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CONSTRUCTINGMANY ATOMIC MODELS IN ℵ1

JOHN T. BALDWIN, MICHAEL C. LASKOWSKI, AND SAHARON SHELAH

Abstract. We introduce the notion of pseudoalgebraicity to study atomic models of first order theories
(equivalently models of a complete sentence of L�1 ,�). Theorem: Let T be any complete first-order theory
in a countable language with an atomic model. If the pseudominimal types are not dense, then there are
2ℵ1 pairwise nonisomorphic atomic models of T , each of size ℵ1.

§1. Introduction. As has been known since at least [11] and is carefully spelled
out in Chapter 6 of [1], for every complete sentence � of L�1,� (in a countable
vocabulary �) there is a complete, first order theory T (in a countable vocab-
ulary extending �) such that the models of � are exactly the �-reducts of the
atomic models of T . This paper is written entirely in terms of the class AtT of
atomic models of a complete first order theory T , but applies to L�1,� by this
translation.
Ourmain theorem,Theorem 2.8, asserts: LetT be any complete first-order theory
in a countable language with an atomic model. If the pseudominimal types are not
dense, then there are 2ℵ1 pairwise nonisomorphic, full1 atomic models of T , each
of size ℵ1.
To place this result into context, recall that the third author proved in [12] that a
countable, unsuperstable (indeed, any non-ℵ0-stable) theory has 2ℵ1 models of size
ℵ1. In a superstable theory every formula has ordinalR∞-rank, where the algebraic
formulas have rank zero, and the weakly minimal formulas have rank one. It follows
that in a superstable theory, every nonalgebraic formula can be extended to a weakly
minimal formula, i.e., the weakly minimal types are dense. However, if this fails,
i.e., if some nonalgebraic formula has no extension to a weakly minimal formula,
then (at least for stable theories) as in VII.3 of [12] one can construct a ‘uniform
�-tree’ which directly leads to the existence of many nonisomorphic uncountable
models.
Here, as we are only interested in atomic models where types are determined
by complete formulas, we introduce and develop a revised notion of algebraicity,
dubbed pseudoalgebraicity, which is more relevant for this context. Under this
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correspondence, ‘pseudominimal types’ are analogous to weakly minimal formulas,
which makes Theorem 2.8 a natural analog of the classical many models result.
Section 2 states some old observations about atomic models and introduces the
notions of pseudoalgebraicity and pseudominimality. Section 3 expounds a transfer
technique, already used in [2] and [3] and applied here prove to Theorem 2.8. The
gist of the method is to first find a c.c.c. forcing which produces an atomic model
that embeds a complicated model theoretic configuration. The existence of such a
forcing implies the existence of a countable modelM of set theory which contains
an atomic modelN witnessing the configuration. Then, using the technique of iter-
ated ultrapowers, we extend the countable model M to a family {MX : X ⊆ �1}
of models of set theory, where each MX contains an atomic model NX (now of
size ℵ1). As the features of the configuration are absolute between V and each
MX , we conclude that the atomic models NX and NY are nonisomorphic when-
ever X�Y contains a stationary set. Section 4 describes the forcing construction,
which together with the results of Section 3, yields a proof of Theorem 2.8 in
Section 5.
The authors are grateful to Paul Larson andMartinKoerwien formany insightful
conversations.

§2. A notion of algebraicity. Throughout this paper, T will always denote a
complete, first-order theory in a countable language that has an atomic model. By
definition, a model M of T is atomic if every finite tuple a from M realizes a
complete formula2. The existence of an atomic model is equivalent to the statement
that ‘every consistent formula φ(x) has a complete formula �(x) that implies it.’
Equivalently, T has an atomic model if and only if, for every n ≥ 1, the isolated
complete n-types are dense in the Stone space Sn(∅). We recall some old results of
Vaught concerning this context.

Fact 2.1. Let T be any complete theory in a countable language having an atomic
model. Then:

1. AtT is ℵ0-categorical, i.e., any two countable atomic models are isomorphic;
2. AtT contains an uncountable model if and only if some/every countable model of
AtT has a proper elementary extension.

The only known arguments for proving amalgamation and thus constructing
monster models for AtT invoke the continuum hypothesis and so are not useful
for our purposes. Nevertheless, we argue that many concepts of interest are in fact
model independent.
In first-order model theory, if a formula φ(x, a) is algebraic, then its solution
set cannot be increased in any elementary extension, i.e., if a ⊆ M � N , then
φ(M,a) = φ(N, a). However, in the atomic case, the analogous phenomenon can
be witnessed by nonalgebraic formulas. For example, (Z, S), the integers with a
successor function, is an atomic model of its theory. The formula ‘x = x’ is not
algebraic, yet (Z, S) has no proper atomic elementary extensions. This inspires the
following definition:

2Recall that φ(x) is a complete formula in T if φ(x) is the generator of a principal type, i.e., for every
�(x), T � (∀x)[φ(x)→ �(x)] or T � (∀x)[φ(x)→ ¬�(x)] .
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Definition 2.2. Let M ∈ AtT be countable3. A formula φ(x, a) is pseudoalge-
braic in M if a is from M , and φ(N, a) = φ(M,a) for every countable N ∈ AtT
with N 	M .
The strong ℵ0-homogeneity (any two finite sequences realizing the same type
over the emptyset are automorphic) of the countable atomic model of T yields
immediately that pseudoalgebraicity truly depends only on the type of a over the
emptyset. That is, ifM,M ′ ∈ AtT are each countable and tp(a,M ) = tp(a′,M ′),
thenφ(x, a) is pseudoalgebraic inM if andonly if φ(x, a′) is pseudoalgebraic inM ′.
This observation allows us to extend the notion of pseudoalgebraicity to arbitrary
atomic models of T .

Definition 2.3. Let N ∈ AtT have arbitrary cardinality.
1. A formula φ(x, a) is pseudoalgebraic in N if a is from N , and φ(x, a) is
pseudoalgebraic in M for some (equivalently, for every) countable M � N
containing a.

2. An element b ∈ N is pseudoalgebraic over a inside N , written b ∈ pcl(a,N),
if tp(b/a,N) contains a formula that is pseudoalgebraic in N .

3. Given an infinite subset A ⊆ N , b is pseudoalgebraic over A in N , written
b ∈ pcl(A,N), if and only if b ∈ pcl(a,N) for some finite a ∈ An.

As the language of T is countable, for any complete formula �(y), there is a
formula �(x, y) of L�1,� such that T ∪ {�(x, y)} � �(y) and for every atomicM ,
every a ∈ �(M ), and every b ∈M :

b ∈ pcl(a,M ) if and only if M |= �(b, a).
Note that this notion allows us to reword Fact 2.1(2): T has an uncountable
atomic model if and only if ‘x = x’ is not pseudoalgbraic. Here is a second example.

Example 2.4. LetL = {A,B, �, S} andT say thatA andB partition the universe
withB infinite, � : A→ B is a total surjective function and S is a successor function
on A such that every �-fiber is the union of S-components. A model M |= T is
atomic if every �-fiber contains exactly one S-component. Now choose elements
a, b ∈M for such anM such that a ∈ A and b ∈ B and �(a) = b. Clearly, a is not
algebraic over b in the classical sense, but a ∈ pcl(b,M ).
Recall that a t-construction over B is a sequence 〈ai : i < �〉 such that, letting Ai

denote B ∪ {aj : j < i}, tp(ai/Ai) is generated by a complete formula.
The notion of pseudoalgebraicity has many equivalents. Here are some we use
below.

Lemma2.5. SupposeM ∈ AtT and b, a are fromM . The following are equivalent:
1. b ∈ pcl(a,M );
2. For every N �M , if a ∈ Nn , then b ∈ N ;
3. b is contained inside any maximal t-construction sequence 〈aα : α < 	〉 over a
insideM .

3InDefinition 2.2 it would be equivalent to restrict to countable andM and allow arbitrary cardinality
forN . It would not be equivalent to assert for arbitraryM : “φ(x, a) is pseudoalgebraic inM if and only
if φ(M, a) = φ(N, a) for every N � M .” To see the distinction, consider the extreme case whereM is
an uncountable atomic model that is maximal, i.e., has no proper atomic elementary extension.
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For (3) note that as T has an atomic model, a maximal t-construction sequence
over a finite set is the universe of a model.
Here is one application of Lemma 2.5.

Lemma 2.6. Suppose that M ∈ AtT, a is from M , but φ(x, a) is not pseu-
doalgebraic in M . Then for every finite e from M , there is b ∈ φ(M,a) with
b �∈ pcl(e,M ).
Proof. We may assume a ⊆ e. Choose a countableM∗ �M containing e and,
by nonpseudoalgebraicity and Definition 2.2, choose a countable N∗ ∈ AtT with
N∗ 	M∗ and b∗ ∈ φ(N∗, a)\φ(M∗, a). AsN∗ is countable and atomic, choose an
elementary embedding f : N∗ →M that fixes e pointwise. Then f(b∗) ∈ φ(M,a)
and f(b∗) �∈ pcl(e,M ) as witnessed by f(M∗) and Lemma 2.5(2). �

In general, the notion of pseudoalgebraic closure gives rise to a reasonable closure
relation. All of the standard van derWaerden axioms ([13] for a dependence relation
hold in general, with the exception of the Exchange Axiom. Our next definition
isolates those formulas on which exchange (and a bit more) hold.

Definition 2.7. LetM be any atomic model and let a be fromM .

• A complete formula φ(x, a) is pseudominimal if it is not pseudoalgebraic, but
for every a∗ ⊇ a and c fromM and for every b ∈ φ(M,a), if c ∈ pcl(a∗b,M )
but c �∈ pcl(a∗,M ), then b ∈ pcl(a∗c,M ).

• The class AtT has density of pseudominimal types if for some/everyM ∈ AtT,
for every nonpseudoalgebraic formula φ(x, a), there is a∗ ⊇ a fromM and a
pseudominimal formula �(x, a∗) such that �(x, a∗) � φ(x, a).

It is immediate that if there is a nonpseudoalgebraic formula thenT has an atomic
model in ℵ1, so also if pseudominimal types are not dense, then T has an atomic
model in ℵ1. The main Theorem of this paper is the following, which is proved in
Section 5.

Theorem 2.8. Let T be any complete first-order theory in a countable language
with an atomic model. If the pseudominimal types are not dense, then there are 2ℵ1
pairwise nonisomorphic, full, atomic models of T , each of size ℵ1.

§3. A technique for producing many models of power ℵ1. The objective of this
section is to prove the transfer Theorem 3.13 that allows the construction (in ZFC)
of many atomic models of a first order theory T in two steps. First force to find a
model (M,E) of set theory in which a model of T is coded by stationary sets. Then
apply the transfer theorem to code a family of such models in ZFC.
The method expounded here has many precursors. Among the earliest are the
treatment of Skolem ultrapowers in [7] and the study of elementary extensions of
models of set theory in [8] and [6]. Paul Larson introduced the use of iterated
generic ultrapowers (used in the different context of Woodin’s P-max forcing) in
a large cardinal context in [4, 5] and the general method is abstracted in [9]. The
model theoretic technique used here is described in [2] and [3]. We formulate a
general metatheorem for the construction.
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The first subsection describes how to define andmaintain satisfaction of formulas
in a pre-determined, countable fragment LA under elementary extensions of �-
models of set theory.Most of this is well-known;we emphasize that only an�-model
and not transitivity is necessary to correctly code sentences of L�1,� . The second
subsection surveys known results aboutM -normal ultrapowers, and Theorem 3.13
is proved in the third subsection.

3.1. Coding �-structures into nontransitive models of set theory. In this section,
we fix an explicit encoding of a pre-determined countable fragment LA = LA(�)
of L�1,�(�) for a countable vocabulary � into an �-model (M,E) satisfying ZFC .
The specific form of this encoding is not important, but it is useful for the reader to
see what we assume aboutM in order that satisfaction is computed ‘correctly’ for
every formula of LA. It will turn out that everything works wonderfully (even when
(M,E) is nontransitive) provided (M,E) is an �-model, i.e., (�M,E) ∼= (�V ,∈),
because this guarantees a formula of LA does not gain additional conjuncts or
disjuncts in an elementary extension that is also an �-model.

Definition 3.1. We say (M,E) is an �-model of set theory if (M,E) |= ZFC ,
(� + 1)M,E = � + 1, and for n,m ∈ � + 1, (M,E) |= n E m if and only if n ∈ m.
Fix any countable vocabulary (sometimes called language) �. In what follows,
we will assume that � is relational with ℵ0 n-ary relation symbols Rnm, but the
generalization to other countable languages is obvious.

Definition 3.2. Fix a particular countable fragmentLA = LA(�) ofL�1,�(�).
• A Basic Gödel number has the form 〈0, n,m〉, where n,m ∈ �. We write this as
�Rnm�.

• Let BG� denote the set of Basic Gödel numbers. We now define by induction
the set GLA of Gödel numbers of LA-formulas.
1. �vi� = 〈1, i〉;
2. �Rnm(vi1 , . . . vin )� = 〈�Rnm�, �vi1�, . . . , �vin�〉;
3. �φ = �� = 〈2, �φ�, ���〉;
4. �φ ∧�� = 〈3, �φ�, ���〉;
5. �∃viφ� = 〈4, �vi�, �φ�〉;
6. �¬φ� = 〈5, �φ�〉;
7. If� =

∧
i∈� �i and� ∈ LA, then ��� = 〈6, f�〉, wheref� is the function

with domain � and f�(i) = ��i�.
Definition 3.3. For a given countable fragment LA, we say an �-model (M,E)
supports LA if GLA ∈M and GLA ⊆M .
Note that BG� and GLA are defined in V but they are correctly identified by an
(M,E) that supports LA. More precisely, the following lemma is immediate.
Lemma 3.4. If (M,E) is an �-model of set theory supporting LA, then both BG�
and GLA are definable subsets of M . Furthermore, if (N,E) 	 (M,E) is also an
�-model, then BGN,E� = BGM,E� , (N,E) supports LA, GN,ELA = G

M,E
LA , and �φ�

N,E =
�φ�M,E for every φ ∈ LA.

Definition 3.5. Suppose (M,E) is an �-model of set theory, and we have fixed
a countable vocabulary �. A �-structure B = (B, . . . ) is inside (M,E) via g if the
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universe B ∈ M , g ∈ M is a function with domain BG� ∪ {∅}, g(∅) = B and for
each (n,m) ∈ �2, g(�Rnm�) = Rnm(B).
Definition 3.6. If (M,E) is an �-model of set theory, a �-structure B is inside
(M,E) via g, and (N,E) 	 (M,E) is an �-model, then BN denotes the -structure
with universe g(∅)N and relations Rnm(BN ) = g(�Rnm�)N .
Clearly, BN is inside (N,E) via gN . Again using the fact that we are working with
�-models, the following is immediate.

Lemma 3.7. Suppose (M,E) is an �-model of set theory supporting LA and a
�-structure B is inside (M,E) via g. Then there is a unique h ∈ M , h :GLA → M
extending g such that h(���) = �(B) for every � ∈ LA.

3.2. M -normal ultrapowers. The idea of usingM -normal ultrafilters to construct
many elementary chains of models of set theory is not new, and the definitions and
results of this subsection are presented here for the convenience of the reader.
Fix a countable �-model (M,E) of set theory. SinceM is countable, so is the set
�M1 . As notation, let

C = {B ⊆ �M1 :M |= ‘B is club’}.
In what follows, a function f with domain �M1 is regressive if f(α) < α for all
α > 0.

Definition 3.8. An M -normal ultrafilter U is an ultrafilter on the set �M1 such
that

• C ⊆ U ; and
• For every regressive f : �M1 → �M1 with f ∈ M , f−1(	) ∈ U for some
	 ∈ �M1 .
We record an Existence Lemma forM -normal ultrafilters.

Lemma 3.9. Suppose A ⊆ �M1 and A ∈M . Then there is anM -normal ultrafilter
U with A ∈ U if and only ifM |= ‘A is stationary’.
Proof. Clearly, if M |= ‘A is non-stationary’, then there is some B ∈ C such
that A ∩ B = ∅, so no M -normal ultrafilter can contain A. For the converse,
enumerate the regressive functions in M by 〈fn : n ∈ �〉. We construct a nested,
decreasing sequence 〈An : n ∈ �〉 of subsets of �M1 such that each An ∈ M and
M |= ‘An is stationary’ as follows: Put A0 := A and given An, by Fodor’s Lemma
(inM !) choose a stationary An+1 ⊆ An and 	n such that fn[An+1] = {	n}.
As C ∪ {An : n ∈ �} has f.i.p., (now working in V ) it follows that there is an
ultrafilter U containing these sets. Any such U must beM -normal. �
We record three consequences ofM -normality.

Lemma 3.10. Suppose that U is anM -normal ultrafilter on �M1 . Then:
1. If A ∈ U ∩M , thenM |= ‘A is stationary’;
2. If A ∈ U ∩M , f ∈ M , and f : A → �M1 is regressive, then f−1(	) ∈ U for
some 	 ∈ �M1 ; and

3. If 〈An : n ∈ �〉 ∈M and every An ∈ U ∩M , then A = ⋂
n∈� An ∈ U ∩M .
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Proof. (1) Choose A ∈ U ∩M . To see that A is stationary in M , choose any
B ∈M such thatM |= ‘B is club’. Then B ∈ C ⊆ U . As U is a proper filter, A ∩ B
is nonempty.
(2) This is ‘completely obvious’ but rather cumbersome to prove precisely.
Given f : A→ �M1 , by intersecting with the club D := �M1 \ �, we may assume
A ⊆ D. Define g : �M1 → �M1 by

g(
) =

⎧⎨
⎩
f(
) if 
 ∈ A and f(
) ≥ �,
f(
) + 1 if 
 ∈ A and f(
) < �,
0 if 
 �∈ A.

Then g ∈M and g is regressive, hence g−1(	) ∈ U for some 	 . As g−1(0) is disjoint
from A and A ∈ U , 	 �= 0. Thus, g−1(	) ⊆ A. It follows that either f−1(	) ∈ U
(when 	 ≥ �) or f−1(	 − 1) ∈ U (when 	 < �).
(3) Assume not. Let B := �M1 \ A ∈ U ∩M . As in (2) we may assume B ⊆
(�M1 \ �). Define f : B → � by

f(
) = least n such that 
 �∈ An.
As f is regressive, we get a contradiction from (2). �
GivenM and anM -normal ultrafilter U , we form the ultraproduct Ult(M,U) as
follows:
First, consider the (countable!) set of functions f : �M1 → M with f ∈ M .
There is a natural equivalence relation ∼U defined by

f ∼U g ⇔ {
 ∈ �M1 : f(
) = g(
)} ∈ U .
The objects of Ult(M,U) are the equivalence classes [f]U , and we put

Ult(M,U) |= [f]U E [g]U ⇔ {
 ∈ �M1 : f(
)E g(
)} ∈ U .
For each a ∈ M , we have the constant function fa : �M1 → M defined by
fa(
) = a for every 
 ∈ �M1 . Every such function fa ∈ M , hence we get an
embedding

j :M → Ult(M,U)
defined by j(a) = [fa ]U .
The following Lemmas summarize the results we need.

Lemma 3.11. Suppose that (M,E) is a countable �-model of set theory and U is
anyM -normal ultrafilter on �M1 . Then:
1. N := Ult(M,U) is a countable�-model and j : (M,E)→ (N,E) is elementary.
2. If a ∈M andM |= ‘a is countable’ then j(a) = j[a] =df {j(x) : x E a}.
3. The image j[�M1 ] =df {j(a) : a ∈ �M1 } is a proper initial segment of �N1 with
[id ]U the least element of �N1 \ j[�M1 ].

Proof. We begin with (2). Fix a ∈M withM |= ‘a is countable’ and abbreviate
M |= a E b by a E b. First, for every b E a, fb(
) E fa(
) for every 
 E �M1 ,
so j(b) E j(a) by Łoś’s theorem. Conversely, to show j(a) ⊆ j[a], choose any
g : �M1 →M with g ∈M such that [g]U �= [fb]U for every bE a. Towards showing
that [g]U ¬E j(a), choose, using the countability of a inM , a surjection Φ : � → a
with Φ ∈M . InM , let

An = {
 E �M1 : g(
) �= Φ(n)}.
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By separation, each An ∈M and recursion, sinceM is an�-model, 〈An : n ∈ �〉 ∈
M and eachAn ∈ U ∩M . Thus, by Lemma 3.10(3),A := ⋂

n∈� An ∈ U ∩M . Since
g(
) ¬E a for every 
 ∈ A, the fact that A ∈ U implies that [g]U ¬E j(a).
As for (1), that j : (M,E)→ (N,E) is elementary is the Łoś theorem.N is clearly
countable, as there are only countably many functions inM , and it is an �-model
by (2). As for (3), that j(�M1 ) is an initial segment of �

N
1 follows from (2), and the

minimality of [id ]U in the difference follows from Fodor’s Lemma inM . �
We now drop the pedantry of keeping exact track of the embedding j and just
writeM � N .
Lemma 3.12. Suppose that (M,E) is a countable �-model of set theory that sup-
ports LA and let B = (B, . . . ) be an L-structure inside (M,E) via g. Given any
M -normal ultrafilter U on �M1 , let N = Ult(M,U) and let BN be the L-structure
formed as in Definition 3.6 with h as in Lemma 3.7. Then:

1. For every LA-formula �(x1, . . . , xn) and all [f1]U , . . . , [fn]U with each fi :
�M1 → B,
BN |= �([f1], . . . , [fn])⇐⇒ {α ∈ �M1 : (f1(α), . . . , fn(α)) ∈ h(���)} ∈ U .

2. The induced embedding j : B → BN is LA-elementary; and
3. If �M1 ⊆ B and �(x) ∈ LA has one free variable, then BN |= �([id ]U ) if and
only if {α ∈ �M1 : α ∈ h(���)} ∈ U .

3.3. A transfer theorem. We bring together the methods of the previous subsec-
tions into a general transfer theorem. Recall that we are using Roman letters (M)
for models of set theory, Gothic (B) for �-structures and BM denotes a structure
supported inM , and for a �-relation P, PB denotes the elements of B satisfying P.
Recall that an uncountable linear order isℵ1-like if every initial segment is countable.
Theorem 3.13. Fix a vocabulary � with a distinguished unary predicate P and
fix a countable fragment LA = LA(�) ⊂ L�1,�(�). SUPPOSE there is a countable,
�-model (M,E) of set theory supporting LA and there is a �-structure B = (B, . . . )
insideM via g satisfying:

• PB ⊆ �M1 ⊆ B;
• M |= ‘PB is stationary/costationary’.
THEN for every X ⊆ �1 (in V !) there is an �-model (NX ,E) 	 (M,E) and a
continuous, strictly increasing4 tX : �1 → �NX1 satisfying:
• |NX | = ℵ1 and (�NX1 , E) is an ℵ1-like linear order;
• there is an LA-elementary map jX : B → BNX ; and
• for all α ∈ �1, BNX |= P(tX (α)) if and only if α ∈ X .
Proof. Fix any X ⊆ �1. We construct a continuous chain 〈Mα : α ∈ �1〉 of �-
models of set theory as follows: PutM0 := (M,E) and at countable limit ordinals,
take unions. Now supposeMα is given. Choose anMα-normal ultrafilter Uα such
that PMα ∈ Uα if and only if α ∈ X . The existence of such a U follows from
Lemma 3.9, since by elementarity, letting Bα denote BMα , we have that

Mα |= ‘PBα is a stationary/costationary subset of �1’.

4The function tX need not be an element of NX .
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Given such a chain, put NX :=
⋃{Mα : α ∈ �1} and define tX : �1 → �NX1 by

tX (α) = [id ]Uα . That BNX has the requisite properties follows from Lemma 3.12. �
This transfer result extends easily to L(Q) and the somewhat more complicated
version for L(aa) is treated in Section 2 of [2].

§4. The relevant forcing. Throughout this section, we have a fixed atomic class
AtT that contains uncountable models, for which the pseudominimal types are not
dense. The objective of this section is introduce a class of I ∗ of expansions of linear
orders, develop the notion of a model N ∈ AtT being striated by such an order,
and prove Theorem 4.8, which uses the failure of density of pseudominimal types to
force the existence of a striated model capable of encoding a nearly arbitrary subset
of �1.

4.1. A class of linear orders. It is well-known that there are 2ℵ1 ℵ1-like linear
orders of cardinality ℵ1. An accessible account of this proof, which underlies this
entire paper, appears on page 203 of [10]. The key idea of that argument is to
code a stationary set of cuts which have a least upper bound. In the current paper,
the coding is not so sharp. Instead, we force an atomic model of T that codes a
stationary set by infinitary formulas defined using pcl.
Webegin by describing a class ofℵ1-like linear orders, colored by a unary predicate
P and an equivalence relation E with convex classes. This subsection makes no
reference to the class AtT.

Definition 4.1. Let �ord = {<,P,E} and let I∗ denote the collection of �ord-
structures (I,<,P,E) satisfying:

1. (I,<) is an ℵ1-like dense linear order with minimum element min(I ) (i.e.,
|I | = ℵ1, but predI (a) is countable for every a ∈ I );

2. P is a unary predicate and ¬P(min(I ));
3. E is an equivalence relation on I with convex classes such that
(a) If t = min(I ) or if P(t) holds, then t/E = {t};
(b) Otherwise, t/E is a (countable) dense linear order without endpoints.

4. The quotient I/E is a dense linear order with minimum element, no maximum
element, such that both sets {t/E : P(t)} and {t/E : ¬P(t)} are dense in it.

Note that for s ∈ I , we denote the equivalence class of s by s/E and the pre-
decessors of the class by < s/E. We are interested in well-behaved proper initial
segments J of orders I in I∗.

Definition 4.2. Fix (I,<,P,E) ∈ I∗. A proper initial segment J ⊆ I is suitable
if, for every s ∈ J there is t ∈ J , t > s , with ¬E(s, t).
Note that if J ⊆ I is suitable, then J is a union of E-classes and that there is no
largest E-class in J . Accordingly, there are three possibilities for I \ J :
• I \ J has a minimum element t. In this case, it must be that t/E = {t}.
• I \ J has no minimum E-class. In this case, we call J seamless.
• I \ J has a minimum E-class that is infinite. This will be our least interesting
case.

We record one easy Lemma.
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Lemma 4.3. If (I,<,P,E) ∈ I∗ and J ⊆ I is a seamless proper initial segment,
then for every finite S ⊆ I and w ∈ J such that w > S ∩ J , there is an automorphism
� of (I,<,P,E) that fixes S pointwise, and �(w) �∈ J .
Proof. Fix I, J,S, w as above. As J is seamless, we can find t, t′ ∈ I \ S
satisfying:

• t/E and t′/E are both singletons;
• t, t′ satisfy the same S-cut, i.e., for each s ∈ S, s < t iff s < t′;
• t < w < t′;
• t ∈ J , but t′ �∈ J .
We will produce an automorphism � of (I,<,E,P) that fixes S pointwise and
�(t) = t′. This suffices, as necessarily �(w) �∈ J for any such �. To produce such a
�, first choose a suitable proper initial segment K ⊆ I containing S ∪ {t, t′}. Note
thatK is countable, and is a union ofE-classes. Consider the structure (K/E,<,P)
formed from the quotient K/E, where < is the inherited linear order and P(r/E)
if and only if P(r) held in (I,<,E,P). Now Th(K/E,<,P) is known to be ℵ0-
categorical and eliminate quantifiers. [The theory is axiomatized by asserting that
< is dense linear order with a least element but no greatest element, and P is a
dense/codense subset.] Thus, there is an automorphism �0 of (K/E,<,P) fixing
S/E pointwise and �(t/E) = t′/E. As every E-class of K is either a singleton
or a countable, dense linear order, there is an automorphism �1 of (K,<,E,P)
fixing S pointwise and �1(t) = t′ and such that �1(x)/E = �0(x/E). Now the
automorphism � of (I,<,E,P) defined by �(u) = �1(u) if u ∈ K , and �(u) = u for
each u ∈ I \K is as desired. �
The following construction codes a nearly arbitrary subset S ⊆ �1 into an
I S ∈ I∗. We construct orderings that avoid the third case of Definition 4.2.
Construction 4.4. Let S ⊆ �1 with 0 �∈ S. There is I S = (I S ,<,P,E) ∈ I∗
that has a continuous, increasing sequence 〈Jα : α ∈ �1〉 of proper initial segments
such that:

1. If α ∈ S, then I S \ Jα has a minimum element aα satisfying P(aα); and
2. If α �∈ S and α > 0, then Jα is seamless.
Proof. Let �ord = {<,P,E} and A be the �ord-structure with universe singleton

{a} with both P(a) and E(a, a) holding. Let B = (Q, <, P,E), where (Q, <) is a
countable dense linear order with no endpoints,P fails everywhere, and all elements
are E-equivalent. Combine these to get a (countable) �ord-structure C formed by
the dense/codense (with no endpoints) concatenation of countably many copies of
both A and B. Finally, take D to be the concatenationAˆC.
Using these �ord-structures as building blocks, form a continuous sequence of
�ord-structures Jα , where Jα is an �ord-substructure and an initial segment of J	
whenever α < 	 by: J0 is the one-element structure {min(I )} with ¬P(min(I )). For
α < �1 a nonzero limit ordinal, take Jα to be the increasing union of 〈J	 : 	 < α〉.
Given Jα , form Jα+1 by

Jα+1 =
{
JαˆD if α ∈ S,
JαˆC if α �∈ S.

Finally, take I S to be the increasing union of 〈Jα : α < �1〉. �
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4.2. Striated models and forcing. In this section we introduce the notion of a
striation of a model - a decomposition of a model N of T into uncountably many
countable pieces satisfying certain constraints on pcl. We will show later how to
code stationary sets by specially constructed (forced) striated models.

4.2.1. Striated models. Fix an atomic N ∈ AtT and some I = (I,<,E,P) ∈ I∗.
Definition 4.5. We say N is striated by I if there are �-sequences 〈at : t ∈ I 〉
satisfying:

• N = ⋃{at : t ∈ I }; (As notation, for t ∈ I , N<t =
⋃{aj : j < t}.)

• If t = min(I ), then at ⊆ pcl(∅, N);
• For t > min(I ), at,0 �∈ pcl(N<t,N);
• For each t and n ∈ �, at,n ∈ pcl(N<t ∪ {at,0}, N).
Note: In the definition above, we allow as,m = at,n in some cases when (s,m) �=
(t, n). However, if s < t, then the element at,0 �= as,m for anym. Also, if pcl(∅, N) =
∅, we do not define amin(I ). Although E and P don’t appear explicitly in either
Definition 4.5 or Definition 4.6,E is needed for the following notations andP plays
a major role later.
The idea of our forcing will be to force the existence of a striated atomicmodelNI
indexed by a linear order I ∈ I∗ with universeX = {xt,n : t ∈ I, n ∈ �}. Such anNI
will have a ‘built in’ continuous sequence 〈Nα : α ∈ �1〉 of countable, elementary
substructures, where the universe ofNα will beXα = {xt,n : t ∈ Jα, n ∈ �} for some
initial segment Jα of I . We start with the assumption that pseudominimal types are
not dense so some formula 
(x,f) has ‘no pseudominimal extension’. We absorb
the constants f into the language and use the assumption of ‘no pseudominimal
extension’ to make the set

{α ∈ �1 : I \ Jα has a least element}
(infinitarily) definable. To make this precise, we introduce some notation.
Suppose that (I,<,P,E) ∈ I∗ and N = {at,n : t ∈ I, n ∈ �} is striated by I . For
any suitableJ ⊆ I , letNJ denote the substructurewith universe{at,n : t ∈ J, n ∈ �}.
Abusing notation slightly, given any s ∈ I \ {min(I )}, let

J<s = {s ′ ∈ I : s ′ < s and ¬E(s ′, s)}.
Thus, J<s is a suitable proper initial segment of I , and we denote its associated
L-structure, {at,n : t ∈ J<s , n < �}, by N<s . With this notation, we now describe
three relationships between an element and a substructure of this sort.

Definition 4.6. Suppose N is striated by (I,<,P,E), J ⊆ I suitable, and b ∈
N \NJ .
• b catches NJ if, for every e ∈ N , e ∈ pcl(NJ ∪ {b}, N) \ NJ implies b ∈
pcl(NJ ∪ {e}, N).

• b has unbounded reach in NJ if there exists s∗ ∈ J such that, letting A denote
pcl(N<s∗ ∪ {b}, N) ∩NJ , for every s ∈ J with s > s∗ there is a c ∈ A−N<s .

• b has bounded effect in NJ if there exists s∗ ∈ J such that pcl(N<s ∪ {b}, N) ∩
NJ = N<s for every s > s∗ with s ∈ J .

https://doi.org/10.1017/jsl.2015.81 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.81


CONSTRUCTINGMANY ATOMICMODELS IN ℵ1 1153

Clearly, an element b cannot have both unbounded reach and bounded effect in
NJ , but the properties are not complementary.

Definition 4.7. A modelM with uncountable cardinality is said to be full if for
every a ∈M every nonalgebraic p ∈ Sat(a) is realized |M |-times inM .
The remainder of this section is devoted to the proof of the following Theorem.
Theorem 4.8. Suppose 
(x) is a complete, nonpseudo algebraic formula with no
pseudominimal extension. For every (I,<,P,E) ∈ I∗ there is a c.c.c. forcing QI such
that in V [G ], there is a full, atomicNI |= T striated by (I,<) such that:
1. For every suitable initial segment J ⊆ I , NJ � NI ;
2. If t ∈ I and P(t) holds, then at,0 catches and has unbounded reach in N<t ;
3. If J ⊆ I is seamless, then for every b ∈ NI \ NJ , if b catches NJ , then b has
bounded effect in NJ .

Proof. We begin by recording a fact that follows from our assumptions on 
(x).
Fact 4.9. For any M ∈ AtT, for any a from M , and for any c ∈ 
(M ) with
c �∈ pcl(a,M ), there are b and e fromM such that
1. e ∈ pcl(abc,M ) \ pcl(ab,M ); but
2. c �∈ pcl(abe,M ).
Proof. Choose M ∈ AtT, a from M , and c ∈ 
(M ) as above. Let φ(x, a)
be a complete formula generating tp(c/a) in M . As φ(x, a) extends 
(x) but is
not pseudoalgebraic, it is not pseudominimal. Choose a∗ ⊇ a, g from M and
h ∈ φ(M,a) such that g = pcl(a∗h,M ) \ pcl(a∗,M ) and h �∈ pcl(a∗g,M ). As
tp(h/a) = tp(c/a), the ℵ0-homogeneity ofM gives us b and e as required. �
Fix, for the whole of the proof, some (I,<,E,P) ∈ I∗. We wish to construct an
atomicmodelNI |= T , whose complete diagram contains variables {xt,n : t ∈ I, n ∈
�}, that is striated by (I,<), and includes 
(xt,0), whenever I |= P(t). We begin by
defining a forcing notion QI and prove that it satisfies the c.c.c. Then, we exhibit
several collections of subsets of QI and prove that each is dense and open. Fact 4.9
will only be used in showing the sets witnessing ‘unbounded reach’ (i.e., Group F
of the constraints) are dense. Finally in Section 4.4, we argue that if G ⊆ QI is
a generic filter meeting each of these dense open sets, then V [G ] will contain an
atomic model NI of T satisfying the conclusions of Theorem 4.8.

4.3. The forcing. Our forcing QI consists of ‘finite approximations’ of this com-
plete diagram. The conditions will be complete types in variable with a specific kind
of indexing that we now describe.
Notation 4.10. A finite sequence x from 〈xt,n : t ∈ I, n ∈ �〉 is indexed by u if it
has the form x = 〈xt,m : t ∈ u,m < nt〉, where u ⊆ I is finite and 1 ≤ nt < � for
every t ∈ u.
Given a finite sequence x indexed by u and 〈nt : t ∈ u〉 and given a proper initial
segment J ⊆ I , let u�J = u ∩ J and x�J = 〈xt,m : t ∈ u�J ,m < nt〉.
As well, if p(x) is a complete type in the variables x, then p�J denotes the
restriction of p to x�J , which is necessarily a complete type. For s ∈ I , the symbols
u�<s and x�≤s are defined analogously, setting J = I �<s and I �≤s , respectively. If x
arises from a type p that we are keeping track of, we write np,t for nt . These various
notations may be combined to yield, for example, p�≤s/E .
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The forcing QI will consist of finite approximations of a complete diagram of
an L-structure in the variables {xt,� : t ∈ I, � ∈ �}. Recall that the property,
‘a ∈ pcl(b)’ is enforced by a first order formula; this justifies ‘say’ in the next
definition.

Definition 4.11 ((QI ,≤Q)). p ∈ QI if and only if the following conditions
hold:

1. p is a complete (principal) typewith respect toT in the variables xp, which are
a finite sequence indexed by up and np,t (when p is understood we sometimes
write nt);

2. If t ∈ up and P(t) holds, then p � 
(xt,0);
3. If t = min(I ), then p ‘says’ {xt,n : n < nt} ⊆ pcl(∅);
4. If p ‘says’ xt,0 ∈ pcl(∅), then t = min(I );
5. For all t ∈ up, t �= min(I ), p ‘says’ xt,0 �∈ pcl(xp�<t); and
6. For all t ∈ up and m < nt , p ‘says’ xt,m ∈ pcl(xp�<t ∪ {xt,0}).
For p, q ∈ QI , we define p ≤QI q if and only if xp ⊆ xq and the complete type
p(xp) is the restriction of q(xq) to xp.

We begin with some easy observations.

Lemma 4.12. For every p ∈ QI and every proper initial segment J ⊆ I , p�J ∈ QI
and p�J ≤QI p.

Lemma 4.13. Every automorphism � of (I,<,E,P) naturally extends to an
automorphism �′ of QI via the mapping xt,n �→ x�(t),n.
Lemma 4.14. Suppose p ∈ QI and up �= ∅. Enumerate up = {si : i < d} with
si <I si+1 for each i . For any M ∈ AtT and any b from M realizing p(xp), there
is a sequence M0 � M1 � · · · � Md−1 = M of elementary substructures of M
satisfying:

• For each i < d , b�<si ⊆Mi ; and
• For 0 < i < d , bsi ,0 ∈Mi \Mi−1.
Proof. By induction on d = |up|. For d = 0, 1 there is nothing to prove, so
assume d ≥ 2 and the Lemma holds for d − 1. Fix any M ∈ AtT and choose
any realization b of p(xp) inM . Clearly, the subsequence a := b�<sd−1 realizes the
restriction q := p�<sd−1 . As bsd−1,0 �∈ pcl(a,M ), there isMd−2 � M such that a is
fromMd−2, but bsd−1,0 �∈Md−2. Then complete the chain by applying the inductive
hypothesis toMd−2 and q. �
The ‘moreover’ in the following lemma emphasizes that in proving density we are
showing how to assign levels to a elements of a finite sequence in a model which
need not be striated.

Lemma 4.15. Suppose J ⊆ I is an initial segment and p, q ∈ QI satisfy p�J ≤Q q
and uq ⊆ J . Then there is r ∈ QI with xr = xp ∪ xq , r ≥Q p and r ≥Q q. Moreover,
r can be chosen so that ifM ∈ AtT, a realizes p�J , ab realizes p, and ac realizes q,
then abc realizes r.

Proof. If up = ∅, then take r = q, so assume otherwise. Choose anyM ∈ AtT
and fix a realization b of p(xp) in M . Let a = b�J . Write up = {si : i < d} with
si <I si+1 for each i . Apply Lemma 4.14 toM and b and choose � < d least such
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that a ⊆ M� . As q(xq) is generated by a complete formula and a ⊆ M� , there is
c ⊆ M� such that ac (when properly indexed) realizes q. Now define r(xr) to be
the complete type of bc = abc inM in the variables xr = xp ∪ xq . �
Claim 4.16. (QI ,≤Q) has the c.c.c.

Proof. Let {pi : i < ℵ1} ⊆ QI be a collection of conditions. We will find i �= j
for which pi and pj are compatible. We successively reduce this set maintaining its
uncountability. By the Δ-system lemma wemay assume that there is a single u∗ such
that for all i, j, upi ∩ upj = u∗. Further, by the pigeonhole principle we can assume
that for each t ∈ u∗, npi ,t = npj,t . We can use pigeon-hole again to guarantee that
all the pi and pj agree on the finite set of shared variables. And finally, since I is
ℵ1-like we can choose an uncountable set X of conditions such that for i < j and
pi , pj ∈ X all elements of u∗ precede anything in any upi \ u∗ or upj \ u∗ and that
all elements of upi \ u∗ are less that all elements of upj \ u∗.
Finally, choose any i < j from X . Let J = {s ∈ I : s ≤ max(upi )}. By
Lemma 4.15 applied to pi and pj for this choice of J , we conclude that pi and pj
are compatible. �
Recall that a set X ⊆ QI is dense if for every p ∈ QI there is a q ∈ X with q ≥ p
and X ⊆ QI is open if for every p ∈ X and q ≥ p, then q ∈ X .
In the remainder of Section 4.3 we list the crucial ‘constraints’, which are sets of
conditions, and we prove each of them to be dense and open in QI .

A. Surjectivity.Our first group of constraints ensure that for any genericG ⊆ QI ,
for every (t, n) ∈ I × �, there is p ∈ G such that xt,n ∈ xp. To enforce this, for any
(t, n) ∈ I × �, let

At,n = {p ∈ QI : xt,n ∈ xp}.
Claim 4.17. 1. For every t ∈ I \ {min(I )} and every n ∈ �, At,n is dense and
open;

2. If pcl(∅) �= ∅, then Amin(I ),n is dense and open for every n ∈ �.
Moreover, in either case, given (t, n) ∈ I × � and any p ∈ QI , there is q ∈ At,n
with q ≥Q p and uq = up ∪ {t}.
Proof. Each of these sets are trivially open. We first establish density for (1) and
(2) when n = 0. For t = min(I ), (1) is vacuous. For (2), choose any p ∈ QI . If
xmin(I ),0 ∈ xp, there is nothing to prove, so assume it is not. Pick any M ∈ AtT.
Choose b from M realizing p and choose a ∈ pcl(∅,M ). Then define q by xq =
xp ∪ {xmin(I ),0} and q(xq) = tp(ba,M ). Next, we show that At,0 is dense for every
t > min(I ). To see this, choose any p ∈ QI . If t ∈ up, then necessarily xt,0 ∈ xp,
so there is nothing to prove. Thus, assume t �∈ up. Take J = {s ∈ I : s < t}. Pick
M ∈ AtT and choose a realization a of p�J inM .
As 
 is not pseudoalgebraic, by Lemma 2.6 there is b ∈ M realizing 
 with
b �∈ pcl(a,M ). Let q ∈ QI be defined by xq = xp�J ∪ {xt,0} and the complete type
q(xq) = tp(ab,M ). Then q ≥Q p�J and by Lemma 4.15, there is r ∈ Qwith r ≥Q q
and r ≥Q p. Visibly, r ∈ At,0.
Next, we prove by induction on n that if At,n is dense, then so is At,n+1. But this
is trivial. Fix t and choose p ∈ QI arbitrarily. By our inductive hypothesis, there is
q ≥ p with xt,n ∈ xq . If xt,n+1 ∈ xq , there is nothing to prove, so assume otherwise.
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Then, necessarily, nq,t = n + 1. Let r be the extension of q with xr = xq ∪ {xt,n+1}
and r(xr) the complete type generated by q(xq) ∪ {xt,n+1 = xt,n}.
The final sentence holds by inspection of the proof above. �
B. Henkin witnesses. For every t ∈ I , for every finite sequence x (indexed as in
Notation 4.10) from I �<t × �, and for every L-formula φ(y, x), Bφ,t is the set of
p ∈ Q such that:

1. x ⊆ xp; and
2. Some s ∈ up and m < np,s satisfy s < t and p(xp) � (∃y)φ(y, x) →
φ(xs,m, x).

Claim 4.18. For each t ∈ I , finite sequence x from I �<t × �, and φ(y, x), Bφ,t is
dense and open.

Proof. Fix t ∈ I and φ(y, x) as above. Choose any p ∈ QI . By using Claim 4.17
and extending p as needed, wemay assume x ⊆ xp. Let q denote p�<t . Then q ∈ QI
and q ≤Q p by Lemma 4.12.As x ⊆ I<t×�, x ⊆ xq , so by adding dummy variables
to φ wemay assume x = xq . Choose anyM ∈ AtT and any realization b of q. There
are now a number of cases.
Case 1: M |= ¬∃yφ(y, b). Then as q(x) generates a complete type, q �

¬∃yφ(y, xq), hence p ∈ Bφ,t.
So, we assume this is not the case. Fix a witness c ∈ M such thatM |= φ(c, b).
There are now several cases depending on the complexity of c over b. In each of
them, we will produce r ≥Q q with ur ⊆ I �<t and r(xr) � ∃yφ(y, x).
Case 2: c ∈ pcl(∅,M ). If min(I ) �∈ uq , then let xr = xq ∪ {xmin(I ),0} and if
min(I ) ∈ q, then let xr = xq ∪ {xmin(I ),m}, where m = nq,min(I ). Regardless, put
r(xr) = tp(bc,M ).
Case 3: c �∈ pcl(b,M ). Choose s∗ > uq with s∗ < t and ¬P(s∗). Let xr =
xq ∪ {xs∗,0} and again take r(xr) = tp(bc,M ). It is easily checked that r ∈ QI .
Case 4: c ∈ pcl(b,M ) \ pcl(∅,M ). For each s ∈ uq, let x�≤s be the subsequence
of x consisting of all xt,m ∈ x with t ≤ s , and let b�≤s be the corresponding
subsequence of b. Using this as notation, choose t∗ ∈ uq \ {min(I )} least such
that c ∈ pcl(b�≤t∗ ,M ). Again, let xr = xq ∪ {xt∗,m}, where m = nq,t∗ , and let
r(xr) = tp(bc,M ). As in the case above, it is easily verified that r ∈ QI .
Now, in any of Cases 2,3,4, by Lemma 4.15 we can find p∗ ≥Q p and p∗ ≥Q r. �
C. Fullness. Suppose x is a finite sequence (indexed as in Notation 4.10), t ∈ I ,
and φ(y, x) is an L-formula such that φ(y, x) ‘says’ ‘y is not pseudoalgebraic over
x.’ in the sense of T .

Cφ,t = {p ∈ QI : there is s > t, s ∈ up, x ⊆ xp, p � φ(xs,0, x)}.
Claim 4.19. Each is Cφ,t is dense and open.
Proof. Fix φ(y, x) and t, and choose any p ∈ QI . By extending p as needed, by
Claim 4.17wemay assume x ⊆ xp. Choose any countableM ∈ AtT and choose any
realization b of p(xp) in M . As φ(y, b) is not pseudoalgebraic, there is N ∈ AtT,
N 	 M , and c ∈ N \M satisfying N |= φ(c, b). Choose any s ∈ I such that
s > max(up) and s > t with I |= ¬P(s). Define q by: xq = {xs,0} ∪ xp and
q(xq) = tp(cb,N). Then q ≥Q p and q ∈ Cφ,t. �
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D+E. Determining level. The definition of the forcing implies that xt,n is pseu-
doalgebraic over xp�<t ∪ {xt,0} for any p ∈ QI with xt,n ∈ xp, but it might also
be algebraic over some smaller finite sequence (at a lower level). If this occurs, we
‘adjust the level’ by finding some s < t andm and insisting thatxt,n = xs,m. Tomake
this precise involves defining two families of constraints and showing that each is
dense and open. The first family is actually a union of two.
Dt,n = D1t,n ∪ D2t,n where
1. D1t,n = {p : xt,n ∈ xp and p ‘says’ xt,0 ∈ pcl(xp�<t ∪ {xt,n})};
2. D2t,n = {p : xt,n ∈ xp, there are s ∈ up, s < t, and m < np,s such that
p(xp) � xt,n = xs,m}.

The second family is parameterized by x, t, n. Let x be any finite sequence
(cf. Notation 4.10) indexed by u with s = max(u) < t.

Et,n,x = {p ∈ QI : x ∪ {xt,n} ⊆ xp and either p ‘says’ xt,n �∈ pcl(x)
or p ‘says’ xt,n = xs,m for some m}.

Claim 4.20. For all (t, n) ∈ I ×� and for all finite sequences x indexed by u with
max(u) < t, Et,n,x is dense and open.
Proof. Once more, ‘Open’ is clear. Let s = max(u). Given any p ∈ QI , by
iterating Claim 4.17 we may assume x ∪ {xt,n} ⊆ xp. If p ‘says’ xt,n �∈ pcl(x), then
p ∈ Et,n,x, so assume p ‘says’ xt,n ∈ pcl(x). From our conditions on x, this implies
xt,n ∈ pcl(xp�≤s). So put m = np,s , let xq = xp ∪ {xs,m} and let q(xq) be the
complete type generated by p(xp) ∪ ‘xt,n = xs,m’. �
Claim 4.21. For every t ∈ I \ {min(I )} and every n ∈ �, Dt,n is dense and open.
Proof. Choose any p ∈ QI . By Claim 4.17 we may assume xt,n ∈ xp. Choose
anyM ∈ AtT and choose b inM realizing p. There are now several cases.
Case 1. If bt,0 ∈ pcl(b�<t ∪ {bt,n}), then p ∈ D1t,n, so assume this is not the case.
Case 2. If bt,n ∈ pcl(∅,M ) andmin(I ) �∈ up, then define q by xq = xp∪{xmin(I ),0}
and q(xq) = tp(bbt,n,M ).
Case 3. If bt,n ∈ pcl(b≤s ,M ) for some s ∈ up, s < t, then define q by xq =
xp ∪ {xs,m} (where m = np,s) and q(xq) be the extension of p(xp) by ‘xt,n = xs,m.’
Case 4. If none of the previous cases occur, choose s∗ < t with s∗ > up∩I<t , I |=

¬P(s∗). Define q by xq = xp ∪{xs∗,0} and q(xq) = tp(bbt,n,M ) (i.e., xs∗,0 = xt,n).
Now since Case 1 fails, q satisfies Condition 5) in the definition ofQI at level t, and
since Case 3 fails, Condition 5) holds at level s∗. And in q, Condition 6) holds for
xt,n since bt,n = bs∗,0. The other conditions are inherited from p, so q ∈ QI . �
F. Achieving unbounded reach. Suppose s0/E < s1 < t are from I with I |= P(t),
s0 �= min(I ), and I |= ¬P(s0) (so s0/E is infinite and dense).
Ft,s0,s1 is the set of p ∈ QI such that there exists s2 ∈ up with s1 < s2 < t such
that (recalling Notation 4.10) p ‘says’

xs2,0 ∈ pcl({xt,0} ∪ xp�≤s0/E).
Claim 4.22. Each Ft,s0,s1 is dense and open.
Proof. Open is clear. Choose any p ∈ QI . By Claim 4.17 we may assume xt,0 ∈
xp. By Lemma 4.12 we have the sequence of extensions:

p�≤s0/E ≤Q p�<t ≤Q p�≤t ≤Q p.
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Fix M ∈ AtT and choose sequences a, d , c from M such that adc realizes p�≤t ,
with a realizing p�≤s0/E and c realizing p�=t . Let c0 ∈ c be the interpretation of
xt,0. Thus, M |= 
(c0) and c0 �∈ pcl(a,M ). Using Fact 4.9, choose b and e from
M such that e ∈ pcl(abc0,M ) \ pcl(ab,M ), but c0 �∈ pcl(abe,M ). We will find
conditions in Q that assign levels to b and e to satisfy Ft,s0,s1 .
As the class s0/E has no last element, by using Claim 4.18 (Henkin witnesses)
lg(b) times, we can construct q ∈ QI , q ≥Q p�≤s0/E satisfying q(xq) = tp(ab,M )
and uq ⊆ I �≤s0/E .
Next, by Lemma 4.15 there is q1 ≥Q q, q1 ≥Q p�<t , and uq1 ⊆ I �<t . By
Lemma 4.15 again, there is q2 ≥Q q1, q2 ≥Q p�≤t , and uq2 ⊆ I �≤t . Indeed,
by the ‘Moreover’ clause of Lemma 4.15, we may additionally assume that
q2(xq2 ) = tp(abdc,M ) (and so q1(xq1 ) = tp(abd ,M )).
Now, choose s2 ∈ I such that I |= ¬P(s2), s1 < s2 < t, and s2 > s for every
s ∈ uq1 . Define r by xr = xq2 ∪ {xs2,0} and r(xr) = tp(abdce,M ). It is easily
checked that r ∈ QI and visibly, r ≥Q q2. As well, r ∈ Ft,s0,s1 .
Finally, by a final application of Lemma 4.15, since ur ⊆ I �≤t and r ≥Q p�≤t ,
there is p∗ ≥Q p with p∗ ≥Q r. As p∗ ∈ Ft,s0,s1 , we conclude that Ft,s0,s1 is dense. �
4.4. Proof of Theorem 4.8. Given a linear order I we construct a modelN = NI
of the theoryT . That is, we verify that the forcing (QI ,≤Q) satisfies the conclusions
of Theorem 4.8. Suppose G ⊆ QI is a filter meeting every dense open subset. Let

X [G ] =
⋃

{p(xp) : p ∈ G}.
Because of the dense subsets At,n, X [G ] describes a complete type in the variables
{xt,n : t ∈ I, n ∈ �}.5 Intuitively, we want to build a with domain given by these
variables. But the Level conditions, Claim 4.21 introduced a natural equivalence
relation ∼G on X [G ] defined by

xt,n ∼G xs,m if and only if X [G ] ‘says’ xt,n = xs,m.

Let N [G ] be the �-structure with universe X [G ]/ ∼G . Each element ofN [G ] has
the form [xt,n], which is the equivalence class of xt,n (mod ∼G). As each p ∈ QI
describes a complete (principal) formula with respect to T , N [G ] is an atomic set.
As well, it follows from Claim 4.18 thatN [G ] |= T .
For each t ∈ I such that P(t) holds, let N<t = {[xw,n] : some xs,m ∈ [xw,n] with
s < t}. Similarly, for each s ∈ I \ {min(I )} with ¬P(s), let N<s = {[xw,n] : w/E <
s/E}.
By repeated use of Claim 4.18, both N<t and N<s are elementary substructures
of N [G ]. Note thatN<s′ = N<s whenever E(s ′, s).
For simplicity, let aw,n ∈ N [G ] denote the class [xw,n]. Given any (w, n), if there
is a least s ∈ I such that aw,n = as,m for some m ∈ �, then we say aw,n is on level s .
For an arbitrary (w, n), a least s need not exist, but it does in some cases. In
particular, Definition 4.11.5 and the level constraint (Ew,0,x) imply that any aw,0 is
on level w for any w ∈ I . As well, because of the Level constraints (groupD + E)
for any t such that P(t) holds and for any n > 0,

5If pcl(∅) = ∅, thenX [G ] is in the variables {xt,n : n ∈ �, t ∈ I \{min(I )}}. For clarity of exposition,
we will assume that pcl(∅) �= ∅. Recall that we are saying the variables xt,i are on ‘level’ t to help the
reader visualize the construction.

https://doi.org/10.1017/jsl.2015.81 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.81


CONSTRUCTINGMANY ATOMICMODELS IN ℵ1 1159

at,n is on level t if and only if at,0 ∈ pcl(N<t ∪ {at,n}, N [G ]).
As |I | = ℵ1 and since each at,0 �∈ pcl(N<t,N [G ]), ||N [G ]|| = ℵ1. Finally, it
follows from the density of the ‘Fullness conditions’ thatN [G ] is full.
It remains to verify thatN [G ] satisfies the three conditions of Theorem 4.8. First,
for any initial segment J ⊆ I without a maximum element (in particular, for any
suitable J ) the density of the Henkin conditions obtained from Claim 4.18 and the
Tarski-Vaught criterion imply thatNJ � N [G ].
Second, suppose t ∈ I and P(t) holds. We show that at,0 catches and has
unbounded reach in N<t . Note that since I �<t is suitable, N<t � N [G ], hence
pcl(N<t,N [G ]) = N<t . To see that at,0 catches N<t , choose any as,m ∈ pcl(N<t ∪
{at,0}, N [G ]) \ N<t . By choosing a finite x from N<t such that tp(as,m/xat,0) is
pseudoalgebraic, the density of the constraints Es,m,x allow us to assume s ≤ t.
However, if s < t, then we would have as,m ∈ N<t . Thus, the only possibility is
that (s,m) = (t, n) for some n ∈ � and that at,n is on level t. It follows from the
displayed remark above that at,0 ∈ pcl(N<t ∪ {at,n}, N [G ]). Thus, at,0 catches N<t .
We also argue that at,0 has unbounded reach in N<t . To see this, choose any s0 < t,
s0 �= min(I ) with I |= ¬P(s0). For any s1 satisfying s0/E < s1/E < t, choose
p ∈ G ∩ Ft,s0,s1 and choose s2 ∈ up satisfying s1/E < s2/E < t. Now, the element
as2,0 ∈ pcl(N<s0 ∪ {at,0}, N [G ]). As well, since s1/E < s2/E < t, as2,0 �∈ N<s1 , so
at,0 has unbounded reach in N<t .
It remains to verify (3) of Theorem 4.8. Choose a seamless J ⊆ I and suppose
some b ∈ N [G ] \NJ catches NJ . Say b is [xt∗,n], where necessarily t∗ ∈ I \ J . We
must show b has bounded effect in NJ . By the fundamental theorem of forcing,
there is p ∈ G such that

p � ḃ catches NJ [Ġ].
Thus, among other things, p � ‘x̌t∗,n �∼Ġ x̌s,m’ for all s ∈ J , m ∈ �.
Choose any s∗ ∈ J such that s∗ > s for every s ∈ up ∩ J .
Claim 4.23. p � pcl({ḃ} ∪N<s∗ [Ġ], N [Ġ]) ∩NJ [Ġ] ⊆ N<s∗ [Ġ].
Proof. If not, then there is q ∈ QI satisfying q ≥ p and a finite A ⊆ N<s∗ [Ġ]
such that

q � pcl(Aḃ, N [Ġ]) ∩NJ [Ġ] �⊆ N<s∗ [Ġ].
Without loss, we may assume that for each a ∈ A, there is some t ∈ uq and m
with a = [x̌t,m]. As J is seamless, by Lemma 4.3, choose an automorphism � of
(I,<,E,P) such that ��≥min(up\J ) = id ; �(t∗) = t∗; ��up = id ; ��uq∩I<s∗ = id ,
but �(s∗) �∈ J . By Lemma 4.13, � extends to an automorphism �′ of QI given by
xt,m �→ x�(t),m. By our choice of �, �′(p) = p. While �′(q) need not equal q, we do
have p ≤ �′(q). Now

�′(q) � pcl(Aḃ, N [Ġ]) ∩N�(J )[Ġ] �⊆ N<�(s∗)[Ġ].
But this contradicts p � ḃ catches NJ [Ġ]. [To see this, choose H generic with
�′(q) ∈ H , hence alsop ∈ H . Choose e ∈ (pcl(Ab,N [H ])∩N�(J )[H ])\N<�(s∗)[H ].
As A ⊆ NJ [H ], e ∈ pcl(NJ [H ] ∪ {b}, N [H ]). Moreover, as NJ [H ] � N<�(s∗)[H ],
e �∈ NJ [H ]. But, since NJ [H ] ∪ {e} ⊆ N�(J )[H ] and b �∈ N�(J )[H ], it follows that
b �∈ pcl(NJ [H ] ∪ {e}, N [H ]). That is, e witnesses that b does not catch NJ [H ].] �
As Claim 4.23 holds for any sufficiently large s∗ ∈ J , b has bounded effect inNJ .
This concludes the proof Theorem 4.8. �
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§5. Proof of Theorem 2.8. Now we prove the main theorem, Theorem 2.8, by
using the transfer lemma, Theorem 3.13 to move from coding a model by S in
M [G ] (Theorem 4.8) to 2ℵ1 models in V .
We prove Theorem 2.8 under the assumption that a countable, transitive model
(M,∈) of a suitable finitely axiomatizable subtheory of ZFC exists.6 As the existence
of the latter is provable from ZFC (using the Reflection Theorem) we obtain a proof
of Theorem 2.8 in ZFC.
As the pseudominimal types are not dense, we can find a complete formula 
(x, a)
that is not pseudoalgebraic, but has no pseudominimal extension. As having 2ℵ1
models is invariant under naming finitely many constants, we absorb a into the
signature and write 
(x) for this complete formula.
Fix a countable, transitive model (M,∈) of ZFC with T, � ∈ M and we begin
working inside it. In particular, choose S ⊆ �M1 \ {0} such that

(M,∈) |= ‘S is stationary/costationary’.
Next, perform Construction 4.4 insideM to obtain I = (I S ,<,P,E) ∈ I∗.
Next, we force with the c.c.c. poset QI S and find (M [G ],∈), where G is
a generic subset of QI S . As the forcing is c.c.c., it follows that all cardinals
as well as stationarity, are preserved, Thus, �M [G ]1 = �M1 and (M [G ],∈) |=
‘S is stationary/costationary’.
As Construction 4.4 is absolute, IM [G ] = IM = I S . According to Theo-
rem 4.8, insideM [G ] there is an atomic, full NI |= T that is striated according to
(I S ,<,P,E). Write the universe of NI as {at,n : t ∈ I S , n ∈ �}. InsideM [G ] we
have the mapping α �→ Jα given by Construction 4.4. For every α ∈ �M [G ]1 , let Nα
be the �-substructure of NI with universe {at,n : t ∈ Jα, n ∈ �}. It follows from
Theorem 4.8 and Construction 4.4 that for every nonzero α ∈ �M [G ]1 :

• Nα � NI ;
• If α ∈ S, then I S \ Jα has a least element t(α) and at(α),0 both catches and has
unbounded reach in Nα ;

• If α �∈ S, then every b ∈ NI \Nα that catches Nα has bounded effect in Nα .
Now, still working insideM [G ], we identify a 3-sorted structureN∗ that encodes
this information. The vocabulary of N∗ will be

�∗ = � ∪ {U,V,W,<U ,<V ,P,E,R1, R2}.
N∗ is the �∗-structure in which
• {U,V,W } are unary predicates that partition the universe;
• (UN∗

, <U ) is (�
M [G ]
1 , <);

• (VN∗
, <V , P,E) is (I S ,<,P,E);

• WN∗
is NI (the �-functions and relations only act on theW -sort);

• R1 ⊆ U × V , with R1(α, t) holding if and only if t ∈ Jα; and
• R2 ⊆ U ×W , with R2(α, b) holding if and only if b ∈ Nα .
Note that S ⊆ �M [G ]1 is a �∗-definable subset of the U -sort of N∗ (α ∈ S if and
only if V \R1(α,V ) has a <V -minimal element). Also, on theW -sort, the relation
‘b ∈ pcl(a)’ is definable by an infinitary �∗-formula. Thus, the relations ‘b catches
6Alternatively, one could use the fragment ZFC 0 of [2].
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Nα ’ , ‘b has unbounded reach in Nα ’ and ‘b has bounded effect in Nα ’ are each
infinitarily �∗-definable subsets of U ×W .
By construction, N∗ |= �, where the infinitary � asserts: ‘For every nonzero
α ∈ U , either every element ofWN∗

that catches Nα also has unbounded reach in
Nα or there is an element ofWN∗

that catches Nα and has bounded effect in Nα .’
To distinguish between these two possibilities, there is an infinitary �∗-formula
�(x) such that for x from the U -sort, �(x) holds if and only if there exists b ∈
NI \NJx that catches and has unbounded reach inNJx . Thus, for nonzeroα ∈ �M [G ]1
we have

N∗ |= �(α) ⇐⇒ α ∈ S.
Now, identify a countable fragment LA of L�1,�(�

∗) to include the formulas
mentioned in the last three paragraphs, along with infinitary formulas ensuring
�-atomicity.
Now, we switch our attention to V , and apply Theorem 3.13 to (M [G ],∈), LA,
and N∗. This gives us a family (MX ,E) of elementary extensions of (M [G ],∈),
each of size ℵ1, indexed by subsets X ⊆ �1 (= �V1 ). Each of these models of ZFC
has an �∗-structure, which we call N∗

X inside it. As well, for each X ⊆ �1, there is a
continuous, strictly increasing mapping tX : �1 → UN∗

X with the property that

N∗
X |= �(tX (α)) ⇐⇒ α ∈ X.

Let (I X ,<X ,EX ,PX ) be the ‘V -sort’ of N∗
X . Clearly, each I

X ∈ I∗.
Finally, the W -sort of each �∗-structure N∗

X is the universe of a �-structure,
striated by I X . We call this ‘reduct’NX . Note that by our choice of LA and the fact
thatN∗

X 	LA N
∗, we know that every �-structure NX is an atomic model of T and

is easily seen to be of cardinality ℵ1. Thus, the proof of Theorem 2.8 reduces to the
following:

Claim. If X \ Y is stationary, then there is no �-isomorphism f : NX → NY .
Proof. Fix X,Y ⊆ �1 such that X \ Y is stationary and by way of con-
tradiction assume that f : NX → NY were a �-isomorphism. Consider the
�∗-structures N∗

X and N
∗
Y constructed above. As notation, for each α ∈ �V1 , let

NXα and N
Y
α denote �-elementary substructures with universes R2(tX (α), N

∗
X ) and

R2(tY (α), N∗
Y ), respectively.

Next, choose a club C0 ⊆ �1 such that for every α ∈ C0:
• α is a limit ordinal;
• The restriction of f : NXα → NYα is a �-isomorphism.
Denote the set of limit points of C0 by C . As C is club and (X \Y ) is stationary,
choose α in their intersection. Fix a strictly increasing �-sequence 〈αn : n ∈ �〉 of
elements fromC0 converging toα.Asα ∈ X , we can choose an element b ∈ NX \NXα
such that b catches NXα and has unbounded reach in N

X
α . That is, there is � < α

such that for every 	 satisfying � < 	 < α,

pcl(NX� ∪ {b}, NX ) ∩NXα �⊆ NX	 .
Fix n ∈ � such that αn > �. Then, for every m ≥ n

pcl(NXαn ∪ {b}, NY ) ∩NXα �⊆ NXαm .
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Thus, as ‘b ∈ pcl(a)’ is preserved under �-isomorphisms and f[NXαm ] = NYαm
setwise, we have that f(b) both catches and has unbounded reach in NYα . As
α �∈ Y , we obtain a contradiction fromN∗

Y |= ¬�(tY (α)) and N∗
Y |= �. �
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