < s < 1, we have

0 < u0(1 − u0) < d ≤ 1

2
. (2.14)

While, by a direct computation, we have

d = lim
s→1

(ū − s)(1 − ū)

(1 − s)2
= lim

s→1

[(1 − s)(1 − d) + o(1 − s)][d(1 − s) + o(1 − s)]

(1 − s)2
= d(1 − d),

and hence d = 0, which contradicts to (2.14). Therefore, when u0 ∈ [ 1
2 , 1) there also exists a s̄0

such that ū(s̄0) = s̄0.
By comparison principle, we have 0 < u(s) < ū(s) as 0 < s < 1. Hence, there exists a s0 ∈ (0, 1)

such that u(s0) = s0. We then complete the proof of this lemma.
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FIGURE 4. A continuous solution of the ultra-relativistic Euler equations with radial symmetry.

From Remark 2.1, we can see that u′(s) < 0 and u(s) > 0 as s0 < s ≤ 1. In what follows, we are
going to discuss the solution of the problem (2.5) for s > 1.

Lemma 2.3 Assume N = 2. Then, for any u0 ∈ (0, 1), the solution of the problem (2.5) satisfies
u(s) > 0 as s <

√
3 and u(

√
3) = 0; see Figure 4(left).

Proof It suffices to prove that for any u0 ∈ (0, 1), the solution of the problem (2.5) satisfies

0 < u(s) <

√
3 − s√

3s − 1
as 1 ≤ s <

√
3; (2.15)

see Figure 4.
As shown in (2.8), we have u(s) > 0 as 1 ≤ s <

√
3.

Let G(s) := u(s) −
√

3−s√
3s−1

. Then by u(1) < 1, we have G(1) = u(1) − 1 < 0. Suppose there

exists a point s′ ∈ (1,
√

3) such that G(s′) = 0 and G(s) < 0 as 1 < s < s′. Then we have G′(s′) ≥ 0.
However, by a direct computation, we get

lim
s→(s′)−

G′(s) = lim
s→(s′)−

d

ds

(
u(s) −

√
3 − s√
3s − 1

)
= −∞,

which leads to a contradiction. We then have this lemma.

From (2.3), we have

dp

du
= 4p(us − 1)

(u − s)(1 − u2)
. (2.16)

By integration, we obtain

ln p(
√

3) − ln p(1) =
∫ 0

u(1)

4(us − 1)

(u − s)(1 − u2)
du, (2.17)

where s = s(u) can be seen as the inverse function of u = u(s). Thus, we get p(
√

3) > 0.
We are now ready to construct the self-similar solution of the problem (1.5), (1.6) for u0 > 0

and N = 2. When ξ > 1/
√

3, the solution is determined by the classical solution of the initial
value problem (2.3), (2.4). We continue the solution by the constant state (u, p) = (0, p(

√
3))

where p(
√

3) is determined by (2.17). This is a continuous extension; see Figure 4(right).
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2.2.2 N = 3

Lemma 2.4 Assume N = 3. Then there exists a u∗ ∈ (0, 1), such that when u0 > u∗ the solution
of the problem (2.5) satisfies u(1) = 1; see Figure 5(left).

Proof Let β ∈ (0, 1) be satisfied β3 + 6β = 6. Then we have

3(us − 1)2 − (u − s)2

< 3
[
(β(1 − s) + s)s − 1

]2 − β2(1 − s)2

= (1 − s)2
{

3
[
(β − 1)s − 1

]2 − β2
}

< (1 − s)2
{

3
[
(β − 1) − 1

]2 − β2
}

= 2β2(1 + β)(1 − s)2

as (s, u) ∈ {(s, u) | 0 < s < 1, β(1 − s) + s ≤ u < 1}. Thus,

2(u − s)u(1 − u2)

3(us − 1)2 − (u − s)2
>

(u − s)u(1 + u)(1 − u)

β2(1 + β)(1 − s)2
>

(u − s)(1 − u)

β(1 − s)2

as (s, u) ∈ {(s, u) | 0 < s < 1, β(1 − s) + s ≤ u < 1}.
We now consider the initial value problem

dū

ds
= (ū − s)(1 − ū)

β(1 − s)2
, ū(0) = β. (2.18)

It is easy to check that ū = β(1 − s) + s is the unique solution of the problem (2.18).
Thus, by comparison principle we have that if u0 ∈ (β, 1) then the solution of the problem (2.5)

satisfies

u(s) > β(1 − s) + s as 0 < s < 1.

Combining this with (2.6) we can get this lemma.

Lemma 2.5 Assume N = 3. If the solution of the initial value problem (2.3), (2.4) satisfies
u(1) = 1, then we have p(1) = 0.

Proof By the previous results, we know that if u(1) = 1 then u(s) > s as 0 < s < 1.
Along the integral curve of (2.3), (2.4) we have∫ p(y)

p0

1

4p
dp =

∫ u(y)

u0

(us − 1)

(u − s)(1 − u2)
du as 0 < y < 1.

(Remark: in the right integration, s = s(u) is the inverse function of u = u(s).)
By the previous results, we know that if u(1) = 1 then u(s) > s as 0 < s < 1. Thus, we have

us−1
u−s < −1 along u = u(s) (0 < s < 1), and consequently∫ u(y)

u0

(us − 1)

(u − s)(1 − u2)
du < −

∫ u(y)

u0

1

1 − u2
du as 0 < y < 1.

Therefore, there must have p(1) = 0. We then have this lemma.
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u

u

s

1

1 1

1

u0

p p0

oo

u0 u = u(s)

FIGURE 5. A continuous solution with a growing vacuum region.

Remark 2.2 Lemmas 2.4 and 2.5 imply that for N = 3, if u0 < 1 is sufficiently large, then the
fluid will expand to vacuum and the speed of the fluid at ξ = 1 is just the light speed.

We are now ready to construct the self-similar solution to the problem (1.5), (1.6) in the case
of u(1) = 1. When ξ > 1, the solution is determined by the classical solution of the initial value
problem (2.3), (2.4) . We continue the solution by a vacuum state for ξ < 1; see Figure 5(right).

2.3 Shock wave solution for u0 ∈ (−1, 0)

By Remark 2.1, we know that the problem (2.5) has a solution in (0,
√

3). Moreover, this solution
satisfies u0 < u(s) < 0 and du

ds > 0 as 0 < s <
√

3. In what follows, we are going to show that there
exists a s∗ >

√
3 such that lim

s→s∗
du
ds = +∞. To start off with, we prove the following lemma.

Lemma 2.6 Let a > 1 be a constant. Then the solution of the initial value problem

dv

ds
= (N − 1)(v − s)v(1 − v2)

a2(vs − 1)2 − (v − s)2
, v |s=0 = u0 ∈ (−1, 0)

satisfies v < 0 as 0 < s ≤ a.

Proof Since a2(vs − 1)2 − (v − s)2 > 0 as −1 < v < 0 and 0 < s < a, we have u0 < v < 0 as
0 < s < a.

In what follows we shall prove v(a) < 0. Let

l = (N − 1)(v − s)v(1 − v2) = (N − 1)
(− av + v2 − v(s − a) + av3 + v3(s − a) − v4

)
and

m = a2(vs − 1)2 − (v − s)2

= a2 − v2 + a2v2s2 − s2 − (2a2 − 2)vs

= −2a(s − a) − a(2a2 − 2)v + (a4 − 1)v2 − (s − a)2 − (2a2 − 2)v(s − a)

+ 2a3(s − a)v2 + a2v2(s − a)2.
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Then, by a direct computation, we have

d2v

ds2
= (mlv − lmv)l + (mls − lms)m

m3

=
v
(

4a3(a2 − 1)(N − 1)v + 2a3(N − 1)(3 − N)(s − a) + o(
√

v2 + (s − a)2)
)

m3
.

(2.19)

Assume that v(a) = 0. Then by (2.19), we know that there exists a s′ < a such that

d2v

ds2
> 0 as s ∈ (s′, a). (2.20)

Then by (2.20), we know that lim
s→a

dv
ds = +∞ or lim

s→a

dv
ds = d0 > 0 where d0 is a finite number.

Writing v(s) = d(s)(s − a). Then by (2.20), we also have that d(s) is monotonic increasing in
(s′, a).

If lim
s→a

dv
ds = +∞, then we have lim

s→a
d(s) = +∞. Consequently, we have

lim
s→a

dv

ds
= lim

s→a

(N − 1)(v2 − sv − v4 + sv3)

a2 − v2 + a2v2s2 − s2 − (2a2 − 2)vs

= lim
s→a

(N − 1)(−sd + vd − v3d + v2sd)

−(2a2 − 2)sd − (a + s) − vd + a2s2vd
= N − 1

2a2 − 2
< +∞

which leads to a contradiction. So, lim
s→a

dv
ds �= +∞. If lim

s→a

dv
ds = d0, then we have lim

s→a
d(s) = d0.

Consequently, we have

lim
s→a

dv

ds
= lim

s→a

(N − 1)(−sd + vd − v3d + v2sd)

−(2a2 − 2)sd − (a + s) − vd + a2s2vd
= d0(N − 1)

(2a2 − 2)d0 + 2
�= d0,

since a > 1. This leads to a contradiction. So, lim
s→a

dv
ds can also not be a finite positive number.

Therefore, v(a) �= 0. We then complete the proof of this lemma.

Remark 2.3 There is another way to prove Lemma 2.6. Let us consider the ordinary system⎧⎪⎪⎨
⎪⎪⎩

dv

dt
= (N − 1)(v − s)v(1 − v2),

ds

dt
= a2(vs − 1)2 − (v − s)2.

(2.21)

At the point (v, s) = (0, a), we find that the linear part of the right-hand side of (2.21) is given by
M(v, s − a)T where

M =
(

−a(N − 1) 0

2a − 2a3 −2a

)
.

When N = 2, the matrix has two eigenvalues λ1 = −a and λ2 = −2a with associated eigen-
vectors (1, 0) and (2a2 − 2, 1). So, along the integral cures of (2.21) we have ds

dv
→ 2 − 2a2

as (v, s) → (0, a) and v �= 0; see Figure 6(left). When N = 3, the matrix has eigenvalues
λ1 = λ2 = −2a. Since 2a − 2a3 < 0, along the integral curves of (2.21), we have ds

dv
→ −∞ as

(v, s) → (0, a) and v �= 0; see Figure 6(right).

https://doi.org/10.1017/S0956792519000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000317


Solutions of relativistic Euler equations 931
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L: (2a2 − 2)v + s = a

o a

N = 2 N = 3

v

so a

FIGURE 6. The integral curves of dv

ds = (N−1)(v−s)v(1−v2)
a2(vs−1)2−(v−s)2 near the point (a, 0).
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1

1

us = 1

u = u1(s)

s

u = u2(s)
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f < 0

f = 0

3

3

o
ss

f = 0

u

f > 0
Shock front

ξ

u0

p0

p

u

o

FIGURE 7. Shock wave solution for u0 ∈ (−1, 0).

Lemma 2.7 For any u0 ∈ (−1, 0), there exists a s∗ >
√

3 such that the solution of the problem
(2.5) satisfies u(s) < s−√

3
1−√

3s
as

√
3 < s < s∗ and u(s∗) = s∗−√

3
1−√

3s∗
; see Figure 7(left).

Proof Suppose that the integral curve u = u(s) and the curve u = s−√
3

1−√
3s

do not intersect. Then

by du
ds > 0 we know that there exists a û ∈ (u0, −√

3/3) such that lim
s→+∞ u(s) = û. Thus, we have

du

ds
= (N − 1)(u − s)u(1 − u2)

3(us − 1)2 − (u − s)2
>

−(N − 1)sû(1 − u2
0)

3(u0s − 1)2
as s > 0.

Integrating this from s = 0 to s = +∞, we get

lim
s→+∞ u(s) = +∞,

which leads to a contradiction. We then have this lemma.

From the second equation of (2.3), we can obtain p(s) (0 < s < s∗). From (2.16) we also have
that lim

s→s∗
p(s) exists.

From Lemma 2.7, we know that no continuous solutions exist in the case of u0 ∈ (−1, 0). We
need to look for shock wave solutions. In the following discussions, we shall denote by (u1, p1)(s)
(0 < s < s∗) the solution of the problem (2.3), (2.4) for u0 ∈ (−1, 0).

Assume that there is shock wave with the speed ξ = 1/s ∈ (1/s∗, 1) where s∗ is determined by
Lemma 2.7. We make the Lorentz transformation
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r̄ = r − ξ t√
1 − ξ 2

, t̄ = t − ξr√
1 − ξ 2

. (2.22)

Then in the coordinates (r̄, t̄), the shock is stationary. Thus, by Rankine–Hugoniot conditions of
the shock waves of (1.5), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ1ū1

1 − ū2
1

= ρ2ū2

1 − ū2
2

,

4

3

ρ1ū2
1

1 − ū2
1

+ p1 = 4

3

ρ2ū2
2

1 − ū2
2

+ p2;

(2.23)

see [13, 20]. Here, ‘1’ denotes the fluid in front of the shock, ‘2’ denotes the fluid behind the
shock,

ūk = uk − ξ

1 − ξuk
(k = 1, 2) (2.24)

denote the velocity of the fluid relatively to the shock.
In addition to the jump conditions (2.23), the admissible forward shock waves must satisfy the

entropy condition

ū1 < ū2 < 0. (2.25)

From (2.23), we immediately have

ū1ū2 = 1

3
; (2.26)

see, e.g., [20].
In what follows, we are going to seek an admissible forward shock wave with an appropriate

speed ξ = 1/s ∈ (1/s∗, 1) and the front side state (u1, p1)(s) such that the backside state satisfies
u2 = 0.

Lemma 2.8 Assume that there is a shock with the speed ξ = 1/s ∈ (1/s∗, 1) and the front side
state (u1, p1)(s). The back side state of the shock (u2, p2)(s) can be determined by (2.23)–(2.26).
Then we have

3
[
u2(s)s − 1

]2 − [
u2(s) − s

]2
< 0.

Proof This lemma can be obtained directly by (2.24), (2.26), and (2.25).

Lemma 2.9 Assume that there is a shock with the speed ξ = 1/s ∈ (1/s∗, 1) and the front side
state (u1, p1)(s). Then the back side state of the shock (u2, p2)(s) satisfies

u2(s∗) = u1(s∗) < 0, lim
s→1+ u2(s) = 1, and u′

2(s) < 0.

Proof From (2.24) and (2.26), we have

ū2(s) = 1

3

(
1 − ξu1(s)

u1(s) − ξ

)
.
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Hence, we have

u2(s) = ū2(s) + ξ

1 + ξ ū2(s)
= 1 + 2ξu1(s) − 3ξ 2

−2ξ + 3u1(s) − ξ 2u1(s)
. (2.27)

Consequently, we get lim
s→1+ u2(s) = 1.

From Lemma 2.7, we have u1(s∗) = s∗−√
3

1−√
3s∗

. Hence, we get ū1(s∗) = − 1√
3
. Then by (2.26), we

have ū2(s∗) = − 1√
3
. And consequently, lim

s→s−∗
u2(s) = u1(s∗).

By computation, we have

ū′
2(s) =

−ξ 2
(
1 − u′

1(s) − u2
1(s) + 1

ξ2 u′
1(s)

)
3[u1(s) − ξ ]2

< 0.

Hence, by (2.27), we have

u′
2(s) = ξ 2(ū2

2(s) − 1) + (1 − ξ 2)ū′
2(s)

[1 + ξ ū2(s)]2
< 0.

We then complete the proof of the lemma.

By Lemma 2.9, we know that there exists one and only one ss ∈ (1, s∗) such that u2(ss) = 0.
Therefore, when u0 ∈ (−1, 0) the problem (1.5), (1.6) has a discontinuous solution with a single
shock. The solution has the form

(u, p)(s) =
{

(u1, p1)(s), s < ss,(
0, p2(ss)

)
, s > ss,

where s = t/x; see Figure 7(right).
One may ask whether the problem has another discontinuous solution with a shock located

at ξ1 �= 1/ss. If it is possible, then by Lemma 2.8 we know that 3
(
u2(s1)s1 − 1

)2 − (
u2(s1) −

s1
)2

< 0. We then consider (2.3) with the data

(u, p) |s=s1= (u2, p2)(s1). (2.28)

By a method similar to Lemma 2.7, we know that there exists a s∗ > s1 such that the solution of
the initial value problem (2.3), (2.28) satisfies lim

s→s∗
u(s) = ∞; see Figure 7(left). Moreover, since

this solution satisfies 3(us − 1)2 − (u − s)2 < 0, for any s ∈ (s1, s∗) the state (u, p)(s) cannot be
the front side state of any admissible forward shock wave with the speed 1/s.

At this point, we have completed the proof of Theorem 1.1.

3 Self-similar solutions of the radially symmetric full-relativistic Euler equations

3.1 Ordinary differential equations

From (1.1) and the law of thermodynamics

d
( e

n

)
= TdS − pd

(
1

n

)
,
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we can deduce the entropy equation

Sx0 +
N∑

k=1

ukSxk = 0, (3.1)

see Li and Qin [14] for the details. Thus, for smooth flow system (1.7) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( iu

1 − u2

)
t
+
( iu2

1 − u2
+ p

)
r
+ (N − 1)iu2

(1 − u2)r
= 0,

( i

1 − u2
− p

)
t
+
( iu

1 − u2

)
r
+ (N − 1)iu

(1 − u2)r
= 0,

St + uSr = 0.

(3.2)

Since the problem (1.7), (1.8) is invariant under self-similar transformation, we look for self-
similar solutions that depend only on ξ = r/t. Then, by self-similar transformation system (3.2)
can be changed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ξ
d

dξ

( iu

1 − u2

)
+ d

dξ

( iu2

1 − u2

)
+ dp

dξ
+ (N − 1)iu2

(1 − u2)ξ
= 0,

− ξ
d

dξ

( i

1 − u2

)
+ ξ

dp

dξ
+ d

dξ

( iu

1 − u2

)
+ (N − 1)iu

(1 − u2)ξ
= 0,

(u − ξ )
dS

dξ
= 0.

By tedious derivations, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp

dξ
= − (N − 1)iu(u − ξ )

ξ
{

(u − ξ )
[
ξ (1 − u2) + ip(p, S)(u − ξ )

]+ (1 + u2 − 2uξ )(uξ − 1)
} ,

du

dξ
= − (N − 1)(uξ − 1)u(1 − u2)

ξ
{

(u − ξ )
[
ξ (1 − u2) + ip(p, S)(u − ξ )

]+ (1 + u2 − 2uξ )(uξ − 1)
} ,

(u − ξ )
dS

dξ
= 0.

(3.3)

The initial and boundary conditions (1.8) become

lim
ξ→+∞(u, n, S)(ξ ) = (u0, n0, S0), (un) |ξ=0 = 0. (3.4)

Let s = 1/ξ . We thus have the following initial value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

du

ds
= (N − 1)(u − s)u(1 − u2)

g
,

dp

ds
= (N − 1)iu(us − 1)

g
,

(us − 1)
dS

ds
= 0,

(3.5)

(u, p, S) |s=0 = (u0, p0, S0), (3.6)
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where

g = s2
{

(u − ξ )
[
ξ (1 − u2) + ip(p, S)(u − ξ )

]+ (1 + u2 − 2uξ )(uξ − 1)
}

= (1 − u2)(us − 1) + ip(p, S)(us − 1)2 + [(1 + u2)s − 2u](u − s)

= ρp(p, S)(us − 1)2 − (u − s)2.

Lemma 3.1 The initial value problem (3.5), (3.6) has a unique local solution (u(s), p(s), S0) in
(0, 1) for any u0 ∈ (−1, 1). Moreover, this solution satisfies

p(s) > 0 and
(
1 − |u(s)|)|u(s)| �= 0 as 0 < s < 1.

Proof The problem (3.5), (3.6) is classically well-posed which has a unique local solu-
tion (u(s), p(s), S0). As shown in (2.7) and (2.8), we have that the solution satisfies(
1 − |u(s)|)|u(s)| �= 0.

If there exists a s∗ such that p(s) > 0 as 0 < s < s∗ and p(s∗) = 0, then along the integral curve
of (3.5), (3.6) we have

∫ 0

p(s∗−ε)

(
1
γ

S
− 1

γ

0 p
1−γ
γ + 1

γ−1

)
(us − 1)2 − (u − s)2

γ

γ−1 p + ( p
S0

)
1
γ

dp =
∫ s∗

s∗−ε

(N − 1)u(us − 1) ds (3.7)

where ε > 0 is sufficiently small. Since γ > 1, the left integration of (3.7) is infinite, while the
right is finite. This leads to a contradiction. Thus, we have p(s) > 0.

Since

ρp(p, S0) = 1

γ
S

− 1
γ

0 p
1−γ
γ + 1

γ − 1
>

1

γ − 1
> 1, (3.8)

we have

g = ρp(p, S0)(us − 1)2 − (u − s)2 > 0 as − 1 ≤ u ≤ 1 and 0 < s < 1. (3.9)

Thus, by i(p, S0) = S
− 1

γ

0 p
1
γ + γ p

γ−1 we know that the local solution can be extended to (0, 1). We
then complete the proof of this lemma.

3.2 Continuous solution for u0 ∈ (0, 1)

Lemma 3.2 For any u0 ∈ (0, 1), there exists a 0 < s0 < 1 such that the solution of the initial
value problem (3.5), (3.6) satisfies u(s0) = s0; see Figure 8(left).

Proof From (3.9), we have

du

ds

{
> 0, 0 < s < u < 1;

< 0, 0 < u < s < 1.
(3.10)

So, if s0 does not exist, then we have u(s) > s as 0 < s < 1.
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Suppose that u(s) > s as 0 < s < 1. Then by 0 < u(s) < 1 we know that u(s) → 1 as s → 1.
Along the integral curve of (3.5) and (3.6), we have

dp

du
= i(p, S0)(us − 1)

(u − s)(1 − u2)
.

Hence, using the equation of state (1.9), we have∫ p(y)

p0

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp =

∫ u(y)

u0

(us − 1)

(u − s)(1 − u2)
du for 0 < y < 1,

where s = s(u) can be seen as the inverse function of u = u(s). Since us−1
u−s < −1 along u = u(s),

we have ∫ u(y)

u0

(us − 1)

(u − s)(1 − u2)
du < −

∫ u(y)

u0

1

1 − u2
du for 0 < y < 1.

Consequently, by p′(s) < 0, we get∫ 0

p0

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp ≤

∫ p(y)

p0

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp < −

∫ u(y)

u0

1

1 − u2
du (3.11)

for 0 < y < 1.
Since γ > 1, the left integration of (3.11) is finite, while the right integration of (3.11)

approaches −∞ as y → 1. This leads to a contradiction. We then have this lemma.

From the last lemma we know that 0 < u(1) < 1. In what follows, we are going to discuss the
solution for s > 1. Let

h(s) = h(p(s), s) = s −√
ρp(p(s), S0)

1 − s
√

ρp(p(s), S0)
as s ≥ 1.

We have the following conclusions about the solution for s > 1:

• if p(s) > 0, then by (3.8) we have

h(s) − 1

s
= s2 − 1

s(1 − s
√

ρp(p(s), S0))
< 0; (3.12)

• if p(s) > 0 and u(s) < h(s), then we have

ρp(p(s), S0)(u(s)s − 1)2 − (u(s) − s)2 > 0. (3.13)

Lemma 3.3 For any s > 1, if p(s) > 0 and u(s) > 0, then we have u(s) < h(s).

Proof By a direct computation, we have

du(s)

ds
− dh(s)

ds
= (N − 1)

(
(u − s)u(1 − u2) − iu(us−1)(s2−1)ρpp

2
√

ρp(1−s
√

ρp)2

ρp(us − 1)2 − (u − s)2

)
− 1 − ρp

(1 − s
√

ρp)2
.
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By the last lemma, we have u(1) − h(1) < 0. Suppose there exists a s′ > 1 such that p(s′) > 0,
u(s′) > 0, u(s′) − h(s′) = 0, and u(s) − h(s) < 0 as 1 < s < s′. Then, we have

(u − s)u(1 − u2) − iu(us − 1)(s2 − 1)ρpp

2
√

ρp(1 − s
√

ρp)2

= u(us − 1)

(
√

ρp(1 − u2) − i(s2 − 1)ρpp

2
√

ρp(1 − s
√

ρp)2

)

= u(us − 1)

(
√

ρp

(
1 −

( s − √
ρp

1 − s
√

ρp

)2)− i(s2 − 1)ρpp

2
√

ρp(1 − s
√

ρp)2

)

= u(us − 1)(s2 − 1)

(1 − s
√

ρp)2

(√
ρp(ρp − 1) − iρpp

2
√

ρp

)

= u(us − 1)(s2 − 1)

2(ρp)
5
2 (1 − s

√
ρp)2

(
ipρρ + 2pρ(1 − pρ)

)
< 0

at s = s′, since

u(s′)s′ − 1 = s′2 − 1

1 − s′√ρp(p(s′), S0)
< 0 and ipρρ + 2pρ(1 − pρ) > 0.

Consequently, by (3.13), we have

lim
s→(s′)−

(
du(s)

ds
− dh(s)

ds

)
= −∞,

which contradicts to that u(s) − h(s) < 0 as 1 < s < s′. So, s′ does not exist. We then have this
lemma.

As shown in (2.8), we have that for any s > 1, if h(s) > 0, then we have u(s) > 0. We are going
to show the following three cases for the solution of the initial value problem (3.5) and (3.6):

I There exists a s∗ > 1 such that 0 < u(s) < h(s) < 1
s as 1 < s < s∗, u(s∗) = h(s∗) = 1

s∗ , and
p(s∗) = 0.

II There exists a s∗ > 1 such that 0 < u(s) < h(s) < 1
s as 1 < s ≤ s∗ and u(s∗) = h(s∗) = 0.

III 0 < u(s) < h(s) < 1/s for all s > 1.

3.2.1 Case I

Lemma 3.4 If u0 > 0 is sufficiently large, then there exists a s∗ > 1 such that 0 < u(s) < h(s) < 1
s

as 1 < s < s∗, u(s∗) = h(s∗) = 1
s∗ , and p(s∗) = 0; see Figure 8(left).

Proof From (3.5), we have

(u − s)

i(p, S0)(us − 1)
dp = 1

(1 − u2)
du.
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Hence, ∫ p(y)

p(s0)

(u − s)

i(p, S0)(us − 1)
dp =

∫ u(y)

u(s0)

1

1 − u2
du as y > s0, (3.14)

where s0 is given in Lemma 3.2.
By (3.13), we know that if 0 < u(s) < h(s) and p(s) > 0 then

u − s

us − 1
<

1√
pρ(ρ, S0)

.

Inserting this into (3.14), we have that for any y > s0, if 0 < u(y) < h(y) and p(y) > 0, then∫ p(y)

p0

1

i(p, S0)
√

pρ(ρ, S0)
dp <

∫ p(y)

p(s0)

1

i(p, S0)
√

pρ(ρ, S0)
dp

<

∫ p(y)

p(s0)

(u − s)

i(p, S0)(us − 1)
dp =

∫ u(y)

u(s0)

1

1 − u2
du

<

∫ u(y)

u0

1

1 − u2
du.

(3.15)

Let χ be defined so that∫ 0

χ

1

1 − u2
du =

∫ 0

p0

1

i(p, S0)
√

pρ(ρ, S0)
dp

=
∫ 0

p0

[( p

S0

) 1
γ + γ p

γ − 1

]−1[ 1

γ − 1
+ 1

γ S0

( p

S0

) 1
γ −1] 1

2
dp.

Then by (3.15), we know that if u0 > χ then we have∫ 0

u0

1

1 − u2
du <

∫ 0

χ

1

1 − u2
du <

∫ p(y)

p0

1

i(p, S0)
√

pρ(ρ, S0)
dp.

Hence, there exists a s∗ such that p(s∗) = 0. That is because if this is not true then by (3.12) and
Lemma 3.3, we have that u(y) approaches 0 as y increases, and hence (3.15) will not be satisfied
when y is sufficiently large. By the definition of h(s) we also have h(s∗) = 1/s∗.

Next, we shall show u(s∗) = 1/s∗. If u(s∗) < 1/s∗, then by pρ

(
ρ(s∗), S0

)= 0 there exists a
sufficiently small ε > 0 such that

(us − 1)2 − (u − s)2pρ

(
ρ(s), S0

)
>

1

2
(us − 1)2 as s∗ − ε < s < s∗.

Therefore, from the second equation of (3.5), we have∫ p(s)

p(s∗−ε)

1

i(p, S0)pρ(ρ(p), S0)
dp

=
∫ s

s∗−ε

(N − 1)u(us − 1)

(us − 1)2 − (u − s)2pρ(ρ, S0)
ds

>

∫ s

s∗−ε

2(N − 1)u

us − 1
ds as s∗ − ε < s < s∗.
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u

s

1

1 oo s*

u = u(s)

u

ξ

ξ*

ξ*

S0
S

p

us = 1

u0
u0
p0

u = h(s)

s0

FIGURE 8. Continuous solution with a growing vacuum region for case I.

If u(s∗) < 1/s∗, then
∫ s∗

s∗−ε

2(N−1)u
us−1 ds is finite. However,

∫ p(s∗)

p(s∗−ε)

1

i(p, S0)pρ(ρ(p), S0)
dp

=
∫ 0

p(s∗−ε)

[( p

S0

) 1
γ + γ p

γ − 1

]−1[ 1

γ − 1
+ 1

γ S0

( p

S0

) 1
γ −1]

dp = −∞.

This leads to a contradiction. We then have u(s∗) = 1/s∗.
We then complete the proof of this lemma.

We are now ready to construct the self-similar solution of the problem (1.7), (1.8) for case I.
When ξ > ξ∗ = 1/s∗, the solution is determined by the classical solution of the initial value prob-
lem (3.5), (3.6). We continue the solution by a vacuum state for ξ < ξ∗. This is a continuous
extension; see Figure 8(right).

3.2.2 Case II

Lemma 3.5 If u0 > 0 is sufficiently small, then there exists a s∗ > 1 such that 0 < u(s) < h(s) <

1/s as 1 < s ≤ s∗ and u(s∗) = h(s∗) = 0; see Figure 9(left).

Proof It is easy to prove by (3.5) that for any small δ > 0 there exists a ε > 0 such that if
0 < u0 < ε then

0 < u(1) < δ and p(1) > p0 − δ. (3.16)

From (3.5), we have

dp

du
= i(p, S0)(1 − us)

(s − u)(1 − u2)
≤ i(p, S0)

1 − u2
as s > 1.

Thus, by integration, we have∫ p0−δ

p(s)

1

i(p, S0)
dp ≤

∫ p(1)

p(s)

1

i(p, S0)
dp ≤

∫ u(1)

u(s)

1

1 − u2
du

<

∫ u(1)

0

1

1 − u2
du <

∫ δ

0

1

1 − u2
du as s > 1.

(3.17)
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u = u(s)

u

s

1

1
ξoo

u0 u0

p0

s* ξ*

S0
S

p

u

us = 1

u = h(s)

FIGURE 9. A continuous solution for case II.

Therefore, from (3.16) and (3.17), we have that when δ is sufficiently small there exists a
pm > 0 such that

pm < p(s) < p(1) as s > 1.

Consequently, by the definition of h(s) we know that there exists a s∗ > 1 such that s∗ =√
ρp

(
p(s∗), S0

)
and h(s∗) = 0.

As shown in (2.8), we can prove u(s) > 0 as 1 < s < s∗. Therefore, by Lemma 3.3, we also
have u(s∗) = 0. We then have this lemma.

We are now ready to construct the self-similar solution of the problem (1.7), (1.8) for case
II. When ξ > ξ∗ = 1/s∗, the solution is determined by the classical solution of the initial value
problem (3.5), (3.6). We continue the solution by a constant state (u, p, S) = (0, p(s∗), S0) for
ξ < ξ∗. This is a continuous extension; see Figure 9(right).

3.2.3 Case III

In what follows, we are going to show that case III can be happened.

Lemma 3.6 If case I happens as (u, p, S)(0) = (u0, p0, S0), then there exists a sufficiently small
ε > 0 such that case I will happen for any (u, p, S)(0) ∈ (u0 − ε, u0 + ε) × {p0} × {S0}.

Proof Denote by (ū, p̄, S̄)(s) the solution of (3.5) with data (u, p, S)(0) = (u0, p0, S0). Then there
exists a s̄∗ > 1 such that (ū, p̄, S̄)(s) satisfies p̄(s̄∗) = 0 and ū(s̄∗) = h(p̄(s̄∗), s̄∗) = 1/s̄∗.

Let M= ∫ 0
1
s̄∗

1
1−u2 du. Then there exists a sufficiently small δ > 0 such that

∫ 0

δ

[( p

S0

) 1
γ + γ p

γ − 1

]−1[ 1

γ − 1
+ 1

γ S0

( p

S0

) 1
γ −1] 1

2
dp >

M
4

, (3.18)

and ∫ 0

1
s̄∗ −δ

1

1 − u2
du <

3

4
M. (3.19)

Since p̄(s) is continuous on [0, s̄∗], there exists a sufficiently small η > 0 such that

p̄(s̄∗ − η) <
δ

2
. (3.20)
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When ε > 0 is sufficiently small, the solution (u, p, S)(s) of the initial value problem for (3.5)
with the initial data (u, p, S)(0) ∈ (u0 − ε, u0 + ε) × {p0} × {S0} satisfies

|p(s̄∗ − η) − p̄(s̄∗ − η)| < δ

4
and |u(s̄∗ − η) − ū(s̄∗ − η)| < δ

4
. (3.21)

By (3.15), we have∫ p(y)

p(s̄∗−η)

[( p

S0

) 1
γ + γ p

γ − 1

]−1[ 1

γ − 1
+ 1

γ S0

( p

S0

) 1
γ −1] 1

2
dp

<

∫ u(y)

u(s̄∗−η)

1

1 − u2
du as y > s̄∗ − η.

(3.22)

Combining with (3.18)–(3.22), we have

M
4

<

∫ p(y)

δ

[( p

S0

) 1
γ + γ p

γ − 1

]−1[ 1

γ − 1
+ 1

γ S0

( p

S0

) 1
γ −1] 1

2
dp <

∫ u(y)

1
s̄∗ −δ

1

1 − u2
du, (3.23)

since u(s̄∗ − η) > ū(s̄∗ − η) − δ
4 > 1/s∗ − δ

4 and p(s̄∗ − η) < p̄(s̄∗ − η) + δ
4 < δ. Thus, by (3.19),

we know that there exists a s∗ > 1 such that h(p(s), s) < 1/s as 1 < s < s∗ and u(s∗) =
h(p(s∗), s∗) = 1/s∗. Or else, there exists a y such that

∫ u(y)
1
s̄∗ −δ

1
1−u2 du < M

2 , which contradicts to

(3.23). We then have this lemma.

Lemma 3.7 If case II happens as (u, p, S)(0) = (u0, p0, S0), then there exists a sufficiently small
ε > 0 such that case II will happen for any (u, p, S)(0) ∈ (u0 − ε, u0 + ε) × {p0} × {S0}.

Proof Denote by (ū, p̄, S̄)(s) the solution of (3.5) with data (u, p, S)(0) = (u0, p0, S0). Then there
exists a s̄∗ > 1 such that ū(s̄∗) = 0 and p̄(s̄∗) = p∗ > 0.

Let

N =
∫ p∗

2

0

1

i(p, S0)
dp =

∫ p∗
2

0

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp.

Then there exists a δ > 0 such that
∫ δ

0
1

1−u2 du <N . There exists a sufficiently small η > 0 such
that

0 < ū(s̄∗ − η) <
δ

4
. (3.24)

When ε > 0 is sufficiently small, the solution (u, p, S)(s) of (3.5) with data (u, p, S)(0)
∈ (u0 − ε, u0 + ε) × {p0} × {S0} satisfies

|p(s̄∗ − η) − p̄(s̄∗ − η)| < p∗
4

and |u(s̄∗ − η) − ū(s̄∗ − η)| < δ

4
. (3.25)

By (3.17), we have∫ p(s̄∗−η)

p(s)

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp <

∫ u(s̄∗−η)

u(s)

1

1 − u2
du as s > s̄∗ − η.
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FIGURE 10. A smooth solution for case III.

Using (3.24)–(3.25), we have∫ p∗
2

p(s)

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp <

∫ p(s̄∗−η)

p(s)

[( p

S0

) 1
γ + γ p

γ − 1

]−1
dp

<

∫ u(s̄∗−η)

u(s)

1

1 − u2
du <

∫ δ
2

0

1

1 − u2
du <N as s > s̄∗ − η.

Thus, there exists a pm > 0 such that p(s) > pm as s > s̄∗ − η. Consequently, there exists a s∗ >

s̄∗ − η such that s∗ =
√

ρp

(
p(s∗), S0

)
. We then have this lemma.

Using Lemmas 3.2–3.7 and the argument of continuity, we know that for any p0 > 0 and S0 > 0
there exists a u0 ∈ (0, 1) such that the solution of the initial value problem (3.5), (3.6) satisfies
0 < u(s) < h(s) < 1/s for all s > 1. That is to say, the problem (1.7), (1.8) admits a global smooth
solution; see Figure 10(right).

3.3 Shock wave solution for u0 ∈ (−1, 0)

Lemma 3.8 There exists a s1 > 1 such that the initial value problem (3.5), (3.6) admits a solution
on [0, s1]. Moreover, this solution satisfies u0 < u(s) < 0 < h(s) as 0 < s ≤ s1 and h(s1) = 0.

Proof Lemma 3.1 has obtained that the problem (3.5), (3.6) has a solution on [0, 1]. For s > 1,
it is easy to see that if h(s) > 0 then u(s) < 0, p(s) > 0, and dp

ds > 0 . Hence, by ρpp(p, S0) < 0,
we know that there exists a s1 > 1 such that u(s) < 0 < h(s) as 1 < s < s1 and h(s1) = 0. In what
follows, we are going to prove that u(s1) < 0. We shall prove this by contradiction.

We now consider the initial value problem

dū

ds
= (N − 1)(ū − s)ū(1 − ū2)

s2
1(ūs − 1)2 − (ū − s)2

, ū(0) = u0. (3.26)

By Lemma 2.6, we have that the solution of the problem (3.26) satisfies ū(s1) < 0.
From ρpp(p, S0) < 0 and dp

ds > 0, we have s1 <
√

ρp(p(s), S0) as 0 < s < s1. Hence, we have

(N − 1)(u − s)u(1 − u2)

ρp(p, S0)(us − 1)2 − (u − s)2
<

(N − 1)(u − s)u(1 − u2)

s2
1(us − 1)2 − (u − s)2

as 0 < s < s1.

Therefore, by comparison principle, we have u(s1) < ū(s1) < 0. We then complete the proof of
this lemma.
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FIGURE 11. Shock wave solution for u0 ∈ (−1, 0).

Lemma 3.9 For any u0 ∈ (−1, 0) there exists a s∗ > s1 such that the solution of the initial value
problem (3.5), (3.6) satisfies u(s) < h(s) as 1 < s < s∗ and u(s∗) = h(s∗) < 0; see Figure 11(left).

Proof By computation, we have

dh(s)

ds
= 1

(1 − s
√

ρp(p, S0))2

(
1 − ρp(p, S0) + ρpp(p, S0)

2
√

ρp(p, S0)

dp

ds
(s2 − 1)

)
< 0 (3.27)

as s > 1. Thus, if the curve u = u(s) and the curve u = h(s) do not intersect, then there exists a
û ∈ (−1, 0) such that lim

s→+∞ u(s) = û. Thus, we have

du

ds
= (N − 1)(u − s)u(1 − u2)

ρp(p, S0)(us − 1)2 − (u − s)2
>

−(N − 1)(1 − u2
0)ûs

ρp(p0, S0)(u0s − 1)2

as s > 0. Thus, by integration, we have

û − u0 =
∫ +∞

0

(N − 1)(u − s)u(1 − u2)

ρp(p, S0)(us − 1)2 − (u − s)2
ds >

∫ +∞

0

−(N − 1)(1 − u2
0)ûs

ρp(p0, S0)(u0s − 1)2
ds = +∞,

which leads to a contradiction. We then have this lemma.

Lemma 3.9 implies that when u0 ∈ (−1, 0) the problem (1.7), (1.8) does not have a global
continuous solution. So, we need to look for a shock wave solution. In the following discussions,
we denote by (u1, p1, S1)(s) (0 < s < s∗) the solution of the initial value problem (3.5), (3.6) for
u0 < 0.

The Rankine–Hugoniot conditions of shock waves for (1.7) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ
( n1√

1 − u2
1

− n2√
1 − u2

2

)
=
( n1u1√

1 − u2
1

− n2u2√
1 − u2

2

)
,

ξ
( i1u1

1 − u2
1

− i2u2

1 − u2
2

)
=
( i1u2

1

1 − u2
1

+ p1 − i2u2
2

1 − u2
2

− p2

)
,

ξ
( i1

1 − u2
1

− p1 − i2
1 − u2

2

+ p2

)
= s
( i1u1

1 − u2
1

− i2u2

1 − u2
2

)
,

(3.28)
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where ‘1’ denotes the fluid in front of the shock, ‘2’ denotes the fluid behind the shock, and ξ

denotes the speed of the shock front.
Admissible forward shock waves must satisfy the entropy inequality

S2 > S1, (3.29)

and the stability condition

u1 +√
pρ(ρ1, S1)

1 + u1
√

pρ(ρ1, S1)
< ξ <

u2 +√
pρ(ρ2, S2)

1 + u2
√

pρ(ρ2, S2)
. (3.30)

Lemma 3.10 For any s ∈ (1, s∗), there exists an unique (u2, p2, S2)(s) such that (u1, p1, S1)(s)
and (u2, p2, S2)(s) can be connected by an admissible forward shock with the speed ξ = 1/s.

Proof From ρp

(
p1(s), S0

)(
u1(s)s − 1

)2 − (
u1(s) − s

)2
> 0, u1(s)s < 1, and s > u1(s) we imme-

diately have

1

s
>

u1(s) +√
pρ(ρ1(s), S0)

1 + u1(s)
√

pρ(ρ1(s), S0)
for any s ∈ (1, s∗).

Then using the result of Chen
(
cf. Theorems 4.1 and 4.2 of [6]

)
we can get this lemma.

We are going to look for an admissible forward shock wave with an appropriate speed ξ =
1/s ∈ (1/s∗, 1) and the front side state (u1, ρ1, S1)(s) such that the backside state of the shock
satisfies u2 = 0.

Lemma 3.11 Let (u2, p2, S2)(s) (1 < s < s∗) be determined by the R-H conditions (3.28), the
entropy condition (3.29), and the stability condition (3.30). Then there exists a ss ∈ (1, s∗) such
that u2(ss) = 0.

Proof By a direction computation, we have

pρ(ρ, S) = 1

1
γ−1 + 1

γ
( 1

S )
1
γ p

1
γ −1

< γ − 1 < 1, (3.31)

since γ ∈ (1, 5/3). By (3.30), we have

u2(s) >
1 − s

√
pρ(ρ2, S2)

s −√
pρ(ρ2, S2)

. (3.32)

Combining with this and (3.31), we have that if s is sufficiently close to 1 then u2(s) > 0.
It is easy to see that lim

s→s−∗
u2(s) = u1(s∗) < 0. Therefore, there exists a ss ∈ (1, s∗) such that

u2(ss) = 0. We then have this lemma.

Remark 3.1 The uniqueness of ss is still a problem, since it is difficult to prove that u2(s) is
monotonically decreasing in (1, s∗).
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Therefore, when u0 ∈ (−1, 0) the initial-boundary value problem (1.7), (1.8) has a discontinu-
ous solution with a single shock. The solution has the form

(u, p, S)(s) =
{(

u1(s), p1(s), S0
)
, s < ss,(

0, p2(ss), S2(ss)
)
, s > ss,

where s = t/x; see Figure 11(right).
At this point, we have completed the proof of Theorem 1.2.

4 The spherical piston problem

Motivated by the result of the spherical piston problem for the compressible Euler equations, we
shall look for self-similar discontinuous solutions with a single shock of the problem.

4.1 The spherical piston problem for the ultra-relativistic Euler equations

Assume that the speed of the single shock is 1/sp, where sp ∈ (1,
√

3). Then by (2.24), (2.26), and

(2.27) we know that the velocity of the backside state of the shock is u2 = 3−s2
p

2sp
. Thus, in order to

solve the spherical piston problem, we only need to find a sp ∈ (1,
√

3) such that the solution of
the initial value problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
du

ds
= (N − 1)(u − s)u(1 − u2)

3(us − 1)2 − (u − s)2
, s > sp;

u(sp) = 3 − s2
p

2sp

(4.1)

satisfies u
(

1
α

)= α.

Lemma 4.1 For any α ∈ (0, 1), there exists one and only one sp ∈ (1,
√

3) such that the solution
of the initial value problem (4.1) satisfies u

(
1
α

)= α; see Figure 12(right).

Proof For any sp ∈ (1,
√

3), the solution u = u(s) of the problem (4.1) is monotonically increas-
ing. Hence, there exists a s̃(sp) > sp such that s̃(sp)u(s̃(sp)) = 1. It is easy to see that s̃(sp) is
continuous and strictly monotonically increasing with respect to the variable sp ∈ (1,

√
3).

Consider the initial value problem⎧⎪⎨
⎪⎩

du

ds
= (N − 1)(u − s)u(1 − u2)

3(us − 1)2 − (u − s)2
, s < β;

u |s=β = 1
β

.

(4.2)

Then by Remark 2.3, we know that for any β > 1, there exists a ŝ(β) such that the solution of (4.2)

satisfies u(ŝ(β)) = 3−ŝ2(β)
2ŝ(β) . Moreover, ŝ(β) is a monotonically increasing function of β ∈ (1, +∞).

Therefore, by the argument of continuity, we can get this lemma.

From Lemma 4.1, we immediately have Theorem 1.3. The structure of the solution of the
spherical piston problem (1.5), (1.11) can be illustrated in Figure 12(right).
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u = u2(s)

u

1
a

s ξ
ξpa

a
p

u

Shock front

sp

f = 0 

us = 1
f < 0

f = 0

FIGURE 12. The solution of the spherical piston problem for the ultra-relativistic Euler equations.

4.2 The spherical piston problem for the full-relativistic Euler equations

Let s∗ =√
ρp(p0, S0). Assume that the speed of the single shock is 1/sp where sp ∈ (1, s∗). Then

by (3.28) we can get the back side state (u2, p2, S2)(sp). Thus, we only need to find a sp ∈ (1, s∗)
such that the solution of (3.5) with data

(u, p, S) |s=sp= (u2, p2, S2)(sp) (4.3)

satisfies u
(

1
α

)= α.

Lemma 4.2 For any α ∈ (0, 1), there exists a sp ∈ (1, s∗) such that the solution of the initial value
problem (3.5), (4.3) satisfies u

(
1
α

)= α.

Proof By (3.30), we have

1

sp
<

u2(sp) +√
pρ(ρ2(sp), S2(sp))

1 + u2(sp)
√

pρ(ρ2(sp), S2(sp))
(4.4)

For forward shock waves, we have

u2(sp) <
1

sp
. (4.5)

Combining with this and (4.4), we have

ρp

(
p2(sp), S2(sp)

)
(u2(sp)sp − 1)2 − (u2(sp) − sp)2 < 0. (4.6)

Hence, the initial value problem (3.5), (4.3) is well-posed and has a local solution (u, p, S)(s).
Moreover, this solution satisfies

du

ds
> 0 and

dp

ds

{
> 0, us < 1;
< 0, us > 1.

(4.7)

By computation, we have

s +√
ρp(p, S)

1 + s
√

ρp(p, S)
>

1

s
as s > 1. (4.8)

Thus, by (3.27), (4.5), (4.7), and (4.8), we know that there exists a s̃(sp) > sp such that u(s̃(sp)) =
1/s̃(sp). It is easy to see that s̃(sp) is a continuous function of sp ∈ (1, s∗). Thus, in order to prove
this lemma, we only need to prove

inf
sp∈(1,s∗)

s̃(sp) = 1 and sup
sp∈(1,s∗)

s̃(sp) = +∞.
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u = u2(s)

u

s
us = 1

s*

u = u(s)

s

u = v(s)

FIGURE 13. û(s) and v(s).

Since u = u(s) is monotonically increasing in (sp, s̃(sp)), we have 1
s̃(sp) > u2(sp). From (3.31)

and (3.32), we know that u2(sp) → 1 as sp → 1+. Therefore, we get inf
sp∈(1,s∗)

s̃(sp) = 1.

We next prove sup
sp∈(1,s∗)

s̃(sp) = +∞. We shall prove this by contradiction. Suppose that

sup
sp∈(1,s∗)

s̃(sp) =R, (4.9)

where R> 1 is a finite number. We consider the following initial value problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dv

ds
= (N − 1)(v − s)v(1 − v2)

ρp(p0, S0)(vs − 1)2 − (v − s)2
, s <R+ 1;

v(R+ 1) = 1

R+ 1
.

(4.10)

By the result of Remark 2.3, we know that the integral curve u = v(s) of the problem (4.10) and
the curve u = s−s∗

1−ss∗ (s > 1) interact at some point (s′, u′) with s′ < s∗ and u′ > 0. Since u2(sp) → 0
as sp → s−∗ , there exists a s′

p sufficiently close to s∗, such that 0 < u2(s′
p) < u′ and s′

p > s′. Let

(û, p̂, Ŝ)(s) be the solution of the initial value problem for (3.5) with the initial data (u, p, S) |s=s′p=
(u2, p2, S2)(s′

p). Then by the assumption (4.9) we know that there exists s′′ ∈ (s′
p, R+ 1) such that

v(s′′) = û(s′′) and v(s) > û(s) as s ∈ (s′
p, s′′); see Figure 13. Hence, we have

v′(s′′) − û′(s′′) ≤ 0 (4.11)

By ρpp (p, S) < 0, S2(s′
p) > S0, p̂(s′′) > p̂(sp) > p0, and ρpS (p, S) < 0 we have ρp(p̂, S2(s′

p)) <

ρp(p0, S0), and consequently

(N − 1)(v − s)v(1 − v2)

ρp(p0, S0)(vs − 1)2 − (v − s)2︸ ︷︷ ︸
v′(s)

>
(N − 1)(û − s)û(1 − û2)

ρp(p̂, S2(s′
p))(ûs − 1)2 − (û − s)2︸ ︷︷ ︸

û′(s)

> 0 at s = s′′,

which contradicts to (4.11). Thus, we have sup
sp∈(1,s∗)

s̃(sp) = +∞. Then we complete the proof of

this lemma.

From Lemma 4.2, we immediately have Theorem 1.4.

https://doi.org/10.1017/S0956792519000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000317


948 G. Lai

Acknowledgements

The author would like to thank the anonymous referees for their careful readings of the
manuscript and helpful suggestions and comments.

Conflicts of interest

The author has no conflicts of interest.

References

[1] CHEN, G. Q. & LI, Y. C. (2004) Stability of Riemann solutions with large oscillation for the relativistic
Euler equations. J. Differential Equations, 202, 332–353.

[2] CHEN, G. Q. & LI, Y. C. (2004) Relativistic Euler equations for isentropic fluids: stability of Riemann
solutions with large oscillation. Z. Angew. Math. Phys. 55, 903–926.

[3] CHENG, H. J. & YANG, H. C. (2011). Riemann problem for the relativistic Chaplygin Euler equations.
J. Math. Anal. Appl. 381, 17–26.

[4] CHENG, H. J. & YANG, H. C. (2012). Riemann problem for the isentropic relativistic Chaplygin Euler
equations. Z. Angew. Math. Phys. 63, 429–440.

[5] CHEN, J. (1995). Conservation laws for the relativistic p-system. Comm. Partial Differential
Equations, 20, 1605–1646.

[6] CHEN, J. (1997). Conservation laws for relativistic fluid dynamics. Arch. Ration. Mech. Anal. 139,
377–398.

[7] COURANT, R. & FRIEDRICHS, K. O. (1948) Supersonic Flow and Shock Waves. Interscience, New
York.

[8] DING, M. & LI, Y. C. (2013) Local existence and non-relativistic limits of shock solutions to a
multidimensional piston problem for the relativistic Euler equations. Z. Angew. Math. Phys. 64,
101–121.

[9] DING, M. & LI, Y. C. (2014) An overview of piston problems in fluid dynamics. Hyperbolic
conservation laws and related analysis with applications. Springer Proc. Math. Stat. 49, 161–191.

[10] HSU, C. H., LIN, S. S. & MAKINO, T. (2001) On the relativistic Euler equation. Methods Appl. Anal.,
8, 159–208.

[11] HSU, C. H., LIN, S. S. & MAKINO, T. (2004) On spherically symmetric solutions of the relativistic
Euler equation. J. Differential Equations, 201, 1–24

[12] JENSSEN, H. K. (2011) On radially symmetric solutions to conservation laws. Nonlinear conservation
laws and applications. IMA Vol. Math. Appl., 153, 331–351.

[13] LANDAU, L. D. & LIFSCHITZ, E. M. (1987) Fluid Mechanics, Pergamon, Oxford.
[14] LI, T. T. & QIN, T. H. (2005). Physics and Partial Differential Equations (in Chinese), 2nd ed. Higher

Education Press, Beijing.
[15] LI, Y. C., FENG, D. M. & WANG, Z. J. (2005) Global entropy solutions to the relativistic Euler

equations for a class of large initial data. Z. Angew. Math. Phys. 56, 239–253.
[16] LI, Y. C. & SHI, Q. F. (2005) Global existence of the entropy solutions to the isentropic relativistic

Euler equations. Commun. Pure Appl. Anal., 4, 763–778.
[17] MARTÍ, J. M. & MÜLLER, E. (1994) The analytical solution of the Riemann problem in relativistic

hydrodynamics. J. Fluid Mech. 258, 317–333.
[18] MIZOHATA, K. (1997) Global solution to the relativistic Euler equation with spherical symmetry. J.

Indust. Apol. Math., 14, 125–157.
[19] PENG, C. C. & LIEN, W. C. (2012). Self-similar solutions of the Euler equations with spherical

symmetry. Nonlinear Analysis, 75, 6370–6378.
[20] STEINHARDT, P. J. (1982). Relativistic detonation waves and bubble growth in false vacuum decay.

Physical Review D., 25, 2074–2085.
[21] SMOLLER, J. & TEMPLE, B. (1993) Global Solutions of The Relativistic Euler Equations. Comm.

Math. Phys., 156, 67–99.

https://doi.org/10.1017/S0956792519000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000317


Solutions of relativistic Euler equations 949

[22] TAYLOR, G. I. (1946) The air wave surrounding an expanding sphere. Proceedings of the Royal
Society of London, 186, 273–292.

[23] TAUB, A. H. (1948) Relativistic Rankine-Hugoniot equations. Physical Rev., 74, 328–334.
[24] WISSMAN, B. D. (2011) Global solutions to the ultra-relativistic Euler equations. Comm. Math. Phys.,

306, 831–851.
[25] ZHANG, T. & ZHENG, Y. X. (1998) Axisymmetric solutions of the Euler equations for polytropic

gases. Arch. Ration. Mech. Anal. 142, 253–279.
[26] ZHENG, Y. X. (2001) Systems of Conservation Laws: 2-D Riemann Problems. 38 PNLDE, Bikhäuser,

Boston.

https://doi.org/10.1017/S0956792519000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000317

	Self-similar solutions of the radially symmetric relativistic Euler equations
	Introduction
	Self-similar solutions of the radially symmetric ultra-relativistic Euler equations
	Ordinary differential equations
	Continuous solution for u0(0, 1)
	N=2
	N=3

	Shock wave solution for u0(-1, 0)

	Self-similar solutions of the radially symmetric full-relativistic Euler equations
	Ordinary differential equations
	Continuous solution for u0(0, 1)
	Case I 
	Case II 
	Case III

	Shock wave solution for u0(-1, 0)

	The spherical piston problem
	The spherical piston problem for the ultra-relativistic Euler equations
	The spherical piston problem for the full-relativistic Euler equations



