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Abstract

Extending previous research that has examined the relationship between long-term memory
and second language (L2) development with a primary focus on accuracy in L2 outcomes, the
current study explores the relationship between declarative and procedural memory and
accuracy and automatization during L2 practice. Adult English native speakers had learned
an artificial language over two weeks (Morgan-Short, Faretta-Stutenberg, Brill-Schuetz,
Carpenter & Wong, 2014), producing four sessions of practice data that had not been analyzed
previously. Mixed-effects models analyses revealed that declarative memory was positively
related to accuracy during comprehension practice. No other relationships were evidenced
for accuracy. For automatization, measured by the coefficient of variation (Segalowitz,
2010), the model revealed a positive relationship with procedural memory that became stron-
ger over practice for learners with higher declarative memory but weaker for learners with
lower declarative memory. These results provide further insight into the role that long-term
memory plays during L2 development.

Introduction

Cognitive and psycholinguistic approaches to second language (L2) acquisition in the last
twenty years have looked to individual differences as a means to understand the mechanisms
that support L2 development and have examined several domain-general factors including, for
example, executive function, short-term memory, working memory and, more recently, long-
term memory. According to bipartite models of the architecture of long-term memory,
DECLARATIVE MEMORY is a system capable of fast learning and retention of information relative
to events, facts and arbitrary associations, whereas NONDECLARATIVE MEMORY is a system com-
prised of several subsystems, one of which is PROCEDURAL MEMORY, which consolidates informa-
tion more gradually and is largely responsible for implicit sequence learning, probabilistic
learning and motor skill learning (e.g., Cabeza & Moscovitch, 2013; Eichenbaum, 2008,
2011; Squire, 2004; Squire & Dede, 2015; Squire & Wixted, 2011).

A number of recent correlational studies in second language acquisition (SLA; e.g., Antoniou,
Ettlinger &Wong, 2016; Brill-Schuetz &Morgan-Short, 2014; Ettlinger, Bradlow&Wong, 2014;
Hamrick, 2015; Morgan-Short, Faretta-Stutenberg, Brill-Schuetz, Carpenter & Wong, 2014;
Morgan-Short, Finger, Grey & Ullman, 2012; Pili-Moss, 2018; Suzuki, 2017; see also Hamrick,
Lum & Ullman, 2018 for a recent meta-analysis) have investigated the relationship between L2
learning outcomes and specific memory-dependent declarative and procedural learning abilities,
assessed bymeans of behavioral tasks that have been independently linked to declarative and pro-
cedural memory in the neuropsychological literature. Generally, these studies have evidenced a
positive relationship between learning outcomes and long-term memory measures, although
this may be modulated by a range of factors (e.g., type and amount of input, level of proficiency,
linguistic structure, type of instruction).

In addition to understanding the role of declarative and procedural memory on L2 learning
outcomes, it is undoubtedly of interest to SLA researchers to gain a more complete picture of
how memory modulates L2 learning during practice. However, only two studies to date
(Pili-Moss, 2018; Suzuki, 2017) have examined this issue. Extending the analysis of data col-
lected but not discussed in Morgan-Short et al. (2014) and Morgan-Short, Deng, Brill-Schuetz,
Faretta-Stutenberg, Wong and Wong (2015), the aim of this paper is to address this gap in the
literature and elucidate the role that declarative and procedural learning ability play in modu-
lating accuracy and automatized language processing during practice.
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Cognitive models of L2 learning

Recent approaches to the organization of memory have informed
our theoretical understanding of L2 acquisition. In particular,
three cognitive models of late-learned L2 have posited the rele-
vance of declarative and procedural memory (or knowledge) for
L2 learning (DeKeyser, 2015; Paradis, 2009; Ullman, 2004, 2015,
2016). According to Ullman’s (2004, 2015, 2016) declarative/pro-
cedural model (DP model), declarative and procedural memory
are largely independent neural memory systems and their activity
is modulated by a range of external and internal factors including
hormonal and genetic factors, age, and sex. Under certain circum-
stances, declarative and procedural memory can also interact
cooperatively or competitively: for example, in case of functional
impairment or attenuation of one of the systems.

In Ullman’s model (Hamrick et al., 2018; Ullman, 2004, 2015,
2016) the two systems generally underlie the learning of different
types of linguistic knowledge. More specifically for first language
(L1), Ullman’s model posits that declarative memory primarily
supports the learning and use of all aspects related to lexis as
well as idiosyncratic forms (e.g., irregular morphology) and
‘chunks’. Procedural memory supports the learning and use of
(hierarchical) sequences and rules across different linguistic
domains (including syntax, morphology and possibly phonology).
With regard to L2 acquisition, Ullman’s model predicts that
declarative memory will support the learning of lexis at all stages
of exposure and levels of proficiency. Declarative memory is also
expected to support the learning of L2 grammar at early stages of
exposure/proficiency. Procedural memory, however, is expected to
play an increasingly stronger role for L2 grammar at later stages of
exposure, when learners have had more practice with the L2.

Paradis’ (2009) model makes similar claims as Ullman’s
model, but differs from it in at least three respects. First, concern-
ing lexis, Paradis posits that declarative memory is only respon-
sible for the learning of form-meaning relationships
(vocabulary), whilst learning of word subcategorization patterns
(lexicon) depends on procedural memory. Secondly, Paradis’
model assumes that language processing in declarative memory
leads to explicit (conscious) representations, whilst, according to
Ullman (2015), declarative processing does not necessarily
imply consciousness (Henke, 2010). Finally, Paradis (2009) largely
limits the role of procedural memory to the L1 and, although it is
not excluded, L2 procedural processing is considered to be “very
rare in practice” (p.16).

From a slightly different perspective focused on L2 knowledge,
DeKeyser (2015) has proposed the Skill Acquisition model with
roles for declarative and procedural knowledge in L2 development
and automatization. The model distinguishes three phases in the
automatization process. In the declarative stage, the learner relies
exclusively on declarative knowledge (in the form of explicitly
taught or induced linguistic rules). The second stage (procedura-
lization) is a relatively early phase in practice in which declarative
knowledge is “acted on” (DeKeyser, 2015, p. 95), resulting in the
creation of increasingly procedural/behavioral representations of
the initial knowledge. At this stage, learners increasingly draw
on both types of knowledge as language rules are practiced, and
they no longer need “to retrieve bits and pieces of information
from memory to assemble them” (DeKeyser, 2015, p. 95).
Although there is no transfer of information or transformation
of knowledge from declarative to procedural, a strong declarative
knowledge is argued to support the onset of proceduralization
(DeKeyser, 2015). In the last stage (automaticity), language

knowledge is fully proceduralized in that its use is both rapid
and accurate, although declarative knowledge representations
may be maintained.

Because it is specified in regard to type of linguistic knowledge
(the product of learning), DeKeyser’s model is largely independ-
ent from assumptions about the structure of neural memory sys-
tems. However, transposing the relationship between declarative
and procedural knowledge to the memory systems that encode
them, DeKeyser’s model would be compatible with the prediction
of a substantial involvement of declarative memory in the initial
stages of practice, followed by an increasingly stronger reliance
on procedural memory as language processing becomes procedur-
alized and then automatized. Thus, notwithstanding the high-
lighted differences between Ullman’s and Paradis’ approaches,
as well as the slightly different focus on memory versus knowledge
in the different models, perspectives based on the characteristics
of neural memory systems and type of L2 knowledge make
generally consistent predictions for the role of declarative and
procedural memory and knowledge in L2 development and
automatization.

Declarative and procedural learning ability as individual
differences in L2 development

In a recent meta-analysis Hamrick et al. (2018) found that, for L2
adults, lexical abilities were consistently related to declarative
memory, whilst grammatical abilities were related to declarative
memory at early stages of exposure (see also Faretta-Stutenberg
& Morgan-Short, 2018; Hamrick, 2015; Morgan-Short et al.,
2014, Pili-Moss, 2018, Study 2) and to procedural memory at
later stages of exposure (see also Brill-Schuetz & Morgan-Short,
2014; Faretta-Stutenberg & Morgan-Short, 2018; Hamrick, 2015;
Morgan-Short et al., 2014; Pili-Moss, 2018, Study 1, for a different
pattern of results in children).

In one of the studies included in the meta-analysis,
Morgan-Short et al. (2014) exposed 14 university students to
BROCANTO2, a miniature language based on Spanish, under an
implicit training condition in which participants were told that
they would be learning an artificial language but were not pro-
vided with metalinguistic information or direction to search for
rules (DeKeyser, 1995; Norris & Ortega, 2000, p. 437). It is
important to note that no assumption was made about the type
of knowledge acquired by the learners (implicit or explicit).
After initial passive, meaningful aural exposure, the participants
practiced language comprehension and production in the context
of a computer board game (4 sessions over 2 weeks, for a total of
72 game blocks; see Methods section for further details). Two ver-
sions of an aural grammaticality judgment test (GJT) were admi-
nistered respectively at the end of the first session and at the end
of practice as the L2 outcome measure. Results on these GJTs
showed that declarative learning ability significantly predicted
language development after the first session, whilst procedural
learning ability was a significant predictor of development at
the end of the experiment.

Beside stage of exposure, other studies have provided evidence
for additional factors that may modulate the role of long-term
memory abilities (for reviews see Buffington & Morgan-Short,
2019; Hamrick et al., 2018). Some of these include order of pres-
entation in the input (Antoniou et al., 2016), type of rule
(Antoniou et al., 2016; Ettlinger et al., 2014; Pili-Moss, 2018),
type of training condition and learning context (Brill-Schuetz &
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Morgan-Short, 2014; Carpenter, 2008; Faretta-Stutenberg &
Morgan-Short, 2018), processing speed-up (Suzuki, 2017), and
age (Pili-Moss, 2018). A further modulating factor that has
been recognized in the literature (e.g., Hamrick et al., 2018;
Morgan-Short et al., 2014), but has not been directly investigated
to date, is the role of type of task. It could be argued that, due to
their specific characteristics, tasks may differ in the way they
engage declarative or procedural processing. More generally,
type of task could also refer to whether the task is an assessment
task (e.g., a GJT) or a learning task involving more extended lan-
guage practice.

To our knowledge, only one study has examined the role of
long-term memory during L2 practice. Pili-Moss (2018, Study 2)
trained 36 L1 Italian university students in a version of Brocanto2
based on Japanese (BROCANTOJ), using the same board game context
and training condition as Morgan-Short et al. (2014). However, in
this case the training was shorter (6 blocks over 3 consecutive days,
corresponding to the very initial stages of L2 learning), included
only comprehension practice, and tracked the effects of declara-
tive and procedural learning ability during practice in addition
to administering a GJT at the end of practice. Given the compara-
tively more limited exposure to the language, the GJT results were
consistent with Morgan-Short et al. (2014), indicating that
declarative learning ability, but not procedural learning ability,
significantly predicted L2 accuracy at early stages of learning.
The study also found that declarative learning ability significantly
predicted accurate performance during practice, although for a
subset of stimuli (sentences for which the comprehension of
links between word order and thematic interpretation was cru-
cial), a significant positive interaction between declarative and
procedural learning ability was also evidenced, indicating that
both cognitive abilities may contribute to the learning of the map-
ping rules linking thematic roles and syntactic linearization of
arguments in a second language.

Overall, with the exception of Pili-Moss (2018), studies that inves-
tigated the relationship between L2 development and long-term
memory have provided insight into how these individual differences
may support L2 learning as assessed by outcome measures taken
at one or two discrete points in the learning process. For this rea-
son, it could be argued that they provide only partial insight into
the role cognitive variables play in the learning process. Studies
offering a more fine-grained measure of the relationship between
long-term memory individual differences and L2 development
during practice have the potential to provide more direct insight
into how this relationship develops over time. Such research
may be all the more informative if it considers indices of L2 devel-
opment beyond accuracy: for example, neurocognitive processing
of L2 (Faretta-Stutenberg & Morgan-Short, 2018) or automatiza-
tion (Suzuki, 2017).

L2 automatization in L2 learning

An important aspect of L2 assessment in SLA research is the
study of language automatization, i.e., the extent to which L2 pro-
cessing in comprehension and production can reach levels of flu-
ency approaching those of L1 speakers in nonnative language
users (DeKeyser, 2007; Segalowitz, 2010). Automaticity in lan-
guage comprehension and production is characterized by process-
ing that is stable, fast, ballistic (i.e., unstoppable once triggered),
not controlled and not limited by working memory capacity,
and is qualitatively defined in opposition to similar processing
that does not present automatic characteristics, i.e., is unstable,

slow, controlled, stoppable, possible only within the limits of
working memory capacity, etc. (Segalowitz, 2003; 2013).

Measures of reaction time (RT) decrease over time have been
used as one of the main indices in the operationalization of
automatization (including in L2 linguistic processes). For
example, following approaches to skill acquisition developed in
the ACT-R framework (e.g., Anderson 1993, 2007), some L2 stud-
ies (e.g., DeKeyser, 1997, Ferman, Olshtain, Schechtman & Karni,
2009) have measured the automatized status of L2 processing dur-
ing practice by assessing the extent to which the reduction of RTs
over time can be fitted to a power function.

Other authors (e.g., Segalowitz, 2010; Segalowitz & Segalowitz,
1993) have argued that a measure of automatization should cap-
ture the fact that automatized language processing becomes NOT

ONLY FASTER BUT ALSO LESS VARIABLE as a function of practice. As
an alternative automatization measure they have proposed the
coefficient of variation (CV), an index that equals the ratio
between the intraindividual standard deviation and the mean
RT. When RTs are decreasing, a simultaneous CV decrease is
the result of a more than proportional reduction in the standard
deviation, indicative of a qualitative restructuring of the process.
According to Segalowitz (2010), two minimal conditions should
be simultaneously observed for the index to constitute reliable evi-
dence of automatization: (a) a significant decrease of both the CV
and the RT over the course of practice (or at different points of
testing or in group comparisons), and (b) a significant positive
correlation between CV and RT.

SLA studies that have used the CV index have investigated L1/
L2 differences in lexical access (e.g., Akamatsu, 2008; Phillips,
Segalowitz, O’Brien & Yamasaki, 2004; Segalowitz & Segalowitz,
1993; Segalowitz, Segalowitz & Wood, 1998; Segalowitz,
Trofimovich, Gatbonton & Sokolovskaya, 2008) and, more
recently, L2 grammar learning (e.g., Hulstijn, Van Gelderen &
Schoonen, 2009; Lim & Godfroid, 2015; Ma, Yu & Zhang,
2017; Suzuki, 2017; Suzuki & Sunada, 2018). In general, CV stud-
ies on lexical access have found consistent evidence of automa-
tization, whilst the evidence for L2 grammar learning has been
mixed.

For example, Hulstijn et al. (2009, Experiment 1) investigated
the development of automatization in 397 L1 Dutch high-school
learners of English. The longitudinal study analyzed RT data from
four computerized tasks administered to the students in the L1
and the L2 once a year, in Grade 8 (13–14 years of age), 9, and
10. The tasks administered were a word/nonword discrimination
task, a lexical retrieval task, a sentence verification task (based on
semantic acceptability) and a sentence completion task (probing
grammaticality). Overall, the study found only partial evidence
of automatization in terms of significant CV decrease and CV/
RT correlations, and mainly in the lexical-based tasks. Based on
their results the authors questioned the use of the CV as an
index of automatization, suggesting that it may be too restrictive.
However, as noted in Lim and Godfroid (2015), the length of
training per se does not ensure that automaticity will be attained.
Arguably, this may be especially the case if practice and testing
take place in different environments requiring a TRANSFER of auto-
matized skilled behavior across different conditions/tasks (on this
point see also DeKeyser, 2007; Suzuki & Sunada, 2018).

Lim and Godfroid (2015) conceptually replicated Hulstijn
et al. (2009) assessing automatization in 40 Korean L2 learners
of English (20 intermediate and 20 advanced) and 20 L1
English speakers. The testing included a lexical discrimination
task (based on animacy), in addition to a sentence completion
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task and a sentence plausibility task similar to those deployed in
Hulstijn et al.’s original experiment. For the sentence completion
task, a cross-sectional comparison of the three groups found sig-
nificant CV decreases as a function of language proficiency
together with significant CV/RT correlations for both intermedi-
ate and advanced L2 learners. In a similar study, Ma et al. (2017)
compared low and high proficiency Chinese learners of English in
a sentence plausibility task and also found a significantly lower
CV in high-proficiency learners. Overall, the results of cross-
sectional studies seem to suggest significant decreases in the CV
index (i.e., an increase in automatization) as a function of profi-
ciency at least for some of the tasks tapping the development of
L2 grammar.

To date only Suzuki (2017) investigated the extent to which L2
automatization is modulated by long-term memory (procedural
learning ability). Sixty L1 Japanese university students in two
experimental groups (short and long spacing) were exposed in
explicit instruction conditions to verbs with present progressive
morphology in a miniature language across four sessions, 3.3
days or 7 days apart. CV decreases relative to two oral production
tests administered at the beginning and at the end of each session
did not provide evidence of automatization.

Further, procedural learning ability (measured by the Tower of
London task - TOL) was found to significantly correlate with RT
decrease in the short-spacing condition, but no significant rela-
tionships were found between procedural learning ability and
CV. Overall, Suzuki (2017) extended previous research on the
relationship between long-term memory abilities and accuracy
to speed-up. However, the extent to which these abilities may con-
tribute to automatization remains an open question.

Motivation for the study and research questions

Based on an analysis of practice data that were not reported or
analyzed in Morgan-Short et al. (2014) or Morgan-Short et al.
(2015), the aim of the present study was to explore the role of
declarative and procedural learning ability in L2 development
during practice over time in regard to accuracy (in comprehension
and production) and automatization (in comprehension). For the
current analysis, participant responses on comprehension and
production practice trials are used to examine accuracy during
practice and CV is calculated based on the reaction times in the
comprehension blocks as an index of automatization. As RTs
were not available for production blocks, automatization in pro-
duction is not investigated in the present study. The research
questions were formulated as follows:

RQ1: To what extent do declarative and procedural learning abil-
ity predict accuracy in comprehension and production dur-
ing L2 practice? Do these effects differ across various stages
of practice?

RQ2: To what extent do declarative and procedural learning abil-
ity predict automatization in comprehension during L2
practice? Do these effects differ across various stages of
practice?

For RQ1, based on Morgan-Short et al. (2014) and Pili-Moss
(2018, Study 2), we hypothesize a significant role of declarative
learning ability in supporting L2 accuracy early in practice.
Further, if the pattern of effects in the practice data is comparable
to the one found in the GJT (Morgan-Short et al., 2014), we also
expect an attenuation of the effect of declarative learning ability at

late stages of training, possibly accompanied by an increasingly
stronger effect of procedural learning ability. For automatization,
based on theoretical assumptions in DeKeyser (2015) and Ullman
(2015; 2016), we hypothesize (a) that declarative learning ability
will have a significant role early in practice, followed by an
increase in the effect of procedural learning ability as practice pro-
gresses, and (b) that declarative learning ability will act as a facili-
tating factor in the automatization process supporting the
transition from the declarative to the proceduralization stage.

Methods

The current study is an analysis of data collected but not reported
or examined by Morgan-Short et al. (2014) and Morgan-Short
et al. (2015). In regard to the relationship between long-term
memory individual differences data (collected during a cognitive
test session) and L2 development, these previous studies exam-
ined results based on the L2 outcome measure (the GJT) adminis-
tered during two L2 assessment sessions. In contrast, the current
study examines L2 data collected during the four language train-
ing and practice sessions. Below we provide an overview of the
participants and of the materials and procedures related to the
cognitive test session and the language training and practice ses-
sions. We do not describe the assessment sessions, as these data
were not relevant to the current study (for full reports see
Morgan-Short et al., 2014; Morgan-Short et al., 2015).

Participants

Data from 14 participants (6 female) were analyzed in the current
study. The participants were right-handed, healthy young adults
(mean age = 22.21, SD = 2.72) who were native speakers of
English, spoke 1.21 non-native languages (SD = 0.58), and had
limited exposure to Romance languages. Six additional partici-
pants began the study but were excluded from analysis for various
reasons. See Morgan-Short et al. (2014) for more details about the
participants, participant attrition, exclusion and compensation.

General procedure

Seven experimental sessions had been scheduled over a two-week
period, one to three nights apart. The cognitive tests, including an
IQ assessment (Kaufman & Kaufman, 2004), were administered
with counterbalanced order across participants in Session 1
(approximately 3 hours). The remaining sessions were devoted
to language training and practice (Sessions 2, 4, 5, and 6) and
assessment (Sessions 3 and 7) and lasted on average 2.6 hours
and 1 hour respectively.

Materials and Procedures

Cognitive tests
Participants completed two measures of declarative and two mea-
sures of procedural learning ability and composite scores for each
were obtained. Part V of the Modern Language Aptitude Test
(MLAT-V; Carroll & Sapon, 1959) was administered as a verbal
measure of declarative learning ability. For this task, participants
learned 24 pseudo-Kurdish and English word association pairs
and subsequently completed a four minute, 24-item, multiple-
choice test where they chose the English equivalent for each
pseudo-Kurdish word. MLAT-V scores reflect the total number
of correct responses. The Continuous Visual Memory Task
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(CVMT; Trahan & Larrabee, 1988) was administered as a non-
verbal measure of declarative learning ability. For this task, parti-
cipants viewed a series of abstract designs presented on a
computer screen for 2 seconds, and indicated whether each design
was novel (63 items presented once each) or had appeared previ-
ously (7 items presented 7 times interspersed throughout the
novel items). Participants’ responses were used to calculate a
CVMT d’ score.

The measures of procedural learning ability were a computerized
version of the Tower of London task (TOL; Kaller, Unterrainer &
Stahl, 2012; Kaller, Rahm, Köstering & Unterrainer, 2011;
Unterrainer, Rahm, Leonhart, Ruff & Halsband, 2003) and a dual-
task version of the Weather Prediction Task (WPT; Foerde,
Knowlton & Poldrack, 2006). In the TOL, participants were
asked to click and drag ball-like shapes on pegs, from an initial
configuration to a goal configuration, in a specified number of
moves (ranging from 3 to 6). Comparing the initial and the
final trials for each set, the decrease in the reaction time between
the presentation of the initial configuration and the first move
(initial think time) was used as the measure of procedural learning
ability. In the WPT, participants select a weather prediction
(“sunshine” or “rain”) based on patterns of four different “tarot
cards” presented on the computer (320 trials in 8 pseudorando-
mized blocks). Each combination of cards, displayed for 3 sec-
onds, represents a different probability for “sunshine” or “rain.”
After each response, the correct answer is displayed on the screen.
The distractor task required participants to count high tones
(1000 Hz) presented along with low tones (500 Hz) throughout
each block. After excluding trials for which the probability was
50%, accuracy on the final dual-task block was used as the
WPT score.

Artificial language
The artificial language, Brocanto2 (Morgan-Short, 2007; Morgan-
Short, Sanz, Steinhauer & Ullman, 2010; Morgan-Short, Finger,
Grey & Ullman, 2012; Morgan-Short, Steinhauer, Sanz & Ullman,
2012), was modeled after Brocanto (Friederici, Steinhauer &
Pfeifer, 2002). Brocanto2 has 13 lexical items: 4 nouns ( pleck, neep,
blom, vode), 2 adjectives (troise/o, neime/o), 1 article (li/u), 4
verbs (klin, nim, yab, praz) and 2 adverbs (noyka, zayma).
Nouns have gender (masculine or feminine) and agree with adjec-
tives and articles. Brocanto2 has a productive structure consistent
with natural languages, can be spoken and understood within a
meaningful context and displays the SOV word order as shown
in (1).

(1) (Noun-Adjective-Article) - (Noun-Adjective-Article) – Adverb
– Verb

Each Brocanto2 sentence describes amove on a computer board
game whose rules are completely independent from the rules of the
language. In Brocanto2, the nouns represent the four game tokens
of the game, and the adjectives describe the tokens’ shape (round
or square). The four Brocanto2 verbs indicate the game moves:
move, swap, capture, and release. The two adverbs indicate whether
moves are in the horizontal or vertical direction.

Vocabulary training
At the start of each of the four training and practice sessions,
computer-based vocabulary training was administered. The pro-
gram individually presented Brocanto2 lexical items auditorily,
with the matched visual symbols that represented their meanings.

Participants trained at their own pace and were tested when they
believed that they had learned all the lexical items. During the
vocabulary test, each symbol was presented twice and participants
were asked to state out loud the lexical item that corresponded to
it. If participants did not achieve a score of 100% accuracy on this
test, they repeated vocabulary training and took the test again
until they reached criterion.

Language training
In each training and practice session, after vocabulary testing,
learners were auditorily exposed to 129 Brocanto2 phrases and
sentences in association with the visual representation of the cor-
responding game token or move on the computer game board.
The timing of the training was pre-determined (approximately
13.5 minutes), and learners were asked to pay attention as they
would take a short quiz about what they saw after the training.

Language practice
Language practice, administered after language training, occurred
in the context of the computer-based game. It consisted of 72
alternating comprehension and production modules (36 modules
each; 20 novel sentence stimuli per module). During comprehen-
sion modules, participants heard sentences in the language and
were instructed to “make the move on the game board that corre-
sponds to the statement you heard.” For each comprehension
trial, accuracy and RTs (measured in milliseconds from the end
of the playback of the aural stimulus to the move completion)
were recorded by the computer. During production modules, par-
ticipants saw a move and were instructed to “state the move out
loud” by using a Brocanto2 sentence. For each production trial,
accuracy was entered into the computer by the researcher. For
all comprehension and production trials, the computer provided
immediate feedback on whether their response was correct or
incorrect. No additional information or opportunity to modify
the response was provided. Participants completed 12 practice
modules during Session 2 and 20 practice modules in each of
the three subsequent training and practice sessions.

Analyses and Results

RQ1

Descriptive statistics
For descriptive statistics purposes, mean block accuracy was cal-
culated for comprehension and production practice across partici-
pants (Table 1) for each of the four training and practice sessions.
The data show that accuracy was relatively high for comprehen-
sion as early as the second session (on average 16.7 accurate
responses per block out of 20). By the end of training it had
increased on average to 18.6 accurate responses per block out of
20, with a small standard deviation. For production, accuracy
developed more slowly over time reaching a maximum average
of 18 accurate responses per block out of 20 with higher variabil-
ity among participants.

For preliminary insights into any relationship between declara-
tive and procedural learning ability and accuracy during practice,
correlations were run between mean block accuracy for compre-
hension and production and declarative and procedural learning
ability (Table 2). Declarative learning ability showed medium to
large relationships (Plonsky & Oswald, 2014) with accuracy in
comprehension throughout training, as well as an overall margin-
ally statistically significant correlation. By contrast, the relationship
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between procedural learning ability and accuracy in comprehension
was weak throughout the training. For accuracy in production,
small to large relationships were evidenced for declarative learning
ability with no statistically significant correlations. Only small
relationships were evidenced for procedural learning ability and
accuracy in production. Thus, a comparatively stronger role of
declarative learning ability in supporting accuracy was found for
comprehension but not production. A Pearson’s correlation was
also run between the declarative and procedural memory scores
and showed that the relationship between the two variables was
positive but not significant (r = .222; p = .466, bootstrapped).

Data modeling
In order to directly address RQ1, two separate analyses were con-
ducted for comprehension and production accuracy. Data model-
ing was performed using binomial generalized mixed-effects
models (Faraway, 2016) with the glmer function (lme4 package,
Bates, Maechler & Bolker, 2011) in the R environment
(R Development Core Team, 2018). In both accuracy models,
the outcome variable was a measure of the log-likelihood that
individual comprehension/production trials were correct given a
one-unit increase in the predictor variables. The main effects
included Session (treated as a continuous and centered variable)
and the two main predictors of interest, declarative and proced-
ural learning ability (which were already available as standardized
measures in Morgan-Short et al., 2014 and are abbreviated as Decl
and Proc, respectively). Interactions were added if they statistically
significantly improved the fixed-effects model’s fit (as determined
by the likelihood ratio test). To determine the structure of random
effects, we first ascertained that both random effects of partici-
pants and trial items on intercepts improved the fixed-effects
model. We fit the maximal random effect structure (Barr, Levy,
Scheepers & Tily, 2013) to the extent justified by the data. A ran-
dom slope was included in the final model if the model converged
and the random slope significantly improved the model’s fit com-
pared to the next simpler nested model (as determined by the

likelihood ratio test). In both models, a positive β coefficient indi-
cated a positive correlation between the predictor and the
log-likelihood of a trial being correct, whilst a negative β value
indicated a negative correlation between the predictor and the
log-likelihood of a trial being correct. The syntax of all final mod-
els is reported in the supplementary materials S1 (Supplementary
Materials). The interpretation of the models’ effect size (R2) fol-
lows the field-specific recommendations in Plonsky and
Ghanbar (2018).

Accuracy in comprehension
The model for comprehension (Table 3) was derived after ensur-
ing that the risk of multicollinearity between the predictors was
low (condition number = 1.24). Overall, the model accounted
for 56% of the variance compared to 26% in the corresponding
model where random effects were not included (all effects com-
puted using R2).

The model yielded a positive, statistically significant effect of
Session on accuracy (p < .001), indicating that the log-likelihood
that items were produced correctly increased significantly as train-
ing progressed (a medium effect; R2 = .47). Turning to the predic-
tors of interest, the model outcome was that, overall, declarative
learning ability was a statistically significant positive predictor
of accuracy (p < .001) with a medium effect size (R2 = .30). By
contrast, procedural learning ability had a positive but nonsigni-
ficant relationship with accuracy with a negligible effect size
(R2 = .01). The β coefficient of the Decl by Session interaction
indicated that the effect of declarative learning ability decreased,
although nonsignificantly, across practice. The plot in Figure 1
illustrates the fairly consistent effect of declarative learning ability
at three subsequent stages corresponding to intervals representing
early, middle, and later stages of practice.

Accuracy in production
After testing multicollinearity (condition number = 1.24), the
model of the production data was derived. Overall, the final
model (Table 4) explained about 88% of the variance, compared
to 43% in the corresponding model where random effects were
not specified. Note that this implies that random effects are likely
to have had a substantial influence on the initial correlation
results (cf., descriptive statistics; Table 2), a fact that would
account for the lack of perfect alignment between the results of
the initial correlation and the final model’s results.

The model returned a positive statistically significant, large
effect of Session on accuracy (R2 = .84, p < .001), indicating that
the log-likelihood that items were produced correctly increased
significantly as training progressed. Both declarative and proced-
ural learning ability had positive, though nonsignificant, medium-
sized effects (R2 = .36 and R2 = .45, respectively). The Proc by
Session interaction was found to be statistically significant
(p < .001), and its negative β coefficient indicated a significant
decrease in the ability of procedural learning ability to predict

Table 1. Mean accuracy per block across sessions in language comprehension and production (N = 14).

S1 S2 S3 S4

M (SD) M (SD) M (SD) M (SD)

Comprehension 11.3 (3.7) 16.7 (3.1) 18.4 (1.6) 18.6 (0.5)

Production 3.5 (5.8) 11.2 (7.9) 14.9 (6.6) 18.0 (2.9)

Note: Maximum score per block = 20.

Table 2. Correlations between accuracy and declarative and procedural
learning abilities across sessions for comprehension and production practice
(N = 14).

S1 S2 S3 S4 Overall

Comprehension practice

Declarative .613 .633 .511 .429 .692^

Procedural .163 .078 .161 .162 −.038

Production practice

Declarative .652 .388 .351 .364 .475

Procedural .381 .150 .304 .277 .301

Note: ^p < .10; *p < .05. Bootstrapped; Holm-Bonferroni corrected.
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accurate responses in later stages of practice compared to earlier
stages. The plot in Figure 2 illustrates the effect of procedural
learning ability at three subsequent stages corresponding to inter-
vals representing early, middle, and later stages of practice.

RQ2

Descriptive statistics
The 20 comprehension practice trials from Block 1 (Session 1)
were considered warm-up practice and excluded from analysis.
The analyzed RT data included correct trials in the remaining

comprehension blocks that were within ± 2SDs of the mean RT
calculated for each of the four sessions. Overall, 6.2% of the cor-
rect responses in the comprehension data were outside of the ±
2SDs criterion and were not included in the analysis.

According to Segalowitz (2010) the CV is a reliable index of
automatization if (a) both CV (the ratio between the individual
standard deviation in RT responses at block level and the RT
mean at block level) and RT significantly decrease across practice,
and (b) CV and RT are significantly correlated. Table 5 presents a
summary of mean CV and RT values averaged across participants
for each session (plots of these values across all blocks are available

Table 3. Mixed-effects model of the effects of session, declarative learning ability and procedural learning ability on accuracy in comprehension.

95% CI

Fixed effects β SE z lower upper p

(Intercept) 2.68 0.18 14.42 2.31 3.04 .000***

Decl 0.82 0.22 3.63 0.38 1.26 .000***

Proc 0.07 0.18 0.41 −0.29 0.44 .684

Session 1.14 0.11 10.01 0.92 1.37 .000***

Decl:Session −0.03 0.11 −0.28 −0.25 0.19 .780

Note: ***p < .001.

Fig. 1. Effect of declarative learning ability on accuracy in
comprehension. Values on the x-axis represent standard
deviations of the composite declarative learning ability
score. The rugs along the x-axis of each panel represent
the distribution of declarative learning ability values in the
sample. Values on the y-axis represent the log odds of a cor-
rect response on a comprehension trial. The left, center, and
right panels represent early, middle, and later stages of
practice, respectively, and do not correspond directly to par-
ticular training blocks.

Table 4. Mixed-effects model of the effects of session, declarative learning ability and procedural learning ability on accuracy in production.

95% CI

Fixed effects β SE z lower upper p

(Intercept) 0.59 0.66 0.89 −0.70 1.89 .370

Decl 0.98 0.75 1.30 −0.50 2.46 .193

Proc 1.48 0.80 1.85 −0.09 3.06 .064^

Session 2.71 0.32 8.47 2.09 3.34 .000***

Proc:Session −1.16 0.27 −4.27 −1.69 −0.63 .000***

Note: ^p < .10; ***p < .001.
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as supplementary materials S2, Supplementary Materials). In
regard to the first criterion, we find that both CV and RT decreased
statistically significantly between Session 1 and Session 4 (for CV:
t (13) = 5.23, p = .004, d = 1.7; for RT: t (13) = 6.83, p = .004, d =
2.7; bootstrapped). In regard to the second criterion, we calculated
the CV and RT for each of the comprehension blocks included in
the analysis, averaging across participants, and found that the correl-
ation between CV and RT (r (33) = .746, p = .009; bootstrapped) was
positive and statistically significant (see S2 for a plot). Thus, our
data meet the criteria for CV to be interpreted as an index of
automatization.

Next, we take a preliminary look at the relationship between
CV and learning ability (Table 6). It is important to note that,
as lower CV values indicate higher automatization, negative cor-
relations between learning ability and CV indicate positive rela-
tionships of these variables with automatization. Over the
sessions, we see a weak to medium relationship between CV
and declarative learning ability and a medium to strong relation-
ship between CV and procedural learning ability. The correlations
relative to the overall CV mean scores reflect this pattern in that
procedural learning ability, but not declarative learning ability,
was found to significantly correlate with the coefficient of
variation.

Data modeling
In order to directly address RQ2, data modeling was performed
using mixed-effects models with the lmer function (lme4 package,
Bates et al., 2011) in the R environment (R Development Core
Team, 2018), after a low risk of multicollinearity was ascertained
(condition number = 1.45). The log-transformed CV (log10) was
the dependent variable. The predictors were Decl and Proc
(both standardized) and Session (continuous and centered). The
derivation of the model followed the criteria illustrated earlier
(cf. S1 for the model’s syntax).

In the model output (Table 7), a negative β coefficient indi-
cates a negative correlation between the predictor and the CV
measure, hence a POSITIVE relationship between the predictor
and automatization, as lower CV values indicate more automa-
tization. Conversely, a positive β value indicates a NEGATIVE rela-
tionship between the predictor variable and automatization, as
higher CV values indicate less automatization. Overall, the
mixed-effects model explained 37% of the variance, compared
to 11% in the corresponding model with no random effects.

A statistically significant, but small, effect of Session (R2 = .11,
p < .01) was observed indicating that session-dependent factors
beyond learning ability contributed to increased automatization
over time. Turning to the long-term memory predictors, the
model showed that, overall, procedural learning ability had a stat-
istically significant positive effect on automatization (p < .01) and
accounted for about 30% of the variance (a medium effect), whilst
declarative learning ability exerted a positive, small-sized effect
(5% of the variance) but was not statistically significant.

The model also returned a statistically significant (p < .05)
Decl by Proc by Session interaction. In discussing this result it
is important to remember that the interaction, per se, does not
imply any specific directionality or causality. As one of the

Table 5. Mean CV and RT (in milliseconds) across sessions (N = 14).

S1 S2 S3 S4 Overall

M (SD) M (SD) M (SD) M (SD) M(SD)

CV 1.33 (0.3) 1.13 (0.3) 0.93 (0.2) 0.82 (0.2) 1.05 (0.2)

RT 5207 (1945) 2872 (1094) 1774 (620) 1465 (367) 2829 (748)

Fig. 2. Effect of procedural learning ability on accuracy in
production. Values on the x-axis represent standard devia-
tions of the composite procedural learning ability score.
The rugs along the x-axis of each panel represent the distri-
bution of procedural learning ability values in the sample.
Values on the y-axis represent the log odds of a correct
response on a production trial. The left, center, and right
panels represent early, middle, and later stages of practice,
respectively, and do not correspond directly to particular
training blocks.

Table 6. Correlations between CV and learning ability across sessions (N = 14).

S1 S2 S3 S4 Overall

Declarative −.145 −.531 −.439 −.329 −.463

Procedural −.504^ −.629^ −.563^ −.582^ −.743*

Note: ^p < .10; *p < .05. Bootstrapped; Holm-Bonferroni corrected.

646 Diana Pili-Moss et al.

https://doi.org/10.1017/S1366728919000543 Published online by Cambridge University Press

https://doi.org/10.1017/S1366728919000543


possible illustrations of the interaction, we plot the effect of pro-
cedural learning ability from the model for different levels of
declarative learning ability across practice (Figure 3).

Reading the plot from left to right (and keeping the stage in
practice constant), we note that in the early stages of practice
(‘early stage’) declarative and procedural learning ability do not
appear to interact: that is, the slope of procedural learning ability
is virtually the same regardless of the level of declarative learning
ability. The effect of the interaction emerges in the middle stage of
training (‘middle stage’), and, even more clearly, later in training
(‘later stage’). At those stages, declarative and procedural learning
ability do appear to interact in that the slope of procedural learn-
ing ability becomes steeper and more negative for higher levels of
declarative learning ability. Thus, later in practice, better proced-
ural learning ability is associated with more automatization for
learners with higher declarative learning ability.

The same interaction can also be viewed in another manner:
reading the plot from top to bottom (and keeping the DECL
level constant), we note that, for average and above-average values
of declarative learning ability (‘average DECL’ and ‘high DECL’),
higher procedural learning ability is associated with steeper, more
negative slopes representing better automatization over the course
of practice. For below-average levels of declarative learning ability
(‘low DECL’), the procedural memory effect seems to flatten out
over practice, suggesting that automatization becomes markedly
worse over the course of practice as procedural learning ability
increases.

Overall, the plot of the three-way interaction seems to indicate
at least two facts: (a) that the interaction between long-term mem-
ory abilities does not emerge immediately and (b) that the effect
of procedural learning ability on automatization varies differently
over time for learners with different levels of declarative learning
ability. As illustrated in Figure 3, higher declarative learning abil-
ity increasingly supports the effect of procedural learning ability
on automatization. However, lower declarative learning ability is
detrimental for the effect of procedural learning ability on
automatization as practice progresses.

Note that all data and analyses for each of the above research
questions are available on the Open Science Foundation page –
osf.oi/uzw6r.

Discussion

The first research question asked TO WHAT EXTENT DECLARATIVE AND

PROCEDURAL LEARNING ABILITY PREDICTED ACCURACY IN COMPREHENSION

AND PRODUCTION IN L2 PRACTICE, AND WHETHER THESE EFFECTS VARIED

Table 7. Mixed-effects model of the effects of session, declarative learning ability and procedural learning ability on automatization.

95% CI

Fixed effects β SE t lower upper p

(Intercept) −0.11 0.01 −7.31 −0.14 −0.08 .000***

Decl −0.02 0.02 −0.98 −0.07 0.02 .377

Proc −0.08 0.02 −4.31 −0.12 −0.04 .003**

Session −0.04 0.01 −3.13 −0.06 −0.01 .007**

Decl:Proc −0.04 0.02 −1.79 −0.08 0.00 .147

Decl:Session 0.02 0.02 1.13 −0.01 0.06 .282

Proc:Session −0.02 0.01 −1.65 −0.04 0.00 .177

Decl:Proc:Session −0.04 0.01 −2.55 −0.07 −0.01 .029*

Note: ^p < .10; *p < .05; **p < .01; ***p < .001.

Fig. 3. Effect of the DECL by PROC by SESSION interaction on automatization. Values
on the x-axis represent standard deviations of the composite procedural learning
ability score. The rugs along the x-axis of each panel represent the distribution of pro-
cedural learning ability values in the sample. Values on the y-axis represent the log of
the CV index. Panels from left to right represent the effect of procedural learning abil-
ity for early, middle and later stages of practice for a constant level of declarative
learning ability. Panels from bottom to top represent the effect of procedural learn-
ing ability for increasing levels of declarative learning ability at a given stage of prac-
tice. Note that levels of declarative learning ability and stages of practice in the figure
represent intervals in the values of the respective continuous variables generated for
the purpose of illustration and, thus, should not be interpreted as factor levels.
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ACROSS PRACTICE. For comprehension practice, the mixed-effects
model analysis revealed a positive, medium, statistically significant
relationship between declarative learning ability and accuracy;
whereas, for procedural learning ability, no statistically significant
relationship with accuracy was detected. We also found that com-
prehension accuracy improved over the sessions, but this effect
did not interact with either declarative or procedural learning
ability, indicating that their relationships with accuracy did not
vary significantly across practice. A strong role for declarative
learning ability in predicting accuracy during practice is consist-
ent with the previously discussed findings in Pili-Moss (2018,
Study 2), where learners engaged in a total of six blocks of 20
comprehension practice trials.

Our finding that declarative learning ability was related to
comprehension accuracy early in practice is consistent with the
results of the meta-analysis in Hamrick et al. (2018), and in par-
ticular with the results in Morgan-Short et al. (2014), the study
from which our data were obtained. However, discrepancies
with Morgan-Short et al. (2014), and more generally with the
results reported in Hamrick et al.’s meta-analysis, emerge with
regard to the findings at later stages of practice in at least two
respects. First, the GJT findings in Morgan-Short et al. indicated
that the effect of declarative learning ability became nonsignifi-
cant after the end of practice, whilst in our study it slightly
decreased across practice, but not significantly. Second,
Morgan-Short et al. found that procedural learning ability pre-
dicted accuracy on the GJT after the end of practice, whilst no sig-
nificant effect of procedural learning ability emerged in
comprehension practice in the present study.

Considering that the present study analyzes accuracy taken
from the same participants in the same experiment, the question
emerges of why, contrary to results for accuracy on the GJT
(Morgan-Short et al., 2014), the declarative learning ability effect
for accuracy on practice was maintained even at later stages and
the procedural learning ability effect was not evidenced at any
point. One possibility is simply that the GJT was administered
at only two time points, after certain amounts of practice had
been completed, whereas practice was continuous. Another possi-
bility is that the type of task used to measure accuracy had an
effect on the engagement of declarative and procedural learning
ability during practice, a possibility already envisaged in
Morgan-Short et al. (2014, p. 69). For example, even though par-
ticipants did not receive instructions to search for rules, they were
likely to apply hypothesis testing to work out strategies to improve
their score, which reflected the accuracy of their responses during
practice. Evidence that rule-based tasks, which can be learned via
explicit hypothesis testing, activate neural areas that implicate
declarative memory has been discussed in studies of human cat-
egory learning (e.g., Ashby & Crossley, 2012, for a review).
Also, it is possible that declarative memory was more engaged
during practice due to the fact that participants had to process/
retrieve arbitrary aural-visual associations (Henke, 2010). It is
known that the integration of multiple cues in a task, particularly
if the cues are visual-spatial, specifically engages declarative mem-
ory (Packard & Goodman, 2013; Ullman, 2016).

By contrast, the GJT in Morgan-Short et al. (2014) only
required learners to evaluate aural stimuli in a situation where,
due to lack of visual-spatial associations in the stimuli, declarative
processing was arguably less compelling, with consequent greater
reliance on procedural processing. Overall, we conclude that the
asymmetry between L2 practice and GJT in the relationship
with long-term memory abilities may point towards an enhanced

role of declarative learning ability that may be due to the process-
ing requirements of the gaming task.

Now turning to production practice, the mixed-effects model
analysis did not detect a statistically significant relationship
between production accuracy and either declarative or procedural
learning ability. However, an effect of procedural learning ability
was stronger at early stages of practice and significantly decreased
as practice progressed. These results do not seem fully consistent
with the results from Morgan-Short et al. (2014), where a rela-
tionship between procedural learning ability and accuracy on a
GJT was detected at the end of practice, but not after the first ses-
sion of practice. We can speculate that the difference in this pat-
tern of results, again, might emerge because of the type of task
that learners were engaged in during practice as opposed to dur-
ing the GJT, although exactly why this should be the case remains
unclear.

A related question is why the effect of procedural learning abil-
ity declined as training progressed. We offer two speculative rea-
sons for this finding. One possibility is that, unlike participants
with low procedural learning ability, participants with high levels
of procedural learning ability may have been able to benefit from
lower amounts of input early on in practice. With increasing
amounts of input, differences in attainment between low and
high levels of procedural learning ability might have leveled off.
A second possibility that might also be considered involves the
relationship between comprehension and production in L2 devel-
opment (cf. De Jong, 2005; DeKeyser & Sokalski, 2001; Izumi,
2003; Ellis, 2005), and specifically the hypothesis that input pro-
cessing in comprehension may feed into processing in produc-
tion, in particular when the process involves declarative
knowledge. Assuming that the initial effect of procedural learning
ability reflects a very early stage in L2 processing at which com-
prehension (strongly driven by declarative memory) does not
yet feed into production, the relationship between comprehension
and production could strengthen later in practice, and processing
during production become less reliant on procedural learning
ability as a consequence.

The second research question asked TO WHAT EXTENT DECLARATIVE

AND PROCEDURAL LEARNING ABILITY PREDICTED AUTOMATIZATION IN

LANGUAGE COMPREHENSION ACROSS PRACTICE, i.e., to what extent they
predicted negative values of the coefficient of variation. First of
all, the analysis showed that the pattern of CV scores across practice
was compatiblewith L2 automatization in comprehension, i.e., both
CV and RT significantly decreased across practice, and there was a
significant correlation between them. This supports findings of pre-
vious studies using the CV to investigate automatization of L2 syn-
tax (e.g., Lim and Godfroid, 2015; Ma et al., 2017).

With regard to the cognitive variables of interest, the analysis
showed that procedural learning ability had a positive, medium,
significant effect on automatization, whereas declarative learning
ability had a positive, small effect that was not statistically signifi-
cant. However, these effects were conditional to a significant
three-way interaction with session that indicated that automatiza-
tion in comprehension benefitted from an interaction between
declarative and procedural learning ability during processing,
and increasingly so later in practice. Inspection of the plot in
Figure 3 showed that the interaction did not emerge immediately,
but only after the participants had had some initial practice with
the language. Additionally, the interaction indicated an associ-
ation between higher procedural learning ability and greater
automatization that became stronger with practice for learners
with higher declarative learning ability. For learners with lower
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levels of declarative learning ability, the interaction indicated that
higher procedural learning ability was comparatively not as bene-
ficial for automatization at later stages of practice.

Overall, these findings support the close link between behavioral
measures of procedural memory and L2 automatization, a relation-
ship that has been often implied in the literature but for which behav-
ioral evidence has only recently started to emerge. Recently, Suzuki
(2017) found that procedural memory correlated with RT reduction
(an element of automatization), although no relationship between
procedural memory and automatization was evidenced. By contrast,
thepresent study founda significant relationship between theCVand
procedural learning ability aswell as a significant interaction between
declarative and procedural learning ability that varied across practice.
It is possible that the discrepancy in results depends on methodo-
logical differences between the two studies, such as the fact that,
unlike ours, Suzuki’s study administered explicit L2 instruction,
deployed a single task (the TOL) to measure procedural memory,
and analyzed production instead of comprehension.

The results of the present study are also compatible with the
predictions that some current cognitive approaches to L2 learning
would make for the engagement of declarative and procedural
resources in L2 learning and processing (e.g., DeKeyser, 2015;
Paradis, 2009; Ullman, 2015). In terms of the effects of declarative
and procedural memory for L2 learning, the results relative to the
analysis of accuracy in comprehension are in line with neurocog-
nitive models that predict a significant engagement of declarative
memory in the initial stages of L2 learning (Paradis, 2009;
Ullman, 2004, 2015, 2016). This effect is due to the specific cap-
ability of the declarative memory system to learn efficiently in
conditions of limited input. We have argued that the fact that
the strength of this effect appears to mitigate to a lesser extent
during practice, compared to when L2 proficiency is measured
with a GJT, may indicate that an additional effect of task is at
play that further biases processing towards the declarative
modality.

Unlike Paradis (2009),Ullman’sDPmodelwould alsobe compat-
ible with the significant role of procedural learning ability for
automatization found in the present study. This is because
Ullman’s DPmodel would not exclude a role for proceduralmemory
in conditions of relatively limited exposure to a second language such
as the ones provided in our experiment. Both declarative and proced-
ural memory may be contributing to language development at any
stage with the relative strength of their effect varying over time.

A further aspect that is very generally compatible with
Ullman’s model is the finding of a significant interaction between
declarative and procedural learning ability during processing.
Ullman discusses that declarative and procedural memory may
cooperate or compete with each other, based on evidence from
human and animal studies that has accumulated in neuropsych-
ology and neuroscience in the last fifty years (Packard &
Goodman, 2013). The finding of an interaction in our results
(Figure 3) suggests that the relationship between the two memory
systems may depend, among other possible factors, on individual
strengths within the systems. We see cooperation when indivi-
duals have high declarative learning ability, but competition
when individuals’ declarative learning ability is below average.
Compatible with a cooperative interaction interpretation,
Morgan-Short et al. (2015) also found that engagement of proced-
ural memory neural substrates in individuals with high declarative
memory enhanced L2 proficiency at initial stages of practice.

Further, these results are largely compatible with other theor-
etical models that posit a supporting role of declarative knowledge

in the establishment of proceduralized L2 knowledge (e.g.,
DeKeyser, 2015; Ellis, 2005). Specifically, in line with the predic-
tions of DeKeyser (2007, 2015), automatization in comprehension
is significantly related to procedural processing, and increasingly
so as practice progresses, whereas the effect of declarative learning
ability declines across practice. Furthermore, the overall positive
effect for automatization of the interaction between declarative
and procedural learning ability indicates that (high levels of)
declarative learning ability reinforce the capacity of procedural learn-
ing ability to predict automatization (and vice versa). Although the
interaction per se does not indicate the direction of the effect, the
results are compatible with the interpretation that, in the early stages
of automatization, declarative learning ability may perform a sup-
porting/ancillary functionwith respect to procedural learning ability,
which remains the main engine of the process.

Overall, the results from the present analysis of L2 practice are
largely compatible with the predictions recent cognitive models
have made with regard to the engagement of declarative and pro-
cedural memory/knowledge in L2 learning and processing and
their interaction. This is particularly the case for the analysis of
L2 accuracy in comprehension and for automatization in
comprehension.

Limitations of the study and further research

The study has a number of limitations that should be addressed
by further research. First, in the analysis of both accuracy and
automatization, the effects of comprehension on production
(and vice-versa) were not controlled. Specifically, participants
were administered comprehension as well as production practice
blocks, and it is possible that L2 processing in one modality
may have affected L2 processing and attainment in the other.
Future research could seek to control these effects: for example,
by adopting experimental designs where type of practice is a
between-group variable.

Secondly, although the large number of trial items ensured the
viability of the inferential analysis using mixed-effects models, it is
of paramount importance that the effects of long-term memory
abilities during practice are investigated more extensively in stud-
ies with a larger number of participants.

Further, the analysis of automatization in the present study was
partial because it only examined comprehension practice. Further
research could investigate how the development of automatization
varies in comprehension and production overall, as well as specific-
ally look at the effects of declarative and procedural learning ability
in the two modalities. A further important aim in this line of
research should be to design studies that elucidate whether and
how a wide set of factors – including, for example input complexity
and the extent to which L2 knowledge is explicit – modulate the
effect of long-term memory in automatization. Additionally, the
analysis of automatization in the present study deployed the CV
index as the outcome measure. It remains to be shown whether
results would be confirmed if alternative measures of automatiza-
tion were used: for example, ameasure based on the fit of individual
latency data to a power function. Similarly, it will be important for
researchers to show that the patterns of results are robust over dif-
ferent measures that are valid measures of declarative and proced-
ural memory (for preliminary work on this issue, see Buffington
& Morgan-Short, 2019).

A further development of interest would be to include add-
itional cognitive variables in the study of both L2 accuracy and
automatization. For instance, alongside declarative and procedural
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learning ability, one could investigate the role of working memory
as a main effect, as well as a potential moderating effect in an
interaction. Specifically, since working memory is known to sup-
port declarative processing, and a significant role of declarative
learning ability has been found for both L2 accuracy and L2
automatization, a study with a design similar to the present one
could explore to what extent working memory modulates declara-
tive learning ability. Finally, future studies could investigate the
role of long-term memory individual differences for L2 accuracy
and automatization across a wider range of linguistic structures
and, possibly, different age groups.

Conclusions

This study offered an exploratory analysis of the effects of
declarative and procedural learning ability on L2 accuracy
and automatization during language practice over the course
of two weeks. The study found distinct patterns in the effects
of the two learning abilities in comprehension accuracy,
production accuracy, and comprehension automatization.
Declarative learning ability emerged as the main predictor of
accuracy in comprehension, an effect that did not significantly
change across practice. However, neither learning ability was a
significant predictor of accuracy in production, although we
found that procedural learning ability predicted production
accuracy more at early stages and significantly less later in
practice. This pattern of results differs from what had been
found in the same set of learners for performance on GJTs
administered after one session of practice and after the end
of practice. We have suggested that, at least for comprehension
accuracy, the discrepancy in the findings may be largely due to
the type of task.

By contrast, procedural learning ability was a main predictor of
automatization in comprehension, a finding that, to the best of
our knowledge, had not yet been reported in a behavioral experi-
ment. A further predictor that on average supported automatiza-
tion was an interaction between declarative and procedural
learning ability. Overall, these results support predictions of the
DP model with regard to the prominence of declarative process-
ing early in practice, as well as with regard to the possibility of
cooperative interactions between declarative and procedural
memory in L2 development (Ullman, 2004, 2015, 2016).
Likewise, the study supports key predictions Skill Acquisition
Theory makes for the proceduralization of L2 skills during prac-
tice (DeKeyser, 2007, 2015), including the finding that procedural
learning ability was a significant predictor of automatization and
that declarative learning ability appeared to support automatiza-
tion in its early stages.

Overall, extending previous research, the present study found
that long-term memory plays a pivotal role in accounting for
the development of L2 accuracy and automatization during prac-
tice. By examining the effect of learning abilities during L2 prac-
tice we may have further insight into the role the declarative and
procedural memory systems play in the learning process.

Supplementary Material. For supplementary material accompanying this
paper, visit https://doi.org/10.1017/S1366728919000543
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