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Abstract

Microstrip and stripline losses in Method of Moments (MOM) calculations have an error
arising from the large current density at the strip edges, characterized by an integration
limit (W/2-d) in the equation for current density in thin strips (width W ), where d is a fitting
parameter. It depends primarily on the width of the MOM subsection on the edge of the strip.
By comparing with the integration limit (W/2-Δ) for an actual strip with finite thickness, a cor-
rection factor is estimated. The equations incorporating d are confirmed by comparing with
MOM calculations of isolated stripline, uniformly spaced parallel strips, striplines and micro-
strips close to ground planes, and with a strip in a uniform, externally applied magnetic field.
The results are also consistent with measurements with copper. This makes the accuracy of
the loss estimates commensurate with the excellence of the other aspects of MOM simulations.

Introduction

In a uniform, zero-thickness isolated stripline, the normalized current density J(x) has the
form

J2(x) = 2
p

( )2 1

(W/2)2 − x2
, (1)

where W is the width of the strip and x is the position, measured from the center of the strip
(Fig. 1(a)), as given in Appendix A for W/2 = 1. It has the same form as the charge density [1].
Power loss depends on the integral of this function, which has singularities at x = ±W/2,
because the finite thickness t of the strip has been ignored. For a thick strip, currents flow
on the top, bottom, and side surfaces because of the skin effect, and the 90° corners do not
have this singularity.

The singularities are avoided by integrating only within a range −(W/2) + Δ < x <W/2− Δ,
where fitting parameter Δ is chosen as follows. In Fig. 1(a), s = x +W/2, that is, s is measured
from the left-hand edge and s<<W. At a 90° corner, the thick-metal current density squared
J2m(s) increases only as s−2/3 instead of s−1, as s decreases. When the two curves shown have
equal integrals, the power dissipation per unit length for the finite-thickness strip with surface
resistance Rs can be represented by the thin-metal case, PD = 4Rs

�W/2−D

0 J2 (x)dx, considering
the right-hand half of the top surface, and then multiplying by 4 for the whole strip. The value
of Δ, sometimes called the “stopping point” [2] or “stopping distance” [3], is t/290 for perfect
conductors [4], typically t/150 to t/250 for finite conductor skin depths as confirmed in experi-
ments [2], and t/130 for superconductors [3] in one example [5]. Losses can also be obtained
from thick-layer simulations [6, 7] and are also considered in [8–11].

One version of the Method-of-Moments (MOM) [12] uses thin conductors as an approxi-
mation and approximates J2(s) as rectangular basis functions, shown in Fig. 1(b). The combin-
ation of rectangles does not account for the singularity of 1/s and furthermore, for the second
rectangle onwards, the discrepancies between the rectangle functions and 1/s may not exactly
cancel. The aim of this work is to establish an integration limit (W/2-d) such that
Pd = 4Rs

�W/2−d
0 J2 (x)dx is the MOM estimate of power loss. The ratio PD/Pd becomes the cor-

rection factor for simulations. It is useful because the power loss, which is proportional to
J2 (x), is particularly sensitive to errors in J(x). The derivation for d is straightforward, but
the assumptions are not very obvious, so the bulk of the effort is to confirm that Pd is a fair esti-
mate of Psim = 4Rs

∑
n J

2
nXn from actual MOM calculations (with notation from Fig. 1(b)).

The expressions for Δ are already experimentally confirmed in [2]. The present work pro-
poses and confirms the value of d, a numerical exercise. Both a manual MOM procedure and
commercially available software Sonnet® [13] are used, for several configurations: isolated stri-
pline; uniformly spaced parallel strips; microstrips and striplines close to ground planes; and
strips in a uniform, externally applied magnetic field. Isolated stripline is the simplest case,
relevant because the edge singularities are not strongly affected when ground planes are
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added, as confirmed by comparison with a microstrip where the
substrate thickness is only half the strip width. Coplanar line, in
which currents in the adjacent ground planes are in the opposite
direction to the center line, are similar to the parallel strips with
currents in adjacent lines in the opposite direction. The thick
metal calculations and experiments [2] are supplemented by
some additional simulations and experimental results to illustrate
the calculation process. The comparisons also reveal some fea-
tures of microstrips which might not be expected, such as a
very significant loss under-estimate for coarse meshing.

The MOM calculation (existing software) already gives the
overall current distribution, taking into account any dielectrics
in the layout. The additional adjustment for the current crowding
(this work, characterised by d) is assumed to be independent of
the dielectrics, so free-space configurations are considered. This
is because, for localized currents, Ampere’s law (Appendix B)
can be used instead of Maxwell’s equations. Supplementary simu-
lations on spirals and meander lines, and experiments with micro-
strips confirm that the results are still applicable when dielectrics
with high relative permittivity (εr∼ 10) are present.

For comparison, existing papers [2, 8–11] give stand-alone cal-
culations for PD, using extensive computations with software
which does not appear to be intended for arbitrary filter shapes,
that is, not simulation software. For the present work, the overall
current distribution is found by existing MOM software, requiring
only the very localized adjustment to find Pd. Despite being
defined by similar equations, PD and Pd are not the same quan-
tity and are not compared to find the error level in one or the
other. Instead, previous work [2] is accepted and used in the cor-
rection factor PD/Pd, which can be inserted into the software by
entering a modified value of metal resistance. The differences
and relative merits between [2,8–11] and the MOM itself

[12,13] are not part of the current study. The main advantage is
that the improvement in the MOM can be used for complex
shapes in filters such as step-impedance hairpins, with very little
additional effort.

Evaluation of the integration limit

Using Fig. 1(b), in which the current density (omitting a constant,
for clarity) is J(s) = 1/

�
s

√
so the mean value of J(s) (not J2(s) as

illustrated) between s = 0 and s = X1 is given by

X1J1 =
∫X1

0

1�
s

√ ds = 2
���
X1

√
, (2)

J21 = 4 /X1. (3)

For the rectangular function J1
2 = 4/X1 and the curve J2(s) = 1/s

(for s = d to X1) to have equal areas and therefore to represent the
same power loss,

RsX1J
2
1 = Rs

∫X1

d

1
s
ds , (4)

where Rs is the surface resistance, taken to be very small so that it
does not affect the current distribution, so

d ≈ X1

54.6
. (5)

This simple equation is the centerpiece of the present work.
The second rectangular function with height J2

2 underestimates
1/s for s slightly greater than X1, causing the MOM equations
to over-estimate J1 and the crowding factor, as will be investigated
numerically.

The estimate for the MOM value of power dissipated per unit
length of a strip is approximately

Pd = 4Rs

∫W/2−d

0
J2(x) dx . (6)

For a uniformly distributed current, it is

Pu = 2
W

4RsI
2, (7)

where I is the current in the top surface of the right-hand half of
the strip, which has width W/2. Hence an approximate equation
for the current crowding ratio included in the MOM is

hd =
Pd
Pu

= W
�W/2−d
0 J2dx

2
�W/2
0 J dx

( )2 . (8)

The actual MOM current crowding in simulations is (with
notation given in Fig. 1(b))

hsim = W
∑

n J2n Xn

2
∑

n Jn Xn
( )2 . (9)

Fig. 1. Fitting parameters: integration limits Δand d for (respectively): (a) strip with
finite thickness, and (b) MOM calculation with a zero-thickness conductor.
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Isolated strips

Using J2(x) for an isolated strip given in Appendix A, with width
adjusted from 2 units to W,

hd ≈ 0.1405− 0.2026 ln
2d
W

( )
, (10)

for small d. The actual current crowding factor hDfor thick con-
ductors based on [4] is the same equation but with d replaced by
Δ and the correction factor

�W/2−D

0 J2 (x)dx /
�W/2−d
0 J2 (x)dx is

equal to hD/ hd (much simpler than hD/ hsim). Although ηd
and hD share the same equation and the same red line, simula-
tions are likely to have X1/W between 0.05 and 0.25, on the right-
hand half of the graph, while real filters will usually have Δ/W on
the left-hand side, so hD/hd can be substantial, typically 1.5–2.0.

Figure 2 also compares ηd with ηsim from manual MOM calcu-
lations as given in Appendix B, revealing only a slight variation,
believed to be due to the variable-ratio X2:X1. Here, ηd is a func-
tion of d, while ηsim is a function of X1, and the agreement shows
that the relation (5) is valid. Commercially available software
Sonnet® [13] was also used. A uniform, straight strip of width
40 μm is placed in a 2 × 2 × 2mm3 enclosure, and excited at
1 GHz. Exceptions are for X1/W = 0.002, where W = 100 μm,
which illustrate that scaling does not affect the results. Current
density plotted by the software is manually read off, and (9) eval-
uated. Results are also given in Fig. 2(a), with good agreement
with the manual MOM and (10). The horizontal discrepancy
between the ηd and ηsimlines is about 20%, but with the logarith-
mic relationship, the vertical discrepancy is only about 3%,
slightly more for large X1/W where the approximation
J(s) = 1/

√
s breaks down. It is the vertical separation that is rele-

vant in calculations. Transmission line loss also depends on R/Z0,
where R is the resistance per unit length and Z0 the characteristic
impedance. Because the MOM slightly overestimates the charac-
teristic impedance, there is a small additional error, ignored
here but found in some example calculations to be of the order
of 2%.

Narrow subsections are usually used near the strip edges where
the current density varies rapidly, and larger subsections in the
middle. In Sonnet, a default ratio X1:X2: X3: X4, … is 1:2:4:8…,
working inwards, except for the subsections near the center,
which are chosen so that the total width is the strip width. This
ratio is used in Fig. 2(a), with two values using 1:6:12 … for com-
parison. Other ratios are shown in Fig. 2(b) where (10) is sub-
tracted so the discrepancy can be greatly magnified. The values
of ηsim- ηd for the ratios 1:1:1:1 and 1:2:4:8, are very close, imply-
ing that the sizes of inner subsections are virtually immaterial.
However, comparing 1:2:4:… with 1:6:12…, there is a significant
difference. The widths of the inner subsections in corresponding
positions are similar; for example, x3 has a magnitude between X4

and X5 (not X3), as shown in Fig. 2(c). Thus, only the widths of
the first and possibly the second subsections are significant.
This is re-confirmed with the plots of ηsim- ηd for 1:1:m:2m,
which also show little change when X1 and X2 are not varied.

Parallel striplines

Equations for current density are given in Appendix A for parallel
strips, with the currents either all in the same direction or “anti-
parallel”, alternating in the direction in neighboring strips. The
widths and the spaces are both 40 μm. For the anti-parallel strips,

the neighbors were represented by the image currents in the walls
of a very narrow box. For the parallel strips, the strip under test
was next to a symmetry plane with 32 neighbors on one side

Fig. 2. Current crowding factor: approximate equation (10) compared with MOM cal-
culations (9). For strips carrying a known current. (a) For sub-sectioning X1:X2:X3:X4 =
1:2:4:8 : typical values of X1/W for copper and superconductor are given. Red and
dashed black lines correspond to the similar lines in Fig. 1. (b) For various values
of X1:X2:X3:X4; with the approximate equation subtracted. For 1:1:1:1, m is irrelevant,
so the value shown on the graph is arbitrary. (c) Comparison of sub-sectioning: X1:X2:
X3:X4 = 1:2:4:8 and x1:x2:x3:x4 = 1:6:12:24.
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and 33 images in the symmetry plane, on the other side. The
results, in Fig. 2(a), also show very good agreement.

To observe non-idealized situations instead of straight transmis-
sion lines in air, simulations were also done for spirals and
meander lines. One case was a spiral similar to Fig. 3, with input
and output lines, omitting the other resonator, a meander line
combined with an interdigital capacitor (IDC). In the second
case, the meander/IDC was provided with nearby input and output
lines, and the spiral was omitted. In the fundamental resonance of
the spiral [5], currents in adjacent turns are in the same direction,
while for the meander/IDC, the current is largest in the meander
line, where currents in adjacent sections are anti-parallel.

The substrate has a relative permittivity 9.65 and thickness 0.5
mm, representing MgO (Magnesium Oxide). Line width is 50 μm.
The spiral is a 2 mm square with a 3.7 mm tail. The original study
was for superconductors [5], but for easier evaluation of band-
width and quality factor, the surface resistance was entered as
4.6 × 10−4 ohms per square, approximately 100 times that of a
typical YBCO superconductor at 2.3 GHz and 20 K with top
and bottom surfaces in parallel. For the meander line, it was
8.1 × 10−4 ohms/square, approximately 20 times that of YBCO
at the 10 GHz resonance. Losses are estimated from the 3 dB
bandwidths of the S21 response, giving allowance for the input
and output loading found from a re-simulation with zero reson-
ator loss. They are scaled to fit the ηd curve at X1/W = 0.05;
there is a close match, except near X1/W = 0.5, where ηd = 0.881
and 0.928 for the parallel and anti-parallel strips, respectively.
Had the values been scaled to ηd = 1 at X1/W = 0.5, the curves
would have been higher. The cause is probably the skewed current
distribution and transverse currents near the bends, which intro-
duce more loss in both the simulations and in the thick films.
Since only the ratio hD/ hd is required, the curves are confirmed
except for extremely coarse mesh.

Strips in a uniform field

When an external uniform perpendicular magnetic field induces a
current in the isolated strip, the induced current is also concen-
trated at the edges (insets, Fig. 4). The conformal mappings,
MOM calculation and the simulation layout with a nearly-
uniform field are given in Appendices A–C. A non-idealized con-
figuration for simulation is shown in Fig. 3. The lossless spiral,
resonating at 2.3 GHz, creates a magnetic field which induces cur-
rent in the meander/IDC resonator, which has surface resistance
4.6 × 10−4 ohms per square, as before. The second resonator is not
resonant at this frequency but loads the spiral. The current dens-
ity is approximately anti-symmetric, as sketched in the inset of
Fig. 4 and in Fig. 13(c). Resonance 3 dB bandwidths are very

narrow, but the surface resistance cannot be increased much fur-
ther without perturbing the current distribution. Very good agree-
ment between the approximate equation, the MOM calculations,
and the meander line simulations is shown in Fig. 4. As before,
the meander line data are scaled to fit at X1/W = 0.05.

The resonator combination is intended for other work, where
the meander resonator attenuates the third-order resonance of the
spiral, as in [14–17].

Microstrips and striplines with ground planes

At microwave frequencies, the current is confined to the upper
and lower surfaces of the microstrip. With a nearby ground
plane underneath, the current density is greater on the microstrip
lower surface because of the larger magnetic field, studied by
modeling the top and bottom surfaces as two separate layers
with a very thin gap. However, in most simulations, they are com-
bined as one layer, since halving the number of sub-sections may
result in an eightfold reduction in computation time. These two
cases are given in Fig. 5, where W = 40 μm. Ground plane losses
[1,18,19], are omitted. The value of ηd is assumed to be close to
ηsim for separate layers, being determined by the 1/s dependence
of J2(s) at the edges, as before, and confirmed in the next section.

Errors arise from conflicting requirements for the separation
t = 0.02 μm between the upper and lower surfaces of the strip. It
should be small to avoid obscuring the variation of ηsim with
X1/W. For the isolated strip, which has equal top and bottom cur-
rents, the difference between using a single layer or separate layers
is due solely to t. The worst error is about 5%. To check if t is too
small for other values of h, some strips were re-simulated with
three layers enclosing two gaps of 0.02 μm. The middle layer
does not have zero current density (as it should) because the rect-
angle function estimates of currents in the top and bottom layers
shield the center layer incompletely. In the absence of the middle
layer, the field under the strip would influence the current in the
top layer. The center current is greatly reduced with t = 0.04 μm,
even though ηsim changed by much less than 0.1, implying very
little effect.

The curves should approach the isolated strip for large h/W.
This applies even for h/W = 0.5; furthermore, the transition to
microstrip occurs only at approximately h/W = 0.2. For very

Fig. 3. Resonators used in simulations: one spiral and the other including a meander
line, used separately or together.

Fig. 4. Current crowding factor estimated from the approximate equation compared
with MOM calculations: externally applied uniform magnetic field. (Legend as in Fig. 2
(a).) Red and dashed black lines correspond to the similarly-colored lines in Fig. 1.

258 Frederick Huang

https://doi.org/10.1017/S1759078720000975 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078720000975


small h/W it should tend towards ηsim = 2 for the double layer
model since current is concentrated on the lower layer, while
for a single layer, ηsim = 1. However, for h/W = 0.05, X1/
W∼0.125, the current crowding factor is only about 1.65, showing
that a significant current still flows in the top surface. Meanwhile,
for X1/W∼0.005, all the two-layer curves are near 1.8, giving a rea-
sonable rule of thumb, because current crowding at the edges
compensates for the incomplete current crowding between top
and bottom.

Turning to striplines, crowding is significant even for h/W =
0.2, but less than for the microstrip because more current flows
near the center of the top surface, in addition to the bottom
surface.

Comparison with thick strips

To supplement hD and experimental data in [2], and the add-
itional experimental data in the section “Comparisons with mea-
surements”, new simulations for ηthk using the thick-layer MOM
model was generated for comparison with ηsim, the above thin-
metal model of 1 or 2 layers. The data are shown in Fig. 6.

X1/W is sufficiently small so that the current crowding is deter-
mined almost exclusively by the thickness. Thus, the horizontal
axis for the thin metal is X1/W, but for the thick metal it is Δ/
W, and agreement between the two cases confirms the relation
(5). Data are given for h/W→∞ and h/W = 0.2; t = 32 μm, resist-
ivity is 4.31 × 10−9Ωm (a quarter of room-temperature copper),
and frequency is 1.092 GHz, to make the skin depth δ = 1.0 μm,
that is, much thinner than t. Nevertheless, the skin depth is repre-
sented approximately using the appropriate skin resistance and
reactance in the thin layer model for each of the top and bottom
surfaces, while the side walls were 1 μm wide stacks of thin layers
(that is, the software’s thick-layer model) with 1 μm gaps. This
stack has a rectangular function for a current density of width
δ, instead of the exponential profile, but the skin resistance and
field penetration are approximately correct. Box length is 100
μm, while other dimensions are much smaller than a wavelength.
In this section, the crowding factor was found by comparing S21
with the corresponding value of a thin-film reference line with
X1 =W/2, instead of using (9), to avoid manual summation of
very many terms. Comparing S21 values includes the difference
arising from different estimates of characteristic impedance (as

Fig. 5. Current crowding factor for very thin microstrips and striplines, with nearby ground planes, based on MOM (Sonnet) calculations.

Fig. 6. Current crowding factor for very thick microstrips with nearby ground planes, based on MOM (Sonnet) calculations, t/2δ = 16, compared with the thin-layer
simulations.
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in the section “Isolated strips”), not considered in (9). The soft-
ware estimates of characteristic impedance suggest that the differ-
ence is particularly large when h/W = 0.2, typically 5%.

Figure 6 shows that (5) is a good approximation, except for
large t/W, as expected [4] because the conformal mapping there
assumes t <<W. Two values of ηthk for t/2δ = 5.5 from [8] are
also given. Their graphed data have been adjusted by removing
dielectric and ground plane losses as given in [1,20]. The point
at X1/W = 0.00245 is a consensus of several works which are
compared in [9]. For the point at X1/W = 0.0098, h/W is 2 but
taken to be infinite since even h/W = 0.5 is not very different
from h/W→∞.

In Fig. 7, results are compared with ηthk from medium-thickness
(t∼ δ) simulations consisting of a stack of thin layers with t0 = 0.2
μm spacing and W = 40 to 400 μm, but (because of computer lim-
itations) t0 = 0.33 μm for W = 640 μm. Again, h/W→∞ and h/W =
0.2. For resistivity 17.24 × 10−9Ωm (room temperature copper) and
frequency 1 GHz, skin depth is δ = 2.09 μm. Because of the
unusually small subsections, several of them are required to resolve
the variation of current density near the edge. Eight 1 μm subsec-
tions were therefore added, produced in the software by manually
drawing narrow touching rectangles instead of one larger rectangle.
Maximum t/Δ occurs when t/2δ≈1.44 [2], which minimizes Δ.
Thus, the series of open circles represents progressively decreasing
t, starting with the pink-filled circle; Δ initially decreases and then
increases. The same applies to the series of upright triangles.

To find hD, S21 loss was compared with a single-layer reference
line with X1 =W/2 and sheet resistance

R = Rs t Im
cot (kt)+ csc(kt)

kt

( )
, (11)

based on [2], where Rs is the skin resistance and k is the (complex)
wave number within the metal. For t/2δ≫ 1, top and bottom
layers are separate and in parallel, so R∼Rs/2, while when
t/2δ∼1, the skin layers overlap, R is larger, and the reference
line is itself affected by the overlapping top and bottom skin
layers, but not the current crowding at the edges.

Example series of points with constant t/W, t, and W are given.
For h/W→∞, t/2δ > 0.5, and t/W < 1/16, three calculations agree
closely:

• ηsim, thin-metal simulations together with (5) (broad black line,
long dashes);

• ηΔ, where [2,3] give data on t/Δ, which with (10) gives the
crowding factor (thin red line); and

• ηthk, using the same data on t/Δ but with new thick-metal simu-
lations (black circles).

Admittedly, because of the logarithmic relationship in (10), the
horizontal discrepancy, that is, the error in Δ, is larger, but it is

Fig. 7. Current crowding factor for t/2δ of the order of 1, compared with thin layers.
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ηsim which is required in calculations. If ηthk is accurate, the hori-
zontal shift between it and ηΔ may be due to the approximation
that t/Δ in [2] is independent of W. In particular, for the very
small and little-used range t/2δ < 0.5 (not shown), ηthk and ηΔ
agree only for t/W∼1/16, but here, [2] can be ignored and the
thin-metal simulations can be used on their own.

For h/W = 0.2, (1) does not apply, but nevertheless, the esti-
mates of ηsim are a fair match to ηthk for t/2δ > 1. For smaller t,
the values of ηsim approach the single-layer simulations, as
expected, with t/2δ = 0.72 near the center of the transition. For
h/W = 0.05, the agreement is fair for t/2δ > 1.2.

Thin strips with resistance

Introducing resistance to the thin conductor simulations modifies
the current distribution and hence ηd (as it does with the thick
model via the parameter t/2δ, previously discussed). The inset in
Fig. 8 shows a diagonal line which represents any of the three
curves of ηd, the black dashed lines in Fig. 2(a). Strip resistance lim-
its the current crowding factor; moving leftwards, the line reaches a
limiting value depending on the resistance. This limit is given in the
main figure, obtained in MOM computations. For easier scaling,
strip width was changed to 100 μm. The excitation frequency
remains 1 GHz. For the parallel strips, there are 16 near neighbor
strips included in the calculation on each side of the main strip
to reduce computation time. (In two runs with 32 neighbors, the
difference is not visible to the scale of the graph). The thin film
resistor model was used; for t/2δ > 1, the surface resistance of the
top and bottom surfaces in parallel is approximately Rs0/2, where
Rs0 is the surface resistance for the given 100 μm strip at 1 GHz.

For the same overall resistance, a wider strip has a proportion-
ately larger resistance per unit width. At a higher frequency, the
reactance increases, so for a proportionate contribution by resist-
ive and reactive components, the resistance is proportionately lar-
ger. Thus, the scaling rule is

Rs

fW
= Rs0

109 10−4 . (12)

Alternatively, the horizontal axis Rs0/2 can be replaced by
(0.1256 /μ0fW) (Rs/2) where the permeability of free space μ0
makes the variable dimensionless and removes the very large con-
stants. To test the scaling, simulations with f and W varied by a
factor of 10 made no difference, to within the drawing accuracy.
The crowding factor is then the smaller of ηR and ηd, except in
the small transition region, where both the finite subsection
width and the resistance contribute.

In Fig. 8, X1/W = 0.002 limits ηR as Rs is reduced. Otherwise,
the curves would continue to rise to the left, with approximately
constant gradient.

Different curves apply when the metal is modeled with a surface
impedance ofR + jX, whereR =X, as when the skin effect is included,
and these are also shown. The appropriate curve depends on the
model in the simulation, not on the actual properties of the metal
when the aim is to appraise and adjust the MOM loss estimate.

Comparisons with measurements

Two similar hairpin filters, described in [14] for harmonics sup-
pression, were revisited to investigate current crowding; one is
shown in Fig. 9(a). They are made with 1.27 mm thick RT Duroid
6010.2 with 18 μm copper thickness. The tracks are 0.5 mm wide,
and each resonator is approximately 7 × 28 mm2. The manufac-
turer’s latest dielectric data are given in [21]. The external circuits
in the simulation and measurement are straightforward: “in” and

Fig. 8. Current crowding factor for a thin resistive isolated 100 μm wide stripline,
based on MOM (Sonnet) calculations.

Fig. 9. Hairpin filter with 22% bandwidth and 1 GHz center frequency. (a) Layout, (b)
simulated frequency response for various loss mechanisms, and measured response.

International Journal of Microwave and Wireless Technologies 261

https://doi.org/10.1017/S1759078720000975 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078720000975


“out” are connected to source and load, or to ports 1 and 2 of a net-
work analyzer. For one of the filters, simulation results progres-
sively including more and more of the loss mechanisms
(dielectric, microstrip resistance, and ground plane) are shown
in Fig. 9(b) and compared with the measurement; some of the
curves almost coincide. In Fig. 10, themid-band losses are normal-
ized, dividing by the stated reference value, which is the simulation
S21 loss for copper only, without the adjustment hD/ηd for current
crowding.

Despite the relatively coarse mesh of X1/W = 0.25 in [14], pre-
dictions of filter characteristics had been excellent, except for the
losses, which required the unrealistic assumption that current
only flows on the bottom surface (“current ratio” = 0 in Sonnet)
even though current actually flows on both sides when the ground
plane is not very close (h >W ). This is similar to the 1.8 rule of
thumb given earlier. The present work shows that ηd is only 1.09,
far short of hD = 1.73, as estimated from [2]. Taking current to
flow on both sides, and including the adjustment hD/ηd, as
shown in Fig. 10, substantially improves the loss estimate.

Two further resonators with the same dielectric but no ground
plane each comprised two intertwined spirals as in Fig. 11(a) with
the inner ends joined as in Fig. 11(b), giving a “spiral-
in-spiral-out” resonator with a total of seven turns. The overall
dimensions are 10.5 × 10.5 mm2 and 7.5 × 7.5 mm2, with line
widths 0.25 and 0.125 mm, respectively, and X1/W = 0.25. In the
fundamental resonance, adjacent turns have anti-parallel currents,
while in the second-order resonance, they are parallel.
(Meanwhile, the electric fields of the first two resonances probe
the dielectric to different depths, so a resonator can also be
used to investigate a possible variation of dielectric constant
with depth. The double spiral (Fig. 11(a)) is a complementary res-
onator because the shallow field occurs at the higher resonance
instead of the lower frequency.)

Losses are estimated from the bandwidths of the resonances.
Because of a significant skew in the peaks, the 1 dB bandwidth
(where B1dB/f0 = 1/2Q) as in Fig. 11(c), instead of 3 dB (B3dB/f0 =
1/Q) was taken, but even so, the losses are not exactly proportional
to bandwidth. To make a reasonable comparison (Fig. 10), all losses
including the measured loss were based on these bandwidths. The
adjusted estimate was obtained by re-simulating with bulk resist-
ance increased by a factor of (hD/ hd)

2, which increases the surface
resistance by hD/ hd because of the skin effect. For a better com-
parison, the bandwidth for a lossless resonator is subtracted, as it
corresponds to a loss in the external circuit. The values are then
divided by the bandwidth for the un-adjusted copper loss. It
depends on R/ωL, where L and R are the inductance and resistance
per unit length of the transmission line; because the magnetic fields
in the parallel and anti-parallel cases differ markedly, the normal-
ization factors are also very different.

The bar graph (Fig. 10) shows that this correction again leads
to a considerable improvement. The least accurate is for the anti-
parallel currents in the strips with 0.125 mm gaps. It may be
because the proximity of near neighbors affects the s−1/3 depend-
ence of current density near the corners [2], and not only the gen-
eral distribution described by (1). The strong skew in the
frequency response may also have contributed.

Superconductor losses have historically been rather unrepeat-
able, even with measurements by the same worker at about the
same time [22–24]. The same applies to the filter in [5], compared
with [25,26], or perhaps the surface resistance has improved by
about 25% over the past 20 years.

Conclusion

This work evaluates the error in power loss calculations based on
the standard MOM with rectangular basis functions and thin

Fig. 10. Losses: measurements compared with computations for microstrip (h≫W )
and strips with near neighbors; scaled so that the un-corrected resistive loss (X1/W =
0.25) is 1 unit.

Fig. 11. Resonator to measure losses: (a) precursor: dual spiral resonator. (b)
spiral-in-spiral-out resonator. (c) Response.
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metal strips, resulting from the incomplete consideration of the
concentration of current near the edges. It uses a simple approxi-
mation for current density near an edge and compares the result
with accepted thick-metal calculations from the literature which
are already supported by measurements. The resulting adjustment
makes the loss estimates commensurate with the excellence of
other MOM results, even with relatively coarse meshing, allowing
more complex circuits to be analyzed. Isolated strips and strips
with near-neighbors are considered, as is a strip in an
externally-applied uniform field. New simulation data with thick
metal are also presented. Non-ideal cases with spirals and
meander lines, including dielectric layers, are simulated for com-
parison. For isolated strips (h/W→∞), extending down as far as
h/W = 0.5, an equation is given to estimate the current crowding
factor given by MOM calculations of microstrips and striplines.
For smaller values of h/W, numerical data are provided. In
example calculations with relatively coarse mesh X1/W = 0.25, sig-
nificant underestimates of ηd were corrected and compared with
experiments, showing that the correction factor is valid, while
other calculations show that the ground plane is significant only
when it is very close to the strip.
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Appendix A: Conformal mappings for stripline

Conformal mappings [27] for striplines with width W = 2 are given in Table 1
and Fig. 12. The complex variable w in the conformal mappings is not to be
confused with W. For unity current density in the t-plane, the normalized
power dissipated in the right-hand half of a strip is

hd =
∫1−d

0
J2(x)dx =

∫1−d

0

dt
dz

∣∣∣∣
∣∣∣∣
2

dx. (A.1)

Results are given for d <<1. The strips are either isolated or have 1:1
mark-to-space ratio. The “parallel” strips have currents in the same direction
while for the “antiparallel” strips, currents in adjacent strips are in opposite
directions.

The vertical walls in the z-planes do not exist in the actual structures but
are inserted so that the fields in the region |Re(z)| < 2, Im(z) > 0 in Figs 12(b)
and (d) or |Re(z)| > 0 in Fig. 12(c) are appropriate.

Transform 2 for the anti-parallel strips arises from the Schwartz–
Christoffel transformation [27], and since the total current on the right-hand
half of the strip is 1,

K =
∫1
0

1��������
1− w2

√ ����������
1− w2/2

√ dw, (A.2)

found in tables of the complete elliptic integral to be 1.854.
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For the strips in an external field, a factor of 22 is added to allow for current
in both sides of the strip, while in Fig. 12(d), there is a further factor of 22 to
re-normalize the flux density in the z-plane at large Im(z).

For the parallel strips in an external field, the limits of integration in (A.1)
are 1 + d to 2.

Appendix B: The method of moments

By Ampere’s law, a long, straight wire at point x carrying a current I results in a
magnetic flux density

B = m0I
2pr

, (B.1)

where r is the distance from the wire (Fig. 13). Integrating between points P
and Q,

w pq =
m0I
2p

ln
x − xp
x − xq

, (B.2)

so in Fig. 13(b), integrating between xa and xb where the constant current
density is J1, it is

2p
m0

w pq = J1{(xb − xp) ln |xb − xp| − (xb − xq) ln |xb − xq|

− (xa − xp) ln |xa − xp| + (xa − xq) ln |xa − xq|}
, (B.3)

Table 1. Conformal mappings for current crowding factor ηd

Configuration Transform 1 Transform 2 J = dt
dz

∣∣ ∣∣; dt
dz = ηd =

Strips carrying current

Isolated No transform i.e. w = z t = 2
p asin(w)

2
p

�����
1−w2

√ 0.1405 − 0.2026 ln(d )

Parallel w = ��
2

√
sin p

4 z
( )

t = 2
p asin(w)

cos (pz/4)����������
2 cos (pz/2)

√ 0.2884 − 0.1592 ln(d )

Anti-parallel w = ��
2

√
sin p

4 z
( )

dt
dw = 1

K
�����
1−w2

√ �������
1−w2/2

√ , K = 1.854 1
7.416

p
�
2

√��������
cos(pz/2)

√ 0.0552 − 0.2284 ln(d )

Strips in externally applied
uniform magnetic field

Isolated w = z2 t = �������
w − 1

√ −jz�����
1−z2

√ −2.614− 2 ln(d )

Parallel w = ��
2

√
sin p

4 z
( )

t = 2
p asin(w)

cos (pz/4)����������
2 cos (pz/2)

√ −3.385− 2.546 ln(d )

Fig. 12. Conformal mappings for stripline. (a) An isolated strip, or parallel strips with
all currents in the same direction. (b) Parallel strips with current directions alternat-
ing. (c) An isolated strip in an externally applied uniform field. (d) Parallel strips in an
external field.

Fig. 13. Method of moments calculation using piecewise constant approximations
(rectangular functions). (a) Magnetic flux wpqin a zone PQ due to a current I. (b)
Current distribution in a stripline carrying a current. (c) Current distribution in a stri-
pline in an externally applied uniform field.
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Similar terms for the other five rectangular current distributions are omit-
ted for clarity.

In this version of the MOM, P and Q are at the centers of the rectangular
functions on the right-hand half of the strip. By taking various points for P
and Q, N-1 independent equations can be formulated for N unknown values
of Jn; attempting to take more combinations leads to non-independent equa-
tions. Flux penetration wpq within the strip is zero. The total current on the
right-hand half of the strip is

Itot = X1J1 + X2J2 + X3J3 . (B.4)

There are enough equations to solve for J1, J2, and J3 in terms of Itot. This is
easily adapted for fewer rectangular functions, but with more than three
unknowns, using a pocket calculator is very tedious and general-purpose
mathematical software such as MathCad, Matlab, Mathematica or “C”
would be required.

For an externally applied field (Fig. 13c), wpqis equal but opposite to that
field, making the total zero. Taking xp = 0 and two symmetrically placed rect-
angular functions,

2p
m0

w pq =J1{(xb + xq) ln |xb + xq| − (xb − xq) ln |xb − xq|

− (xa + xq) ln |xa + xq| + (xa − xq) ln |xa − xq|}
. (B.5)

Again, similar terms for J2 and J3 should be included, but there is no equa-
tion for Itot since it is always zero with the anti-symmetric current density.

Appendix C: Uniform applied magnetic field

A nearly uniform field can be generated in a simulation using Helmholtz coils
[28], consisting of two co-axial circular coils of radius and separation both r.
The two-dimensional equivalent is an infinitely long rectangle with short side
2l, shown in Fig. 14 as the two upper strips. Because only the vertical compo-
nent By has to be uniform, the lower coil is omitted. The strip is in a plane
0.55l below the plane of the coil. (In a plane l/√3 below the coil, By is max-
imally flat up to the x3 term, while for 0.55l, the ripple is only ± 0.07% and the

region of nearly constant By is larger.) The short 2000 μm strip length saves
computation time, but it could have been even shorter. It can be shown by
Ampere’s law that the flux density is given by

2pl
m0I

By ≈ 1.536, (C.1)

where I is the current in the upper two strips.
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Fig. 14. Approximating a uniform field in simulations: l = 80 μm, W = 40 μm, and the
cubical cavity has side 2000 μm.
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