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We introduce a model of the optimal education policy at the macro level, allowing for
heterogeneity of the workforce with respect to its age and qualification skills. Within this
framework we study the optimal education rate in the context of changes in labor demand
(as represented by the elasticity of substitution across ages and qualification) and labor
supply (as represented by a change in the population growth rates). Applying an
age-structured optimal-control model, we derive features of the optimal age-specific
education rate. Our results show that the relation between the elasticities of substitution of
labor across ages plays a crucial role in the way the demographic changes affect (both in
the short and in the long run) the optimal educational policy. We also show that under
imperfect substitutability across age and qualification groups, the optimal educational
policy is adjusted in advance to any change in the labor supply.
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1. INTRODUCTION

Changes in the age distribution of the workforce—as caused by changes in the
cohort size of entering labor flows—and its implications for labor market outcomes
such as wages and unemployment have been extensively discussed in the empirical
economic literature [Freeman (1979); Welch (1979); Katz and Murphy (1992);
Murphy and Welch (1992)]. Besides the age structure, the skill level constitutes
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a further important heterogeneity of workers in the labor market. Labor market
outcomes for different skill groups (in particular wage dispersion) have been
extensively studied [e.g., Katz and Autor (1999)].

In a seminal paper, Card and Lemieux (2001) reconcile the work of Welch
(1979) and of Katz and Autor (1999). They introduce an aggregate production
function that accounts for imperfect substitutability of workers across age and
education. Their aim is to explain the empirical fact that the rise in education-
related wage differentials in the United States from 1959 to 1995 is mainly due to
a rise in the college–high school wage gap for younger men, whereas the gap for
older men has remained fairly constant over the same time period (1959–1995).
Within their framework, the authors show “that the increase in the college–high
school wage gap over the past two decades is attributable to steadily rising relative
demand for college-educated labor, coupled with a dramatic slowdown in the rate
of growth of the relative supply of college-educated workers.”

As argued in Rojas (2005), the implications of these empirical studies have not
yet been integrated into formal macroeconomic models except in Lam (1989) and
in Kremer and Thomson (1998). Whereas Lam considered the effect of the change
in age structure on life-cycle wage profiles in a stable population, Kremer and
Thomson study the role of imperfect substitution across workers of different age
in explaining the speed of convergence of per capita output between countries.

The assumption that workers of different ages are not perfectly substitutable
across age within educational groups is also empirically verified by Stapleton and
Young (1988). According to them, there is empirical evidence that the elasticity
of substitution across ages of unskilled labor is higher than that for skilled labor.
Recently Roger and Wasmer (2009) also indicated the importance of controlling
for age and skill heterogeneity for explaining labor productivity. The fact of im-
perfect substitutability across age and education implies that there is an optimal
age–education mix of the workforce (in terms of output maximization). Our aim
is to provide a model of the optimal education/training policy, i.e., optimal as-
signment of resources to transform unskilled into skilled labor, at the macro level
allowing for heterogeneity of the workforce with respect to its age and qualifi-
cation skills. Within this framework we study the optimal education/training rate
in the context of alternative labor demand and labor supply effects. The degree
of substitutability across workers of different age and education characterizes the
labor demand pattern. Labor supply is determined by the inflow of low- and high-
skilled workers. Because we assume zero mortality and full employment, labor
supply is determined by a change in the demographic factors in our model.

Our paper is motivated by the fact that population aging, as caused by decreasing
fertility and increasing survival to older ages, implies a change in the age and
educational composition of the workforce and, hence, requires a change in the
optimal age-specific education policy. Obviously the substitutability of workers
across age and across qualifications, together with increasing demand for educated
workers and technological progress, constitute key factors explaining the relation
between demographic change and educational investment at the macro level.
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According to the theory of optimal life-cycle human capital investment, human
capital accumulation is concentrated at the beginning of life [Weiss (1986)]. An
economy characterized by population aging might therefore exhibit an “older
vintage” of human capital. It is therefore of interest how a social planner will react
in terms of its age-specific human capital investment under conditions of labor
force aging and faced with alternative labor demand patterns.

So far, formal models of population aging and human capital formation have
concentrated on explaining educational activities at the individual level, e.g.,
Bouccekine et al. (2002) and Heijdra and Romp (2009), and its implication for
long-run economic growth. Increased longevity will increase educational activities
at the individual level and may boost economic growth at the aggregate level. In
this literature, the pattern of labor demand and its interrelationship with changing
demographic supply are not considered. In contrast to these models, we start at the
macro level and consider the optimal age-specific education policies if workers
of different age and skill are not perfectly substitutable in the work process and if
labor supply is determined by the prevailing demographic structure.1

In summary, our paper is intended to raise and address the following questions:

(i) Compared to the case of perfectly substitutable labor across ages and across educa-
tion, how will the optimal age-specific educational policy change under conditions
of imperfectly substitutable labor across age and across qualification groups?

(ii) Compared to the case of a stationary population, how will increasing or decreasing
population (hence change in the labor supply) affect the optimal educational policy?

(iii) Will the long-run and short-run effects of a change in the demand and supply factors
of labor differ? In particular, will a change in demographic factors be anticipated in
the optimal educational policy in advance of the time point where the actual change
takes place?

The main methodological instrument employed in the paper to answer the
above questions is that of intertemporal dynamic optimization in a model in
which time and age change continuously. The dynamics of human capital is then
described by an age-structured system of differential equations, in contrast to
overlapping-generations (OLG) models involving a presumably small number of
coexisting generations. The paper exhibits several advantages of the continuous
age framework. First, the obtained results are independent of the number of age
groups (in contrast to OLG models, where the number of age groups may have
an effect on the results). Second, working in continuous time/age allows to use
standard analytic tools such as derivatives and integrals more efficiently. Third,
some of the results (that in Section 4, in particular) cannot be established at
all in the OLG framework unless a rather fine differentiation of age groups is
used (above ten age groups for the result in Section 4, for example). Finally, the
continuous time/age model is advantageous also from a numerical point of view,
because it allows more profound time/age aggregation (discretization) than the a
priori discretization involved in the OLG models [see, e.g., Section 5 in Veliov
(1997)].
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Optimality conditions for the continuous-time/age dynamic optimization prob-
lem are presented and discussed in Section 3. The conditions are derived in
Appendix B using the general result in Feichtinger et al. (2003).

Although a (continuous) age structure has been introduced into the neoclassical
theory of optimal investment in several recent contributions [e.g., Barucci and
Gozzi (2001); Feichtinger et al. (2005, 2006)]; we are aware only of the paper
by Christiaans (2003) and our own work [Prskawetz and Veliov (2007)] that
augmented the classical theory of labor demand by modeling the age structure
of the workers. The vintage structure of human capital has been integrated into
a model of growth and technological diffusion by Chari and Hopenhayn (1991).
The authors assume that different vintages coexist in each time period and operate
with technology-specific skilled and unskilled human capital. The equilibrium
distribution of skilled workers across the vintages is derived endogenously, de-
pending on consumers’ optimal supply of unskilled and skilled labor force and
vintage-specific optimal demand for skilled and unskilled workers. Similarly to
our model, new and old human capital may not be perfectly substitutable in the
production process. Although Chari and Hopenhayn allow only young unskilled
and old skilled or unskilled labor, and differentiate between vintages of production,
we ignore the latter assumption but allow for continuous age-specific labor. More
recently, the vintage structure of human capital has also been introduced into a
model of endogenous growth by Boucekkine et al. (2002).

In the model we present in Section 2, the aggregate production depends on the
age- and skill-specific supply of labor. A general production function of CES type
is employed, which reflects the imperfect substitutability between different age
groups and between labor with different qualification.

In Section 4, we prove that in the case of perfect substitutability of workers
across age and qualification, the optimal educational rate is independent of de-
mographic changes. Furthermore, we show that it might be nonmonotonic in age;
that is, it might be profitable to postpone education to somewhat greater ages in
order to benefit from cost-free “learning by doing” and to take advantage from the
more advanced knowledge that one can obtain at a later time.

The situation substantially changes in the case of nonperfect substitutability
of workers across age and qualification, and this is a key point in the paper. In
Section 5 we show that the effect of demographic changes on the formation
of human capital critically depends on the elasticity of substitution across ages
and across qualifications. In addition, this effect may be qualitatively different
in the short versus the long run. Changes in the age-specific supply of workers
together with the prevailing demand structure of the economy—as reflected by the
parameters of the elasticity of substitution—determine the evolution of the human
capital. The analysis clearly exhibits the importance of the relation between the
elasticities of substitution across age and qualification, which may lead to different
(opposite) impacts of the demographic change on the optimal educational policy.
Moreover, it is shown that a change in the labor supply influences the optimal
education policy already in advance of the time point when the change takes place.
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The data specifications and the derivation of the optimality conditions are given
in two appendices. The longer proofs are presented in Research Report 2010-09,
ORCOS, TU-Wien, 2010, http://www.eos.tuwien.ac.at/OR/research/reports list
.html.

2. THE MODEL

Below, t ∈ [0, T ] denotes the time, and T is the end of the (presumably large)
planning horizon. In our model the workers will be distinguished by their “active”
ages, s. It is assumed that all individuals start working at the same age, s = 0
(which corresponds to, say, twenty years of biological age) and retire at age s = ω.
We distinguish the workers also by their skills, considering for simplicity two levels
of qualification: low-skilled and high-skilled workers. We denote by L(t, s) the
number of low-skilled workers of age s at time t , and similarly, by H(t, s) the
number of high-skilled workers resulting from the government’s investment in
human capital.

Upgrading of low-skilled workers into high-skilled workers takes place at a rate
l(t, s)u(t, s)+e(s). Here u(t, s) denotes the educational rate at time t for workers
of age s. The function l(t, s) reflects the dependence of the learning abilities of the
workers on time and age, and e(s) represents learning by doing, which depends
on the years spent working. At the same time, due to technological progress or for
other reasons, high-skilled workers of age s may lose their skills at a rate δ(t, s).

The dependence of learning abilities on age is investigated in Pfeiffer and Reuß
(2007). As the authors demonstrate, though older persons might already have high
levels of skills as opposed to younger persons, their learning ability is slower than
that of younger persons. They also show that skill depreciation accelerates with
age. Besides the age-specific dependence of learning and depreciation, learning
ability may also depend on time, due to technological progress.

The equations for the dynamics of the stock of low- and high-skilled workers
are therefore

Lt + Ls = δ(t, s)H(t, s) − e(s)L(t, s) − l(t, s)u(t, s)L(t, s),

L(t, 0) = L0(t),

Ht + Hs = −δ(t, s)H(t, s) + e(s)L(t, s) + l(t, s)u(t, s)L(t, s),

H(t, 0) = H0(t),

L(0, s), H(0, s): given initial data.

The left-hand side, Lt +Ls = limh→0(L(t +h, s +h)−L(t, s))/h, represents the
change in one unit of time of the low-skilled labor that is of age s at time t . This
change is composed of downgrading high-skilled to low-skilled workers (decay of
human capital) at rate δ(t, s) and of upgrading low-skilled to high-skilled workers
at rate e(s) due to costless on-the-job learning by doing and at rate l(t, s)u(t, s)
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due to costly education. Similarly, the left-hand side, Ht + Hs , represents the
change in one unit of time of the high-skilled labor. This change is composed of
the same components as the change of the low-skilled labor, but with the opposite
sign.

At age s = 0 the number of those who enter the work force at time t is L0(t) for
the low-skilled and H0(t) for the high-skilled. We assume throughout the paper
that H0(t) for each t is relatively small compared with L0(t). This reflects the fact
that all but a few high school graduates enter the work force as low-skilled workers
and have to undergo additional education/training in order to become high-skilled.

We assume also that there is no unemployment and there is no mortality at
working ages; therefore the sum L(t, s) + H(t, s) equals the total working-age
population, which is determined by the exogenously given total inflow, N0(t). Thus
L0(t) + H0(t) = N0(t). This makes it possible to exclude the variable H(t, s)

from the model and to pass to a single differential equation for L(t, s). However,
for better transparency of the exposition, we shall work with equations for both
L(·, ·) and H(·, ·).

The price of education per capita, u(t, s), is p(s, u(t, s)), where p(·, ·) is a given
function of (s, u). The total cost P(t) of the educational effort for the society at
time t is therefore represented as

P(t) =
∫ ω

0
p(s, u(t, s))L(t, s) ds.

We allow for imperfect substitutability across age groups for both low-skilled
and high-skilled labor. If πL(·) and πH(·) are the respective relative-efficiency
parameters (assumed to be fixed over time), the two subaggregates of low-skilled
and high-skilled labor at time t , L̃(t) and H̃ (t), are given by the following two
CES functions:

L̃(t) =
(∫ ω

0
πL(s)(L(t, s))λL ds

)1/λ
L

,

H̃ (t) =
(∫ ω

0
πH(s)(H(t, s))λH ds

)1/λ
H

.

Here λL ∈ (−∞, 1] and λH ∈ (−∞, 1] give the respective partial elasticities of
substitution 1/(1−λi) for i = L,H . In the limiting case of perfect substitutability
across age groups, λL and λH are equal to 1 and the aggregate of low-skilled and
high-skilled labor is simply a weighted sum of age-specific supply.

We assume that the production technology depends only upon labor. The ag-
gregate output at time t is given by a CES function of the two subaggregates of
low-skilled and high-skilled labor, in which the technological level is represented
by the two efficiency parameters θL(t) and θH (t):

Y (t) = (
θL(t)(L̃(t))ρ + θH (t)(H̃ (t))ρ

)1/ρ
.
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Here again ρ ∈ (−∞, 1] gives the partial elasticity of substitution, σW = 1/(1 −
ρ), between high-skilled and low-skilled labor. Note that the marginal product of
labor for a given age–education group depends on the group’s own supply of labor
and the aggregate supply of labor in the education category.

The net revenue of the society at time t is the aggregate output Y (t) minus the
cost of education, P(t), i.e., Y (t) − P(t).

The formal problem of a central planner is to maximize the accumulated dis-
counted net revenue by choosing optimally the educational rate u(t, s).2 Discount-
ing the future at a rate r ≥ 0, we come up with the following dynamic optimization
problem with state variables L(t, s), H(t, s), L̃(t), H̃ (t), and P(t) and control
variable u(t, s):

max
∫ T

0
e−rt

[
(θL(t)(L̃(t))ρ + θH (t)(H̃ (t))ρ)1/ρ − P(t)

]
dt (1)

subject to

Lt + Ls = δ(t, s)H(t, s) − e(s)L(t, s) − l(t, s)u(t, s)L(t, s), (2)

L(t, 0) = L0(t),

Ht + Hs = −δ(t, s)H(t, s) + e(s)L(t, s) + l(t, s)u(t, s)L(t, s), (3)

H(t, 0) = H0(t),

L(0, s), H(0, s): given initial data,

L̃(t) =
(∫ ω

0
πL(s)(L(t, s))λL ds

)1/λ
L

, (4)

H̃ (t) =
(∫ ω

0
πH(s)(H(t, s))λH ds

)1/λ
H

, (5)

P(t) =
∫ ω

0
p(s, u(t, s))L(t, s) ds, (6)

u(t, s) ≥ 0. (7)

Because our model does not include education as a separate sector [cf. Lucas
(1988); Boucekkine and Ruiz-Tamarit (2008)], the control u is directly interpreted
as on-the-job training. However, the results are not limited to this interpretation.
Indeed, let the workers of different qualification be perfectly substitutable (ρ = 1)
and let the unskilled workers of different ages also be perfectly substitutable
(λL = 1). Then an amount of labor, uL, of age s allocated at time t to education
instead of production has a total cost consisting of the opportunity cost πL(s)θLuL

(from lost production) and the cost of education. Both costs may be included in
p(s, u)L; therefore our model completely covers the case of college/university
education in the case of a linear production function. In the case of nonperfect
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elasticity of substitution either across ages or across qualifications, the learning
should be (strictly speaking) interpreted as costly “training.”

The next assumptions will be assumed to hold throughout the paper.

Standing Assumptions. All exogenous functions are continuous as well as the
derivatives that appear later on in the text, excluding the population inflow data
L0(t) and H0(t), which are assumed only to be piecewise continuous. The cost
function p(s, u) is monotonically increasing and strongly convex with respect to
u. The initial and boundary data L(0, s), H(0, s), L0(t), and H0(t), as well as the
efficiency coefficients θL, θH , πL, and πH , are strictly positive.

The strong convexity assumption for p(s, ·) provides substantial mathematical
convenience, as usual. At the same time, it can be economically justified: the
greater the fraction of the low-skilled workers of a certain age that are involved
in education, the larger the per capita educational cost due to the heterogeneity
of people with respect to their abilities (the best are taken first in the educational
process).

For a precise definition of the notion of a solution to system (2)–(6) and the
appropriate space settings, we refer to Webb (1985) and to Feichtinger et al. (2003).

3. OPTIMALITY CONDITIONS

The necessary optimality conditions for problem (1)–(7) follow from the
Pontryagin-type maximum principle obtained in Feichtinger et al. (2003). A sketch
of the derivation is given in Appendix B, where the following result is obtained.

PROPOSITION 1. If (L,H, L̃, H̃ , P, u) is a solution of the optimal control
problem (1)–(7) then the equation

�t + �s = (r + e(s) + δ(t, s) + l(t, s)u(t, s))� − p(s, u(t, s)) − f (t, s), (8)

�(t, ω) = 0, �(T , s) = 0

with

f (t, s) = Y (t)1−ρθ
H
(t)π

H
(s)H̃ (t)ρ−λH H(t, s)λH −1

−Y (t)1−ρθ
L
(t)π

L
(s)L̃(t)ρ−λLL(t, s)λL−1

has a unique solution �(t, s) and for (almost) every (t, s) ∈ [0, T ] × [0, ω] the
optimal u(t, s) maximizes the function �(t, s)l(t, s)u − p(s, u) over all u ≥ 0.

Here �(t, s) represents the difference between the marginal values (“shadow
prices”) of skilled and nonskilled labor, that is, the marginal benefit of transforming
one unit of low-skilled labor into one unit of high-skilled labor. In the above
equation, (r + δ(t, a))�(t, s) represents the opportunity cost and f is the age-
specific marginal gain in productivity from this transformation. The remaining
terms (e(s) + l(t, s)u(t, s))�(t, s) − p(s, u(t, s)) on the right-hand side of (8)
represent the fact that by being skilled the educational cost p(s, u) is saved, but
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with it the worker loses the opportunity of becoming skilled later at the rate
e(s) + l(t, s)u(t, s).

According to the standing assumptions, the derivative pu(s, u) exists and is
invertible with respect to u. Denote by z −→ p−1

u (s, z) the inverse and define

p−1
u+(s, z) =

{
p−1

u (s, z) if z > pu(s, 0),

0 elsewhere.

Then the unique maximizer of �(t, s)l(t, s)u − p(s, u) subject to u ≥ 0 can be
written as

u(t, s) = p−1
u+(s, l(t, s)�(t, s)). (9)

Notice that if l(t, s)�(t, s) > pu(s, 0) for some (t, s), then u(t, s) > 0 and (9)
reads as pu(s, u(t, s)) − l(t, s)�(t, s) = 0. Otherwise, u(t, s) = 0. For example,
with the usual specification p(s, u) = b(s)u + 0.5cu2 the optimal control takes
the form

u(t, s) =
{
(�(t, s) − b(s))/c if �(t, s) > b(s),

0 elsewhere.
(10)

Thus educational effort is applied only for those ages for which the marginal cost
of education at u = 0 is exceeded by the benefit of the education, measured by
the difference between the shadow prices of skilled and unskilled labor.

Substituting u from (9) in (8), we obtain that

�t + �s = (r + e(s) + δ(t, s) + l(t, s)p−1
u+(s, l(t, s)�))�

−p(s, p−1
u+(s, l(t, s)�)) − f (t, s), (11)

�(t, ω) = 0, �(T , s) = 0.

It is important to notice that the function p−1
u+(s, ·) is Lipschitz continuous; there-

fore (8), together with the side conditions �(t, ω) = 0 and �(T , s) = 0, uniquely
determines the solution �(t, s), and hence also the optimal control u by (9).

4. THE CASE OF PERFECT SUBSTITUTABILITY OF LABOR

In this section we consider the simplest case, in which problem (1)–(7) becomes
linear with respect to the state variables:3 the case of perfectly substitutable labor
across ages and across qualifications, ρ = λL = λH = 1.

PROPOSITION 2. The optimal educational rate u(t, s) is independent of the
initial data L(0, s), H(0, s) and of the low- and high-skilled worker inflows
L0(t) and H0(t). If all data are time-invariant [except for L0(t) and H0(t)] then
u(t, s) = u(s) is also time invariant in the time interval [0, T − ω].

The proposition implies, in particular, that a demographic change (represented
by L0(t) and H0(t))4 would not have any influence on the optimal educational
rate. Moreover, in the stationary case, the end of the time horizon T may influence

https://doi.org/10.1017/S1365100510000465 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000465


168 ALEXIA PRSKAWETZ ET AL.

the optimal control no longer than one generation before the end of the horizon,
that is, on [T − ω, T ] only.

Proof. To prove the first claim of the proposition we note that now f (t, s) =
θH (t)πH (s) − θL(t)πL(s) in (8) and the right-hand side of (8) and the side condi-
tions do not depend on L and H , and therefore on the data L(0, s), H(0, s), L0(t),
and H0(t). Because � does not depend on the demographic data, u does not too,
because of (9).

In the time-invariant case we have f (t, s) = f (s). Let us denote z(τ ; a) =
�(τ − a, ω − a), where τ ∈ [0, T ] is a parameter and a ∈ [0, min{τ, ω}]. Then,
denoting a′ = ω − a, we have

− d

da
z = (r+δ(a′)+e(a′)+l(a′)p−1

u+(a′, l(a′)z))z−f (a′)−p(a′, p−1
u+(a′, l(a′)z)).

Clearly, the right-hand side is independent of τ , and because we have z(τ, 0) =
�(τ, ω) = 0, the solution z(τ ; a) = z(a) is independent of τ . For t ∈ [0, T − ω]
and s ∈ [0, ω] we have

�(t, s) = z(t + ω − s;ω − s) = z(ω − s)

and the right-hand side is independent of t (because t + ω − s ∈ [0, T ] if t ∈
[0, T − ω]). Using (9), we complete the proof.

Several papers on optimal education and human capital formation [cf. Weiss
(1986) and Boucekkine et al. (2002) for a review of the theoretical literature on
optimal life-cycle human-capital investment] assume or conclude that educational
efforts are optimally allocated to youngest ages and decrease with age. We estab-
lished numerically that this is not always true in our model; namely, the optimal
educational rate, u(s), may strictly increase at certain ages. Below we analyze
mathematically the reason for this effect and give some economic explanations.
To make the analysis more transparent, we present it in the case of time-invariant
data and a quadratic cost function p(u). Moreover, it is clear that decreasing
learning ability l(s) encourages learning at young ages and cannot be a reason for
increasing learning with age. Therefore we assume learning ability to be constant.

PROPOSITION 3. Assume that all data [except for L0(t) and H0(t)] are time-
invariant and continuous in s, l(s) = l, p(u) = bu + c

2u2. Let there exist some s

for which u(s) > 0 and such that one of the following conditions holds:

(i) d(s) − b

c
l ≥ 0 and θH πH (s) − θLπL(s) <

b2

2c
;

or

(ii) d(s) − b

c
l < 0 and θHπH (s) − θLπL(s) <

b

l
d(s) − c

2l2
(d(s))2,
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where d(s) = r+δ(s)+e(s). Then there exists s0 ∈ (0, ω), where u is differentiable
and u′(s0) > 0.

Proof. According to (10), in the time-invariant case

u(s) = max

{
0,

1

c
(l�(s) − b)

}
, (12)

�′(s) = (r + δ(s) + e(s) + lu(s)) �(s) − f (s) −
(
bu(s) + c

2
(u(s))2

)
, (13)

where as before f (s) = θHπH (s) − θLπL(s). Hence, the optimal control is a
continuous function. Let a be the minimal number such that u(s) = 0 on (a, ω].
Because u is not identically zero, we have a > 0. Clearly u(s) > 0 on some
maximal (to the left) interval (a0, a). Then

u(s) = 1

c
(l�(s) − b) for s ∈ (a0, a).

In particular, u is differentiable on (a0, a).
Assume that u′(s) ≤ 0 on (a0, a). Apparently this implies that a0 = 0. More-

over, �(s) must satisfy �′(s) ≤ 0 on (0, a). On this interval � satisfies the
equation [resulting from (13) after substitution of u(s) from (12)]

�′(s) =
(

r + δ(s) + e(s) + l

c
(l�(s) − b)

)
�(s)

− f (s) − b

c
(l�(s) − b) − 1

2c
(l�(s) − b)2. (14)

Rearranging the terms, we obtain

�′(s) = q2(�(s))2 + q1�(s) − q0,

where

q2 = l2

2c
, q1(s) = r + δ(s) + e(s) − bl

c
, q0 = f (s) − b2

2c
. (15)

Because �′(s) ≤ 0, for every s ∈ (0, a) the quadratic form q2x
2 + q1(s)x − q0(s)

takes a nonpositive value for some x ≥ 0. This means that

min
x≥0

{q2x
2 + q1(s)x − q0(s)} ≤ 0.

Calculating this minimum, we obtain two possibilities.

Case (i): If −q1(s)/2q2 ≤ 0 then q0(s) ≥ 0.
Case (ii): If −q1(s)/2q2 > 0 then (q1(s))

2 + 4q0(s)q2 ≥ 0.

Substituting from (15), one obtains that Case (i) contradicts assumption (i) and
Case (ii) contradicts the alternative assumption (ii) of the proposition. This com-
pletes the proof.
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FIGURE 1. Age distribution of the optimal training rate.

The sufficient conditions for nonmonotonic behavior of the optimal educational
rate are fulfilled if

(i) d(s) = r + δ(s) + e(s) is sufficiently large for some s (larger than bl/c) and
f (s) = θH πH (s) − θLπL(s) is sufficiently small for this s (smaller than b2/2c);

(ii) d(s) is not that large, but f (s) is small enough, now depending on the value of d(s).

In economic terms, an increase of the educational rate with age would happen if
for some age the sum of depreciation (r), dequalification [δ(s)], and “learning by
doing” [e(s)] rates is large relative to the productivity differential f . If in a certain
age interval the productivity differential is small, this may lead to postponement of
learning because in the short run the returns to education are small. The returns to
education may be reduced by the fact that people can lose their costly qualification
[with rate δ(s)] and can make use of costless “learning by doing” [with rate e(s)].
In addition, a higher depreciation rate diminishes the role of the length of the time
interval in which the worker exercises his qualification, and therefore increases
the chances for nonmonotonic learning. We have numerically found the optimal
educational policy for the perfect substitutability case (the respective data are
presented in Appendix A). Figure 1 shows that increasing learning with age may
happen even when δ = e = 0. We mention that a higher value of δ can be
associated with a higher rate of technological progress. Thus higher technological
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progress may lead to postponement of learning to older ages in order to take
advantage of more advanced knowledge.

5. EFFECTS OF THE DEMOGRAPHIC FACTOR IN THE CASE
OF IMPERFECT SUBSTITUTABILITY OF LABOR

5.1. Long-Run-Effects

The demographic factor is represented in our model by the exogenous inflow
of new labor, N0(t), split into L0(t) + H0(t) = N0(t). Because we assume
full employment a change in the demographic factor is equivalent to a change
in the labor supply. To investigate the impact of a demographic change on the
optimal educational policy, we compare three scenarios, constant, increasing, and
decreasing population, by choosing L0(t) = L0e

γ t , H0(t) = H0e
γ t , where γ is a

zero, positive, or negative growth rate, respectively. Because all the equations in
the model and the objective function are homogeneous of first order, the optimal
solution is independent of the size of the population. Hence, it is not the different
population sizes that are responsible for the different solutions in the three scenar-
ios that we encounter below, but rather the differences in the age distribution of
the populations with different growth rates.

The elasticity of substitution across ages for low- and for high-skilled labor are
determined by λL and λH , respectively. We focus our investigation in this section
on how the demographic factor influences the optimal learning rates in different
ages in the case of nonperfect substitutability of workers, taking λL < 1 and/or
λH < 1. Therefore, to shorten the formulas, we assume perfect substitutability
across qualifications: ρ = 1. Moreover, we assume that all data [except for L0(t)

and H0(t)] are time-invariant.
We change the variables Lγ (t, s) = e−γ (t−s)L(t, s), Hγ (t, s) = e−γ (t−s)H(t, s)

in equations (2) and (3) (in which the boundary data L0(t) and H0(t) are specified
as explained above). In fact, Lγ and Hγ satisfy exactly the same equations (2),
(3), except that the boundary conditions become constant: L0 and H0, respectively.
Also, the initial conditions change correspondingly. We next discuss the long-run
behavior of the optimal solution, in which the initial data are irrelevant.

Substituting (Lγ ,Hγ ) for (L,H ) also in equations (4)–(6) and in the objective
function (1), we obtain the following equivalent problem:

max
∫ T

0
e−(r−γ )t

[
θLL̃γ (t) + θH H̃ γ (t) − P γ (t)

]
dt (16)

subject to

L
γ
t + Lγ

s = δ(s)Hγ (t, s) − e(s)Lγ (t, s) − l(s)u(t, s)Lγ (t, s), (17)

Lγ (t, 0) = L0,

H
γ
t + Hγ

s = −δ(s)Hγ (t, s) + e(s)Lγ (t, s) + l(s)u(t, s)Lγ (t, s), (18)

Hγ (t, 0) = H0,
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Lγ (0, s), Hγ (0, s): given data,

L̃γ (t) =
(∫ ω

0
e−γ λLsπL(s)(Lγ (t, s))λL ds

)1/λ
L

, (19)

H̃ γ (t) =
(∫ ω

0
e−γ λH sπH (s)(Hγ (t, s))λH ds

)1/λ
H

, (20)

P γ (t) =
∫ ω

0
e−γ sp(s, u(t, s))Lγ (t, s) ds, (21)

u(t, s) ≥ 0. (22)

Thus we obtain that (L,H, u) solves our initial problem with an exponentially
changing population [L0(t) = L0e

γ t , H0(t) = H0e
γ t ] if and only if (Lγ ,Hγ , u)

solves the same problem for a constant population [L0(t) = L0, H0(t) = H0], but
with modified data:

π
γ

L (s) = e−γ λLsπL(s), π
γ

H (s) = e−γ λH sπH (s),

pγ (s, u) = e−γ sp(s, u), rγ = r − γ.

The above simple transformation deserves some comments. First, we estab-
lished that the optimal educational policy for an exponentially changing population
is exactly the same as that for a stationary population with the above modified
data. Assume for a moment that γ > 0. The modified per capita cost of learning,
pγ (s, u), decreases with age compared to p(s, u). This does not imply that there
would be more learning at old ages, because the efficiency coefficients π

γ

L (s)

and π
γ

H (s) decrease with s, too. However, we point out that π
γ

L (s) and π
γ

H (s)

decrease with age at different rates. For instance, if λH < λL, then the efficiency
of high-skilled labor decreases with age less than that of low-skilled labor. This
observation leads to the suggestion that for γ > 0 and λH << λL there would
be a relative shift of learning from younger to older ages. This means that the
normalized distribution of the optimal learning, ν(t, s) = u(t, s)/

∫ ω

0 u(t, σ )dσ ,
will be shifted to older ages compared with the stationary case γ = 0. The
situation is similar for a decreasing population (γ < 0), except that “increase”
and “decrease” should be interchanged. This is seen in Figure 2, where λH = 0.1,
λL = 0.9. Both the absolute (left plot) and the normalized (right plot) learning
rate shift to older ages for the increasing population, and to younger ages for the
decreasing population.

The situation is the opposite if λH � λL. This is clearly supported by Figure 3,
which shows that the learning age-density, ν, shifts to older ages if the population
decreases, and to younger ages if it increases [the right plot gives ν(40, ·)]. The
left plot represents the optimal learning u(t = 40, s) for the three populations,
showing that in addition to the age-shift, there is an increase of learning at all ages
for the decreasing population.
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FIGURE 2. Optimal training rate u (left) and normalized age-density ν (right) at t = 40 for
the three scenarios. Here λL = 0.9, λH = 0.1.
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FIGURE 3. Optimal training rate u (left) and the normalized age-density ν (right) at t = 40
for the three scenarios. Here λL = 0.1, λH = 0.9.

Intuitively, this change in the age-specific learning rate can be explained as
follows. In the case of an increasing population, the additional labor entering the
market would lead to a shift from the optimal age composition for the stationary
case toward an excessive amount of young unskilled labor. If the educational rate
remains unchanged, then this shift will result in a shift toward lower ages of the
age distribution of skilled labor too. Thus keeping the educational rate the same
as for the stationary population leads to an excessive number of young workers in
both qualification groups. Now we have to distinguish two cases. If λH << λL,
then the distortion of the optimal age distribution of high-skilled labor would be
the dominant problem due to the smaller elasticity of substitution. Counteraction
to restore the age balance of high-skilled labor is to increase the educational rate
for older ages. In contrast, if λH � λL, then it is more important to restore the age
distribution of low-skilled labor, because its elasticity of substitution is smaller.
The way to do this is to increase learning more for young ages, which is to decrease
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the young low-skilled labor by educating it. In the case of a decreasing population
the arguments are exactly the reverse.

Although the theoretical arguments that we presented above are supported by
the numerical experiments, they do not provide a formal proof of the established
dependence of the age-distribution of learning on the demographic factor and on
the elasticities of substitution. However, we are able to obtain a rigorous result in a
somewhat simplified situation. Namely, we assume that δ(s) = e(s) = 0, λH = 1,
λL < 1, p(s, u) = c

2u2. Also, we assume here that the control constraint u ≥ 0 is
not binding, which, due to the specific form of p(s, u), is equivalent to assuming
that for each (t, s) the shadow price of a high-skilled worker is higher than the
shadow price of a low-skilled one. Let uγ (t, s) be the optimal control. Because
in this subsection we are interested in long-run behavior, we consider the optimal
steady-state control uγ (s) = limt→+∞ uγ (t, s). To investigate how it depends on
γ , we define

�(s) = duγ

dγ
(s)|γ=0.

PROPOSITION 4. The function � has the following form: there exists s̄ < ω

such that �(s) ≥ 0 on [0, s̄] and �(s) < 0 on (s̄, ω). It may happen that s̄ < 0,
that is �(s) < 0 for all s ∈ (0, ω).

The interpretation is that in an increasing population with nonperfect substi-
tutability of nonskilled labor and perfect substitutability of skilled labor there
will be more learning at young ages and less at old ages than for the stationary
population. The higher learning in young ages, however, may be absent. Clearly,
the result is completely consistent with those in Figure 3.

The other “extreme” case, λL = 1, λH < 1, is technically more complicated
and we do not present its analysis. As Figure 2 (left plot) shows, the effect of
demography on learning at older ages is just the opposite in this case, compared
with the case λL = 0.1, λH = 0.9. However, for young ages the increasing
population learns less in both cases.

The situation is even more complicated if both the high-skilled and the low-
skilled labor are not perfectly substitutable across ages. Here the relation between
λL and λH plays a role in the qualitative dependence of the optimal learning rate
on demography in the same direction as in the two “extreme” cases considered
above. However, if both λL and λH are strictly smaller than one, and if the
difference between them is “small,” then the particular data θL, θH , πL(s), and
πH(s) may have a decisive role in the qualitative impact of demography on the
optimal educational policy.

5.2. Short-Run and Anticipation Effects of a Demographic change

In this subsection we investigate (theoretically and numerically) the short-run
effects of a demographic change on the optimal learning rate. That is, if a stationary
population began to increase or decrease, we examine how this demographic
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FIGURE 4. Age distribution of the optimal training rate in the anticipation phase (t = 18)
for the three scenarios and for λL = 0.9, λH = 0.1 (left plot) and λL = 0.1, λH = 0.9
(right plot).

change would influence the optimal educational rate shortly after the change took
place. Moreover, we establish that in the case of imperfect substitutability of
labor (either across ages or across qualifications), a change in the demographic
factor influences the optimal education policy not only afterward but also before
the change takes place. That is, contrary to the case of perfect substitutability of
labor, here the expectation of a future change in the supply of labor influences
human-capital building even before the labor market becomes affected by this
change.

We start with the three scenarios from the previous section—constant, increas-
ing, and decreasing population—by choosing a constant growth rate γ , where γ

is zero, positive, or negative, respectively. We then assume that till the year t̄ = 20
the population is stationary in all the three scenarios, but starting at time t̄ = 20 the
three populations grow differently: N0(t) = N0e

γ (t−t̄ ) for t > t̄ . We shall compare
the optimal learning rates in the three scenarios at time t ∈ [t̄ , t̄ + ω) (that is,
shortly after the growing/shrinking population enters the labor market), but also at
time t < t̄ , when the labor market is still not affected by the demographic change,
but is already aware of this future change in labor supply. In the numerical results
presented below,5 the constant-size population is simulated numerically before
time t = 0, and the end time T is sufficiently large (we have used T = 180),
so that the optimal solution for the constant scenario is close to the steady state
[does not change with time in the interval (0, 30)]. We have chosen λL = 0.9,
λH = 0.1 (alternatively λL = 0.1, λH = 0.9), γ = 0, or γ = ±0.0072 in the
three scenarios; the rest of the data are as specified in Appendix A.

Figure 4 presents the age distribution of the optimal education rate at t = 18
(two years before the demographic change starts to influence the labor market).
The expectation of an increasing/decreasing population leads to a change in the
optimal education rate before (in fact, also shortly after) the change at time t̄ = 20.
The direction of change is different for different combinations of λL and λH . We
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FIGURE 5. Per capita training effort in the anticipation phase (t ∈ [0, 20]) for the three
scenarios and for λL = 0.9, λH = 0.1.

see in the left plot of Figure 4 that if λH = 0.1 < 0.9 = λL, then the expectation of
increasing population leads to a higher education rate before the time of change,
whereas for the decreasing population the education rate is lower. The situation is
just the opposite for λL = 0.1 < 0.9 = λH (the right plot).

The anticipation effect is not restricted just to the few years before t̄ . In Figure 5
we plot the time path of the aggregate per capita education effort, defined as∫ ω

0 L(t, s)u(t, s)ds/
∫ ω

0 N(t, s)ds. Because the population before t̄ is of the same
size for all t , this is a relevant indicator of the educational effort. Clearly, the
educational effort is highest for the population for which the labor market is
expected to expand at t̄ , and this happens in the whole plotted interval (at least
twenty years before the demographic change results in a change of the labor
supply).

The anticipation effect, discussed above, is rigorously proved in the next propo-
sition. To simplify the consideration somewhat, we compare the following two
scenarios: the constant-inflow case, N0(t) = N0, and

N0(t) = N∗
0 (t) =

{
N0 for t ≤ t̄ ,

N∗
0 for t > t̄,
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where N∗
0 > N0 (the case N∗

0 < N0 can be treated in the same way). We shall
assume that the upward jump in the population at (economically active) age s = 0
is affecting only the low-skilled workers: N∗

0 (t) = L∗
0(t) + H ∗

0 (t), where

L∗
0(t) =

{
L0 for t ≤ t̄ ,

L∗
0 for t > t̄,

with L∗
0 > L0 and H ∗

0 (t) ≡ H0 > 0 for t ∈ [0, T ]. Although the scenario N∗
0

is different from the scenario with exponentially increasing population N0(t) =
N0e

γ (t−t̄ ), γ > 0, considered in the numerical experiment, both scenarios have
the same effect on the population change shortly after t̄ : in both cases the age
distribution of the population shifts to lower ages in the time interval [t̄ , t̄ +ω). As
we have already mentioned in Subsection 5.1, it is this shift that determines the
policy change (before or after the demographic change) rather than the difference
in the absolute size of the population, which plays no role.

Here we restrict the consideration to the case of imperfect substitutability be-
tween different qualifications (ρ < 1), with λL = λH = 1. The case of imperfect
substitutability across ages is analytically more difficult and is enlightened only
by the numerical results.

Denote by u(t, s), L(t, s), H(t, s) the optimal path for the scenario with sta-
tionary demography, and by u∗(t, s), L∗(t, s), H ∗(t, s) the optimal path for the
N∗

0 (t) scenario for the demography.

PROPOSITION 5. Assume the following: (i) t̄ > ω; (ii) there exist s0 ∈ (0, ω)

such that u(t, s) > 0 for s ∈ [0, s0] and t < t̄ . Then there exists a nonempty set
(t1, t2) × (s1, s2) with t2 < t̄ such that u∗(t, s) > u(t, s) on this set.

We have thus established, theoretically and numerically, that a change of the
learning rate takes place in the case of increasing/decreasing population even
before the demographic change starts affecting the labor market. What is the
economic reason for this effect?

(A) Let us consider first the case of imperfect substitutability of high-skilled and low-
skilled labor (ρ < 1), treated by Proposition 5. Because the additional labor that
enters the labor market after the beginning of the demographic change at time t̄ is of
low-skilled labor, the optimal balance between high-skilled and low-skilled labor
will be violated by an excessive amount of low-skilled labor. Owing to imperfect
substitutability across qualifications, in order to restore the optimal balance, the
learning rate should be increased. Owing to the increasing marginal cost of learning,
the cost per unit of learning rate would become higher than before the demographic
change, if the learning rate for t < t̄ were not increased. On the other hand, the
young high-skilled labor at time t before and close to t̄ would remain high-skilled
labor also after t̄ . Then at the optimum a part of the additional learning rate after
the demographic change would be shifted to the years before the change, in order
to take advantage of the lower learning cost. This is the positive anticipation effect.

(B) In the case of imperfect substitutability of labor across ages (λL < 1, λH < 1, ρ =
1), the same intuitive reasoning applies, as we discussed in Subsection 5.1 for the
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long-run behavior of the optimal learning rate. Then the anticipation effect (Figure
4 actually represents the anticipation phase) follows from the same reasoning as in
part (A): shifting some of the educational efforts to times before t̄ (smoothing in
this way the learning rate) decreases the costs of education.

In the case where λH and λL are both less than one and relatively close to each
other, the same comment applies as at the end of Subsection 5.1.

The above analysis clearly exhibits the importance of the relation between the
elasticity of substitution across ages for high-skilled and for low-skilled labor,
which may lead to different (opposite) effects of the demographic changes on the
optimal educational policy.

6. CONCLUSIONS

Skill and age heterogeneity have only rarely been integrated into formal
macroeconomic models. However, such models constitute the framework for a
normative analysis of the optimal age- and education-specific labor force. The
aim of our paper is to provide a formal model of the optimal education policy at
the macro level allowing for heterogeneity of the workforce with respect to its age
and qualification skills. Within this framework, we study the optimal education
rate in the context of changes in the labor demand (as represented by the elasticity
of substitution across ages and qualification) and labor supply (as represented by
the population growth rates).

We establish a number of numerical and analytical results on the optimal age-
specific training rate. In the case of perfect substitutability of labor across age and
qualification we show that the optimal age-specific training rate is independent of
the labor supply. Once we allow for imperfect substitutability of workers across
age and qualification, the optimal training rate depends on labor demand as well
as labor supply factors. The analysis clearly exhibits the importance of the relation
between the elasticities of substitution across ages of skilled and unskilled labor,
which may lead to different (opposite) impacts of the demographic change on
the optimal educational policy. As these results indicate, the relation between
the elasticities of substitution of labor across ages plays a crucial role in the
way the demographic changes affect (both in the short and in the long run) the
optimal educational policy. A further interesting result that we obtained is the anti-
cipation of future changes in labor supply. Already, several years in advance of
the time when the actual change takes place, the optimal educational rate will
change.

Various extensions of our analysis are promising . Our production technology
depends only on labor. An obvious extension of our framework is to allow for
physical capital in addition to human capital. So far we have assumed a relatively
simple educational process, only implicitly taking into account the fact that people
in education might not be active full-time in the labor market. These assumptions,
as well as the assumption of full employment, could be relaxed in further extensions
of our model. So far, we assume labor supply—as represented by the demographic
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change—to be exogenous, but human capital composition will affect fertility, and
mortality. The interdependence of education, fertility, and human capital [similar
to that in Connelly and Gottschalk (1995)] could be studied. The assumption of
the CES production function within each educational aggregate is restrictive as
well. When workers from one age group are replaced by members of any other
age group, the actual age difference does not matter. As was recently indicated
in Prskawetz et al. (2008), the production function could be extended to allow a
more flexible pattern of substitutability of workers across ages.

NOTES

1. Hence, although the social planner at the macro level takes into account changes in the supply
of labor, an individual considers the demographic structure as constant. Moreover, when an individual
invests into age specific education, he or she ignores that he or she thereby also influences the skill
distribution in the macroeconomy at any instant of time. An obvious externality therefore arises,
because the skill distribution together with the prevailing labor demand parameters will impinge on
the returns to education for each individual.

2. Note that compared to our previous model at the firm level [Prskawetz and Veliov (2007)],
the current model allows for a much more flexible and empirically relevant production function that
includes imperfect substitutability across age and education. Although at the firm level the hiring
and firing of workers constituted—in addition to the educational investment—a control variable, the
educational rate is the only control variable in the social planner model because labor inflow is solely
determined by demographic developments in the current model.

3. We stress that the problem is still nonlinear due to the bilinear dependence on (L, u).
4. We can denote a change in the initial level of low-skilled and high-skilled labor as a demo-

graphic change because we abstract from endogenous modeling of the labor market and assume full
employment.

5. The numerical solution is itself a challenging issue (this applies also to the previous sections). In
our numerical analysis we use the general solver for age-structured optimal control problems developed
by the third author, which is very briefly described in Feichtinger et al. (2004). A detailed description
will be given in a forthcoming paper of the third author.
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APPENDIX A: DATA SPECIFICATIONS

In the numerical experiments we have used the following data:

ω = 40—age of retirement minus initial working age a0 = 20;
T = 140—end of the time interval;
[45, 95]—the time interval used for the plots;
δ(t, s) ≡ 0—there is no decay of the human capital;
e(s) ≡ 0—there is no learning by doing;
l(t, s) ≡ 0.1386—constant in age and time efficiency of learning;
θL(t) ≡ 0.3, θH (t) ≡ 0.7;
p(s, u) ≡ p(u) = 9

520 u + 3
260 u2—the cost of educating one low-skilled worker if the

educational effort is at level u;
ρ = 1—the aggregate low- and aggregate high-skilled labor are perfect substitutes;
λL—the different values are specified in the respective sections and figure captions;
λH —the different values are specified in the respective sections and figure captions;
r = 0.03—discount rate;

π̄L(s) = cLexp(
q2

1
(s−mL)2−q2

2
), π̄H (s) = cH exp(

q2
1

(s−mH )2−q2
2
)—age-specific productivities

of low-skilled and high-skilled workers [the functional form is taken from Prskawetz
and Veliov (2007), where the parameters are identified using data from France for
1998];

πL(s) = π̄L(s)/
∫ ω

0 π̄L(σ )dσ , πH (s) = π̄H (s)/
∫ ω

0 π̄H (σ )dσ—age-specific relative
efficiency parameters in the CES functions for the low- and high-skilled aggregate
labor;

cL = 500, cH = 1000—scaling factors,
mL = 13, mH = 20—age of maximal productivity,
q1 = 100, q2 = 60—parameters identified from data;
L0(t) ≡ 1000, H0(t) ≡ 10−6—the inflow of low and- high-skilled workers at the initial

working age in the constant population scenario;
L0(t) = 1000 exp(0.0072(t − 45)), H0(t) = 10−6exp(0.0072(t − 45))—the inflow of

low- and high-skilled workers at the initial working age in the increasing population
scenario;

L0(t) = 1000 exp(−0.0072(t −45)), H0(t) = 10−6exp(−0.0072(t −45))—the inflow
of low- and high-skilled workers at the initial working age in the decreasing population
scenario.

APPENDIX B: THE MAXIMUM PRINCIPLE

In this appendix we explain how the optimality conditions described in Section 3 are
obtained using the result in Feichtinger et al. (2003). This paper provides Pontryagin-type
conditions for a class of problems of the form

minimize
∫ T

0

∫ ω

0
F(t, s, y(t, s), u(t, s), q(t)) ds dt, (B.1)
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subject to the equations

yt (t, s) + ya(t, s) = g(t, s, y(t, s), u(t, s)), y(0, s) = y0(s), y(t, 0) = ϕ(t, q(t)),

(B.2)

q(t) =
∫ ω

0
h(s, y(t, s), u(t, s))ds, (B.3)

and the control constraint
u(t, s) ∈ U. (B.4)

Here t is the time, running in a given interval [0, T ], s ∈ [0, ω] is a scalar variable interpreted
as age, y(t, s) = (y1(t, s), . . . , ym(t, s)) ∈ Rm and q(t) = (q1(t), . . . , qr (t)) ∈ Rr are the
states of the system, u(t, s) ∈ U is the control, U is a subset of Rm, and F, g, h, y0, ϕ are
given functions.

We mention that models such as this often arise in population dynamics (as in the present
paper), but also in other areas of economics, where s has the meaning of age of physical
capital or technology [cf. Barucci and Gozzi (2001), Feichtinger et al. (2005, 2006)].

In our model y = (L, H), but in order to pass to a model in the above form we need a
slight modification of equations (4), (5). Namely, we set q = (L̄, H̄ , P ), where L̄ and H̄

are new variables (replacing L̃ and H̃ ) defined by

L̄(t) =
∫ ω

0
πL(s)(L(t, s))λ

L ds, (B.5)

H̄ (t) =
∫ ω

0
πH (s)(H(t, s))λ

H ds. (B.6)

We have to modify the objective function (1) correspondingly:

maximize
∫ T

0
e−rt

[(
θL(t)(L̄(t))ρ/λ

L + θH (t)(H̄ (t))ρ/λ
H

)1/ρ − P(t)
]

dt. (B.7)

Obviously problem (B.7), (2), (3), (B.5), (B.6), (6), and (7) is equivalent to our original
problem (1)–(7) and at the same time is in the form (B.1)–(B.4). Thus Theorem 1 in
Feichtinger et al. (2003) readily gives the following: the optimal control u(t, s) maximizes
the function

(−ξ(t, s) + η(t, s))l(t, s)L(t, s)u − p(s, u)L(t, s), (B.8)

where the adjoint variables ξ and η corresponding to L and H , respectively, satisfy the
equations

ξt + ξs = rξ + (ξ − η)(e(s) + l(t, s)u(t, s))

− (Y (t))1−ρθ
L
(t)π

L
(s)(L̃(t))ρ−λL(L(t, s))λL−1 + p(s, u(t, s)),

ξ(t, ω) = 0, ξ(T , s) = 0,

ηt + ηs = rη + (−ξ + η)δ(t, s)

− (Y (t))1−ρθ
H
(t)π

H
(s)(H̃ (t))ρ−λH (H(t, s))λH −1,

η(t, ω) = 0, η(T , s) = 0.
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Setting �(t, s) = η(t, s) − ξ(t, s) and subtracting the first equation from the second,
we obtain equation (8). Having in mind that L(t, s) is positive, we obtain the claim of
Proposition 1 from (B.8).

In the analysis of the optimal solution we implicitly assume also that the solution
to our optimal control problem is unique, and that the necessary optimality condition
(maximum principle) presented in Section 3 is also a sufficient condition. This assumption
is automatically fulfilled if the mapping “control u −→ objective value” is strongly convex,
for which there is strong evidence. However, these purely mathematical issues go beyond
the scope of the present paper.
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